1
|
Bhowmick T, Sarkar A, Islam KH, Karmakar S, Mukherjee J, Das R. Molecular insights into cobalt homeostasis in estuarine microphytobenthos: A meta-transcriptomics and biogeochemical approach. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137716. [PMID: 40024116 DOI: 10.1016/j.jhazmat.2025.137716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Meta-transcriptomics data supported by biofilm physico-chemical parameters unravelled the molecular and biochemical processes utilized by multicomponent intertidal biofilms to endure cobalt toxicity. Findings indicated activation of influx (BtuB, ABC-type transporters) and efflux pumps (RND, CZC) to maintain metal ion homeostasis. Enhanced specific activity of antioxidant enzymes namely catalases and peroxidases (KatG, SodA) mitigated oxidative damage. Heightened synthesis of capsular polysaccharide components, specifically uronic acid and carbohydrate via PEP-CTERM sorting system, wzy pathway and glycosyltransferases protected biofilms against cobalt exposure. Despite chlorophyll biosynthesis genes being upregulated, metal toxicity impeded chlorophyll replenishment. Principal pathways associated with iron acquisition (AfuA), energy metabolism (AtpG), general metabolic activities (FruK, NifD, coABC) and central dogma regulation (DPS, AsrR, RRM) were activated to combat cobalt toxicity. This investigation offered novel insights into the regulatory network employed by intertidal microphytobenthic communities for maintaining cobalt homeostasis and underlined the basis for their application as biomarkers for estuarine cobalt pollution.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Kazi Hamidul Islam
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology. Jadavpur University, Kolkata 700032, India
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India.
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
2
|
Singh A, Singhal C, Sharma AK, Khurana P. An auxin regulated Universal stress protein (TaUSP_3B-1) interacts with TaGolS and provides tolerance under drought stress and ER stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14390. [PMID: 38899466 DOI: 10.1111/ppl.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A previously identified wheat drought stress responsive Universal stress protein, TaUSP_3B-1 has been found to work in an auxin dependent manner in the plant root tissues in the differentiation zone. We also found a novel interacting partner, TaGolS, which physically interacts with TaUSP_3B-1 and colocalizes in the endoplasmic reticulum. TaGolS is a key enzyme in the RFO (Raffinose oligosaccharides) biosynthesis which is well reported to provide tolerance under water deficit conditions. TaUSP_3B-1 overexpression lines showed an early flowering phenotype under drought stress which might be attributed to the increased levels of AtTPPB and AtTPS transcripts under drought stress. Moreover, at the cellular levels ER stress induced TaUSP_3B-1 transcription and provides tolerance in both adaptive and acute ER stress via less ROS accumulation in the overexpression lines. TaUSP_3B-1 overexpression plants had increased silique numbers and a denser root architecture as compared to the WT plants under drought stress.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Lai M, Qian Y, Wu YH, Han C, Liu Q. Devosia aquimaris sp. nov., isolated from seawater of the Changjiang River estuary of China. Antonie Van Leeuwenhoek 2024; 117:29. [PMID: 38280102 DOI: 10.1007/s10482-023-01924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/29/2024]
Abstract
A gram-stain-negative, aerobic, rod-shaped bacterium strain CJK-A8-3T was isolated from a polyamine-enriched seawater sample collected from the Changjiang River estuary of China. The colonies were white and circular. Strain CJK-A8-3T grew optimally at 35 °C, pH 7.0 and 1.5% NaCl. Its polar lipids contained phosphatidylglycerol, phosphatidic acid, unidentified glycolipids, and a combination of phospholipids and glycolipids. The respiratory quinone was ubiquinone-10, and its main fatty acids were C16:0, 11-methyl C18:1ω7c and Summed Feature 8 (including C18:1ω7c/C18:1ω6c). The phylogenetic tree based on 16S rRNA genes placed strain CJK-A8-3T in a new linage within the genus Devosia. 16S rRNA gene sequence of strain CJK-A8-3T showed identities of 98.50% with Devosia beringensis S02T, 98.15% with D. oryziradicis, and 98.01% with D. submarina JCM 18935T. The genome size of strain CJK-A8-3T was 3.81 Mb with the DNA G + C content 63.9%, higher than those of the reference strains (60.4-63.8%). The genome contained genes functional in the metabolism of terrigenous aromatic compounds, alkylphosphonate and organic nitrogen, potentially beneficial for nutrient acquirement and environmental remediation. It also harbored genes functional in antibiotics resistance and balance of osmotic pressure, enhancing their adaptation to estuarine environments. Both genomic investigation and experimental verification showed that strain CJK-A8-3T could be versatile and efficient to use diverse organic nitrogen compounds as carbon and nitrogen sources. Based on phenotypic, chemotaxonomic, phylogenetic and genomic characteristics, strain CJK-A8-3T was identified as a novel Devosia species, named as Devosia aquimaris sp. nov. The type strain is CJK-A8-3T (= MCCC 1K06953T = KCTC 92162T).
Collapse
Affiliation(s)
- Mingyan Lai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yurong Qian
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yue-Hong Wu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China
- Ocean College, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Chenhua Han
- Institute of Polar and Ocean Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, People's Republic of China
| | - Qian Liu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Ocean College, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| |
Collapse
|
4
|
Grakh K, Mittal D, Prakash A, Kumar R, Jindal N. uspA gene-based phylogenetic analysis and antigenic epitope prediction for Escherichia coli strains of avian origin. Front Vet Sci 2023; 10:1183048. [PMID: 38188721 PMCID: PMC10767999 DOI: 10.3389/fvets.2023.1183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pathogenic Escherichia coli (E. coli) is responsible for various local and systemic infections in animal and human populations. Conventional methods for the detection and identification of E. coli are time-consuming and less reliable for atypical strains. The uspA gene has been widely used as a target for the detection of E. coli. The present study was aimed at phylogenetic analysis of the uspA gene sequences to determine the evolutionary relationships between the strains and other members of the Enterobacteriaceae family. In addition, the unique differences in the sequences of the current study with Salmonella and Shigella species were tested using Tajima's molecular clock test. Antigenic epitope prediction was performed to locate the B-cell epitope region of the UspA protein. Two E. coli isolates of avian origin and strains from the National Center for Biotechnology Information (NCBI) database were used for prediction. The Immune Epitope Database (IEDB) server, Bepitope, ABCpred, SVMTrip, and ElliPro server were used to identify B-cell epitopes. The 3D structure was predicted using SWISS-MODEL. Phylogenetic analysis of the isolates from the current study revealed that both OM837340 and OM837341 sequences from the current study had maximum nucleotide homology (nt) of 99.87%-100% with E. coli isolates and minimum nt homology of 84.08% with Salmonella enteritidis and S. Hissar. The isolates in the current study had a homology of 98.87%, while the homology with Shigella species was 99.25%. Seven silent mutations were observed in the coding region of the UspA protein of ECO9LTBW (current study). Modeling of the UspA protein revealed a maximum homology of 67.86% with the Protein Data Bank in Europe (PDBe), also validated by the Ramachandran plot. No significant differences were found in the coding regions of uspA of Salmonella, Shigella, and E. coli with Tajima's test. For the E. coli isolates, a total of 24 linear B-cell and seven discontinuous epitopes were predicted using in-silico analysis. When the results of the predicted peptides were compared, two peptides, namely ARPYNA and YSDLYTGLIDVNLGDMQKRISEE, were found suitable candidates. In conclusion, the uspA gene appears to be conserved among E. coli isolates and can be used for molecular detection.
Collapse
Affiliation(s)
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | | | | |
Collapse
|
5
|
Singh A, Singhal C, Sharma AK, Khurana P. Identification of universal stress proteins in wheat and functional characterization during abiotic stress. PLANT CELL REPORTS 2023; 42:1487-1501. [PMID: 37341826 DOI: 10.1007/s00299-023-03043-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023]
Abstract
KEY MESSAGE TaUSPs are localized in Endoplasmic reticulum and form homo and hetero dimers within themselves. They play significant role in multiple abiotic stress responses in yeast heterologous system and in plants. Universal Stress Proteins are stress responsive proteins present in a variety of life forms ranging from bacteria to multicellular plants and animals. In this study we have identified 85 TaUSP genes in the wheat genome and have characterised their abiotic stress responsive members in yeast under different stress conditions. Localization and Y2H studies suggest that wheat, USP proteins are localized in the ER complex, and extensively crosstalk amongst themselves through forming hetero and homodimers. Expression analysis of these TaUSP genes suggests their role in adaptation to multiple abiotic stresses. TaUSP_5D-1 was found to have some DNA binding activity in yeast. Certain abiotic stress responsive TaUSP genes are found to impart tolerance to temperature stress, oxidative stress, ER stress (DTT treatment) and LiCl2 stress in the yeast heterologous system. TaUSP_5D-1 overexpression in A. thaliana imparts drought tolerance via better lateral root network in transgenic lines. The TaUSP represents an important repertoire of genes for engineering abiotic stress responsiveness in crop plants.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
6
|
Tataru C, Peras M, Rutherford E, Dunlap K, Yin X, Chrisman BS, DeSantis TZ, Wall DP, Iwai S, David MM. Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism. Sci Rep 2023; 13:11353. [PMID: 37443184 PMCID: PMC10345091 DOI: 10.1038/s41598-023-38228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
Collapse
Affiliation(s)
- Christine Tataru
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
| | - Marie Peras
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Erica Rutherford
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Kaiti Dunlap
- Department of Bioengineering, Serra Mall, Stanford, USA
| | - Xiaochen Yin
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | | | - Todd Z DeSantis
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Serra Mall, Stanford, USA
- Department of Pediatrics (Systems Medicine), Stanford, 1265 Welch Road, Stanford, USA
| | - Shoko Iwai
- Second Genome Inc, 1000 Marina Blvd, Suite 500, Brisbane, CA, 94005, USA
| | - Maude M David
- Department of Microbiology, Oregon State University, SW Campus Way, Corvallis, USA.
- School of Pharmacy, Oregon State University, SW Campus Way, Corvallis, USA.
| |
Collapse
|
7
|
Diao J, Gu W, Jiang Z, Wang J, Zou H, Zong C, Ma L. Comprehensive Analysis of Universal Stress Protein Family Genes and Their Expression in Fusarium oxysporum Response of Populus davidiana × P. alba var. pyramidalis Louche Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24065405. [PMID: 36982480 PMCID: PMC10049587 DOI: 10.3390/ijms24065405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Universal stress proteins (USPs) are typical stress-inducible proteins that function directly in a variety of biotic or abiotic stresses and effectively protect plants from complex, adverse environments. However, the expression patterns of USP genes under pathogen stress and their molecular mechanisms in stress resistance have not been reported in detail. In this study, 46 USP genes were identified from Populus trichocarpa (PtrUSPs), and their biological characteristics were comprehensively analyzed based on phylogeny, physicochemical properties of proteins, and gene structures. The promoter regions of PtrUSPs contain a variety of cis-acting elements related to hormone and stress response. The results of a collinearity analysis showed that PtsrUSPs were highly conserved with homologous genes from four other representative species (Arabidopsis thaliana, Eucalyptus grandis, Glycine max, and Solanum lycopersicum). Furthermore, RNA-Seq analysis showed that the expression of 46 USPs from P. davidiana × P. alba var. pyramidalis Louche (PdpapUSPs) was significantly induced by Fusarium oxysporum. The co-expression network and gene ontology analysis of PtrUSPs showed that they participated in the response to stress and response to stimulus through precise coordination. The results of this paper systematically revealed the biological characteristics of PtrUSPs and the characteristics of their response to F. oxysporum stress, which will lay a theoretical foundation for improving genetic traits and the breeding of poplar disease-resistant varieties in subsequent studies.
Collapse
Affiliation(s)
- Jian Diao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Gu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| |
Collapse
|
8
|
Luo D, Wu Z, Bai Q, Zhang Y, Huang M, Huang Y, Li X. Universal Stress Proteins: From Gene to Function. Int J Mol Sci 2023; 24:ijms24054725. [PMID: 36902153 PMCID: PMC10003552 DOI: 10.3390/ijms24054725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Universal stress proteins (USPs) exist across a wide range of species and are vital for survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes that play specific roles at different developmental periods of the organism, and, due to their ubiquity, USPs can be used as an important indicator to study species evolution; (2) a comparison of the structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions, which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse, and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones to help plants withstand stress at the molecular level and may also interact with other proteins to regulate normal plant activities. This review will provide directions for future research, focusing on USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of novel green pesticide formulations in agriculture, and to better understand the evolution of drug resistance in pathogenic microorganisms in medicine.
Collapse
|
9
|
A New Face of the Old Gene: Deletion of the PssA, Encoding Monotopic Inner Membrane Phosphoglycosyl Transferase in Rhizobium leguminosarum, Leads to Diverse Phenotypes That Could Be Attributable to Downstream Effects of the Lack of Exopolysaccharide. Int J Mol Sci 2023; 24:ijms24021035. [PMID: 36674551 PMCID: PMC9860679 DOI: 10.3390/ijms24021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The biosynthesis of subunits of rhizobial exopolysaccharides is dependent on glycosyltransferases, which are usually encoded by large gene clusters. PssA is a member of a large family of phosphoglycosyl transferases catalyzing the transfer of a phosphosugar moiety to polyprenol phosphate; thus, it can be considered as priming glycosyltransferase commencing synthesis of the EPS repeating units in Rhizobium leguminosarum. The comprehensive analysis of PssA protein features performed in this work confirmed its specificity for UDP-glucose and provided evidence that PssA is a monotopic inner membrane protein with a reentrant membrane helix rather than a transmembrane segment. The bacterial two-hybrid system screening revealed interactions of PssA with some GTs involved in the EPS octasaccharide synthesis. The distribution of differentially expressed genes in the transcriptome of the ΔpssA mutant into various functional categories indicated complexity of cell response to the deletion, which can mostly be attributed to the lack of exopolysaccharide and downstream effects caused by such deficiency. The block in the EPS biosynthesis at the pssA step, potentially leading to an increased pool of UDP-glucose, is likely to be filtered through to other pathways, and thus the absence of EPS may indirectly affect the expression of proteins involved in these pathways.
Collapse
|
10
|
Sarkar S, Kamke A, Ward K, Hartung E, Ran Q, Feehan B, Galliart M, Jumpponen A, Johnson L, Lee STM. Pseudomonas cultivated from Andropogon gerardii rhizosphere show functional potential for promoting plant host growth and drought resilience. BMC Genomics 2022; 23:784. [PMID: 36451103 PMCID: PMC9710129 DOI: 10.1186/s12864-022-09019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Climate change will result in more frequent droughts that can impact soil-inhabiting microbiomes (rhizobiomes) in the agriculturally vital North American perennial grasslands. Rhizobiomes have contributed to enhancing drought resilience and stress resistance properties in plant hosts. In the predicted events of more future droughts, how the changing rhizobiome under environmental stress can impact the plant host resilience needs to be deciphered. There is also an urgent need to identify and recover candidate microorganisms along with their functions, involved in enhancing plant resilience, enabling the successful development of synthetic communities. RESULTS In this study, we used the combination of cultivation and high-resolution genomic sequencing of bacterial communities recovered from the rhizosphere of a tallgrass prairie foundation grass, Andropogon gerardii. We cultivated the plant host-associated microbes under artificial drought-induced conditions and identified the microbe(s) that might play a significant role in the rhizobiome of Andropogon gerardii under drought conditions. Phylogenetic analysis of the non-redundant metagenome-assembled genomes (MAGs) identified a bacterial genome of interest - MAG-Pseudomonas. Further metabolic pathway and pangenome analyses recovered genes and pathways related to stress responses including ACC deaminase; nitrogen transformation including assimilatory nitrate reductase in MAG-Pseudomonas, which might be associated with enhanced drought tolerance and growth for Andropogon gerardii. CONCLUSIONS Our data indicated that the metagenome-assembled MAG-Pseudomonas has the functional potential to contribute to the plant host's growth during stressful conditions. Our study also suggested the nitrogen transformation potential of MAG-Pseudomonas that could impact Andropogon gerardii growth in a positive way. The cultivation of MAG-Pseudomonas sets the foundation to construct a successful synthetic community for Andropogon gerardii. To conclude, stress resilience mediated through genes ACC deaminase, nitrogen transformation potential through assimilatory nitrate reductase in MAG-Pseudomonas could place this microorganism as an important candidate of the rhizobiome aiding the plant host resilience under environmental stress. This study, therefore, provided insights into the MAG-Pseudomonas and its potential to optimize plant productivity under ever-changing climatic patterns, especially in frequent drought conditions.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Abigail Kamke
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eli Hartung
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Brandi Feehan
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Matthew Galliart
- Department of Biological Sciences, Fort Hays State University, Hays, KS, USA
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Loretta Johnson
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
11
|
Verma RK, Chetia SK, Sharma V, Devi K, Kumar A, Modi MK. Identification and characterization of genes for drought tolerance in upland rice cultivar 'Banglami' of North East India. Mol Biol Rep 2022; 49:11547-11555. [PMID: 36097113 DOI: 10.1007/s11033-022-07859-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Rice is a major crop in Assam, North East (NE) India. The rice accessions belonging to NE India possess unique traits of breeder's interest, i.e., tolerant to biotic and abiotic stresses. In the present research programme, the stress responsive genes were identified within the QTLs associated with drought tolerance. The differential expression profiling of genes were performed under drought stress and control conditions. Thus, the 'candidate genes' associated with drought tolerance were recognised and may be deployed in a breeding programme. METHODS AND RESULTS A drought-tolerant traditional rice cultivar, Banglami, was crossed with a high-yielding, drought-susceptible variety, Ranjit. The mapping population (F4) was raised through the single seed descent (SSD) method and used in QTL analysis. Under drought stress, a total of 4752 genes were identified through in-silico mining of QTLs. Among these, only 21 genes primarily associated with the stress response. The maximum of four stress-responsive genes were located within the QTLs, qNOG12.1 and qGY1.1. However, under control conditions, 2088 genes were identified, out of which, only 15 were categorised as the major stress responsive genes. The functional characterization of genes recognized 24 different types of proteins. Among these, peroxidase and heat shock proteins (Hsp) are the principal proteins encoded during stress. In addition to that, OsbZIP23, inorganic pyrophosphatase, universal stress protein, serine threonine kinase, NADPH oxidoreductase, and proteins belonging to the ABC1 family were also produced during stress condition. The differential expression profiling showed a profound expression pattern of three candidate genes under drought stress condition, i.e., OsI_32199 (Ascorbate peroxidase), OsI_37694 (Universal stress protein) and OsI_32167 (Heat shock protein 81 - 1). CONCLUSION The novel candidate genes identified for drought tolerance, may be used in the breeding programme for the development of 'climate smart rice varieties'.
Collapse
Affiliation(s)
- Rahul K Verma
- DBT-North East Centre for Agricultural Biotechnology, 785013, Jorhat, Assam, India
| | - Sanjay K Chetia
- Regional Agricultural Research Station, 785630, Titabar, Assam, India
| | - Vinay Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Kamalakshi Devi
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Amarendra Kumar
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India
| | - Mahendra K Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, 785013, Jorhat, Assam, India.
| |
Collapse
|
12
|
Bandyopadhyay D, Mukherjee M. Systematic comparison of the protein-protein interaction network of bacterial Universal stress protein A (UspA): an insight into its discrete functions. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
14
|
Bandyopadhyay D, Singh G, Mukherjee M, Akhter Y. Computational approach towards the design of novel inhibitor against universal stress protein A to combat multidrug resistant uropathogenic Escherichia coli. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Ferrando ML, Gussak A, Mentink S, Gutierrez MF, van Baarlen P, Wells JM. Active Human and Porcine Serum Induce Competence for Genetic Transformation in the Emerging Zoonotic Pathogen Streptococcus suis. Pathogens 2021; 10:pathogens10020156. [PMID: 33546136 PMCID: PMC7913127 DOI: 10.3390/pathogens10020156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The acquisition of novel genetic traits through natural competence is a strategy used by bacteria in microbe-rich environments where microbial competition, antibiotics, and host immune defenses threaten their survival. Here, we show that virulent strains of Streptococcus suis, an important zoonotic agent and porcine pathogen, become competent for genetic transformation with plasmid or linear DNA when cultured in active porcine and human serum. Competence was not induced in active fetal bovine serum, which contains less complement factors and immunoglobulins than adult serum and was strongly reduced in heat-treated or low-molecular weight fractions of active porcine serum. Late competence genes, encoding the uptake machinery for environmental DNA, were upregulated in the active serum. Competence development was independent of the early competence regulatory switch involving XIP and ComR, as well as sigma factor ComX, suggesting the presence of an alternative stress-induced pathway for regulation of the late competence genes required for DNA uptake.
Collapse
|
16
|
Evaluation of gene expression and protein structural modeling involved in persister cell formation in Salmonella Typhimurium. Braz J Microbiol 2020; 52:207-217. [PMID: 33125683 DOI: 10.1007/s42770-020-00388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022] Open
Abstract
Persisters are phenotypic variants of the bacterial population that survive against lethal doses of bactericidal antibiotics.These phenotypes are created in numerous bacterial species, including those of clinical significance, such as Salmonella Typhimurium. Since persister cells are associated with the failure of antibiotic treatment and infection recurrence, it is crucial to identify the mechanisms that influence the formation of these cells. The aim of this study is to investigate the persister cell formation and expression analysis as well as to predict the 3D structure of the genes involved in the production of persister cells. The presence of persisters in S. Typhimurium was determined by time dependent killing of different types of bactericidal antibiotics and expression of genes associated with persister cell formation which was assessed five hours after the addition of antibiotics by the qRT-PCR. Indeed, the 3D structural model of the proteins studied was predicted by performing several computational methods of retrieved primary protein sequences. The results of the study showed that the S. Typhimurium produced high levels of persister cells in the exposure of bactericidal antibiotics. Furthermore, qRT-PCR resulted in the fact that the expression of related genes was different depending on the type of antibiotic. Overall, this study provides information on the creation of persister cells and the role of different genes in the formation of these cells and structure of proteins involved in the production of persister cells in S. Typhimurium.
Collapse
|
17
|
Burin R, Shah DH. Global transcriptional profiling of tyramine and d-glucuronic acid catabolism in Salmonella. Int J Med Microbiol 2020; 310:151452. [PMID: 33091748 DOI: 10.1016/j.ijmm.2020.151452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Salmonella has evolved various metabolic pathways to scavenge energy from the metabolic byproducts of the host gut microbiota, however, the precise metabolic byproducts and pathways utilized by Salmonella remain elusive. Previously we reported that Salmonella can proliferate by deriving energy from two metabolites that naturally occur in the host as gut microbial metabolic byproducts, namely, tyramine (TYR, an aromatic amine) and d-glucuronic acid (DGA, a hexuronic acid). Salmonella Pathogenicity Island 13 (SPI-13) plays a critical role in the ability of Salmonella to derive energy from TYR and DGA, however the catabolic pathways of these two micronutrients in Salmonella are poorly defined. The objective of this study was to identify the specific genetic components and construct the regulatory circuits for the TYR and DGA catabolic pathways in Salmonella. To accomplish this, we employed TYR and DGA-induced global transcriptional profiling and gene functional network analysis approaches. We report that TYR induced differential expression of 319 genes (172 up-regulated and 157 down-regulated) when Salmonella was grown in the presence of TYR as a sole energy source. These included the genes originally predicted to be involved in the classical TYR catabolic pathway. TYR also induced expression of majority of genes involved in the acetaldehyde degradation pathway and aided identification of a few new genes that are likely involved in alternative pathway for TYR catabolism. In contrast, DGA induced differential expression of 71 genes (58 up-regulated and 13 down-regulated) when Salmonella was grown in the presence of DGA as a sole energy source. These included the genes originally predicted to be involved in the classical pathway and a few new genes likely involved in the alternative pathway for DGA catabolism. Interestingly, DGA also induced expression of SPI-2 T3SS, suggesting that DGA may also influence nutritional virulence of Salmonella. In summary, this is the first report describing the global transcriptional profiling of TYR and DGA catabolic pathways of Salmonella. This study will contribute to the better understanding of the role of TYR and DGA in metabolic adaptation and virulence of Salmonella.
Collapse
Affiliation(s)
- Raquel Burin
- Department of Veterinary Microbiology and Pathology, United States
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, United States; Paul Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164-7040, United States.
| |
Collapse
|
18
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
19
|
Genomic analysis of facultatively oligotrophic haloarchaea of the genera Halarchaeum, Halorubrum, and Halolamina, isolated from solar salt. Arch Microbiol 2020; 203:261-268. [PMID: 32918097 DOI: 10.1007/s00203-020-02027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
Extremely halophilic archaea (haloarchaea) belonging to the phylum Euryarchaeota have been found in high-salinity environments. In this study, Halarchaeum sp. CBA1220, Halorubrum sp. CBA1229, and Halolamina sp. CBA1230, which are facultatively oligotrophic haloarchaea, were isolated from solar salt by culture under oligotrophic culture conditions. The complete genomes of strains CBA1220, CBA1229, and CBA1230 were sequenced and were found to contain 3,175,875, 3,582,278, and 3,465,332 bp, with a G + C content of 68.25, 67.66, and 66.75 mol %, respectively. In total, 60, 36, and 33 carbohydrate-active enzyme genes were determined in the respective strains. The strains harbored various genes encoding stress-tolerance proteins, including universal stress proteins, cold-shock proteins, and rubrerythrin and rubrerythrin-related proteins. The genome data produced in this study will facilitate further research to improve our understanding of other halophilic strains and promote their industrial application.
Collapse
|
20
|
Yang J, Kim HE, Jung YH, Kim J, Kim DH, Walmsley AR, Kim KH. Zmo0994, a novel LEA-like protein from Zymomonas mobilis, increases multi-abiotic stress tolerance in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:151. [PMID: 32863881 PMCID: PMC7448490 DOI: 10.1186/s13068-020-01790-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Pretreatment processes and subsequent enzymatic hydrolysis are prerequisites to utilize lignocellulosic sugar for fermentation. However, the resulting hydrolysate frequently hinders fermentation processes due to the presence of inhibitors and toxic products (e.g., ethanol). Thus, it is crucial to develop robust microbes conferring multi-stress tolerance. RESULTS Zmo0994, a functionally uncharacterized protein from Zymomonas mobilis, was identified and characterized for the first time. A major effect of Zmo0994 was a significant enhancement in the tolerance to abiotic stresses such as ethanol, furfural, 5'-hydroxymethylfurfural and high temperature, when expressed in Escherichia coli. Through transcriptome analysis and in vivo experiments, the cellular mechanism of this protein was revealed as due to its ability to trigger genes, involved in aerobic respiration for ATP synthesis. CONCLUSIONS These findings have significant implications that might lead to the development of robust microbes for the highly efficient industrial fermentation processes.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Ha Eun Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566 Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| | - Adrian R. Walmsley
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
21
|
Pobeguts OV, Ladygina VG, Evsyutina DV, Eremeev AV, Zubov AI, Matyushkina DS, Scherbakov PL, Rakitina DV, Fisunov GY. Propionate Induces Virulent Properties of Crohn's Disease-Associated Escherichia coli. Front Microbiol 2020; 11:1460. [PMID: 32733408 PMCID: PMC7360682 DOI: 10.3389/fmicb.2020.01460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Crohn's disease (CD) is a severe chronic immune-mediated granulomatous inflammatory disease of the gastrointestinal tract. The mechanisms of CD pathogenesis remain obscure. Metagenomic analysis of samples from CD patients revealed that several of them have the elevated level of Escherichia coli with adhesive-invasive phenotype (AIEC). Previously, we isolated an E. coli strain CD isolate ZvL2 from a patient with CD, which features AIEC phenotype. Here, we demonstrate that prolonged growth on propionate containing medium stimulates virulent properties of CD isolate ZvL2, while prolonged growth on glucose reduces these properties to levels indistinguishable from laboratory strain K-12 MG1655. Propionate presence also boosts the ability of CD isolate ZvL2 to penetrate and colonize macrophages. The effect of propionate is reversible, re-passaging of CD isolate on M9 medium supplemented with glucose leads to the loss of its virulent properties. Proteome analysis of CD isolate ZvL2 growth in medium supplemented with propionate or glucose revealed that propionate induces expression porins OmpA and OmpW, transcription factors PhoP and OmpR, and universal stress protein UspE, which were previously found to be important for macrophage colonization by enteropathogenic bacteria.
Collapse
Affiliation(s)
- Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Artem V. Eremeev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Aleksandr I. Zubov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria S. Matyushkina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | | | - Daria V. Rakitina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|
22
|
Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Sci Rep 2020; 10:1151. [PMID: 31980727 PMCID: PMC6981132 DOI: 10.1038/s41598-020-58163-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/19/2019] [Indexed: 12/21/2022] Open
Abstract
Devosia are well known for their dominance in soil habitats contaminated with various toxins and are best characterized for their bioremediation potential. In this study, we compared the genomes of 27 strains of Devosia with aim to understand their metabolic abilities. The analysis revealed their adaptive gene repertoire which was bared from 52% unique pan-gene content. A striking feature of all genomes was the abundance of oligo- and di-peptide permeases (oppABCDF and dppABCDF) with each genome harboring an average of 60.7 ± 19.1 and 36.5 ± 10.6 operon associated genes respectively. Apart from their primary role in nutrition, these permeases may help Devosia to sense environmental signals and in chemotaxis at stressed habitats. Through sequence similarity network analyses, we identified 29 Opp and 19 Dpp sequences that shared very little homology with any other sequence suggesting an expansive short peptidic transport system within Devosia. The substrate determining components of these permeases viz. OppA and DppA further displayed a large diversity that separated into 12 and 9 homologous clusters respectively in addition to large number of isolated nodes. We also dissected the genome scale positive evolution and found genes associated with growth (exopolyphosphatase, HesB_IscA_SufA family protein), detoxification (moeB, nifU-like domain protein, alpha/beta hydrolase), chemotaxis (cheB, luxR) and stress response (phoQ, uspA, luxR, sufE) were positively selected. The study highlights the genomic plasticity of the Devosia spp. for conferring adaptation, bioremediation and the potential to utilize a wide range of substrates. The widespread toxin-antitoxin loci and ‘open’ state of the pangenome provided evidence of plastic genomes and a much larger genetic repertoire of the genus which is yet uncovered.
Collapse
|
23
|
Fang QJ, Han YX, Shi YJ, Huang HQ, Fang ZG, Hu YH. Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 95:248-258. [PMID: 31654767 DOI: 10.1016/j.fsi.2019.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection.
Collapse
Affiliation(s)
- Qing-Jian Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yue-Xin Han
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yan-Jie Shi
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Qin Huang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China
| | - Zai-Guang Fang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Marine Science, Hainan University, Haikou, 570228, China.
| | - Yong-Hua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China.
| |
Collapse
|
24
|
Eckstein S, Heermann R. Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus luminescens Cell Populations. J Mol Biol 2019; 431:4559-4568. [DOI: 10.1016/j.jmb.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
|
25
|
Kenna DTD, Coward A, Perry C, Pike R, Schaefer U, Turton J, Green H, Jones AM, Bright-Thomas RJ, Burns P, Narayan O, Wilkinson S, Turton JF. Investigation of a Pandoraea apista cluster common to adult and paediatric cystic fibrosis patients attending two hospitals in the same city. J Med Microbiol 2019; 68:1081-1095. [DOI: 10.1099/jmm.0.001010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Dervla T. D. Kenna
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Amy Coward
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Perry
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Rachel Pike
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Ulf Schaefer
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Andrew M. Jones
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Rowland J. Bright-Thomas
- Manchester Adult Cystic Fibrosis Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Phillipa Burns
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | - Omendra Narayan
- Royal Manchester Children’s Hospital, Manchester M13 9WL, UK
| | | | - Jane F. Turton
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
26
|
Alteration of Proteomes in First-Generation Cultures of Bacillus pumilus Spores Exposed to Outer Space. mSystems 2019; 4:4/4/e00195-19. [PMID: 31186338 PMCID: PMC6561321 DOI: 10.1128/msystems.00195-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacillus pumilus SAFR-032 was originally isolated from the Jet Propulsion Lab Spacecraft Assembly Facility and thoroughly characterized for its enhanced resistance to UV irradiation and oxidative stress. This unusual resistance of SAFR-032 is of particular concern in the context of planetary protection and calls for development of novel disinfection techniques to prevent extraterrestrial contamination. Previously, spores of SAFR-032 were exposed for 18 months to a variety of space conditions on board the International Space Station to investigate their resistance to Mars-like conditions and space travel. Here, proteomic characterization of vegetative SAFR-032 cells from space-surviving spores is presented in comparison to a ground control. Vegetative cells of the first passage were processed and subjected to quantitative proteomics using tandem mass tags. Approximately 60% of all proteins encoded by SAFR-032 were identified, and 301 proteins were differentially expressed among the strains. We found that proteins predicted to be involved in carbohydrate transport/metabolism and energy production/conversion had lower abundance than those of the ground control. For three proteins, we showed that the expected metabolic activities were decreased, as expected with direct enzymatic assays. This was consistent with a decrease of ATP production in the space-surviving strains. The same space-surviving strains showed increased abundance of proteins related to survival, growth advantage, and stress response. Such alterations in the proteomes provide insights into possible molecular mechanisms of B. pumilus SAFR-032 to adapt to and resist extreme extraterrestrial environments.IMPORTANCE Spore-forming bacteria are well known for their resistance to harsh environments and are of concern for spreading contamination to extraterrestrial bodies during future life detection missions. Bacillus pumilus has been regularly isolated from spacecraft-associated surfaces and exhibited unusual resistance to ultraviolet light and other sterilization techniques. A better understanding of the mechanisms of microbial survival and enhanced resistance is essential for developing novel disinfection protocols for the purpose of planetary protection. While genomic analyses did not reveal the unique characteristics that explain elevated UV resistance of space-exposed B. pumilus, the proteomics study presented here provided intriguing insight on key metabolic changes. The observed proteomics aberrations reveal a complex biological phenomenon that plays a role in bacterial survival and adaptation under long-term exposure to outer space. This adaptive ability of microorganisms needs to be considered by those tasked with eliminating forward contamination.
Collapse
|
27
|
Zhao YJ, Liu XY, Guo R, Hu KR, Cao Y, Dai F. Comparative genomics and transcriptomics analysis reveals evolution patterns of selection in the Salix phylogeny. BMC Genomics 2019; 20:253. [PMID: 30925896 PMCID: PMC6440167 DOI: 10.1186/s12864-019-5627-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Willows are widely distributed in the northern hemisphere and have good adaptability to different living environment. The increasing of genome and transcriptome data provides a chance for comparative analysis to study the evolution patterns with the different origin and geographical distributions in the Salix phylogeny. RESULTS Transcript sequences of 10 Salicaceae species were downloaded from public databases. All pairwise of orthologues were identified by comparative analysis in these species, from which we constructed a phylogenetic tree and estimated the rate of diverse. Divergence times were estimated in the 10 Salicaceae using comparative transcriptomic analysis. All of the fast-evolving positive selection sequences were identified, and some cold-, drought-, light-, universal-, and heat- resistance genes were discovered. CONCLUSIONS The divergence time of subgenus Vetrix and Salix was about 17.6-16.0 Mya during the period of Middle Miocene Climate Transition (21-14 Mya). Subgenus Vetrix diverged to migratory and resident groups when the climate changed to the cool and dry trend by 14 Mya. Cold- and light- stress genes were involved in positive selection among the resident Vetrix, and which would help them to adapt the cooling stage. Universal- stress genes exhibited positive selection among the migratory group and subgenus Salix. These data are useful for comprehending the adaptive evolution and speciation in the Salix lineage.
Collapse
Affiliation(s)
- You-jie Zhao
- Key Laboratory of Forestry and Ecological Big Data State Forestry Administration, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Xin-yi Liu
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Ran Guo
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Kun-rong Hu
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Yong Cao
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| | - Fei Dai
- College of Big data and Intelligent Engineering, Southwest Forestry University, Kunming, 650224 Yunnan People’s Republic of China
| |
Collapse
|
28
|
Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun DJ, Lee SY. The Physiological Functions of Universal Stress Proteins and Their Molecular Mechanism to Protect Plants From Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2019; 10:750. [PMID: 31231414 PMCID: PMC6560075 DOI: 10.3389/fpls.2019.00750] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
Since the original discovery of a Universal Stress Protein (USP) in Escherichia coli, a number of USPs have been identified from diverse sources including archaea, bacteria, plants, and metazoans. As their name implies, these proteins participate in a broad range of cellular responses to biotic and abiotic stresses. Their physiological functions are associated with ion scavenging, hypoxia responses, cellular mobility, and regulation of cell growth and development. Consistent with their roles in resistance to multiple stresses, USPs show a wide range of structural diversity that results from the diverse range of other functional motifs fused with the USP domain. As well as providing structural diversity, these catalytic motifs are responsible for the diverse biochemical properties of USPs and enable them to act in a number of cellular signaling transducers and metabolic regulators. Despite the importance of USP function in many organisms, the molecular mechanisms by which USPs protect cells and provide stress resistance remain largely unknown. This review addresses the diverse roles of USPs in plants and how the proteins enable plants to resist against multiple stresses in ever-changing environment. Bioinformatic tools used for the collection of a set of USPs from various plant species provide more than 2,100 USPs and their functional diversity in plant physiology. Data from previous studies are used to understand how the biochemical activity of plant USPs modulates biotic and abiotic stress signaling. As USPs interact with the redox protein, thioredoxin, in Arabidopsis and reactive oxygen species (ROS) regulates the activity of USPs, the involvement of USPs in redox-mediated defense signaling is also considered. Finally, this review discusses the biotechnological application of USPs in an agricultural context by considering the development of novel stress-resistant crops through manipulating the expression of USP genes.
Collapse
Affiliation(s)
- Yong Hun Chi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Sung Sun Koo
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Hun Taek Oh
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Eun Seon Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Su Bin Bae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Min Gab Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, South Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
- *Correspondence: Sang Yeol Lee,
| |
Collapse
|
29
|
Akgul A, Nho SW, Kalindamar S, Tekedar HC, Abdalhamed H, Lawrence ML, Karsi A. Universal Stress Proteins Contribute Edwardsiella ictaluri Virulence in Catfish. Front Microbiol 2018; 9:2931. [PMID: 30546354 PMCID: PMC6279896 DOI: 10.3389/fmicb.2018.02931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
Edwardsiella ictaluri is an intracellular Gram-negative facultative pathogen causing enteric septicemia of catfish (ESC), a common disease resulting in substantial economic losses in the U.S. catfish industry. Previously, we demonstrated that several universal stress proteins (USPs) are highly expressed under in vitro and in vivo stress conditions, indicating their importance for E. ictaluri survival. However, the roles of these USPs in E. ictaluri virulence is not known yet. In this work, 10 usp genes of E. ictaluri were in-frame deleted and characterized in vitro and in vivo. Results show that all USP mutants were sensitive to acidic condition (pH 5.5), and EiΔusp05 and EiΔusp08 were very sensitive to oxidative stress (0.1% H2O2). Virulence studies indicated that EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 were attenuated significantly compared to E. ictaluri wild-type (EiWT; 20, 45, 20, 20, 55, and 10% vs. 74.1% mortality, respectively). Efficacy experiments showed that vaccination of catfish fingerlings with EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 provided complete protection against EiWT compared to sham-vaccinated fish (0% vs. 58.33% mortality). Our results support that USPs contribute E. ictaluri virulence in catfish.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Seong Won Nho
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Safak Kalindamar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hasan C Tekedar
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdalhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
30
|
Melencion SMB, Chi YH, Pham TT, Paeng SK, Wi SD, Lee C, Ryu SW, Koo SS, Lee SY. RNA Chaperone Function of a Universal Stress Protein in Arabidopsis Confers Enhanced Cold Stress Tolerance in Plants. Int J Mol Sci 2017; 18:ijms18122546. [PMID: 29186920 PMCID: PMC5751149 DOI: 10.3390/ijms18122546] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 02/07/2023] Open
Abstract
The physiological function of Arabidopsis thaliana universal stress protein (AtUSP) in plant has remained unclear. Thus, we report here the functional role of the Arabidopsis universal stress protein, AtUSP (At3g53990). To determine how AtUSP affects physiological responses towards cold stress, AtUSP overexpression (AtUSP OE) and T-DNA insertion knock-out (atusp, SALK_146059) mutant lines were used. The results indicated that AtUSP OE enhanced plant tolerance to cold stress, whereas atusp did not. AtUSP is localized in the nucleus and cytoplasm, and cold stress significantly affects RNA metabolism such as by misfolding and secondary structure changes of RNA. Therefore, we investigated the relationship of AtUSP with RNA metabolism. We found that AtUSP can bind nucleic acids, including single- and double-stranded DNA and luciferase mRNA. AtUSP also displayed strong nucleic acid-melting activity. We expressed AtUSP in RL211 Escherichia coli, which contains a hairpin-loop RNA structure upstream of chloramphenicol acetyltransferase (CAT), and observed that AtUSP exhibited anti-termination activity that enabled CAT gene expression. AtUSP expression in the cold-sensitive Escherichia coli (E. coli) mutant BX04 complemented the cold sensitivity of the mutant cells. As these properties are typical characteristics of RNA chaperones, we conclude that AtUSP functions as a RNA chaperone under cold-shock conditions. Thus, the enhanced tolerance of AtUSP OE lines to cold stress is mediated by the RNA chaperone function of AtUSP.
Collapse
Affiliation(s)
- Sarah Mae Boyles Melencion
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Yong Hun Chi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Thuy Thi Pham
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Changyu Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Seoung Woo Ryu
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sung Sun Koo
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+ Program), PMBBRC, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
31
|
Rayapuram N, Bigeard J, Alhoraibi H, Bonhomme L, Hesse AM, Vinh J, Hirt H, Pflieger D. Quantitative Phosphoproteomic Analysis Reveals Shared and Specific Targets of Arabidopsis Mitogen-Activated Protein Kinases (MAPKs) MPK3, MPK4, and MPK6. Mol Cell Proteomics 2017; 17:61-80. [PMID: 29167316 DOI: 10.1074/mcp.ra117.000135] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
In Arabidopsis, mitogen-activated protein kinases MPK3, MPK4, and MPK6 constitute essential relays for a variety of functions including cell division, development and innate immunity. Although some substrates of MPK3, MPK4 and MPK6 have been identified, the picture is still far from complete. To identify substrates of these MAPKs likely involved in cell division, growth and development we compared the phosphoproteomes of wild-type and mpk3, mpk4, and mpk6. To study the function of these MAPKs in innate immunity, we analyzed their phosphoproteomes following microbe-associated molecular pattern (MAMP) treatment. Partially overlapping substrates were retrieved for all three MAPKs, showing target specificity to one, two or all three MAPKs in different biological processes. More precisely, our results illustrate the fact that the entity to be defined as a specific or a shared substrate for MAPKs is not a phosphoprotein but a particular (S/T)P phosphorylation site in a given protein. One hundred fifty-two peptides were identified to be differentially phosphorylated in response to MAMP treatment and/or when compared between genotypes and 70 of them could be classified as putative MAPK targets. Biochemical analysis of a number of putative MAPK substrates by phosphorylation and interaction assays confirmed the global phosphoproteome approach. Our study also expands the set of MAPK substrates to involve other protein kinases, including calcium-dependent (CDPK) and sugar nonfermenting (SnRK) protein kinases.
Collapse
Affiliation(s)
- Naganand Rayapuram
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jean Bigeard
- §Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.,¶Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Hanna Alhoraibi
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ludovic Bonhomme
- ‖UMR INRA/UBP Génétique, Diversité et Écophysiologie des Céréales, Université de Clermont-Ferrand, 63039 Clermont-Ferrand, France
| | - Anne-Marie Hesse
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France
| | - Joëlle Vinh
- ‡‡ESPCI Paris, PSL Research University, Spectrométrie de Masse Biologique et Protéomique (SMBP), CNRS USR 3149, 10 rue Vauquelin, F75231 Paris cedex05, France
| | - Heribert Hirt
- From the ‡Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia;
| | - Delphine Pflieger
- **CEA, BIG-BGE-EDyP, U1038 Inserm/CEA/UGA, 38000 Grenoble, France.,§§CNRS, LAMBE UMR 8587, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
32
|
Glagoleva AY, Shmakov NA, Shoeva OY, Vasiliev GV, Shatskaya NV, Börner A, Afonnikov DA, Khlestkina EK. Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC PLANT BIOLOGY 2017; 17:182. [PMID: 29143606 PMCID: PMC5688459 DOI: 10.1186/s12870-017-1124-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Some plant species have 'melanin-like' black seed pigmentation. However, the chemical and genetic nature of this 'melanin-like' black pigment have not yet been fully explored due to its complex structure and ability to withstand almost all solvents. Nevertheless, identification of genetic networks participating in trait formation is key to understanding metabolic processes involved in the expression of 'melanin-like' black seed pigmentation. The aim of the current study was to identify differentially expressed genes (DEGs) in barley near-isogenic lines (NILs) differing by allelic state of the Blp (black lemma and pericarp) locus. RESULTS RNA-seq analysis of six libraries (three replicates for each line) was performed. A total of 957 genome fragments had statistically significant changes in expression levels between lines BLP and BW, with 632 fragments having increased expression levels in line BLP and 325 genome fragments having decreased expression. Among identified DEGs, 191 genes were recognized as participating in known pathways. Among these were metabolic pathways including 'suberin monomer biosynthesis', 'diterpene phytoalexins precursors biosynthesis', 'cutin biosynthesis', 'cuticular wax biosynthesis', and 'phenylpropanoid biosynthesis, initial reactions'. Differential expression was confirmed by real-time PCR analysis of selected genes. CONCLUSIONS Metabolic pathways and genes presumably associated with black lemma and pericarp colour as well as Blp-associated resistance to oxidative stress and pathogens, were revealed. We suggest that the black pigmentation of lemmas and pericarps is related to increased level of phenolic compounds and their oxidation. The effect of functional Blp on the synthesis of ferulic acid and other phenolic compounds can explain the increased antioxidant capacity and biotic and abiotic stress tolerance of black-grained cereals. Their drought tolerance and resistance to diseases affecting the spike may also be related to cuticular wax biosynthesis. In addition, upregulated synthesis of phytoalexins, suberin and universal stress protein (USP) in lemmas and pericarps of the Blp carriers may contribute to their increased disease resistance. Further description of the DEGs haplotypes and study of their association with physiological characteristics may be useful for future application in barley pre-breeding.
Collapse
Affiliation(s)
- Anastasiya Y. Glagoleva
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Nikolay A. Shmakov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, D-06466 Gatersleben, Stadt Seeland Germany
| | - Dmitry A. Afonnikov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
33
|
Vollmer AC, Bark SJ. Twenty-Five Years of Investigating the Universal Stress Protein: Function, Structure, and Applications. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:1-36. [PMID: 29680123 DOI: 10.1016/bs.aambs.2017.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the initial discovery of universal stress protein A (UspA) 25 years ago, remarkable advances in molecular and biochemical technologies have revolutionized our understanding of biology. Many studies using these technologies have focused on characterization of the uspA gene and Usp-type proteins. These studies have identified the conservation of Usp-like proteins across bacteria, archaea, plants, and even some invertebrate animals. Regulation of these proteins under diverse stresses has been associated with different stress-response genes including spoT and relA in the stringent response and the dosR two-component signaling pathways. These and other foundational studies suggest Usps serve regulatory and protective roles to enable adaptation and survival under external stresses. Despite these foundational studies, many bacterial species have multiple paralogs of genes encoding these proteins and ablation of the genes does not provide a distinct phenotype. This outcome has limited our understanding of the biochemical functions of these proteins. Here, we summarize the current knowledge of Usps in general and UspA in particular across different genera as well as conclusions about their functions from seminal studies in diverse organisms. Our objective has been to organize the foundational studies in this field to identify the significant impediments to further understanding of Usp functions at the molecular level. We propose ideas and experimental approaches that may overcome these impediments and drive future development of molecular approaches to understand and target Usps as central regulators of stress adaptation and survival. Despite the fact that the full functions of Usps are still not known, creative many applications have already been proposed, tested, and used. The complementary approaches of basic research and applications, along with new technology and analytic tools, may yield the elusive yet critical functions of universal stress proteins in diverse systems.
Collapse
|
34
|
Jung D, Guan M, Lee S, Kim C, Shin H, Hong S, Yim UH, Shim WJ, Giesy JP, Khim JS, Zhang X, Choi K. Searching for novel modes of toxic actions of oil spill using E. coli live cell array reporter system - A Hebei Spirit oil spill study. CHEMOSPHERE 2017; 169:669-677. [PMID: 27914352 DOI: 10.1016/j.chemosphere.2016.11.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Oil is a complex mixture of numerous compounds. Therefore, oil spills near shore can cause various adverse effects on coastal ecosystems. However, most toxicological assessments conducted on oil spill sites have focused on limited modes of toxic actions. In the present study, we utilized the Escherichia coli (E. coli) live cell array system (LCA) to identify novel modes of toxicities of the oil spill-affected sediments. For this purpose, sediment samples were collected from an area heavily polluted by Hebei Spirit oil spill (HSOS) incident of 2007. A total of 93 E. coli reporter genes were used to study responses to the chemicals in the mixture. E. coli K12 strains were exposed to extracts of oil or the sediment, and changes in gene expression were measured. Exposure to extracts of crude and weathered oil resulted in decreased expression in ∼30% of tested genes. However, changes in expression observed after exposure to sediment extracts varied. Sediment extracts containing large concentrations of polycyclic aromatic hydrocarbons (PAH) caused down-regulation of >70% of the genes, while extracts containing lesser total concentrations of PAHs exhibited different trends: genes involved in drug resistance were generally up-regulated, while genes responsive to DNA damage were up-regulated in only two extracts. Results suggest that oil pollution can modulate several toxic response pathways related to DNA repair and antibiotic responses. Results from LCA obtained from the sediment and oil samples were different from those observed in the H4IIE-luc assay. Toxicological implications of such observations deserve further examination. Overall, LCA is a promising tool for screening samples and identifying potential modes of toxicities of environmental samples associated with oil spills.
Collapse
Affiliation(s)
- Dawoon Jung
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Korea Environment Institute, Sejong, 30147, Republic of Korea
| | - Miao Guan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Sangwoo Lee
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheolmin Kim
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyesoo Shin
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - Won Joon Shim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Center, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Jia Q, Hu X, Shi D, Zhang Y, Sun M, Wang J, Mi K, Zhu G. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria. Sci Rep 2016; 6:35462. [PMID: 27762279 PMCID: PMC5071874 DOI: 10.1038/srep35462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells.
Collapse
Affiliation(s)
- Qiong Jia
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, China.,The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dawei Shi
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Yan Zhang
- Zhangjiakou Center for Adverse Drug Reaction and Drug Abuse, Hebei 075000, China
| | - Meihao Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing 100101, China
| | - Guofeng Zhu
- Shanghai Municipal Center for Disease Control &Prevention, Shanghai 200336, China
| |
Collapse
|
36
|
Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. Shedding light on biofilm formation ofHalobacterium salinarumR1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/30/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gerald Losensky
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Foundation; Hannover Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Sabrina Fröls
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
37
|
Sheng Y, Yang X, Lian Y, Zhang B, He X, Xu W, Huang K. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:286-291. [PMID: 27522548 DOI: 10.1016/j.etap.2016.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 05/28/2023]
Abstract
Heavy metal contamination poses a major threat to the environment and human health for their potential toxicity and non-biodegradable properties. At present, some probiotics bacteria are reported to have great potential to eliminate heavy metals from food and water. In this study, resistance properties of a newly isolated Lactococcus lactis subsp. lactis for cadmium were studied by antioxidant assays and proteomics analysis. Antioxidant capacity of this strain was significantly activated under cadmium stress indicated by Fenton reaction, DPPH assay, SOD assay and GSH assay. Intracellular antioxidant enzyme systems, such as superoxide dismutase, glutathione reductase and catalase were suggested to play vital roles in the activated antioxidant capacity. The up-regulated cadA was associated with the activated P-type ATPases that plays an important role in cadmium resistance. Proteomics analysis identified 12 over-expressed proteins under 50mg/L cadmium stress and these proteins are abundant in oxidative stress response and energy metabolism regulation, which were considered as consequences as cadmium resistance of the strain. Thus, the probiotics Lactococcus lactis subsp. lactis may resist cadmium stress through antioxidant approach and enhanced energy metabolism. The food grade lactis strain may be applied in metal decontamination in environment and food/feed.
Collapse
Affiliation(s)
- Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanyuan Lian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
38
|
Nagar V, Bandekar JR, Shashidhar R. Expression of virulence and stress response genes in Aeromonas hydrophila under various stress conditions. J Basic Microbiol 2016; 56:1132-1137. [PMID: 27163835 DOI: 10.1002/jobm.201600107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 11/10/2022]
Abstract
Aeromonas hydrophila has emerged as an important human pathogen as it causes gastroenteritis and extra-intestinal infections. Information regarding the influence of environmental stresses on gene expression profile of A. hydrophila is lacking. The impact of nutrient replenishment, nutrient deprivation, acid stress, and cold shock on housekeeping, general stress-response, and virulence genes was studied using quantitative real-time PCR in two A. hydrophila strains, CECT 839T , and A331. These sub-lethal stresses invoked significant changes in the expression of these genes in a strain-dependent manner. Overall, nutrient replenishment and deprivation significantly induced the expression of housekeeping (rpoD), general stress regulators (uspA and rpoS), and virulence (aer) genes, indicating their importance in regulating the survival and virulence of A. hydrophila under these stress conditions. rpoS gene was significantly induced under cold shock; whereas, acid stress significantly induced the expression of uspA gene. This is the first study to investigate the effect of environmental parameters on the expression of stress-response and virulence genes in A. hydrophila strains.
Collapse
Affiliation(s)
- Vandan Nagar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
| | - Jayant R Bandekar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
39
|
Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA. Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS One 2016; 11:e0149520. [PMID: 26926339 PMCID: PMC4771134 DOI: 10.1371/journal.pone.0149520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease is a common health problem in beef production. The primary bacterial agent involved, Mannheimia haemolytica, is a target for antimicrobial therapy and at risk for associated antimicrobial resistance development. The role of M. haemolytica in pathogenesis is linked to serotype with serotypes 1 (S1) and 6 (S6) isolated from pneumonic lesions and serotype 2 (S2) found in the upper respiratory tract of healthy animals. Here, we sequenced the genomes of 11 strains of M. haemolytica, representing all three serotypes and performed comparative genomics analysis to identify genetic features that may contribute to pathogenesis. Possible virulence associated genes were identified within 14 distinct prophage, including a periplasmic chaperone, a lipoprotein, peptidoglycan glycosyltransferase and a stress response protein. Prophage content ranged from 2–8 per genome, but was higher in S1 and S6 strains. A type I-C CRISPR-Cas system was identified in each strain with spacer diversity and organization conserved among serotypes. The majority of spacers occur in S1 and S6 strains and originate from phage suggesting that serotypes 1 and 6 may be more resistant to phage predation. However, two spacers complementary to the host chromosome targeting a UDP-N-acetylglucosamine 2-epimerase and a glycosyl transferases group 1 gene are present in S1 and S6 strains only indicating these serotypes may employ CRISPR-Cas to regulate gene expression to avoid host immune responses or enhance adhesion during infection. Integrative conjugative elements are present in nine of the eleven genomes. Three of these harbor extensive multi-drug resistance cassettes encoding resistance against the majority of drugs used to combat infection in beef cattle, including macrolides and tetracyclines used in human medicine. The findings here identify key features that are likely contributing to serotype related pathogenesis and specific targets for vaccine design intended to reduce the dependency on antibiotics to treat respiratory infection in cattle.
Collapse
Affiliation(s)
- Cassidy L. Klima
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Shaun R. Cook
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Chad Laing
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Vick P. Gannon
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | - Yong Xu
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jay Rasmussen
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steve Hendrick
- Department of Large Animal Clinial Science, Western Colledge of Verterinary Medicine, University of Saskatoon, Saskatoon, Canada
| | - Trevor W. Alexander
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| | - Tim A. McAllister
- Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB T1J 4B1, Canada
- * E-mail: (TAM); (TWA)
| |
Collapse
|
40
|
Xu Y, Guo J, Jin X, Kim JS, Ji Y, Fan S, Ha NC, Quan CS. Crystal structure and functional implications of the tandem-type universal stress protein UspE from Escherichia coli. BMC STRUCTURAL BIOLOGY 2016; 16:3. [PMID: 26865045 PMCID: PMC4750201 DOI: 10.1186/s12900-016-0053-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 11/10/2022]
Abstract
Background The universal stress proteins (USP) family member UspE is a tandem-type USP that consists of two Usp domains. The UspE expression levels of the Escherichia coli (E. coli) become elevated in response to oxidative stress and DNA damaging agents, including exposure to mitomycin C, cadmium, and hydrogen peroxide. It has been shown that UspA family members are survival factors during cellular growth arrest. The structures and functions of the UspA family members control the growth of E. coli in animal hosts. While several UspA family members have known structures, the structure of E. coli UspE remains to be elucidated. Results To understand the biochemical function of UspE, we have determined the crystal structure of E. coli UspE at 3.2 Å resolution. The asymmetric unit contains two protomers related by a non-crystallographic symmetry, and each protomer contains two tandem Usp domains. The crystal structure shows that UspE is folded into a fan-shaped structure similar to that of the tandem-type Usp protein PMI1202 from Proteus mirabilis, and it has a hydrophobic cavity that binds its ligand. Structural analysis revealed that E. coli UspE has two metal ion binding sites, and isothermal titration calorimetry suggested the presence of two Cd2+ binding sites with a Kd value of 38.3–242.7 μM. Structural analysis suggested that E. coli UspE has two Cd2+ binding sites (Site I: His117, His 119; Site II: His193, His244). Conclusion The results show that the UspE structure has a hydrophobic pocket. This pocket is strongly bound to an unidentified ligand. Combined with a previous study, the ligand is probably related to an intermediate in lipid A biosynthesis. Subsequently, sequence analysis found that UspE has an ATP binding motif (Gly269- X2-Gly272-X9-Gly282-Asn) in its C-terminal domain, which was confirmed by in vitro ATPase activity monitored using Kinase-Glo® Luminescent Kinase Assay. However, the residues constituting this motif were disordered in the crystal structure, reflecting their intrinsic flexibility. ITC experiments revealed that the UspE probably has two Cd2+ binding sites. The His117, His 119, His193, and His244 residues within the β-barrel domain are necessary for Cd2+ binding to UspE protein. As mentioned above, USPs are associated with several functions, such as cadmium binding, ATPase function, and involvement in lipid A biosynthesis by some unknown way.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China. .,Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China.
| | - Jianyun Guo
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Jin-Sik Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Ying Ji
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Shengdi Fan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 151-742, Republic of Korea.
| | - Chun-Shan Quan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian, 116600, Liaoning, China.
| |
Collapse
|
41
|
Su T, Wang Q, Yu L, Yu CA. Universal Stress Protein Regulates Electron Transfer and Superoxide Generation Activities of the Cytochrome bc1 Complex from Rhodobacter sphaeroides. Biochemistry 2015; 54:7313-9. [PMID: 26580083 DOI: 10.1021/acs.biochem.5b00658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between Rhodobacter sphaeroides cytochrome bc1 complex (Rsbc1) and soluble cytosolic proteins were studied by a precipitation pull-down technique. After being purified, detergent-dispersed Rsbc1 complex was incubated with soluble cytosolic fraction and then dialyzed in the absence of detergent; the interacting proteins were coprecipitated with Rsbc1 complex upon centrifugation. One of the cytosolic proteins pulled down by Rsbc1 complex was identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS) to be the reported R. sphaeroides universal stress protein (UspA). Incubating purified UspA with the detergent dispersed bc1 complex resulted in an increase in the Rsbc1 complex activity by 60% and a decrease in superoxide generation activity by the complex by more than 70%. These UspA effects were only observed with Rsbc1 complexes containing subunit IV and assayed under aerobic conditions. These results suggest that the interaction between UspA and Rsbc1 complex may play an important role in R. sphaeroides cells during oxidative stress. Using a biotin label transfer technique, cytochrome c1 of the Rsbc1 complex was identified as the interacting site for UspA.
Collapse
Affiliation(s)
- Ting Su
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Qiyu Wang
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Linda Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| | - Chang-An Yu
- Department of Biochemistry and Molecular Biology, Oklahoma State University , Stillwater, Oklahoma 74078, United States
| |
Collapse
|
42
|
Abstract
Escherichia coli and Salmonella encounter osmotic pressure variations in natural environments that include host tissues, food, soil, and water. Osmotic stress causes water to flow into or out of cells, changing their structure, physics, and chemistry in ways that perturb cell functions. E. coli and Salmonella limit osmotically induced water fluxes by accumulating and releasing electrolytes and small organic solutes, some denoted compatible solutes because they accumulate to high levels without disturbing cell functions. Osmotic upshifts inhibit membrane-based energy transduction and macromolecule synthesis while activating existing osmoregulatory systems and specifically inducing osmoregulatory genes. The osmoregulatory response depends on the availability of osmoprotectants (exogenous organic compounds that can be taken up to become compatible solutes). Without osmoprotectants, K+ accumulates with counterion glutamate, and compatible solute trehalose is synthesized. Available osmoprotectants are taken up via transporters ProP, ProU, BetT, and BetU. The resulting compatible solute accumulation attenuates the K+ glutamate response and more effectively restores cell hydration and growth. Osmotic downshifts abruptly increase turgor pressure and strain the cytoplasmic membrane. Mechanosensitive channels like MscS and MscL open to allow nonspecific solute efflux and forestall cell lysis. Research frontiers include (i) the osmoadaptive remodeling of cell structure, (ii) the mechanisms by which osmotic stress alters gene expression, (iii) the mechanisms by which transporters and channels detect and respond to osmotic pressure changes, (iv) the coordination of osmoregulatory programs and selection of available osmoprotectants, and (v) the roles played by osmoregulatory mechanisms as E. coli and Salmonella survive or thrive in their natural environments.
Collapse
|
43
|
Xu Y, Quan CS, Jin X, Jin X, Zhao J, Li X, Zheng W, Jin L, Liu D, Fan S, Ha NC. Crystallization and preliminary X-ray diffraction analysis of UspE from Escherichia coli. Acta Crystallogr F Struct Biol Commun 2014; 70:1640-2. [PMID: 25484216 PMCID: PMC4259230 DOI: 10.1107/s2053230x14023437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
Universal stress proteins (Usps) are among the most highly induced genes when bacteria are subjected to several stress conditions such as heat shock, nutrient starvation or the presence of oxidants or other stress agents. Escherichia coli has five small Usps and one tandem-type Usp. UspE (or YdaA) is the tandem-type Usp and consists of two Usp domains arranged in tandem. To date, the structure of UspE remains to be elucidated. To contribute to the molecular understanding of the function of the tandem-type UspE, UspE from E. coli was overexpressed and the recombinant protein was purified using Ni-NTA affinity, Q anion-exchange and gel-filtration chromatography. Crystals of UspE were obtained by sitting-drop vapour diffusion. A diffraction data set was collected to a resolution of 3.2 Å from flash-cooled crystals. The crystals belonged to the tetragonal space group I4122 or I4322, with unit-cell parameters a = b = 121.1, c = 241.7 Å.
Collapse
Affiliation(s)
- Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Chun-Shan Quan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Xuanzhen Jin
- College of Engineering, Yanbian University, Jilin Yanji 133002, People’s Republic of China
| | - Xiaoling Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Jing Zhao
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Xihui Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, People’s Republic of China
| | - Wei Zheng
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Liming Jin
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Dedi Liu
- School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Shengdi Fan
- Department of Bioengineering, College of Life Science, Dalian Nationalities University, Dalian 116600, People’s Republic of China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
44
|
Shokry AM, Al-Karim S, Ramadan A, Gadallah N, Al Attas SG, Sabir JSM, Hassan SM, Madkour MA, Bressan R, Mahfouz M, Bahieldin A. Detection of a Usp-like gene in Calotropis procera plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. C R Biol 2014; 337:86-94. [PMID: 24581802 DOI: 10.1016/j.crvi.2013.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 12/20/2013] [Indexed: 11/18/2022]
Abstract
The wild plant species Calotropis procera (C. procera) has many potential applications and beneficial uses in medicine, industry and ornamental field. It also represents an excellent source of genes for drought and salt tolerance. Genes encoding proteins that contain the conserved universal stress protein (USP) domain are known to provide organisms like bacteria, archaea, fungi, protozoa and plants with the ability to respond to a plethora of environmental stresses. However, information on the possible occurrence of Usp in C. procera is not available. In this study, we uncovered and characterized a one-class A Usp-like (UspA-like, NCBI accession No. KC954274) gene in this medicinal plant from the de novo assembled genome contigs of the high-throughput sequencing dataset. A number of GenBank accessions for Usp sequences were blasted with the recovered de novo assembled contigs. Homology modelling of the deduced amino acids (NCBI accession No. AGT02387) was further carried out using Swiss-Model, accessible via the EXPASY. Superimposition of C. procera USPA-like full sequence model on Thermus thermophilus USP UniProt protein (PDB accession No. Q5SJV7) was constructed using RasMol and Deep-View programs. The functional domains of the novel USPA-like amino acids sequence were identified from the NCBI conserved domain database (CDD) that provide insights into sequence structure/function relationships, as well as domain models imported from a number of external source databases (Pfam, SMART, COG, PRK, TIGRFAM).
Collapse
Affiliation(s)
- Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Saleh Al-Karim
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Ahmed Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Nour Gadallah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Magdy A Madkour
- Arid Lands Agricultural Research Institute, Ain Shams University, Cairo, Egypt
| | - Ray Bressan
- School of Agriculture, Purdue University, West Lafayette, Indiana, USA
| | - Magdy Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
45
|
Adaptation of intertidal biofilm communities is driven by metal ion and oxidative stresses. Sci Rep 2013; 3:3180. [PMID: 24212283 PMCID: PMC3822395 DOI: 10.1038/srep03180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/24/2013] [Indexed: 12/15/2022] Open
Abstract
Marine organisms in intertidal zones are subjected to periodical fluctuations and wave activities. To understand how microbes in intertidal biofilms adapt to the stresses, the microbial metagenomes of biofilms from intertidal and subtidal zones were compared. The genes responsible for resistance to metal ion and oxidative stresses were enriched in both 6-day and 12-day intertidal biofilms, including genes associated with secondary metabolism, inorganic ion transport and metabolism, signal transduction and extracellular polymeric substance metabolism. In addition, these genes were more enriched in 12-day than 6-day intertidal biofilms. We hypothesize that a complex signaling network is used for stress tolerance and propose a model illustrating the relationships between these functions and environmental metal ion concentrations and oxidative stresses. These findings show that bacteria use diverse mechanisms to adapt to intertidal zones and indicate that the community structures of intertidal biofilms are modulated by metal ion and oxidative stresses.
Collapse
|
46
|
Foster A, Barnes N, Speight R, Morris PC, Keane MA. Role of amine oxidase expression to maintain putrescine homeostasis in Rhodococcus opacus. Enzyme Microb Technol 2013; 52:286-95. [DOI: 10.1016/j.enzmictec.2013.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/12/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
|
47
|
Abstract
The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K+) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K+ regulation.
Collapse
Affiliation(s)
- Zoë N. Freeman
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Nicholas R. Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Belfiore C, Ordoñez OF, Farías ME. Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 2013; 17:421-31. [PMID: 23525943 DOI: 10.1007/s00792-013-0523-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/07/2013] [Indexed: 01/13/2023]
Abstract
The North-Western part of Argentina is particularly rich in wetlands located in the Puna in an altitude between 3,600 and 4,600 m above sea level. Most of these high-altitude Andean lakes are inhospitable areas due to extreme habitat conditions such as high contents of toxic elements, particularly arsenic. Exiguobacterium sp. S17, isolated from stromatolites in Laguna Socompa, exhibited remarkable tolerance to high arsenic concentration, i.e., it tolerated arsenic concentration such as 10 mM of As(III) and 150 mM of As(V). A proteomics approach was conducted to reveal the mechanisms that provide the observed outstanding resistance of Exiguobacterium sp. S17 against arsenic. A comparative analysis of S17, exposed and unexposed to arsenic revealed 25 differentially expressed proteins. Identification of these proteins was performed by MALDI-TOF/MS revealing upregulation of proteins involved in energy metabolism, stress, transport, and in protein synthesis being expressed under arsenic stress. To our knowledge, this work represents the first proteomic study of arsenic tolerance in an Exiguobacterium strain.
Collapse
Affiliation(s)
- Carolina Belfiore
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pje Caseros, 4000 San Miguel de Tucumán, Argentina.
| | | | | |
Collapse
|
49
|
Hernández SB, Cota I, Ducret A, Aussel L, Casadesús J. Adaptation and preadaptation of Salmonella enterica to Bile. PLoS Genet 2012; 8:e1002459. [PMID: 22275872 PMCID: PMC3261920 DOI: 10.1371/journal.pgen.1002459] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/19/2011] [Indexed: 12/23/2022] Open
Abstract
Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile: adaptation, mutation, and non-mutational preadaptation. Adaptation is easily observed in the laboratory: when a Salmonella culture is grown in the presence of a sublethal concentration of the bile salt sodium deoxycholate (DOC), the minimal inhibitory concentration of DOC increases. Adaptation appears to be associated to multiple changes in gene expression induced by DOC. Mutational bile resistance is also a common phenomenon: plating on agar containing a lethal concentration of bile yields bile-resistant colonies. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. Non-mutational preadaptation, a non-canonical phenomenon a priori, suggests that batch cultures contain rare Salmonella cells whose physiological state permits survival upon encountering bile. The view that non-mutational preadaptation may be a consequence of phenotypic heterogeneity is supported by the observation that Salmonella cultures contain cells that activate stress response genes in the absence of DOC.
Collapse
Affiliation(s)
| | - Ignacio Cota
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
| | - Adrien Ducret
- Laboratoire de Chimie Bactérienne, CNRS-UPR 9043, Aix-Marseille University, Marseille, France
| | - Laurent Aussel
- Laboratoire de Chimie Bactérienne, CNRS-UPR 9043, Aix-Marseille University, Marseille, France
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
50
|
Alegado RA, Chin CY, Monack DM, Tan MW. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol 2011; 13:1618-37. [PMID: 21790938 DOI: 10.1111/j.1462-5822.2011.01645.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of enteric pathogens to perceive and adapt to distinct environments within the metazoan intestinal tract is critical for pathogenesis; however, the preponderance of interactions between microbe- and host-derived factors remain to be fully understood. Salmonella enterica serovar Typhimurium is a medically important enteric bacterium that colonizes, proliferates and persists in the intestinal lumen of the nematode Caenorhabditis elegans. Several Salmonella virulence factors important in murine and tissue culture models also contribute to worm mortality and intestinal persistence. For example, PhoP and the virulence plasmid pSLT are virulence factors required for resistance to the C. elegans antimicrobial peptide SPP-1. To uncover additional determinants required for Salmonella typhimurium pathogenesis in vivo, we devised a genetic screen to identify bacterial mutants defective in establishing a persistent infection in the intestine of C. elegans. Here we report on identification of 14 loci required for persistence in the C. elegans intestine and characterization of KdpD, a sensor kinase of a two-component system in S. typhimurium pathogenesis. We show that kdpD mutants are profoundly attenuated in intestinal persistence in the nematode and in macrophage survival. These findings may be attributed to the essential role KdpD plays in promoting resistance to osmotic, oxidative and antimicrobial stresses.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|