1
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Fayad N, Barssoum R, Marsaud N, Nasseredine R, Abdelmalek N, Rouis S, Teste MA, Pailler V, Gautier V, Belmonte E, Aceves Lara CA, Cescut J, Fillaudeau L, Kallassy Awad M. Complete genome sequences of two Bacillus thuringiensis serovar kurstaki strains isolated from Lebanon and Tunisia, highly toxic against lepidopteran larvae. Microbiol Resour Announc 2023; 12:e0006023. [PMID: 37551990 PMCID: PMC10508133 DOI: 10.1128/mra.00060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
Bacillus thuringiensis-based products are key in the biopesticides market. Bacillus thuringiensis kurstaki strains Lip and BLB1 were isolated from Lebanese and Tunisian soils, respectively. These strains are highly toxic against lepidopteran larvae, Ephestia kuehniella. Here, we report Lip and BLB1 complete genomes, including their plasmid and toxin contents.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Rita Barssoum
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
- Toulouse Biotechnology Institute, Toulouse, France
| | - Nathalie Marsaud
- Toulouse Biotechnology Institute, Toulouse, France
- GenoToul GeT-BioPUCE, Toulouse, France
| | - Rayan Nasseredine
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | | | - Souad Rouis
- Laboratory of Biopesticides, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | | | | | | | | | | | | | | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| |
Collapse
|
3
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Fayad N, Koné KM, Gillis A, Mahillon J. Bacillus cytotoxicus Genomics: Chromosomal Diversity and Plasmidome Versatility. Front Microbiol 2021; 12:789929. [PMID: 34992589 PMCID: PMC8725734 DOI: 10.3389/fmicb.2021.789929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus cytotoxicus is the thermotolerant representative of the Bacillus cereus group. This group, also known as B. cereus sensu lato, comprises both beneficial and pathogenic members and includes psychrotolerant and thermotolerant species. Bacillus cytotoxicus was originally recovered from a fatal outbreak in France in 1998. This species forms a remote cluster from the B. cereus group members and reliably contains the cytk-1 gene, coding for a cytotoxic variant of cytotoxin K. Although this species was originally thought to be homogenous, intra-species diversity has been recently described with four clades, six random amplified polymorphic DNA (RAPD) patterns, and 11 plasmids profiles. This study aimed to get new insights into the genomic diversity of B. cytotoxicus and to decipher the underlying chromosomal and plasmidial variations among six representative isolates through whole genome sequencing (WGS). Among the six sequenced strains, four fitted the previously described genomic clades A and D, while the remaining two constituted new distinct branches. As for the plasmid content of these strains, three large plasmids were putatively conjugative and three small ones potentially mobilizable, harboring coding genes for putative leaderless bacteriocins. Mobile genetic elements, such as prophages, Insertion Sequences (IS), and Bacillus cereus repeats (bcr) greatly contributed to the B. cytotoxicus diversity. As for IS elements and bcr, IS3 and bcr1 were the most abundant elements and, along with the group II intron B.c.I8, were found in all analyzed B. cytotoxicus strains. When compared to other B. cytotoxicus strains, the type-strain NVH 391-98 displayed a relatively low number of IS. Our results shed new light on the contribution of mobile genetic elements to the genome plasticity of B. cytotoxicus and their potential role in horizontal gene transfer.
Collapse
Affiliation(s)
- Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Klèma Marcel Koné
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Louvain-la-Neuve, Belgium
| |
Collapse
|
5
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
6
|
Gillis A, Hock L, Mahillon J. Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms 2021; 9:1335. [PMID: 34205474 PMCID: PMC8234876 DOI: 10.3390/microorganisms9061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial "plasmid repertoire" as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the "gene regulation-genome replication" module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
7
|
Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 2021; 49:2655-2673. [PMID: 33590101 PMCID: PMC7969092 DOI: 10.1093/nar/gkab064] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/16/2023] Open
Abstract
Plasmids and temperate phages are key contributors to bacterial evolution. They are usually regarded as very distinct. However, some elements, termed phage–plasmids, are known to be both plasmids and phages, e.g. P1, N15 or SSU5. The number, distribution, relatedness and characteristics of these phage–plasmids are poorly known. Here, we screened for these elements among ca. 2500 phages and 12000 plasmids and identified 780 phage–plasmids across very diverse bacterial phyla. We grouped 92% of them by similarity of gene repertoires to eight defined groups and 18 other broader communities of elements. The existence of these large groups suggests that phage–plasmids are ancient. Their gene repertoires are large, the average element is larger than an average phage or plasmid, and they include slightly more homologs to phages than to plasmids. We analyzed the pangenomes and the genetic organization of each group of phage–plasmids and found the key phage genes to be conserved and co-localized within distinct groups, whereas genes with homologs in plasmids are much more variable and include most accessory genes. Phage–plasmids are a sizeable fraction of the sequenced plasmids (∼7%) and phages (∼5%), and could have key roles in bridging the genetic divide between phages and other mobile genetic elements.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | | | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris 75015, France
| |
Collapse
|
8
|
Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain Corynebacterium glutamicum ATCC 13032. Viruses 2021; 13:v13030495. [PMID: 33802915 PMCID: PMC8002715 DOI: 10.3390/v13030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we provide a comprehensive analysis of the genomic features of the phage CL31 and the infection dynamics with the biotechnologically relevant host strain Corynebacterium glutamicum ATCC 13032. Genome sequencing and annotation of CL31 revealed a 45-kbp genome composed of 72 open reading frames, mimicking the GC content of its host strain (54.4%). An ANI-based distance matrix showed the highest similarity of CL31 to the temperate corynephage Φ16. While the C. glutamicum ATCC 13032 wild type strain showed only mild propagation of CL31, a strain lacking the cglIR-cglIIR-cglIM restriction-modification system was efficiently infected by this phage. Interestingly, the prophage-free strain C. glutamicum MB001 featured an even accelerated amplification of CL31 compared to the ∆resmod strain suggesting a role of cryptic prophage elements in phage defense. Proteome analysis of purified phage particles and transcriptome analysis provide important insights into structural components of the phage and the response of C. glutamicum to CL31 infection. Isolation and sequencing of CL31-resistant strains revealed SNPs in genes involved in mycolic acid biosynthesis suggesting a role of this cell envelope component in phage adsorption. Altogether, these results provide an important basis for further investigation of phage-host interactions in this important biotechnological model organism.
Collapse
|
9
|
Completed Genomic Sequence of Bacillus thuringiensis HER1410 Reveals a Cry-Containing Chromosome, Two Megaplasmids, and an Integrative Plasmidial Prophage. G3-GENES GENOMES GENETICS 2020; 10:2927-2939. [PMID: 32690586 PMCID: PMC7466992 DOI: 10.1534/g3.120.401361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacillus thuringiensis is the most used biopesticide in agriculture. Its entomopathogenic capacity stems from the possession of plasmid-borne insecticidal crystal genes (cry), traditionally used as discriminant taxonomic feature for that species. As such, crystal and plasmid identification are key to the characterization of this species. To date, about 600 B. thuringiensis genomes have been reported, but less than 5% have been completed, while the other draft genomes are incomplete, hindering full plasmid delineation. Here we present the complete genome of Bacillus thuringiensis HER1410, a strain closely related to B. thuringiensis entomocidus and a known host for a variety of Bacillus phages. The combination of short and long-read techniques allowed fully resolving the genome and delineation of three plasmids. This enabled the accurate detection of an unusual location of a unique cry gene, cry1Ba4, located in a genomic island near the chromosome replication origin. Two megaplasmids, pLUSID1 and pLUSID2 could be delineated: pLUSID1 (368 kb), a likely conjugative plasmid involved in virulence, and pLUSID2 (156 kb) potentially related to the sporulation process. A smaller plasmidial prophage pLUSID3, with a dual lifestyle whose integration within the chromosome causes the disruption of a flagellar key component. Finally, phylogenetic analysis placed this strain within a clade comprising members from the B. thuringiensis serovar thuringiensis and other serovars and with B. cereus s. s. in agreement with the intermingled taxonomy of B. cereus sensu lato group.
Collapse
|
10
|
A Novel Genus of Actinobacterial Tectiviridae. Viruses 2019; 11:v11121134. [PMID: 31817897 PMCID: PMC6950372 DOI: 10.3390/v11121134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/31/2023] Open
Abstract
Streptomyces phages WheeHeim and Forthebois are two novel members of the Tectiviridae family. These phages were isolated on cultures of the plant pathogen Streptomyces scabiei, known for its worldwide economic impact on potato crops. Transmission electron microscopy showed viral particles with double-layered icosahedral capsids, and frequent instances of protruding nanotubes harboring a collar-like structure. Mass-spectrometry confirmed the presence of lipids in the virion, and serial purification of colonies from turbid plaques and immunity testing revealed that both phages are temperate. Streptomycesphages WheeHeim and Forthebois have linear dsDNA chromosomes (18,266 bp and 18,251 bp long, respectively) with the characteristic two-segment architecture of the Tectiviridae. Both genomes encode homologs of the canonical tectiviral proteins (major capsid protein, packaging ATPase and DNA polymerase), as well as PRD1-type virion-associated transglycosylase and membrane DNA delivery proteins. Comparative genomics and phylogenetic analyses firmly establish that these two phages, together with Rhodococcusphage Toil, form a new genus within the Tectiviridae, which we have tentatively named Deltatectivirus. The identification of a cohesive clade of Actinobacteria-infecting tectiviruses with conserved genome structure but with scant sequence similarity to members of other tectiviral genera confirms that the Tectiviridae are an ancient lineage infecting a broad range of bacterial hosts.
Collapse
|
11
|
Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V, Salas M, Butala M. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res 2019; 46:9432-9443. [PMID: 30053203 PMCID: PMC6182141 DOI: 10.1093/nar/gky646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.
Collapse
Affiliation(s)
- Nadine Fornelos
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Extending the hosts of Tectiviridae into four additional genera of Gram-positive bacteria and more diverse Bacillus species. Virology 2018; 518:136-142. [PMID: 29481984 DOI: 10.1016/j.virol.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 11/23/2022]
Abstract
Tectiviridae are composed of tailless bacteriophages with an icosahedral capsid and an inner membrane enclosing a double-stranded 15 kb linear DNA genome. Five of the seven previously studied Tectivirus isolates infect bacteria from Bacillus cereus sensu lato group (Betatectivirus), one distantly related member (PRD1) infect Enterobactericeae (Alpatectivirus) and one recently discovered virus infect Gluconobacter cerinus (Gammatectivirus). Here we expand the host spectrum of Betatectivirus elements to four additional genera (Streptococcus, Exiguobacterium, Clostridium and Brevibacillus) and to more distantly related Bacillus species (B. pumilus and B. flexus) by studying the genomes of fourteen novel tectiviral elements. Overall, the genomes show significant conservation in gene synteny and in modules responsible for genome replication and formation of the virion core (including DNA packaging). Notable variation exists in regions encoding host attachment and lysis along with the surrounding area of a site in which mutations are known to alter phage life cycle.
Collapse
|
14
|
Bam35 Tectivirus Intraviral Interaction Map Unveils New Function and Localization of Phage ORFan Proteins. J Virol 2017; 91:JVI.00870-17. [PMID: 28747494 DOI: 10.1128/jvi.00870-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
The family Tectiviridae comprises a group of tailless, icosahedral, membrane-containing bacteriophages that can be divided into two groups by their hosts, either Gram-negative or Gram-positive bacteria. While the first group is composed of PRD1 and nearly identical well-characterized lytic viruses, the second one includes more variable temperate phages, like GIL16 or Bam35, whose hosts are Bacillus cereus and related Gram-positive bacteria. In the genome of Bam35, nearly half of the 32 annotated open reading frames (ORFs) have no homologs in databases (ORFans), being putative proteins of unknown function, which hinders the understanding of their biology. With the aim of increasing knowledge about the viral proteome, we carried out a comprehensive yeast two-hybrid analysis of all the putative proteins encoded by the Bam35 genome. The resulting protein interactome comprised 76 unique interactions among 24 proteins, of which 12 have an unknown function. These results suggest that the P17 protein is the minor capsid protein of Bam35 and P24 is the penton protein, with the latter finding also being supported by iterative threading protein modeling. Moreover, the inner membrane transglycosylase protein P26 could have an additional structural role. We also detected interactions involving nonstructural proteins, such as the DNA-binding protein P1 and the genome terminal protein (P4), which was confirmed by coimmunoprecipitation of recombinant proteins. Altogether, our results provide a functional view of the Bam35 viral proteome, with a focus on the composition and organization of the viral particle.IMPORTANCE Tailless viruses of the family Tectiviridae can infect commensal and pathogenic Gram-positive and Gram-negative bacteria. Moreover, they have been proposed to be at the evolutionary origin of several groups of large eukaryotic DNA viruses and self-replicating plasmids. However, due to their ancient origin and complex diversity, many tectiviral proteins are ORFans of unknown function. Comprehensive protein-protein interaction (PPI) analysis of viral proteins can eventually disclose biological mechanisms and thus provide new insights into protein function unattainable by studying proteins one by one. Here we comprehensively describe intraviral PPIs among tectivirus Bam35 proteins determined using multivector yeast two-hybrid screening, and these PPIs were further supported by the results of coimmunoprecipitation assays and protein structural models. This approach allowed us to propose new functions for known proteins and hypothesize about the biological role of the localization of some viral ORFan proteins within the viral particle that will be helpful for understanding the biology of tectiviruses infecting Gram-positive bacteria.
Collapse
|
15
|
Berjón-Otero M, Villar L, Salas M, Redrejo-Rodríguez M. Disclosing early steps of protein-primed genome replication of the Gram-positive tectivirus Bam35. Nucleic Acids Res 2016; 44:9733-9744. [PMID: 27466389 PMCID: PMC5175343 DOI: 10.1093/nar/gkw673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/29/2023] Open
Abstract
Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in a number of linear genomes of viruses, linear plasmids and mobile elements. By this mechanism, a so-called terminal protein (TP) primes replication and becomes covalently linked to the genome ends. Bam35 belongs to a group of temperate tectiviruses infecting Gram-positive bacteria, predicted to replicate their genomes by a protein-primed mechanism. Here, we characterize Bam35 replication as an alternative model of protein-priming DNA replication. First, we analyze the role of the protein encoded by the ORF4 as the TP and characterize the replication mechanism of the viral genome (TP-DNA). Indeed, full-length Bam35 TP-DNA can be replicated using only the viral TP and DNA polymerase. We also show that DNA replication priming entails the TP deoxythymidylation at conserved tyrosine 194 and that this reaction is directed by the third base of the template strand. We have also identified the TP tyrosine 172 as an essential residue for the interaction with the viral DNA polymerase. Furthermore, the genetic information of the first nucleotides of the genome can be recovered by a novel single-nucleotide jumping-back mechanism. Given the similarities between genome inverted terminal repeats and the genes encoding the replication proteins, we propose that related tectivirus genomes can be replicated by a similar mechanism.
Collapse
Affiliation(s)
- Mónica Berjón-Otero
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Laurentino Villar
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Margarita Salas
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Modesto Redrejo-Rodríguez
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
16
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
17
|
Madeira JP, Omer H, Alpha-Bazin B, Armengaud J, Duport C. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. J Proteomics 2016; 146:25-33. [PMID: 27321915 DOI: 10.1016/j.jprot.2016.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The pathogen, Bacillus cereus, is able to adapt its metabolism to various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the presence and absence of pBClin15 at the early, late and stationary growth phases. The results were visualized through a hierarchical cluster analysis of proteomic data. We found that pBClin15 contributes significantly to the metabolic efficiency of B. cereus by restricting the production of chromosome-encoded phage proteins in the extracellular milieu. The data also revealed intricate regulatory mechanisms between pBClin15 and its host. Finally, we show that pBClin15 provides benefit to its host to adapt to different ecologic niches. BIOLOGICAL SIGNIFICANCE Bacteria belonging to the Bacillus cereus group include B. cereus, a notorious food borne pathogen which causes gastroenteritis. The B. cereus type, strain ATCC 14579, harbors a linear plasmid, pBClin15, which displays cryptic prophage behavior. Here, we present data supporting the idea that pBClin15 may have a much greater role in B. cereus metabolism that has hitherto been suspected. Specifically, our comparative proteomic analyses reveal that pBClin15 manages B. cereus central metabolism to optimize energy and carbon utilization through the repression of several chromosome-encoded phage proteins. These results suggest that pBClin15 provides benefit to the host for surviving adverse environmental conditions.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Hélène Omer
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Béatrice Alpha-Bazin
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France.
| |
Collapse
|
18
|
Qin K, Cheng B, Zhang S, Wang N, Fang Y, Zhang Q, Kuang A, Lin L, Ji X, Wei Y. Complete genome sequence of the cold-active bacteriophage VMY22 from Bacillus cereus. Virus Genes 2016; 52:432-5. [PMID: 26941234 DOI: 10.1007/s11262-016-1300-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
The cold-active bacteriophage VMY22, belonging to the Podoviridae family, was isolated from Mingyong Glacier in China. Sequence analysis revealed that the genome is 18,609 bp long, with an overall G + C content of 36.4 mol%, and 25 open reading frames (ORFs). The sequence contains 46 potential promoters, 6 transcription terminators, and no tRNAs. Most of the ORFs show a high degree of similarity to B103 (NC_004165). Two noteworthy findings were made. First, one of the predicted proteins, ORF 19, shows high sequence similarity to the bacteriocin biosynthesis protein from Bacillus cereus. From this information, we propose that the VMY22 phage is at an intermediate phase in its coevolution with its bacterial host. Second, seven of the hypothetical proteins appear to be unique to this cold-active B. cereus phage (i.e., not found in temperate-active B. cereus phages). These observations add to our current knowledge about the coevolution of bacteriophages and their hosts. The identification of a novel group of gene and protein structures and functions will lead to a better understanding of cold-adaptation mechanisms in bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Kunhao Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Benxu Cheng
- Regional Academic Heath Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Shengting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Anxiu Kuang
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
19
|
Atanasova NS, Senčilo A, Pietilä MK, Roine E, Oksanen HM, Bamford DH. Comparison of lipid-containing bacterial and archaeal viruses. Adv Virus Res 2015; 92:1-61. [PMID: 25701885 DOI: 10.1016/bs.aivir.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maija K Pietilä
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Grose JH, Jensen GL, Burnett SH, Breakwell DP. Correction: genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:1184. [PMID: 25547158 PMCID: PMC4464726 DOI: 10.1186/1471-2164-15-1184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. RESULTS Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. CONCLUSIONS This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, USA.
| | | | | | | |
Collapse
|
21
|
Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:855. [PMID: 25280881 PMCID: PMC4197329 DOI: 10.1186/1471-2164-15-855] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023] Open
Abstract
Background The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. Results Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. Conclusions This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
Collapse
|
22
|
Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 2014; 80:7620-30. [PMID: 25261525 DOI: 10.1128/aem.01869-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.
Collapse
|
23
|
Vörös A, Simm R, Slamti L, McKay MJ, Hegna IK, Nielsen-LeRoux C, Hassan KA, Paulsen IT, Lereclus D, Økstad OA, Molloy MP, Kolstø AB. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins. PLoS One 2014; 9:e103326. [PMID: 25083861 PMCID: PMC4118872 DOI: 10.1371/journal.pone.0103326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/26/2014] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to explore the role of SecDF in protein secretion in Bacillus cereus ATCC 14579 by in-depth characterization of a markerless secDF knock out mutant. Deletion of secDF resulted in pleiotropic effects characterized by a moderately slower growth rate, aberrant cell morphology, enhanced susceptibility to xenobiotics, reduced virulence and motility. Most toxins, including food poisoning-associated enterotoxins Nhe, Hbl, and cytotoxin K, as well as phospholipase C were less abundant in the secretome of the ΔsecDF mutant as determined by label-free mass spectrometry. Global transcriptome studies revealed profound transcriptional changes upon deletion of secDF indicating cell envelope stress. Interestingly, the addition of glucose enhanced the described phenotypes. This study shows that SecDF is an important part of the Sec-translocase mediating efficient secretion of virulence factors in the Gram-positive opportunistic pathogen B. cereus, and further supports the notion that B. cereus enterotoxins are secreted by the Sec-system.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Leyla Slamti
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
| | - Matthew J. McKay
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Ida K. Hegna
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Didier Lereclus
- INRA, UMR1319 Micalis, Domaine de La Minière, Guyancourt, France
- AgroParistech, UMR Micalis, Jouy-en-Josas, France
| | - Ole Andreas Økstad
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Mark P. Molloy
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney, Australia
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
24
|
Genome Sequence of Bacillus thuringiensis subsp. kurstaki Strain HD-1. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00613-14. [PMID: 25035322 PMCID: PMC4102859 DOI: 10.1128/genomea.00613-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report here the complete genome sequence of Bacillus thuringiensis subsp. kurstaki strain HD-1, which serves as the primary U.S. reference standard for all commercial insecticidal formulations of B. thuringiensis manufactured around the world.
Collapse
|
25
|
Gillis A, Mahillon J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 2014; 6:2623-72. [PMID: 25010767 PMCID: PMC4113786 DOI: 10.3390/v6072623] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
26
|
Gillis A, Mahillon J. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl Environ Microbiol 2014; 80:4138-52. [PMID: 24795369 PMCID: PMC4068676 DOI: 10.1128/aem.00912-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/25/2014] [Indexed: 11/20/2022] Open
Abstract
GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Osman Y, . AEM, . ME, Omer F. Five Distinctive Phages from an Egyptian Industrial Strain of Bacillus
thuringiensis subsp. Aegypti. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/jest.2014.67.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group. Arch Virol 2013; 159:871-84. [PMID: 24264384 DOI: 10.1007/s00705-013-1920-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
The Bacillus cereus group phages infecting B. cereus, B. anthracis, and B. thuringiensis (Bt) have been studied at the molecular level and, recently, at the genomic level to control the pathogens B. cereus and B. anthracis and to prevent phage contamination of the natural insect pesticide Bt. A comparative phylogenetic analysis has revealed three different major phage groups with different morphologies (Myoviridae for group I, Siphoviridae for group II, and Tectiviridae for group III), genome size (group I > group II > group III), and lifestyle (virulent for group I and temperate for group II and III). A subsequent phage genome comparison using a dot plot analysis showed that phages in each group are highly homologous, substantiating the grouping of B. cereus phages. Endolysin is a host lysis protein that contains two conserved domains: a cell-wall-binding domain (CBD) and an enzymatic activity domain (EAD). In B. cereus sensu lato phage group I, four different endolysin groups have been detected, according to combinations of two types of CBD and four types of EAD. Group I phages have two copies of tail lysins and one copy of endolysin, but the functions of the tail lysins are still unknown. In the B. cereus sensu lato phage group II, the B. anthracis phages have been studied and applied for typing and rapid detection of pathogenic host strains. In the B. cereus sensu lato phage group III, the B. thuringiensis phages Bam35 and GIL01 have been studied to understand phage entry and lytic switch regulation mechanisms. In this review, we suggest that further study of the B. cereus group phages would be useful for various phage applications, such as biocontrol, typing, and rapid detection of the pathogens B. cereus and B. anthracis and for the prevention of phage contamination of the natural insect pesticide Bt.
Collapse
|
29
|
Otlewska A, Oltuszak-Walczak E, Walczak P. Differentiation of strains from the Bacillus cereus group by RFLP-PFGE genomic fingerprinting. Electrophoresis 2013; 34:3023-8. [PMID: 23893780 DOI: 10.1002/elps.201300246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/26/2013] [Accepted: 06/14/2013] [Indexed: 11/11/2022]
Abstract
Bacillus mycoides, Bacillus pseudomycoides, Bacillus weihenstephanensis, Bacillus anthracis, Bacillus thuringiensis, and Bacillus cereus belong to the B. cereus group. The last three species are characterized by different phenotype features and pathogenicity spectrum, but it has been shown that these species are genetically closely related. The macrorestriction analysis of the genomic DNA with the NotI enzyme was used to generate polymorphism of restriction profiles for 39 food-borne isolates (B. cereus, B. mycoides) and seven reference strains (B. mycoides, B. thuringiensis, B. weihenstephanensis, and B. cereus). The PFGE method was applied to differentiate the examined strains of the B. cereus group. On the basis of the unweighted pair group method with the arithmetic mean method and Dice coefficient, the strains were divided into five clusters (types A-E), and the most numerous group was group A (25 strains). A total of 21 distinct pulsotypes were observed. The RFLP-PFGE analysis was successfully used for the differentiation and characterization of B. cereus and B. mycoides strains isolated from different food products.
Collapse
Affiliation(s)
- Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | |
Collapse
|
30
|
Vörös A, Simm R, Kroeger JK, Kolstø AB. Gene transcription from the linear plasmid pBClin15 leads to cell lysis and extracellular DNA-dependent aggregation of Bacillus cereus ATCC 14579 in response to quinolone-induced stress. MICROBIOLOGY-SGM 2013; 159:2283-2293. [PMID: 24002748 DOI: 10.1099/mic.0.069674-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Bacillus cereus type strain ATCC 14579 harbours pBClin15, a linear plasmid with similar genome organization to tectiviruses. Since phage morphogenesis is not known to occur it has been suggested that pBClin15 may be a defect relic of a tectiviral prophage without relevance for the bacterial physiology. However, in this paper, we demonstrate that a pBClin15-cured strain is more tolerant to antibiotics interfering with DNA integrity than the WT strain. Growth in the presence of crystal violet or the quinolones nalidixic acid, norfloxacin or ciprofloxacin resulted in aggregation and lysis of the WT strain, whereas the pBClin15-cured strain was unaffected. Microarray analysis comparing the gene expression in the WT and pBClin15-cured strains showed that pBClin15 gene expression was strongly upregulated in response to norfloxacin stress, and coincided with lysis and aggregation of the WT strain. The aggregating bacteria experienced a significant survival benefit compared with the planktonic counterparts in the presence of norfloxacin. There was no difference between the WT and pBClin15-cured strains during growth in the absence of norfloxacin, the pBClin15 genes were moderately expressed, and no effect was observed on chromosomal gene expression. These data demonstrate for the first time that although pBClin15 may be a remnant of a temperate phage, it negatively affects the DNA stress tolerance of B. cereus ATCC 14579. Furthermore, our results warrant a recommendation to always verify the presence of pBClin15 following genetic manipulation of B. cereus ATCC 14579.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway
| | - Jasmin K Kroeger
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Identification of a ligand on the Wip1 bacteriophage highly specific for a receptor on Bacillus anthracis. J Bacteriol 2013; 195:4355-64. [PMID: 23893110 DOI: 10.1128/jb.00655-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tectiviridae is a family of tailless bacteriophages with Gram-negative and Gram-positive hosts. The family model PRD1 and its close relatives all infect a broad range of enterobacteria by recognizing a plasmid-encoded conjugal transfer complex as a receptor. In contrast, tectiviruses with Gram-positive hosts are highly specific to only a few hosts within the same bacterial species. The cellular determinants that account for the observed specificity remain unknown. Here we present the genome sequence of Wip1, a tectivirus that infects the pathogen Bacillus anthracis. The Wip1 genome is related to other tectiviruses with Gram-positive hosts, notably, AP50, but displays some interesting differences in its genome organization. We identified Wip1 candidate genes for the viral spike complex, the structure located at the capsid vertices and involved in host receptor binding. Phage adsorption and inhibition tests were combined with immunofluorescence microscopy to show that the Wip1 gene product p23 is a receptor binding protein. His-p23 also formed a stable complex with p24, a Wip1 protein of unknown function, suggesting that the latter is involved with p23 in host cell recognition. The narrow host range of phage Wip1 and the identification of p23 as a receptor binding protein offer a new range of suitable tools for the rapid identification of B. anthracis.
Collapse
|
32
|
Uchiyama J, Takeuchi H, Kato SI, Gamoh K, Takemura-Uchiyama I, Ujihara T, Daibata M, Matsuzaki S. Characterization of Helicobacter pylori bacteriophage KHP30. Appl Environ Microbiol 2013; 79:3176-84. [PMID: 23475617 PMCID: PMC3685256 DOI: 10.1128/aem.03530-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/28/2013] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori inhabits the stomach mucosa and is a causative agent of stomach ulcer and cancer. In general, bacteriophages (phages) are strongly associated with bacterial evolution, including the development of pathogenicity. Several tailed phages have so far been reported in H. pylori. We have isolated an H. pylori phage, KHP30, and reported its genomic sequence. In this study, we examined the biological characteristics of phage KHP30. Phage KHP30 was found to be a spherical lipid-containing phage with a diameter of ca. 69 nm. Interestingly, it was stable from pH 2.5 to pH 10, suggesting that it is adapted to the highly acidic environment of the human stomach. Phage KHP30 multiplied on 63.6% of clinical H. pylori isolates. The latent period was ca. 140 min, shorter than the doubling time of H. pylori (ca. 180 min). The burst size was ca. 13, which was smaller than the burst sizes of other known tailed or spherical phages. Phage KHP30 seemed to be maintained as an episome in H. pylori strain NY43 cells, despite a predicted integrase gene in the KHP30 genomic sequence. Seven possible virion proteins of phage KHP30 were analyzed using N-terminal protein sequencing and mass spectrometry, and their genes were found to be located on its genomic DNA. The genomic organization of phage KHP30 differed from the genomic organizations in the known spherical phage families Corticoviridae and Tectiviridae. This evidence suggests that phage KHP30 is a new type of spherical phage that cannot be classified in any existing virus category.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | | | | | | | - Iyo Takemura-Uchiyama
- Department of Microbiology and Infection
- Department of Clinical Laboratory Medicine, Faculty of Medicine
| | | | - Masanori Daibata
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection
- Center for Innovative and Translational Medicine
| |
Collapse
|
33
|
Roh JY, Park JB, Liu Q, Kim SE, Tao X, Choi TW, Choi JY, Kim WJ, Jin BR, Je YH. Existence of lysogenic bacteriophages in Bacillus thuringiensis type strains. J Invertebr Pathol 2013; 113:228-31. [PMID: 23632013 DOI: 10.1016/j.jip.2013.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
We screened the existence of bacteriophages in 67 Bacillus thuringiensis type strains by phage DNA extraction and PCR using phage terminase small subunit (TerS)-specific primers to the supernatants and the precipitated pellets of Bt cultures, and by transmission electron microscopy. The various bacteriophages were observed from the supernatants of 22 type strains. Ten type strains showed the extracted phage DNAs and the amplified fragment by TerS PCR but 12 type strains showed only the phage DNAs. Their morphological characteristic suggests that they belong to Family Siphoviridae which had a long tail and symmetrical head.
Collapse
Affiliation(s)
- Jong Yul Roh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Identification of five novel tectiviruses in Bacillus strains: analysis of a highly variable region generating genetic diversity. Res Microbiol 2012; 164:118-26. [PMID: 23103336 DOI: 10.1016/j.resmic.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Our biosphere is abundant with unique and small genes for which no homologs are known. These genes, often referred to as orphans or ORFans, are commonly found in bacteriophage genomes but their origins remain unclear. We discovered five novel tectivirus-like genetic elements by screening more than five-hundred Bacillus strains. A highly variable region (HVR) of these viruses was shown to harbor ORFans in most of these otherwise well-conserved bacteriophages. Previous studies demonstrated that mutations close to this region dramatically alter bacteriophage gene regulation, suggesting that the acquisition of those ORFans may provide a source of genetic diversity that is then subject to genetic selection during bacteriophage evolution.
Collapse
|
35
|
Yuan Y, Gao M, Wu D, Liu P, Wu Y. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 2012; 7:e37557. [PMID: 22649540 PMCID: PMC3359378 DOI: 10.1371/journal.pone.0037557] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
36
|
Kristoffersen SM, Haase C, Weil MR, Passalacqua KD, Niazi F, Hutchison SK, Desany B, Kolstø AB, Tourasse NJ, Read TD, Økstad OA. Global mRNA decay analysis at single nucleotide resolution reveals segmental and positional degradation patterns in a Gram-positive bacterium. Genome Biol 2012; 13:R30. [PMID: 22537947 PMCID: PMC3446304 DOI: 10.1186/gb-2012-13-4-r30] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/15/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background Recent years have shown a marked increase in the use of next-generation sequencing technologies for quantification of gene expression (RNA sequencing, RNA-Seq). The expression level of a gene is a function of both its rate of transcription and RNA decay, and the influence of mRNA decay rates on gene expression in genome-wide studies of Gram-positive bacteria is under-investigated. Results In this work, we employed RNA-Seq in a genome-wide determination of mRNA half-lives in the Gram-positive bacterium Bacillus cereus. By utilizing a newly developed normalization protocol, RNA-Seq was used successfully to determine global mRNA decay rates at the single nucleotide level. The analysis revealed positional degradation patterns, with mRNAs being degraded from both ends of the molecule, indicating that both 5' to 3' and 3' to 5' directions of RNA decay are present in B. cereus. Other operons showed segmental degradation patterns where specific ORFs within polycistrons were degraded at variable rates, underlining the importance of RNA processing in gene regulation. We determined the half-lives for more than 2,700 ORFs in B. cereus ATCC 10987, ranging from less than one minute to more than fifteen minutes, and showed that mRNA decay rate correlates globally with mRNA expression level, GC content, and functional class of the ORF. Conclusions To our knowledge, this study presents the first global analysis of mRNA decay in a bacterium at single nucleotide resolution. We provide a proof of principle for using RNA-Seq in bacterial mRNA decay analysis, revealing RNA processing patterns at the single nucleotide level.
Collapse
Affiliation(s)
- Simen M Kristoffersen
- Laboratory for Microbial Dynamics, Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PB 1068 Blindern, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.
Collapse
|
38
|
Smeesters PR, Drèze PA, Bousbata S, Parikka KJ, Timmery S, Hu X, Perez-Morga D, Deghorain M, Toussaint A, Mahillon J, Van Melderen L. Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Res Microbiol 2011; 162:446-59. [PMID: 21349326 DOI: 10.1016/j.resmic.2011.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
A novel temperate bacteriophage was isolated from a Bacillus cereus cereulide-producing strain and named vB_BceS-IEBH. vB_BceS-IEBH belongs to the Siphoviridae family. The complete genome sequence (53 kb) was determined and annotated. Eighty-seven ORFs were detected and for 28, a putative function was assigned using the ACLAME database. vB_BceS-IEBH replicates as a plasmid in the prophage state. Accordingly, a 9-kb plasmid-like region composed of 13 ORFs was identified. A fragment of around 2000 bp comprising an ORF encoding a putative plasmid replication protein was shown to be self-replicating in Bacillus thuringiensis. Mass spectrometry analysis of the purified vB_BceS-IEBH particle identified 8 structural proteins and enabled assignment of a supplementary ORF as being part of the morphogenesis module. Genome analysis further illustrates the diversity of mobile genetic elements and their plasticity within the B. cereus group.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, IBMM, Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs, Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The genome sequence and proteome of bacteriophage ΦCPV1 virulent for Clostridium perfringens. Virus Res 2011; 155:433-9. [DOI: 10.1016/j.virusres.2010.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/22/2010] [Accepted: 11/28/2010] [Indexed: 11/19/2022]
|
40
|
Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl Environ Microbiol 2010; 76:3352-60. [PMID: 20348290 DOI: 10.1128/aem.03003-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial chemicals are widely applied to clean and disinfect food-contacting surfaces. However, the cellular response of bacteria to various disinfectants is unclear. In this study, the physiological and genome-wide transcriptional responses of Bacillus cereus ATCC 14579 exposed to four different disinfectants (benzalkonium chloride, sodium hypochlorite, hydrogen peroxide, and peracetic acid) were analyzed. For each disinfectant, concentrations leading to the attenuation of growth, growth arrest, and cell death were determined. The transcriptome analysis revealed that B. cereus, upon exposure to the selected concentrations of disinfectants, induced common and specific responses. Notably, the common response included genes involved in the general and oxidative stress responses. Exposure to benzalkonium chloride, a disinfectant known to induce membrane damage, specifically induced genes involved in fatty acid metabolism. Membrane damage induced by benzalkonium chloride was confirmed by fluorescence microscopy, and fatty acid analysis revealed modulation of the fatty acid composition of the cell membrane. Exposure to sodium hypochlorite induced genes involved in metabolism of sulfur and sulfur-containing amino acids, which correlated with the excessive oxidation of sulfhydryl groups observed in sodium hypochlorite-stressed cells. Exposures to hydrogen peroxide and peracetic acid induced highly similar responses, including the upregulation of genes involved in DNA damage repair and SOS response. Notably, hydrogen peroxide- and peracetic acid-treated cells exhibited high mutation rates correlating with the induced SOS response.
Collapse
|
41
|
Schuch R, Fischetti VA. The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations. PLoS One 2009; 4:e6532. [PMID: 19672290 PMCID: PMC2716549 DOI: 10.1371/journal.pone.0006532] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 07/01/2009] [Indexed: 12/31/2022] Open
Abstract
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities.
Collapse
|
42
|
Stabell FB, Egge-Jacobsen W, Risøen PA, Kolstø AB, Økstad OA. ORF 2 from the Bacillus cereus linear plasmid pBClin15 encodes a DNA binding protein. Lett Appl Microbiol 2008; 48:51-7. [PMID: 19018965 DOI: 10.1111/j.1472-765x.2008.02483.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To isolate and identify DNA-binding protein(s) with affinity for the mobile chromosomal repeat element bcr1 in Bacillus cereus group bacteria. METHODS AND RESULTS A biotinylated bcr1 element was immobilized to streptavidin-coated magnetic beads and used to pull out a 20 kDa DNA-binding protein from a whole cell protein extract of B. cereus ATCC 14579. The protein was identified as the product of ORF 2 encoded by the bacteriophage-related autonomously replicating linear genetic element pBClin15 carried by the strain. DNA binding was not bcr1-specific. By Northern blotting ORF 2 was co-transcribed with ORF 1, and also in certain instances with ORF 3 by transcriptional readthrough of the terminator located between ORF 2 and ORF 3. CONCLUSIONS ORF 2 from pBClin15 encodes a DNA-binding protein. ORF 2 is co-transcribed with its upstream gene ORF 1, and in a subset of the transcripts also with the downstream gene ORF 3 through alternative transcription termination. SIGNIFICANCE AND IMPACT OF THE STUDY The B. cereus group contains bacterial species of medical and economic importance. Bacteriophages or phage-encoded proteins from these bacteria have been suggested as potential therapeutic agents. Understanding the biology of bacteriophage-related genetic elements through functional characterization of their genes is of high relevance.
Collapse
Affiliation(s)
- F B Stabell
- Laboratory for Microbial Dynamics, School of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | | | | | | | | |
Collapse
|
43
|
Liao W, Song S, Sun F, Jia Y, Zeng W, Pang Y. Isolation, characterization and genome sequencing of phage MZTP02 from Bacillus thuringiensis MZ1. Arch Virol 2008; 153:1855-65. [DOI: 10.1007/s00705-008-0201-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
44
|
Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol 2008; 74:6792-6. [PMID: 18791014 DOI: 10.1128/aem.01124-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.
Collapse
|
45
|
Krupovic M, Bamford DH. Archaeal proviruses TKV4 and MVV extend the PRD1-adenovirus lineage to the phylum Euryarchaeota. Virology 2008; 375:292-300. [PMID: 18308362 DOI: 10.1016/j.virol.2008.01.043] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 10/22/2022]
Abstract
The viral lineage hypothesis predicting a common origin for viruses that infect hosts residing in different domains of life gains more support as data on viral structures accumulates. One such lineage is the PRD1-adenovirus lineage, which unites icosahedral dsDNA viruses with large facets and a double beta-barrel trimer coat protein. This lineage is represented by a number of viruses infecting bacteria and eukaryotes. However, only one member of the lineage, Sulfolobus turreted icosahedral virus, infecting a crenarchaeal host, has been identified in the domain Archaea. In this study we characterize the genomic sequences of two archaeal proviruses, TKV4 and MVV, integrated into the 5'- and 3'-distal regions of tRNA genes of the euryarchaeal species Thermococcus kodakaraensis KOD1 and Methanococcus voltae A3, respectively. Bioinformatic approaches allowed placement of TKV4 and MVV into the PRD1-adenovirus lineage, thus extending the lineage to the second archaeal phylum, Euryarchaeota.
Collapse
Affiliation(s)
- Mart Krupovic
- Department of Biological and Environmental Sciences, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
46
|
Andrup L, Barfod KK, Jensen GB, Smidt L. Detection of large plasmids from the Bacillus cereus group. Plasmid 2008; 59:139-43. [PMID: 18179822 DOI: 10.1016/j.plasmid.2007.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/15/2007] [Accepted: 11/28/2007] [Indexed: 10/22/2022]
Abstract
The members of the Bacillus cereus group, Bacillus anthracis, Bacillus thuringiensis, and B. cereus senso stricto, are largely defined by their content of large plasmids, which encode major virulence factors. Here we offer an easy, fast, and reliable protocol for the isolation and detection of large plasmids up to the size of at least 350kb. Furthermore, using this method, we report that Bacillus mycoides contain large plasmids.
Collapse
Affiliation(s)
- Lars Andrup
- National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|
48
|
Gaidelyte A, Cvirkaite-Krupovic V, Daugelavicius R, Bamford JKH, Bamford DH. The entry mechanism of membrane-containing phage Bam35 infecting Bacillus thuringiensis. J Bacteriol 2006; 188:5925-34. [PMID: 16885461 PMCID: PMC1540063 DOI: 10.1128/jb.00107-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The temperate double-stranded DNA bacteriophage Bam35 infects gram-positive Bacillus thuringiensis cells. Bam35 has an icosahedral protein coat surrounding the viral membrane that encloses the linear 15-kbp DNA genome. The protein coat of Bam35 uses the same assembly principle as that of PRD1, a lytic bacteriophage infecting gram-negative hosts. In this study, we dissected the process of Bam35 entry into discrete steps: receptor binding, peptidoglycan penetration, and interaction with the plasma membrane (PM). Bam35 very rapidly adsorbs to the cell surface, and N-acetyl-muramic acid is essential for Bam35 binding. Zymogram analysis demonstrated that peptidoglycan-hydrolyzing activity is associated with the Bam35 virion. We showed that the penetration of Bam35 through the PM is a divalent-cation-dependent process, whereas adsorption and peptidoglycan digestion are not.
Collapse
Affiliation(s)
- Ausra Gaidelyte
- Department of Biological and Environmental Sciences and Institute of Biotechnology, Biocenter 2, P.O. Box 56 (Viikinkaari 5), 00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
49
|
Bath C, Cukalac T, Porter K, Dyall-Smith ML. His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 2006; 350:228-39. [PMID: 16530800 DOI: 10.1016/j.virol.2006.02.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 11/16/2022]
Abstract
Spindle-shaped viruses are a dominant morphotype in hypersaline waters but their molecular characteristics and their relationship to other archaeal viruses have not been determined. Here, we describe the isolation, characteristics and genome sequence of His2, a spindle-shaped halovirus, and compare it to the previously reported halovirus His1. Their particle dimensions, host-ranges and buoyant densities were found to be similar but they differed in their stabilities to raised temperature, low salinity and chloroform. The genomes of both viruses were linear dsDNA, of similar size (His1, 14,464 bp; His2, 16,067 bp) and mol% G+C (approximately 40%), with long, inverted terminal repeat sequences. The genomic termini of both viruses are likely to possess bound proteins. They shared little nucleotide similarity and, except for their putative DNA polymerase ORFs, no significant similarity at the predicted protein level. A few of the 35 predicted ORFs of both viruses showed significant matches to sequences in GenBank, and these were always to proteins of haloarchaea. Their DNA polymerases showed 42% aa identity, and belonged to the type B group of replicases that use protein-priming. Purified His2 particles were composed of four main proteins (62, 36, 28 and 21 kDa) and the gene for the major capsid protein was identified. Hypothetical proteins similar to His2 VP1 are present in four haloarchaeal genomes but are not part of complete prophages. This, and other evidence, suggests a high frequency of recombination between haloviruses and their hosts. His1 and His2 are unlike fuselloviruses and have been placed in a new virus group, Salterprovirus.
Collapse
Affiliation(s)
- Carolyn Bath
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
50
|
Saren AM, Ravantti JJ, Benson SD, Burnett RM, Paulin L, Bamford DH, Bamford JKH. A snapshot of viral evolution from genome analysis of the tectiviridae family. J Mol Biol 2005; 350:427-40. [PMID: 15946683 DOI: 10.1016/j.jmb.2005.04.059] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2004] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
The origin, evolution and relationships of viruses are all fascinating topics. Current thinking in these areas is strongly influenced by the tailed double-stranded (ds) DNA bacteriophages. These viruses have mosaic genomes produced by genetic exchange and so new natural isolates are quite dissimilar to each other, and to laboratory strains. Consequently, they are not amenable to study by current tools for phylogenetic analysis. Less attention has been paid to the Tectiviridae family, which embraces icosahedral dsDNA bacterial viruses with an internal lipid membrane. It includes viruses, such as PRD1, that infect Gram-negative bacteria, as well as viruses like Bam35 with Gram-positive hosts. Although PRD1 and Bam35 have closely related virion morphology and genome organization, they have no detectable sequence similarity. There is strong evidence that the Bam35 coat protein has the "double-barrel trimer" arrangement of PRD1 that was first observed in adenovirus and is predicted to occur in other viruses with large facets. It is very likely that a single ancestral virus gave rise to this very large group of viruses. The unprecedented degree of conservation recently observed for two Bam35-like tectiviruses made it important to investigate those infecting Gram-negative bacteria. The DNA sequences for six PRD1-like isolates (PRD1, PR3, PR4, PR5, L17, PR772) have now been determined. Remarkably, these bacteriophages, isolated at distinctly different dates and global locations, have almost identical genomes. The discovery of almost invariant genomes for the two main Tectiviridae groups contrasts sharply with the situation in the tailed dsDNA bacteriophages. Notably, it permits a sequence analysis of the isolates revealing that the tectiviral proteins can be dissected into a slowly evolving group descended from the ancestor, the viral self, and a more rapidly changing group reflecting interactions with the host.
Collapse
Affiliation(s)
- Ari-Matti Saren
- Institute of Biotechnology, University of Helsinki, PO Box 56 (Viikinkaari 4), FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|