1
|
Gastelbondo-Pastrana B, Flórez L, Guzmán C, Torres K, Garay E, Ballesteros-Villamizar J, Gutierrez R, la Hoz DED, López Y, Contreras H, Arrieta G, Serrano-Coll H, Martínez C, Pájaro-Castro N, Arroyo-Salgado B, Rivero-Herrera R, Hurtado E, Araújo JP, Mattar S. Phenol-free in-house kit for RNA extraction with applicability to SARS-CoV-2 genomic sequencing studies: A contribution to biotechnological sovereignty in Colombia. J Virol Methods 2025; 334:115116. [PMID: 39956397 DOI: 10.1016/j.jviromet.2025.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
During the COVID-19 pandemic, reagents for SARS-CoV-2 detection were scarce or sold at high prices, particularly in Latin America. In this study, a significant step towards self-sufficiency was achieved through the development of an in-house extraction kit for detecting SARS-CoV-2 from nasopharyngeal swab samples. The purity and concentration of the RNA extracted using the in-house kit were compared to those obtained using the GeneJET RNA Purification Kit (Thermo-Scientific®) as a reference. The applicability of the RNA extracted using the kit was evaluated using four samples positive for SARS-CoV-2 by NGS sequencing with Illumina®. There were no significant differences between the results obtained with the in-house kit and those obtained with the commercial kit. These findings confirm that the in-house protocol demonstrated satisfactory diagnostic accuracy for detecting the virus in patients with COVID-19. The in-house extraction kit works effectively, providing optimal RNA extraction for genomic characterization and lineage assignment of SARS-CoV-2 within the four positive samples analyzed. This phenol-free kit represents a local design and production achievement, offering an effective solution for RNA extraction and detection and sequencing of SARS-CoV-2 from nasopharyngeal swabs. The data highlight the essential contribution of this study to health and biotechnological sovereignty in Colombia.
Collapse
Affiliation(s)
- Bertha Gastelbondo-Pastrana
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia; Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba-GIMBIC, Universidad de Córdoba, Montería, Colombia; Grupo de Salud Pública y Auditoría en Salud, Corporación Universitaria del Caribe-CECAR, Sincelejo, Colombia
| | - Luis Flórez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Camilo Guzmán
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia; Grupo de Investigación, Evaluación y Desarrollo de Fármacos y Afines - IDEFARMA, Universidad de Córdoba, Montería, Colombia
| | - Karina Torres
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Evelin Garay
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | | | - Rosa Gutierrez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Daniel Echeverri-De la Hoz
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Yésica López
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Héctor Contreras
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Germán Arrieta
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia; Grupo de Salud Pública y Auditoría en Salud, Corporación Universitaria del Caribe-CECAR, Sincelejo, Colombia
| | - Héctor Serrano-Coll
- Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Caty Martínez
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia
| | - Nérlis Pájaro-Castro
- Department of Medicine, School of Health Sciences, Medical and Pharmaceutical Sciences Group, University of Sucre, Sincelejo, Sucre CP, 700003, Colombia
| | - Bárbara Arroyo-Salgado
- Biomedics, Toxicology and Environmental Research Group-BIOTOXAM, University of Cartagena, Cartagena, Colombia
| | - Ricardo Rivero-Herrera
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia; Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, United States
| | - Eliana Hurtado
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Botucatu, SP, Brazil
| | - João Pessoa Araújo
- São Paulo State University (UNESP), Institute of Biotechnology (IBTEC), Botucatu, SP, Brazil
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Universidad de Córdoba, Campus Berastegui, Córdoba, Colombia.
| |
Collapse
|
2
|
Mannarà G, Martinelli M, Giubbi C, Rizza M, Giordano E, Perdoni F, Bruno E, Morella A, Azzellino A, Turolla A, Pedrini R, Malpei F, La Rosa G, Suffredini E, Cereda D, Ammoni E, Villa S, Pregnolato F, Lavitrano M, Franzetti A, Musumeci R, Cocuzza CE. Wastewater Surveillance for SARS-CoV-2 in Northern Italy: An Evaluation of Three Different Gene Targets. Microorganisms 2025; 13:236. [PMID: 40005602 PMCID: PMC11857900 DOI: 10.3390/microorganisms13020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Wastewater-based epidemiology has emerged as a complementary tool for the monitoring of COVID-19 pandemic waves and for the circulation of viral variants. The selection, standardization, and dynamics of different SARS-CoV-2 RNA targets in wastewater requires further investigation. In the present study, 106 wastewater samples were collected over a 24-month period from the wastewater treatment plant of Sondrio, north Italy, and were analyzed for the presence of SARS-CoV-2 RNA through the quantification of ORF1b, N1, and N3 gene targets via one-step real-time qPCR. In general, the three RNA targets demonstrated different performances and dynamics over the studied time period, underlying the usefulness of multiple viral targets in the surveillance of SARS-CoV-2 in wastewater. During the first 12 months, the quantification of the selected SARS-CoV-2 viral targets also correlated with the reported clinical cases in the same geographical area; however, from the overall data analysis this did not appear to significantly anticipate the epidemic waves. In conclusion, this study further supports the use of wastewater surveillance as a real time indicator of the human circulation of SARS-CoV-2. Moreover, the use of multiple viral gene targets has been shown to improve the reliability of SARS-CoV-2 surveillance in wastewater over time.
Collapse
Affiliation(s)
- Giulio Mannarà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Marianna Martinelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Chiara Giubbi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Michelle Rizza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Eleonora Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Federica Perdoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Erika Bruno
- Department of Earth and Environmental, Sciences—DISAT, University of Milano-Bicocca, 20126 Milan, Italy; (E.B.); (A.F.)
| | - Annalisa Morella
- Società per l’Ecologia e l’Ambiente (SECAM) S.P.A., 23100 Sondrio, Italy;
| | - Arianna Azzellino
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Andrea Turolla
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Ramon Pedrini
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy; (A.A.); (A.T.); (R.P.); (F.M.)
| | - Giuseppina La Rosa
- National Center for Water Safety (CeNSia), Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Danilo Cereda
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Emanuela Ammoni
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Simone Villa
- Department of Computer Science, University of Milan, 20133 Milan, Italy;
| | - Francesca Pregnolato
- UO Prevenzione, DG Welfare, Regione Lombardia, 20124 Milan, Italy; (D.C.); (E.A.); (F.P.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Andrea Franzetti
- Department of Earth and Environmental, Sciences—DISAT, University of Milano-Bicocca, 20126 Milan, Italy; (E.B.); (A.F.)
| | - Rosario Musumeci
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| | - Clementina E. Cocuzza
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.M.); (M.M.); (C.G.); (M.R.); (E.G.); (F.P.); (M.L.)
| |
Collapse
|
3
|
Yang S, Jiao Y, Dong Q, Li S, Xu C, Liu Y, Sun L, Huang X. Evaluating approach uncertainties of quantitative detection of SARS-CoV-2 in wastewater: Concentration, extraction and amplification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175285. [PMID: 39102960 DOI: 10.1016/j.scitotenv.2024.175285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Substantial uncertainties pose challenges to the accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) quantification in wastewater. We conducted a comprehensive evaluation of two concentration methods, three nucleic acid extraction methods, and the amplification performance of eight primer-probe sets. Our results showed that the two concentration methods exhibited similar recovery rates. Specifically, using a 30 kDa cut-off ultrafilter and a centrifugal force of 2500 g achieved the highest virus recovery rates (27.32 ± 8.06 % and 26.37 ± 7.77 %, respectively), with lower corresponding quantification uncertainties of 29.51 % and 29.47 % in ultrafiltration methods. Similarly, a 15 % PEG concentration with 1.5 M NaCl markedly improved virus recovery (26.76 ± 5.92 % and 28.47 ± 6.74 %, respectively), and reducing variation to 22.16 % and 23.66 % in the PEG precipitation method. Additionally, employing a vigorous bead-beating approach at 6 m/s during viral RNA extraction significantly increased RNA yield, with an efficiency reaching up to 82.18 %. Among the evaluated eight primer-probe sets, the E_Sarbeco primer-probe set provided the most stable and consistent quantitative results across various sample matrices. These findings are crucial for establishing robust viral quantification protocols and enhancing methodological precision for effective wastewater surveillance, enabling sensitive and precise detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yang Jiao
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China
| | - Qian Dong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| | - Lingli Sun
- Beijing Chaoyang Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
4
|
Yang Y, Tan J, Wang F, Sun W, Shi H, Cheng Z, Xie Y, Zhou X. Preconcentration and detection of SARS-CoV-2 in wastewater: A comprehensive review. Biosens Bioelectron 2024; 263:116617. [PMID: 39094290 DOI: 10.1016/j.bios.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Severe acute respiratory syndrome coronaviruses 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) affected the health of human beings and the global economy. The patients with SARS-CoV-2 infection had viral RNA or live infectious viruses in feces. Thus, the possible transmission of SARS-CoV-2 through wastewater received great attentions. Moreover, SARS-CoV-2 in wastewater can serve as an early indicator of the infection within communities. We summarized the preconcentration and detection technology of SARS-CoV-2 in wastewater aiming at the complex matrices of wastewater and low virus concentration and compared their performance characteristics. We described the emerging tests that would be possible to realize the rapid detection of SARS-CoV-2 in fields and encourage academics to advance their technologies beyond conception. We concluded with a brief discussion on the outlook for integrating preconcentration and the detection of SARS-CoV-2 with emerging technologies.
Collapse
Affiliation(s)
- Yihan Yang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jisui Tan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Weiming Sun
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hanchang Shi
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhao Cheng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yangcun Xie
- Chinese Academy of Environmental Planning, Beijing, 100043, China.
| | - Xiaohong Zhou
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Munson E. 2024 American Society for Microbiology Awards and Prize Program: clinical microbiology honorees. J Clin Microbiol 2024; 62:e0126124. [PMID: 39292003 PMCID: PMC11481561 DOI: 10.1128/jcm.01261-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
6
|
Bustin SA. RT-qPCR Testing and Performance Metrics in the COVID-19 Era. Int J Mol Sci 2024; 25:9326. [PMID: 39273275 PMCID: PMC11394961 DOI: 10.3390/ijms25179326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The COVID-19 pandemic highlighted the crucial role of diagnostic testing in managing infectious diseases, particularly through the use of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) tests. RT-qPCR has been pivotal in detecting and quantifying viral RNA, enabling the identification and management of SARS-CoV-2 infections. However, despite its widespread use, there remains a notable gap in understanding fundamental diagnostic metrics such as sensitivity and specificity among many scientists and healthcare practitioners. This gap is not merely academic; it has profound implications for interpreting test results, making public health decisions, and affecting patient outcomes. This review aims to clarify the distinctions between laboratory- and field-based metrics in the context of RT-qPCR testing for SARS-CoV-2 and summarise the global efforts that led to the development and optimisation of these tests during the pandemic. It is intended to enhance the understanding of these fundamental concepts among scientists and healthcare professionals who may not be familiar with the nuances of diagnostic test evaluation. Such knowledge is crucial for accurately interpreting test results, making informed public health decisions, and ultimately managing infectious disease outbreaks more effectively.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
7
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
8
|
Dos Ramos Almeida CJL, Veras FP, Paiva IM, Schneider AH, da Costa Silva J, Gomes GF, Costa VF, Silva BMS, Caetite DB, Silva CMS, Salina ACG, Martins R, Bonilha CS, Cunha LD, Jamur MC, da Silva LLP, Arruda E, Zamboni DS, Louzada-Junior P, de Oliveira RDR, Alves-Filho JC, Cunha TM, de Queiroz Cunha F. Neutrophil Virucidal Activity Against SARS-CoV-2 Is Mediated by Neutrophil Extracellular Traps. J Infect Dis 2024; 229:1352-1365. [PMID: 38015657 DOI: 10.1093/infdis/jiad526] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Inflammation in the lungs and other vital organs in COVID-19 is characterized by the presence of neutrophils and a high concentration of neutrophil extracellular traps (NETs), which seems to mediate host tissue damage. However, it is not known whether NETs could have virucidal activity against SARS-CoV-2. METHODS We investigated whether NETs could prevent SARS-CoV-2 replication in neutrophils and epithelial cells and what the consequence of NETs degradation would be in K18-humanized ACE2 transgenic mice infected with SARS-CoV-2. RESULTS Here, by immunofluorescence microscopy, we observed that viral particles colocalize with NETs in neutrophils isolated from patients with COVID-19 or healthy individuals and infected in vitro. The inhibition of NETs production increased virus replication in neutrophils. In parallel, we observed that NETs inhibited virus abilities to infect and replicate in epithelial cells after 24 hours of infection. Degradation of NETs with DNase I prevented their virucidal effect in vitro. Using K18-humanized ACE2 transgenic mice, we observed a higher viral load in animals treated with DNase I. However, the virucidal effect of NETs was not dependent on neutrophil elastase or myeloperoxidase activity. CONCLUSIONS Our results provide evidence of the role of NETosis as a mechanism of SARS-CoV-2 viral capture and inhibition.
Collapse
Affiliation(s)
| | - Flávio Protásio Veras
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto
| | - Isadora Marques Paiva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Ayda Henriques Schneider
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Juliana da Costa Silva
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Giovanni Freitas Gomes
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Victor Ferreira Costa
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Diego Brito Caetite
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | | | - Ronaldo Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Caio Santos Bonilha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - Maria Célia Jamur
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
| | - Luís Lamberti Pinto da Silva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Eurico Arruda
- Department of Cellular and Molecular Biology and Pathogenic Bioagents
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | | - Paulo Louzada-Junior
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | | | - José Carlos Alves-Filho
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| | - Fernando de Queiroz Cunha
- Center for Research in Inflammatory Diseases
- Department of Pharmacology, Ribeirão Preto Medical School
| |
Collapse
|
9
|
Li Y, Ash K, Alamilla I, Joyner D, Williams DE, McKay PJ, Green B, DeBlander S, North C, Kara-Murdoch F, Swift C, Hazen TC. COVID-19 trends at the University of Tennessee: predictive insights from raw sewage SARS-CoV-2 detection and evaluation and PMMoV as an indicator for human waste. Front Microbiol 2024; 15:1379194. [PMID: 38605711 PMCID: PMC11007199 DOI: 10.3389/fmicb.2024.1379194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring the prevalence of SARS-CoV-2 on university campuses. However, concerns about effectiveness of raw sewage as a COVID-19 early warning system still exist, and it's not clear how useful normalization by simultaneous comparison of Pepper Mild Mottle Virus (PMMoV) is in addressing variations resulting from fecal discharge dilution. This study aims to contribute insights into these aspects by conducting an academic-year field trial at the student residences on the University of Tennessee, Knoxville campus, raw sewage. This was done to investigate the correlations between SARS-CoV-2 RNA load, both with and without PMMoV normalization, and various parameters, including active COVID-19 cases, self-isolations, and their combination among all student residents. Significant positive correlations between SARS-CoV-2 RNA load a week prior, during the monitoring week, and the subsequent week with active cases. Despite these correlations, normalization by PMMoV does not enhance these associations. These findings suggest the potential utility of SARS-CoV-2 RNA load as an early warning indicator and provide valuable insights into the application and limitations of WBE for COVID-19 surveillance specifically within the context of raw sewage on university campuses.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Kurt Ash
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Dominique Joyner
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
| | - Daniel Edward Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Peter J. McKay
- Battelle Memorial Institute, Columbus, OH, United States
| | - Brianna Green
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Sydney DeBlander
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Carman North
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - Fadime Kara-Murdoch
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Battelle Memorial Institute, Columbus, OH, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Cynthia Swift
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
10
|
Alsayed AR, Ahmed SI, AL Shweiki AO, Al-Shajlawi M, Hakooz N. The laboratory parameters in predicting the severity and death of COVID-19 patients: Future pandemic readiness strategies. BIOMOLECULES & BIOMEDICINE 2024; 24:238-255. [PMID: 37712883 PMCID: PMC10950347 DOI: 10.17305/bb.2023.9540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The range of clinical manifestations associated with the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encompasses a broad spectrum, ranging from flu-like symptoms to the occurrence of multiple organ failure and death. The severity of the coronavirus disease 2019 (COVID-19) is categorized based on clinical presentation and is divided into three distinct levels of severity identified as non-severe, severe, and critical. Although individuals of all age groups are susceptible to SARS-CoV-2 infection, middle-aged and older adults are more frequently impacted, with the latter being more likely to develop severe illness. Various laboratory characteristics observed in hospitalized COVID-19 patients have been correlated with adverse outcomes. These include elevated levels of D-dimer, liver enzymes, lactate dehydrogenase, C-reactive protein, ferritin, prothrombin time, and troponin, as well as decreased lymphocyte and platelets counts. This review investigated the relationship between baseline clinical characteristics, initial laboratory parameters upon hospital admission, and the severity of illness and mortality rates among COVID-19 patients. Although the COVID-19 pandemic has concluded, understanding the laboratory predictors of virus severity and mortality remains crucial, and examining these predictors can have long-term effects. Such insights can help healthcare systems manage resources more effectively and deliver timely and appropriate care by identifying and targeting high-risk individuals. This knowledge can also help us better prepare for future pandemics. By examining these predictors, we can take steps to protect public health and mitigate the impact of future pandemics.
Collapse
Affiliation(s)
- Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Syed Imran Ahmed
- College of Health and Science, School of Pharmacy, University of Lincoln, Lincoln, United Kingdom
| | - Anas Osama AL Shweiki
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mustafa Al-Shajlawi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Nancy Hakooz
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Rahmasari R, Raekiansyah M, Aliyah SH, Yodi P, Baihaqy F, Irhamsyah M, Sari KCDP, Suryadi H, Moi ML, Sauriasari R. Development and validation of cost-effective SYBR Green-based RT-qPCR and its evaluation in a sample pooling strategy for detecting SARS-CoV-2 infection in the Indonesian setting. Sci Rep 2024; 14:1817. [PMID: 38245603 PMCID: PMC10799953 DOI: 10.1038/s41598-024-52250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
A low-cost SYBR Green-based RT-qPCR method to detect SARS-CoV-2 were developed and validated. Primers targeting a conserved and vital region of the N genes of SARS-CoV-2 were designed. In-silico study was performed to analyse the compatibility of the selected primer pair with Indonesian SARS-CoV-2 genome sequences available from the GISAID database. We determined the linearity of our new assay using serial dilution of SARS-CoV-2 RNA from clinical samples with known virus concentration. The assay was then evaluated using clinically relevant samples in comparison to a commercial TaqMan-based test kit. Finally, we applied the assay in sample pooling strategies for SARS-CoV-2 detection. The SYBR Green-based RT-qPCR method was successfully developed with sufficient sensitivity. There is a very low prevalence of genome variation in the selected N primer binding regions, indicating their high conservation. The validation of the assay using clinical samples demonstrated similar performance to the TaqMan method suggesting the SYBR methods is reliable. The pooling strategy by combining 5 RNA samples for SARS-CoV-2 detection using the SYBR RT-qPCR methods is feasible and provides a high diagnostic yield. However, when dealing with samples having a very low viral load, it may increase the risk of missing positive cases.
Collapse
Affiliation(s)
- Ratika Rahmasari
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia.
| | | | - Siti Hana Aliyah
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Priska Yodi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Fathan Baihaqy
- Helix Laboratory & Clinic, Depok, West Java, Indonesia
- Department of Microbiology, School of Life Sciences & Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
| | | | | | - Herman Suryadi
- Microbiology and Biotechnology Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| | - Meng Ling Moi
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rani Sauriasari
- Clinical Pharmacy and Social Pharmacy Laboratory, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java, Indonesia
| |
Collapse
|
12
|
Ishige T. Molecular biology of SARS-CoV-2 and techniques of diagnosis and surveillance. Adv Clin Chem 2023; 118:35-85. [PMID: 38280807 DOI: 10.1016/bs.acc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic in March 2020. Reverse transcription-polymerase chain reaction (RT-PCR) is the reference technique for molecular diagnosis of SARS-CoV-2 infection. The SARS-CoV-2 virus is constantly mutating, and more transmissible variants have emerged, making genomic surveillance a crucial tool for investigating virus transmission dynamics, detecting novel genetic variants, and assessing mutation impact. The S gene, which encodes the spike protein, is frequently mutated, and it plays an important role in transmissibility. Spike protein mutations affect infectivity and vaccine effectiveness. SARS-CoV-2 variants are tracked using whole genome sequencing (WGS) and S-gene analysis. WGS, Sanger sequencing, and many S-gene-targeted RT-PCR methods have been developed. WGS and Sanger sequencing are standard methods for detecting mutations and can be used to identify known and unknown mutations. Melting curve analysis, endpoint genotyping assay, and S-gene target failure are used in the RT-PCR-based method for the rapid detection of specific mutations in SARS-CoV-2 variants. Therefore, these assays are suitable for high-throughput screening. The combinatorial use of RT-PCR-based assays, Sanger sequencing, and WGS enables rapid and accurate tracking of SARS-CoV-2 variants. In this review, we described RT-PCR-based detection and surveillance techniques for SARS-CoV-2.
Collapse
Affiliation(s)
- Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
13
|
Salazar-Ardiles C, Asserella-Rebollo L, Cornejo C, Arias D, Vasquez-Muñoz M, Toledo C, Andrade DC. Molecular diagnostic approaches for SARS-CoV-2 detection and pathophysiological consequences. Mol Biol Rep 2023; 50:10367-10382. [PMID: 37817022 DOI: 10.1007/s11033-023-08844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
SARS-CoV-2, a novel coronavirus within the Coronaviridae family, is the causative agent behind the respiratory ailment referred to as COVID-19. Operating on a global scale, COVID-19 has led to a substantial number of fatalities, exerting profound effects on both public health and the global economy. The most frequently reported symptoms encompass fever, cough, muscle or body aches, loss of taste or smell, headaches, and fatigue. Furthermore, a subset of individuals may manifest more severe symptoms, including those consistent with viral pneumonitis, which can be so profound as to result in fatalities. Consequently, this situation has spurred the rapid advancement of disease diagnostic technologies worldwide. Predominantly employed in diagnosing COVID-19, the real-time quantitative reverse transcription PCR has been the foremost diagnostic method, effectively detecting SARS-CoV-2 viral RNA. As the pandemic has evolved, antigen and serological tests have emerged as valuable diagnostic tools. Antigen tests pinpoint specific viral proteins of SARS-CoV-2, offering swift results, while serological tests identify the presence of antibodies in blood samples. Additionally, there have been notable strides in sample collection methods, notably with the introduction of saliva-based tests, presenting a non-invasive substitute to nasopharyngeal swabs. Given the ongoing mutations in SARS-CoV-2, there has been a continuous need for genomic surveillance, encompassing full genome sequencing and the identification of new variants through Illumina technology and, more recently, nanopore metagenomic sequencing (SMTN). Consequently, while diagnostic testing methods for COVID-19 have experienced remarkable progress, no test is flawless, and there exist limitations with each technique, including sensitivity, specificity, sample collection, and the minimum viral load necessary for accurate detection. These aspects are comprehensively addressed within this current review.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | | | - Carlos Cornejo
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Dayana Arias
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile
| | - Manuel Vasquez-Muñoz
- Dirección de Docencia de Especialidades Médicas, Dirección de Postgrado, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory and Sleep Physiology, Institute of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - David C Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Av. Universidad de Antofagasta #02800, Antofagasta, Chile.
| |
Collapse
|
14
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Madruga SL, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. Sci Rep 2023; 13:14683. [PMID: 37674004 PMCID: PMC10482933 DOI: 10.1038/s41598-023-39232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes (Vulpes vulples and Urocyon cineroargentus, respectively), fishers (Martes pennati), river otters (Lutra canadensis), coyotes (Canis lantrans), bobcats (Lynx rufus rufus), black bears (Ursus americanus), and white-tailed deer (Odocoileus virginianus). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Surprisingly, we initially detected a number of N1 and/or N2 positive samples with high cycle threshold values, though after conducting environmental swabbing of the laboratory and verifying with a second independent primer set (WHO-E) and PCR without reverse transcriptase, we showed that these were false positives due to plasmid contamination from a construct expressing the N gene in the general laboratory environment. Our final results indicate that no sampled wildlife were positive for SARS-CoV-2 RNA, and highlight the importance of physically separate locations for the processing of samples for surveillance and experiments that require the use of plasmid DNA containing the target RNA sequence. These negative findings are surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Margaret G Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Madaline M Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Allison M L Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Warren T Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA
| | - Hannah C Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Benjamin C Simmons
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Miles C Nippes
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Anne J Goldenberg
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kristina E Murtha
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Mia J Harris
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Avery C Feeley
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Taylor K Gelinas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maeve K Cronin
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Robert S Frederick
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew Thomas
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Meaghan E Johnson
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - James Murphy
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Elle B Lenzini
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Peter A Carr
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Danielle H Berger
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Soham P Mehta
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Christopher J Floreani
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Amelia C Koval
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Aleah L Young
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jess H Fish
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Jack Wallace
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Ella Chaney
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Grace Ushay
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Rebecca S Ross
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Erin M Vostal
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Maya C Thisner
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kyliegh E Gonet
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Owen C Deane
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Kari R Pelletiere
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Vegas C Rockafeller
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Madeline Waterman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Tyler W Barry
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Catriona C Goering
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah D Shipman
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Allie C Shiers
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Claire E Reilly
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Alanna M Duff
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - Sarah L Madruga
- Wildlife and Fisheries Society, Wildlife Society Chapter, University of Vermont, Burlington, VT, 05405, USA
| | - David J Shirley
- Department of Engineering, Faraday, Inc., Burlington, VT, 05405, USA
| | - Keith R Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ailyn C Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nick Fortin
- Fish and Wildlife Department, Vermont Agency of Natural Resources, Rutland, VT, 05701, USA
| | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr, Burlington, VT, 05405, USA.
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
15
|
Bhattacharjee MJ, Bhattacharya A, Kashyap B, Taw MJ, Li WH, Mukherjee AK, Khan MR. Genome analysis of SARS-CoV-2 isolates from a population reveals the rapid selective sweep of a haplotype carrying many pre-existing and new mutations. Virol J 2023; 20:201. [PMID: 37658381 PMCID: PMC10474745 DOI: 10.1186/s12985-023-02139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/24/2023] [Indexed: 09/03/2023] Open
Abstract
To understand the mechanism underlying the evolution of SARS-CoV-2 in a population, we sequenced 92 viral genomes from Assam, India. Analysis of these and database sequences revealed a complete selective sweep of a haplotype in Assam carrying 13 pre-existing variants, including a high leap in frequency of a variant on ORF8, which is involved in immune evasion. A comparative study between sequences of same lineage and similar time frames in and outside Assam showed that 10 of the 13 pre-existing variants had a frequency ranging from 96 to 99%, and the remaining 3 had a low frequency outside Assam. Using a phylogenetic approach to infer sequential occurrences of variants we found that the variant Phe120del on ORF8, which had a low frequency (1.75%) outside Assam, is at the base of the phylogenetic tree of variants and became totally fixed (100%) in Assam population. Based on this observation, we inferred that the variant on ORF8 had a selective advantage, so it carried the haplotype to reach the100% frequency. The haplotype also carried 32 pre-existing variants at a frequency from 1.00 to 80.00% outside Assam. Those of these variants that are more closely linked to the S-protein locus, which often carries advantageous mutations and is tightly linked to the ORF8 locus, retained higher frequencies, while the less tightly linked variants showed lower frequencies, likely due to recombination among co- circulating variants in Assam. The ratios of non-synonymous substitutions to synonymous substitutions suggested that some genes such as those coding for the S-protein and non-structural proteins underwent positive selection while others were subject to purifying selection during their evolution in Assam. Furthermore, we observed negative correlation of the Ct value of qRT-PCR of the patients with abundant ORF6 transcripts, suggesting that ORF6 can be used as a marker for estimating viral titer. In conclusion, our in-depth analysis of SARS-CoV-2 genomes in a regional population reveals the mechanism and dynamics of viral evolution.
Collapse
Affiliation(s)
- Maloyjo Joyraj Bhattacharjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Anupam Bhattacharya
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Bhaswati Kashyap
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India
| | - Manash Jyoti Taw
- Department of Microbiology, Gauhati Medical College and Hospital, Guwahati, Assam, 781032, India
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, 11529, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| | - Ashis K Mukherjee
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| | - Mojibur Rohman Khan
- Division of Life Science, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
16
|
Wei J, Song Z, Cui J, Gong Y, Tang Q, Zhang K, Song X, Liao X. Entropy-driven assisted T7 RNA polymerase amplification-activated CRISPR/Cas13a activity for SARS-CoV-2 detection in human pharyngeal swabs and environment by an electrochemiluminescence biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131268. [PMID: 36965355 DOI: 10.1016/j.jhazmat.2023.131268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
In this study, we introduce an electrochemiluminescence (ECL) sensing platform based on the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). This platform combines a programmable entropy-driven cycling strategy, T7 RNA polymerase, and the CRISPR/Cas13a system to amplify the determination of the SARS-CoV-2 RdRp gene. The Ti3C2Tx-compliant ECL signaling molecule offers unique benefits when used with the ECL sensing platform to increase the assay sensitivity and the electrode surface modifiability. To obtain the T7 promoter, the SARS-CoV-2 RdRp gene may first initiate an entropy-driven cyclic amplification response. Then, after recognizing the T7 promoter sequence on the newly created dsDNA, T7 RNA polymerase starts transcription, resulting in the production of many single-stranded RNAs (ssRNAs), which in turn trigger the action of CRISPR/Cas13a. Finally, Cas13a/crRNA identifies the transcribed ssRNA. When it cleaves the ssRNA, many DNA reporter probes carrying -U-U- are cleaved on the electrode surface, increasing the ECL signal and allowing for the rapid and highly sensitive detection of SARS-CoV-2. With a detection limit of 7.39 aM, our method enables us to locate the SARS-CoV-2 RdRp gene in clinical samples. The detection method also demonstrates excellent repeatability and stability. The SARS-CoV-2 RdRp gene was discovered using the "Entropy-driven triggered T7 amplification-CRISPR/Cas13a system" (EDT-Cas). The developed ECL test had excellent recoveries in pharyngeal swabs and environmental samples. It is anticipated to offer an early clinical diagnosis of SARS-CoV-2 and further control the spread of the pandemic.
Collapse
Affiliation(s)
- Jihua Wei
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Zichun Song
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Jiuying Cui
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Yuanxun Gong
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Qianli Tang
- Guangxi Key Laboratory of Basic and Translational Research of Bone and Joint Degenerative Disease, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Kai Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | - Xinlei Song
- Maternity & Child Care Center of Dezhou, Dezhou 253000, China.
| | - Xianjiu Liao
- West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
17
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
18
|
Carrau L, Frere JJ, Golynker I, Fajardo A, Rivera CF, Horiuchi S, Roonprapunt T, Minkoff JM, Blanco-Melo D, TenOever B. Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19. Sci Signal 2023; 16:eadg5470. [PMID: 37311033 DOI: 10.1126/scisignal.adg5470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Clinical presentations that develop in response to infection result from interactions between the pathogen and host defenses. SARS-CoV-2, the etiologic agent of COVID-19, directly antagonizes these defenses, leading to delayed immune engagement in the lungs that materializes only as cells succumb to infection and are phagocytosed. Leveraging the golden hamster model of COVID-19, we sought to understand the dynamics between SARS-CoV-2 infection in the airways and the systemic host response that ensues. We found that early SARS-CoV-2 replication was largely confined to the respiratory tract and olfactory system and, to a lesser extent, the heart and gastrointestinal tract but generated a host antiviral response in every organ as a result of circulating type I and III interferons. Moreover, we showed that diminishing the response in the airways by immunosuppression or administration of SARS-CoV-2 intravenously resulted in decreased immune priming, viremia, and increased viral tropism, including productive infection of the liver, kidney, spleen, and brain. Last, we showed that productive infection of the airways was required for mounting an effective and system-wide antiviral response. Together, these data illustrate how COVID-19 can result in diverse clinical presentations in which disease outcomes can be a by-product of the speed and strength of immune engagement. These studies provide additional evidence for the mechanistic basis of the diverse clinical presentations of COVID-19 and highlight the ability of the respiratory tract to generate a systemic immune defense after pathogen recognition.
Collapse
Affiliation(s)
- Lucia Carrau
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Justin J Frere
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ilona Golynker
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Alvaro Fajardo
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Cristobal F Rivera
- Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shu Horiuchi
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Tyler Roonprapunt
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Judith M Minkoff
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Daniel Blanco-Melo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | - Benjamin TenOever
- Department of Microbiology, New York University Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
19
|
Zhang X, Qian C, Yang L, Gao H, Jiang P, Dai M, Wang Y, Kang H, Xu Y, Hu Q, Feng F, Cheng B, Dai E. Diagnostic value and characteristic analysis of serum nucleocapsid antigen in COVID-19 patients. PeerJ 2023; 11:e15515. [PMID: 37304882 PMCID: PMC10257392 DOI: 10.7717/peerj.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background To date, several types of laboratory tests for coronavirus disease 2019 (COVID-19) diagnosis have been developed. However, the clinical importance of serum severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen (N-Ag) remains to be fully elucidated. In this study, we sought to investigate the value of serum SARS-CoV-2 N-Ag for COVID-19 diagnosis and to analyze N-Ag characteristics in COVID-19 individuals. Methods Serum samples collected from 215 COVID-19 patients and 65 non-COVID-19 individuals were used to quantitatively detect N-Ag via chemiluminescent immunoassay according to the manufacturer's instructions. Results The sensitivity and specificity of the N-Ag assay were 64.75% (95% confidence interval (95% CI) [55.94-72.66%]) and 100% (95% CI [93.05-100.00%]), respectively, according to the cut-off value recommended by the manufacturer. The receiver operating characteristic (ROC) curve showed a sensitivity of 100.00% (95% CI [94.42-100.00%]) and a specificity of 71.31% (95% CI [62.73-78.59%]). The positive rates and levels of serum SARS-CoV-2 N-Ag were not related to sex, comorbidity status or disease severity of COVID-19 (all P < 0.001). Compared with RT‒PCR, there was a lower positive rate of serum N-Ag for acute COVID-19 patients (P < 0.001). The positive rate and levels of serum SARS-CoV-2 N-Ag in acute patients were significantly higher than those in convalescent patients (all P < 0.001). In addition, the positive rate of serum SARS-CoV-2 N-Ag in acute COVID-19 patients was higher than that of serum antibodies (IgM, IgG, IgA and neutralizing antibodies (Nab)) against SARS-CoV-2 (all P < 0.001). However, the positive rate of serum SARS-CoV-2 N-Ag in convalescent COVID-19 patients was significantly lower than that of antibodies (all P < 0.001). Conclusion Serum N-Ag can be used as a biomarker for early COVID-19 diagnosis based on appropriate cut-off values. In addition, our study also demonstrated the relationship between serum N-Ag and clinical characteristics.
Collapse
Affiliation(s)
- Xihong Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Chungen Qian
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Yang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Ping Jiang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Muwei Dai
- Orthopaedic Department, The Fourth Hospital of Hebei Medical University and Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Yuling Wang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Haiyan Kang
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yi Xu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Qian Hu
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Bangning Cheng
- Shenzhen YHLO Biotech Co., Ltd, Shenzhen, Guangdong, China
| | - Erhei Dai
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, North China University of Science and Technology, Shijiazhuang, Hebei, China
| |
Collapse
|
20
|
Wang X, Dai C, Wu Y, Liu Y, Wei D. Molecular-electromechanical system for unamplified detection of trace analytes in biofluids. Nat Protoc 2023:10.1038/s41596-023-00830-x. [PMID: 37208410 DOI: 10.1038/s41596-023-00830-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/07/2023] [Indexed: 05/21/2023]
Abstract
Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 μl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yungeng Wu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Despres HW, Mills MG, Schmidt MM, Gov J, Perez Y, Jindrich M, Crawford AML, Kohl WT, Rosenblatt E, Kubinski HC, Simmons BC, Nippes MC, Goldenberg AJ, Murtha KE, Nicoloro S, Harris MJ, Feeley AC, Gelinas TK, Cronin MK, Frederick RS, Thomas M, Johnson ME, Murphy J, Lenzini EB, Carr PA, Berger DH, Mehta SP, Floreani CJ, Koval AC, Young AL, Fish JH, Wallace J, Chaney E, Ushay G, Ross RS, Vostal EM, Thisner MC, Gonet KE, Deane OC, Pelletiere KR, Rockafeller VC, Waterman M, Barry TW, Goering CC, Shipman SD, Shiers AC, Reilly CE, Duff AM, Shirley DJ, Jerome KR, Pérez-Osorio AC, Greninger AL, Fortin N, Mosher BA, Bruce EA. Surveillance of Vermont wildlife in 2021-2022 reveals no detected SARS-CoV-2 viral RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538264. [PMID: 37162835 PMCID: PMC10168257 DOI: 10.1101/2023.04.25.538264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Previous studies have documented natural infections of SARS-CoV-2 in various domestic and wild animals. More recently, studies have been published noting the susceptibility of members of the Cervidae family, and infections in both wild and captive cervid populations. In this study, we investigated the presence of SARS-CoV-2 in mammalian wildlife within the state of Vermont. 739 nasal or throat samples were collected from wildlife throughout the state during the 2021 and 2022 harvest season. Data was collected from red and gray foxes ( Vulpes vulples and Urocyon cineroargentus , respectively), fishers ( Martes pennati ), river otters ( Lutra canadensis ), coyotes ( Canis lantrans ), bobcats ( Lynx rufus rufus ), black bears ( Ursus americanus ), and white-tailed deer ( Odocoileus virginianus ). Samples were tested for the presence of SARS-CoV-2 via quantitative RT-qPCR using the CDC N1/N2 primer set and/or the WHO-E gene primer set. Our results indicate that no sampled wildlife were positive for SARS-CoV-2. This finding is surprising, given that most published North America studies have found SARS-CoV-2 within their deer populations. The absence of SARS-CoV-2 RNA in populations sampled here may provide insights in to the various environmental and anthropogenic factors that reduce spillover and spread in North American's wildlife populations.
Collapse
Affiliation(s)
- Hannah W. Despres
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Margaret G. Mills
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Madaline M. Schmidt
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Jolene Gov
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Yael Perez
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Mars Jindrich
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Allison M. L. Crawford
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Warren T. Kohl
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Elias Rosenblatt
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Hannah C. Kubinski
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| | - Benjamin C. Simmons
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Miles C. Nippes
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Anne J. Goldenberg
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kristina E. Murtha
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Samantha Nicoloro
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Mia J. Harris
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Avery C. Feeley
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Taylor K. Gelinas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maeve K. Cronin
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Robert S. Frederick
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Matthew Thomas
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Meaghan E. Johnson
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - James Murphy
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Elle B. Lenzini
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Peter A. Carr
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Danielle H. Berger
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Soham P. Mehta
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Amelia C. Koval
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Aleah L. Young
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jess H. Fish
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Jack Wallace
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Ella Chaney
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Grace Ushay
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Rebecca S. Ross
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Erin M. Vostal
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Maya C. Thisner
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kyliegh E. Gonet
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Owen C. Deane
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Kari R. Pelletiere
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Madeline Waterman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Tyler W. Barry
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Catriona C. Goering
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Sarah D. Shipman
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Allie C. Shiers
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Claire E. Reilly
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | - Alanna M. Duff
- Wildlife and Fisheries Society, University of Vermont, Wildlife Society Chapter
| | | | - Keith R. Jerome
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Ailyn C. Pérez-Osorio
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
| | - Alexander L. Greninger
- Virology Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle WA 98109, USA
| | - Nick Fortin
- Vermont Agency of Natural Resources, Fish & Wildlife Department, Rutland, VT 05701
| | - Brittany A. Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, 81 Carrigan Dr Burlington, VT 05405, USA
| | - Emily A. Bruce
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington VT, 05405, USA
| |
Collapse
|
22
|
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic Sequencing for Detection of Viral Pathogens. Clin Microbiol Rev 2023; 36:e0011922. [PMID: 36847515 PMCID: PMC10035330 DOI: 10.1128/cmr.00119-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The advent of next-generation sequencing (NGS) technologies has expanded our ability to detect and analyze microbial genomes and has yielded novel molecular approaches for infectious disease diagnostics. While several targeted multiplex PCR and NGS-based assays have been widely used in public health settings in recent years, these targeted approaches are limited in that they still rely on a priori knowledge of a pathogen's genome, and an untargeted or unknown pathogen will not be detected. Recent public health crises have emphasized the need to prepare for a wide and rapid deployment of an agnostic diagnostic assay at the start of an outbreak to ensure an effective response to emerging viral pathogens. Metagenomic techniques can nonspecifically sequence all detectable nucleic acids in a sample and therefore do not rely on prior knowledge of a pathogen's genome. While this technology has been reviewed for bacterial diagnostics and adopted in research settings for the detection and characterization of viruses, viral metagenomics has yet to be widely deployed as a diagnostic tool in clinical laboratories. In this review, we highlight recent improvements to the performance of metagenomic viral sequencing, the current applications of metagenomic sequencing in clinical laboratories, as well as the challenges that impede the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nick P. G. Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Amee R. Manges
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Marascio N, Cilburunoglu M, Torun EG, Centofanti F, Mataj E, Equestre M, Bruni R, Quirino A, Matera G, Ciccaglione AR, Yalcinkaya KT. Molecular Characterization and Cluster Analysis of SARS-CoV-2 Viral Isolates in Kahramanmaraş City, Turkey: The Delta VOC Wave within One Month. Viruses 2023; 15:v15030802. [PMID: 36992510 PMCID: PMC10054778 DOI: 10.3390/v15030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The SARS-CoV-2 pandemic has seriously affected the population in Turkey. Since the beginning, phylogenetic analysis has been necessary to monitor public health measures against COVID-19 disease. In any case, the analysis of spike (S) and nucleocapsid (N) gene mutations was crucial in determining their potential impact on viral spread. We screened S and N regions to detect usual and unusual substitutions, whilst also investigating the clusters among a patient cohort resident in Kahramanmaraş city, in a restricted time span. Sequences were obtained by Sanger methods and genotyped by the PANGO Lineage tool. Amino acid substitutions were annotated comparing newly generated sequences to the NC_045512.2 reference sequence. Clusters were defined using phylogenetic analysis with a 70% cut-off. All sequences were classified as Delta. Eight isolates carried unusual mutations on the S protein, some of them located in the S2 key domain. One isolate displayed the unusual L139S on the N protein, while few isolates carried the T24I and A359S N substitutions able to destabilize the protein. Phylogeny identified nine monophyletic clusters. This study provided additional information about SARS-CoV-2 epidemiology in Turkey, suggesting local transmission of infection in the city by several transmission routes, and highlighting the necessity to improve the power of sequencing worldwide.
Collapse
Affiliation(s)
- Nadia Marascio
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Merve Cilburunoglu
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Elif Gulsum Torun
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| | - Federica Centofanti
- Department of Applied Clinical Sciences and Biotechnology, University of Aquila, 67100 L'Aquila, Italy
| | - Elida Mataj
- Instituti i Shendetit Publik (ISHP), 1000 Tirana, Albania
| | - Michele Equestre
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Bruni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Angela Quirino
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, Institute of Microbiology, "Magna Grecia" University, 88100 Catanzaro, Italy
| | | | - Kezban Tulay Yalcinkaya
- Microbiology Department, Faculty of Medicine, Kahramanmaras Sutcü Imam University, 46050 Kahramanmaras, Turkey
| |
Collapse
|
24
|
Davis A, Keely SP, Brinkman NE, Bohrer Z, Ai Y, Mou X, Chattopadhyay S, Hershey O, Senko J, Hull N, Lytmer E, Quintero A, Lee J. Evaluation of intra- and inter-lab variability in quantifying SARS-CoV-2 in a state-wide wastewater monitoring network. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2023; 9:1053-1068. [PMID: 37701755 PMCID: PMC10494892 DOI: 10.1039/d2ew00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.
Collapse
Affiliation(s)
- Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
| | - Scott P Keely
- United States Environmental Protection Agency, Office of Research and Development, USA
| | - Nichole E Brinkman
- United States Environmental Protection Agency, Office of Research and Development, USA
| | | | - Yuehan Ai
- Department of Food Science & Technology, The Ohio State University, USA
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, Department of Biology and Department of Geosciences, University of Toledo, USA
| | - Olivia Hershey
- Department of Geosciences and Biology, University of Akron, USA
| | - John Senko
- Department of Geosciences and Biology, University of Akron, USA
| | - Natalie Hull
- Department of Civil, Environmental and Geodetic Engineering and Sustainability Institute, The Ohio State University, USA
| | - Eva Lytmer
- Department of Biological Sciences, Bowling Green State University, USA
| | | | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, 1841 Neil Avenue, Columbus, OH 43210, USA
- Department of Food Science & Technology, The Ohio State University, USA
- Infectious Diseases Institute, The Ohio State University, USA
| |
Collapse
|
25
|
Munir R, Scott LE, Noble LD, Steegen K, Hans L, Stevens WS. Performance Evaluation of Four Qualitative RT-PCR Assays for the Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Microbiol Spectr 2023; 11:e0371622. [PMID: 36853026 PMCID: PMC10101067 DOI: 10.1128/spectrum.03716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019, and its rapid spread around the globe led the World Health Organization to declare it a pandemic. Laboratory diagnostics provide important information to help control virus transmission, and molecular nucleic acid amplification tests have been recognized as the gold standard for the direct detection of viral genetic material. The main aim of this study was to independently evaluate the analytical performance of four molecular assays that were designed for the detection of SARS-CoV-2 on open testing platforms under emergency use approval, namely, the COVIWOK COVID-19 RT-PCR Meril COVID-19 One-step RT-PCR Kit, the AmoyDx Novel Coronavirus (2019-nCoV) Detection Kit, the Meril COVID-19 One-step RT-PCR Kit and the NeoPlex COVID-19 Detection Kit, as alternatives to the current standard of care (SOC) assays in-country. All of the evaluated assays showed an acceptable performance, with a specificity of 100% and a sensitivity of 93.8% to 98.4%, compared to a SOC assay, with a Cohen's kappa coefficient of ≥0.9 (95% CI). In addition, the assays detected the AccuPlex reference material at 100 copies/mL, suggesting a good limit of detection. These assays provide suitable alternatives to the SOC assays that are currently available in-country, and these alternatives are acceptable for diagnostic use in South Africa. IMPORTANCE Laboratory diagnosis plays an important role in curbing the transmission of infection and reducing harmful delays in clinical and public health responses. Alternatives to the current standard of care assays for SARS-CoV-2 are important in order to overcome the challenges that are associated with global demands and supply shortages. Four molecular assays for the detection of SARS-CoV-2 that were designed for open testing platforms were evaluated in this study under emergency use approval. These assays had acceptable performance and provide suitable alternatives to the current standard of care assays that are available in-country. Their compatibilities with existing in-country amplification platforms make these assays convenient to use for diagnostic testing, both locally and globally These assays were recommended to the South African Health Products Regulatory Authority (SAHPRA) for patient care in South Africa.
Collapse
Affiliation(s)
- Riffat Munir
- WITS Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lesley Erica Scott
- WITS Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lara Dominique Noble
- WITS Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kim Steegen
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- National Priority Program of the National Health Laboratory Services (NHLS), Johannesburg, South Africa
| | - Lucia Hans
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
- National Priority Program of the National Health Laboratory Services (NHLS), Johannesburg, South Africa
| | - Wendy Susan Stevens
- WITS Diagnostic Innovation Hub, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Priority Program of the National Health Laboratory Services (NHLS), Johannesburg, South Africa
| |
Collapse
|
26
|
Lin Z, Zou Z, Pu Z, Wu M, Zhang Y. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharm Sin B 2023; 13:S2211-3835(23)00061-8. [PMID: 36855672 PMCID: PMC9951611 DOI: 10.1016/j.apsb.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has boosted the development of antiviral research. Microfluidic technologies offer powerful platforms for diagnosis and drug discovery for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis and drug discovery. In this review, we introduce the structure of SARS-CoV-2 and the basic knowledge of microfluidic design. We discuss the application of microfluidic devices in SARS-CoV-2 diagnosis based on detecting viral nucleic acid, antibodies, and antigens. We highlight the contribution of lab-on-a-chip to manufacturing point-of-care equipment of accurate, sensitive, low-cost, and user-friendly virus-detection devices. We then investigate the efforts in organ-on-a-chip and lipid nanoparticles (LNPs) synthesizing chips in antiviral drug screening and mRNA vaccine preparation. Microfluidic technologies contribute to the ongoing SARS-CoV-2 research efforts and provide tools for future viral outbreaks.
Collapse
Affiliation(s)
- Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhe Pu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
27
|
Development and Evaluation of a Novel One-Step RT-qPCR Targeting the Vero Gene for the Identification of False-Positive Results Caused by Inactivated Virus Vaccine Contamination. Vaccines (Basel) 2023; 11:vaccines11020372. [PMID: 36851250 PMCID: PMC9959469 DOI: 10.3390/vaccines11020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
To identify false-positive SARS-CoV-2 test results caused by novel coronavirus inactivated vaccine contamination, a novel RT-qPCR targeting the ORF1ab and N genes of SARS-CoV-2 and Vero gene was developed. The amplification efficiency, precision, and lower limit of detection (LLOD) of the RT-qPCR assay were determined. A total of 346 clinical samples and 132 environmental samples were assessed, and the diagnostic performance was evaluated. The results showed that the amplification efficiency of the ORF1ab, N, and Vero genes was 95%, 97%, and 93%, respectively. The coefficients of variation of Ct values at a concentration of 3 × 104 copies/mL were lower than 5%. The LLOD for the ORF1ab, N, and Vero genes reached 8.0, 3.3, and 8.2 copies/reaction, respectively. For the 346 clinical samples, our RT-qPCR assay identified SARS-CoV-2-positive and SARS-CoV-2-negative samples with a sensitivity of 100.00% and a specificity of 99.30% and novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 100% and a specificity of 100%. For the environmental samples, our RT-qPCR assay identified novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 88.06% and a specificity of 95.38%. In conclusion, the RT-qPCR assay we established can be used to diagnose COVID-19 and, to a certain extent, false-positive results due to vaccine contamination.
Collapse
|
28
|
Jackson J, Chan C, McBurnie J, La Hera-Fuentes G, Burston J, Bridges L, Underhill C, Eek R, Hueston L, O'Sullivan M, Dwyer DE. SARS-CoV-2 Seroprevalence in a Cohort of International Travellers Returning to Rural Australia: Enablers and Barriers to Containment of COVID-19. Aust N Z J Public Health 2023; 47:100003. [PMID: 36680916 PMCID: PMC9851405 DOI: 10.1016/j.anzjph.2022.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To describe the effectiveness of the public health response to COVID-19 in our local region by documenting detection of SARS-CoV-2 infection by nucleic acid testing (NAT) positivity and seroprevalence. METHODS In this prospective study (ACTRN12620000487910), symptomatic adult international travellers returning to regional Australia in March 2020 underwent SARS-CoV-2 NAT and SARS-CoV-2-specific serology. RESULTS Ninety-nine eligible participants were included. Nine participants had laboratory confirmed SARS-CoV-2, all returning between 16-20 March 2020. Eight (89%) had a positive NAT and seven (78%) had a positive serology test. The majority returned from New Zealand. Participants most frequently presented with cough (100%), headache (66.7%) and sore throat (44.4%). No community cases were detected from 1 March to 30 June 2020. CONCLUSIONS The study cohort of international travellers returning to regional Australia in March 2020 returned eight positive SARS-CoV-2 NAT results over a five-day window. Serology identified one additional case and was negative in two cases who were PCR positive. Longitudinal data confirmed an absence of local community transmission to 30 June 2020. IMPLICATIONS FOR PUBLIC HEALTH A combination of local, national and environmental factors were necessary to prevent the establishment of community transmission in our local region.
Collapse
Affiliation(s)
- Justin Jackson
- Faculty of Medicine, University of New South Wales (UNSW) Rural Clinical School, Albury Campus, Australia; Albury-Wodonga Health, Australia.
| | | | - Jacqueline McBurnie
- Border Medical Oncology Research Unit, Albury-Wodonga Regional Cancer Centre, Albury, New South Wales, Australia
| | - Gina La Hera-Fuentes
- Faculty of Medicine, University of New South Wales (UNSW) Rural Clinical School, Coffs Harbour Campus, Australia
| | - John Burston
- Faculty of Medicine, University of New South Wales (UNSW) Rural Clinical School, Albury Campus, Australia,Albury-Wodonga Health, Australia
| | - Leisa Bridges
- Faculty of Medicine, University of New South Wales (UNSW) Rural Clinical School, Albury Campus, Australia
| | - Craig Underhill
- Albury-Wodonga Health, Australia,Border Medical Oncology Research Unit, Albury-Wodonga Regional Cancer Centre, Albury, New South Wales, Australia
| | - Richard Eek
- Albury-Wodonga Health, Australia,Border Medical Oncology Research Unit, Albury-Wodonga Regional Cancer Centre, Albury, New South Wales, Australia
| | - Linda Hueston
- NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Matthew O'Sullivan
- NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Dominic E. Dwyer
- NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
29
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
30
|
Alquraan L, Alzoubi KH, Rababa'h SY. Mutations of SARS-CoV-2 and their impact on disease diagnosis and severity. INFORMATICS IN MEDICINE UNLOCKED 2023; 39:101256. [PMID: 37131549 PMCID: PMC10127666 DOI: 10.1016/j.imu.2023.101256] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Numerous variations of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), including D614G, B.1.1.7 (United Kingdom), B.1.1.28 (Brazil P1, P2), CAL.20C (Southern California), B.1.351 (South Africa), B.1.617 (B.1.617.1 Kappa & Delta B.1.617.2) and B.1.1.529, have been reported worldwide. The receptor-binding domain (RBD) of the spike (S) protein is involved in virus-cell binding, where virus-neutralizing antibodies (NAbs) react. Novel variants in the S-protein could maximize viral affinity for the human angiotensin-converting enzyme 2 (ACE2) receptor and increase virus transmission. Molecular detection with false-negative results may refer to mutations in the part of the virus's genome used for virus diagnosis. Furthermore, these changes in S-protein structure alter the neutralizing ability of NAbs, resulting in a reduction in vaccine efficiency. Further information is needed to evaluate how new mutations may affect vaccine efficacy.
Collapse
Affiliation(s)
- Laiali Alquraan
- Department of Biology, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Suzie Y Rababa'h
- Department of Medical Science, Irbid Faculty, Al-Balqa Applied University (BAU), Irbid, Jordan
| |
Collapse
|
31
|
Goldman JD, Wang K, Röltgen K, Nielsen SCA, Roach JC, Naccache SN, Yang F, Wirz OF, Yost KE, Lee JY, Chun K, Wrin T, Petropoulos CJ, Lee I, Fallen S, Manner PM, Wallick JA, Algren HA, Murray KM, Hadlock J, Chen D, Dai CL, Yuan D, Su Y, Jeharajah J, Berrington WR, Pappas GP, Nyatsatsang ST, Greninger AL, Satpathy AT, Pauk JS, Boyd SD, Heath JR. Reinfection with SARS-CoV-2 and Waning Humoral Immunity: A Case Report. Vaccines (Basel) 2022; 11:5. [PMID: 36679852 PMCID: PMC9861578 DOI: 10.3390/vaccines11010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.
Collapse
Affiliation(s)
- Jason D. Goldman
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98195, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Fan Yang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Oliver F. Wirz
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kathryn E. Yost
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kelly Chun
- LabCorp Esoterix, Calabasas, CA 91301, USA
| | - Terri Wrin
- Monogram Biosciences, South San Francisco, CA 94080, USA
| | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | - Paula M. Manner
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Julie A. Wallick
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Heather A. Algren
- Providence St. Joseph Health, Renton, WA 98057, USA
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA 98104, USA
| | - Kim M. Murray
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Jennifer Hadlock
- Providence St. Joseph Health, Renton, WA 98057, USA
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Daniel Chen
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | | - Dan Yuan
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA 98103, USA
| | - Joshua Jeharajah
- Division of Infectious Diseases, Polyclinic, Seattle, WA 98104, USA
| | - William R. Berrington
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - George P. Pappas
- Division of Pulmonology and Critical Care Medicine, Swedish Medical Center, Seattle, WA 98104, USA
| | - Sonam T. Nyatsatsang
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutch, Seattle, DC 98109, USA
| | | | - John S. Pauk
- Division of Infectious Diseases, Swedish Medical Center, Seattle, WA 98122, USA
- Providence St. Joseph Health, Renton, WA 98057, USA
| | - Scott D. Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA 94304, USA
| | | |
Collapse
|
32
|
Senkal N, Bahat G, Medetalibeyoglu A, Cebeci T, Deniz D, Catma Y, Oren MM, Caparali EB, Bayrakdar S, Basaran S, Kose M, Erelel M, Karan MA, Tukek T. Comparison of clinical characteristics and outcome measures of PCR-positive and PCR-negative patients diagnosed as COVID-19: Analyses focusing on the older adults. Exp Gerontol 2022; 170:111998. [PMID: 36341785 PMCID: PMC9617669 DOI: 10.1016/j.exger.2022.111998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE While the definitive diagnosis of COVID-19 relies on PCR confirmation of the virus, the sensitivity of this technique is limited. The clinicians had to go on with the clinical diagnosis of COVID-19 in selected cases. We aimed to compare PCR-positive and PCR-negative patients diagnosed as COVID-19 with a specific focus on older adults. METHODS We studied 601 hospitalized adults. The demographics, co-morbidities, triage clinical, laboratory characteristics, and outcomes were noted. Differences between the PCR (+) and (-) cases were analyzed. An additional specific analysis focusing on older adults (≥65 years) (n = 184) was performed. RESULTS The PCR confirmation was present in 359 (59.7 %). There was not any difference in terms of age, sex, travel/contact history, hospitalization duration, ICU need, the time between first symptom/hospitalization to ICU need, ICU days, or survival between PCR-positive and negative cases in the total study group and older adults subgroup. The only symptoms that were different in prevalence between PCR-confirmed and unconfirmed cases were fever (73.3 % vs. 64 %, p = 0.02) and fatigue/myalgia (91.1 % vs. 79.3 %, p = 0.001). Bilateral diffuse pneumonia was also more prevalent in PCR-confirmed cases (20 % vs. 13.3 %, p = 0.03). In older adults, the PCR (-) cases had more prevalent dyspnea (72.2 % vs. 51.4 %, p = 0.004), less prevalent fatigue/myalgia (70.9 % vs. 88.6 %, p = 0.002). CONCLUSION The PCR (+) and (-) cases displayed very similar disease phenotypes, courses, and outcomes with few differences between each other. The presence of some worse laboratory findings may indicate a worse immune protective response in PCR (-) cases.
Collapse
Affiliation(s)
- Naci Senkal
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey,Corresponding author at: İstanbul University, İstanbul Medical School, Department of Internal Medicine, Capa 34390, Istanbul, Turkey
| | - Gulistan Bahat
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of Geriatrics, Turkey
| | - Alpay Medetalibeyoglu
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| | - Timurhan Cebeci
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| | - Dilek Deniz
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| | - Yunus Catma
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| | - Meryem Merve Oren
- The Medical Faculty of Istanbul University, Department of Public Health, Turkey
| | - Emine Bilge Caparali
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Turkey
| | - Sena Bayrakdar
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Turkey
| | - Seniha Basaran
- The Medical Faculty of Istanbul University, Department of Infectious Diseases, Turkey
| | - Murat Kose
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| | - Mustafa Erelel
- The Medical Faculty of Istanbul University, Department of Pulmonary Diseases, Turkey
| | - Mehmet Akif Karan
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of Geriatrics, Turkey
| | - Tufan Tukek
- The Medical Faculty of Istanbul University, Department of Internal Medicine, Division of General Internal Medicine, Turkey
| |
Collapse
|
33
|
Maksimovic Carvalho Ferreira O, Lengar Ž, Kogej Z, Bačnik K, Bajde I, Milavec M, Županič A, Mehle N, Kutnjak D, Ravnikar M, Gutierrez-Aguirre I. Evaluation of Methods and Processes for Robust Monitoring of SARS-CoV-2 in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:384-400. [PMID: 35999429 PMCID: PMC9398038 DOI: 10.1007/s12560-022-09533-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/01/2022] [Indexed: 05/15/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the development of virus concentration and molecular-based virus detection methods, monitoring systems and overall approach to epidemiology. Early into the pandemic, wastewater-based epidemiology started to be employed as a tool for tracking the virus transmission dynamics in a given area. The complexity of wastewater coupled with a lack of standardized methods led us to evaluate each step of the analysis individually and see which approach gave the most robust results for SARS-CoV-2 monitoring in wastewater. In this article, we present a step-by-step, retrospective view on the method development and implementation for the case of a pilot monitoring performed in Slovenia. We specifically address points regarding the thermal stability of the samples during storage, screening for the appropriate sample concentration and RNA extraction procedures and real-time PCR assay selection. Here, we show that the temperature and duration of the storage of the wastewater sample can have a varying impact on the detection depending on the structural form in which the SARS-CoV-2 target is present. We found that concentration and RNA extraction using Centricon filtration units coupled with Qiagen RNA extraction kit or direct RNA capture and extraction using semi-automated kit from Promega give the most optimal results out of the seven methods tested. Lastly, we confirm the use of N1 and N2 assays developed by the CDC (USA) as the best performing assays among four tested in combination with Fast Virus 1-mastermix. Data show a realistic overall process for method implementation as well as provide valuable information in regards to how different approaches in the analysis compare to one another under the specific conditions present in Slovenia during a pilot monitoring running from the beginning of the pandemic.
Collapse
Affiliation(s)
- Olivera Maksimovic Carvalho Ferreira
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
- International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| | - Živa Lengar
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Zala Kogej
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Irena Bajde
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Mojca Milavec
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anže Županič
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Nataša Mehle
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri, Glavni trg 8, 5271, Vipava, Slovenia
| | - Denis Kutnjak
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
34
|
Bello-Lemus Y, Anaya-Romero M, Gómez-Montoya J, Árquez M, González-Torres HJ, Navarro-Quiroz E, Pacheco-Londoño L, Pacheco-Lugo L, Acosta-Hoyos AJ. Comparative Analysis of In-House RT-qPCR Detection of SARS-CoV-2 for Resource-Constrained Settings. Diagnostics (Basel) 2022; 12:2883. [PMID: 36428942 PMCID: PMC9689939 DOI: 10.3390/diagnostics12112883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
We developed and standardized an efficient and cost-effective in-house RT-PCR method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated sensitivity, specificity, and other statistical parameters by different RT-qPCR methods including triplex, duplex, and simplex assays adapted from the initial World Health Organization- (WHO) recommended protocol. This protocol included the identification of the E envelope gene (E gene; specific to the Sarvecovirus genus), RdRp gene of the RNA-dependent RNA polymerase (specific for SARS-CoV-2), and RNase P gene as endogenous control. The detection limit of the E and the RdRp genes were 3.8 copies and 33.8 copies per 1 µL of RNA, respectively, in both triplex and duplex reactions. The sensitivity for the RdRp gene in the triplex and duplex RT-qPCR tests were 98.3% and 83.1%, respectively. We showed a decrease in sensitivity for the RdRp gene by 60% when the E gene acquired Ct values > 31 in the diagnostic tests. This is associated with the specific detection limit of each gene and possible interferences in the protocol. Hence, developing efficient and cost-effective methodologies that can be adapted to various health emergency scenarios is important, especially in developing countries or settings where resources are limited.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio J. Acosta-Hoyos
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| |
Collapse
|
35
|
Razu MH, Ahmed ZB, Hossain MI, Rabbi MFA, Nayem MR, Hassan MA, Paul GK, Khan MR, Moniruzzaman M, Karmaker P, Khan M. Performance Evaluation of Developed Bangasure™ Multiplex rRT-PCR Assay for SARS-CoV-2 Detection in Bangladesh: A Blinded Observational Study at Two Different Sites. Diagnostics (Basel) 2022; 12:diagnostics12112617. [PMID: 36359461 PMCID: PMC9689614 DOI: 10.3390/diagnostics12112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.
Collapse
Affiliation(s)
- Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Iqbal Hossain
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mohammad Fazle Alam Rabbi
- DNA Solutions Ltd., Dhaka 1207, Bangladesh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Moniruzzaman
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
- Correspondence:
| |
Collapse
|
36
|
Butler KS, Carson BD, Podlevsky JD, Mayes CM, Rowland JM, Campbell D, Ricken JB, Wudiri G, Timlin JA. Singleplex, multiplex and pooled sample real-time RT-PCR assays for detection of SARS-CoV-2 in an occupational medicine setting. Sci Rep 2022; 12:17733. [PMID: 36273023 PMCID: PMC9587995 DOI: 10.1038/s41598-022-22106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/10/2022] [Indexed: 01/18/2023] Open
Abstract
For workplaces which cannot operate as telework or remotely, there is a critical need for routine occupational SARS-CoV-2 diagnostic testing. Although diagnostic tests including the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC Diagnostic Panel) (EUA200001) were made available early in the pandemic, resource scarcity and high demand for reagents and equipment necessitated priority of symptomatic patients. There is a clearly defined need for flexible testing methodologies and strategies with rapid turnaround of results for (1) symptomatic, (2) asymptomatic with high-risk exposures and (3) asymptomatic populations without preexisting conditions for routine screening to address the needs of an on-site work force. We developed a distinct SARS-CoV-2 diagnostic assay based on the original CDC Diagnostic Panel (EUA200001), yet, with minimum overlap for currently employed reagents to eliminate direct competition for limited resources. As the pandemic progressed with testing loads increasing, we modified the assay to include 5-sample pooling and amplicon target multiplexing. Analytical sensitivity of the pooled and multiplexed assays was rigorously tested with contrived positive samples in realistic patient backgrounds. Assay performance was determined with clinical samples previously assessed with an FDA authorized assay. Throughout the pandemic we successfully tested symptomatic, known contact and travelers within our occupational population with a ~ 24-48-h turnaround time to limit the spread of COVID-19 in the workplace. Our singleplex assay had a detection limit of 31.25 copies per reaction. The three-color multiplexed assay maintained similar sensitivity to the singleplex assay, while tripling the throughput. The pooling assay further increased the throughput to five-fold the singleplex assay, albeit with a subtle loss of sensitivity. We subsequently developed a hybrid 'multiplex-pooled' strategy to testing to address the need for both rapid analysis of samples from personnel at high risk of COVID infection and routine screening. Herein, our SARS-CoV-2 assays specifically address the needs of occupational healthcare for both rapid analysis of personnel at high-risk of infection and routine screening that is essential for controlling COVID-19 disease transmission. In addition to SARS-CoV-2 and COVID-19, this work demonstrates successful flexible assays developments and deployments with implications for emerging highly transmissible diseases and future pandemics.
Collapse
Affiliation(s)
- Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Bryan D Carson
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Joshua D Podlevsky
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Cathryn M Mayes
- WMD Threats and Aerosol Science, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jessica M Rowland
- Global Chemical and Biological Security, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - DeAnna Campbell
- Biological and Chemical Sensors Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - J Bryce Ricken
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - George Wudiri
- Cooperative Nuclear Counterproliferation, Sandia National Laboratories, Albuquerque, NM, 87123, USA
| | - Jerilyn A Timlin
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
- Computational Biology and Biophysics Department, Sandia National Laboratories, Albuquerque, NM, 87123, USA.
| |
Collapse
|
37
|
Kolarević S, Micsinai A, Szántó-Egész R, Lukács A, Kračun-Kolarević M, Djordjevic A, Vojnović-Milutinović D, Marić JJ, Kirschner AKT, Farnleitner AAH, Linke R, Đukic A, Kostić-Vuković J, Paunović M. Wastewater-based epidemiology in countries with poor wastewater treatment - Epidemiological indicator function of SARS-CoV-2 RNA in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156964. [PMID: 35764146 PMCID: PMC9232394 DOI: 10.1016/j.scitotenv.2022.156964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology (WBE) surveillance of COVID-19 and other future outbreaks is a challenge for developing countries as most households are not connected to a sewerage system. In December 2019, SARS-CoV-2 RNA was detected in the Danube River at a site severely affected by wastewaters from Belgrade. Rivers are much more complex systems than wastewater systems, and efforts are needed to address all the factors influencing the adoption of WBE as an alternative to targeting raw wastewater. Our objective was to provide a more detailed insight into the potential of SARS-CoV-2 surveillance in Serbian surface waters for epidemiological purposes. Water samples were collected at 12 sites along the Sava and Danube rivers in Belgrade during the fourth COVID-19 wave in Serbia that started in late February 2021. RNA was concentrated using Amicon Ultra-15 centrifugal filters and quantified using RT-qPCR with primer sets targeting nucleocapsid (N1 and N2) and envelope (E) protein genes. Microbiological (faecal indicator bacteria and human and animal genetic faecal source tracking markers), epidemiological, physicochemical and hydromorphological parameters were analysed in parallel. From 44 samples, SARS-CoV-2 RNA was detected in 31, but only at 4 concentrations above the level of quantification (ranging from 8.47 × 103 to 2.07 × 104 gc/L). The results indicated that surveillance of SARS-CoV-2 RNA in surface waters as ultimate recipients could be used as an epidemiological early-warning tool in countries lacking wastewater treatment and proper sewerage infrastructure. The performance of the applied approach, including advanced sampling site characterization to trace and identify sites with significant raw sewage influence from human populations, could be further improved by adaptation of the methodology for processing higher volumes of samples and enrichment factors, which should provide the quantitative instead of qualitative data needed for WBE.
Collapse
Affiliation(s)
- Stoimir Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Adrienn Micsinai
- WESSLING Hungary Ltd., Anonymous str 6., H-1045 Budapest, Hungary
| | | | - Alena Lukács
- Biomi Ltd., Szent-Györgyi Albert str 4, H-2100 Gödöllő, Hungary
| | - Margareta Kračun-Kolarević
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Vojnović-Milutinović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jovana Jovanović Marić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Alexander K T Kirschner
- Medical University Vienna, Institute for Hygiene and Applied Immunology - Water Microbiology, Kinderspitalgasse 15, Vienna, Austria; Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria
| | - Andreas A H Farnleitner
- Interuniversity Cooperation Center Water and Health (ICC), Austria; Karl Landsteiner University of Health Sciences, Division Water Quality & Health, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems, Austria; Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Microbiology and Molecular Diagnostics 166/5/3, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Rita Linke
- Interuniversity Cooperation Center Water and Health (ICC), Austria; Technische Universität Wien, Institute of Chemical, Environmental and Bioscience Engineering, Research Group for Microbiology and Molecular Diagnostics 166/5/3, Gumpendorferstraße 1a, A-1060 Vienna, Austria
| | - Aleksandar Đukic
- University of Belgrade, Faculty of Civil Engineering, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia
| | - Jovana Kostić-Vuković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Biology and Inland Water Protection, Kneza Višeslava 1, 11000 Belgrade, Serbia
| | - Momir Paunović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
38
|
Atluri VL, Stalter RM, McGuffin SA, Johnson L, Healy B, Benesch HA, Lan K, Marsland P, Pottinger P, Patel RC. Patient characteristics associated with conversion from negative to positive severe acute respiratory syndrome coronavirus-2 polymerase chain reaction test results: Implications for clinical false-negativity from a single-center: A case-control study. J Med Virol 2022; 94:4792-4802. [PMID: 35698816 PMCID: PMC9350093 DOI: 10.1002/jmv.27932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Accurate diagnosis of coronavirus disease 2019 is essential to limiting transmission within healthcare settings. The aim of this study was to identify patient demographic and clinical characteristics that could impact the clinical sensitivity of the nasopharyngeal severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) reverse transcription polymerase chain reaction (RT-PCR) test. METHODS We conducted a retrospective, matched case-control study of patients who underwent repeated nasopharyngeal SARS-CoV2 RT-PCR testing at a tertiary care academic medical center between March 1 and July 23, 2020. The primary endpoint was conversion from negative to positive PCR status within 14 days. We conducted conditional logistic regression modeling to assess the associations between demographic and clinical features and conversion to test positivity. RESULTS Of 51,116 patients with conclusive SARS-CoV2 nasopharyngeal RT-PCR results, 97 patients converted from negative to positive within 14 days. We matched those patients 1:2 to 194 controls by initial test date. In multivariate analysis, clinical suspicion for a respiratory infection (adjusted odds ratio [aOR] 20.9, 95% confidence interval [CI]: 3.1-141.2) and lack of pulmonary imaging (aOR 4.7, 95% CI: 1.03-21.8) were associated with conversion, while a lower burden of comorbidities trended toward an increased odds of conversion (aOR 2.2, 95% CI: 0.9-5.3). CONCLUSIONS Symptoms consistent with a respiratory infection, especially in relatively healthy individuals, should raise concerns about a clinical false-negative result. We have identified several characteristics that should be considered when creating institutional infection prevention guidelines in the absence of more definitive data and should be included in future studies.
Collapse
Affiliation(s)
- Vidya L. Atluri
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineVeterans Affairs Central California Healthcare SystemFresnoCaliforniaUSA
| | - Randy M. Stalter
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Luke Johnson
- School of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Bailey Healy
- School of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | | | - Kristine Lan
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Paula Marsland
- School of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Paul Pottinger
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Rena C. Patel
- Departments of Medicine and Global HealthUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
39
|
Zhu X, Zhou F, Zhou Q, Xu J. Evaluating the role of SARS-CoV-2 target genes based on two nucleic acid assay kits. Front Public Health 2022; 10:982171. [PMID: 36249245 PMCID: PMC9554243 DOI: 10.3389/fpubh.2022.982171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Effective isolation and early treatment of coronavirus disease 2019 (COVID-19) relies on rapid, accurate, and straightforward diagnostic tools. In response to the rapidly increasing number of cases, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays for multiple target genes have become widely available in the market. METHODS In total, 236 COVID-19 patients with positive results in both RT-qPCR and rapid antigen diagnosis (Ag-RDT) were enrolled in the study. The cycle threshold (Ct) was compared with different onset times and target genes. Comparison between groups was evaluated with the Kruskal-Wallis test and Dunn test. The correlation between target genes was analyzed by Spearman. RESULTS In samples of Ct ≤ 21, Ct was different for the nucleocapsid (N), open reading frame 1ab (ORF1ab), and envelope (E) genes (P < 0.05). Mild COVID-19 patients within 7 days of onset accounted for 67.80% of all enrolled patients. At the above stage, all target genes reached the trough of Ct, and N genes showed lower values than the other target genes. The Ct of the ORF1ab and N gene in asymptomatic patients differed from those of mild patients within 7 days and more than 14 days of onset. The kits used in the study showed strong consistency among target genes, with all correlation coefficients >0.870. CONCLUSION RT-qPCR confirmed that the N gene performed well in Ct ≤ 21 and samples within 7 days of onset. Ag-RDT was discriminatory for patients within 7 days of onset. This study facilitated early identification and control of COVID-19 prevalence among patients.
Collapse
Affiliation(s)
- Xuetong Zhu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengyan Zhou
- Department of Infectious Disease Control, Jilin City Center for Disease Control and Prevention, Jilin, China
| | - Qi Zhou
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Jiancheng Xu
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 DOI: 10.1101/2022.06.28.22276884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 05/27/2023] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
41
|
Mercier E, D'Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, Eid W, Plaza-Diaz J, Kabir MP, Fang W, Cowan A, Stephenson SE, Pisharody L, MacKenzie AE, Graber TE, Wan S, Delatolla R. Municipal and neighbourhood level wastewater surveillance and subtyping of an influenza virus outbreak. Sci Rep 2022; 12:15777. [PMID: 36138059 PMCID: PMC9493155 DOI: 10.1038/s41598-022-20076-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Recurrent influenza epidemics and pandemic potential are significant risks to global health. Public health authorities use clinical surveillance to locate and monitor influenza and influenza-like cases and outbreaks to mitigate hospitalizations and deaths. Currently, global integration of clinical surveillance is the only reliable method for reporting influenza types and subtypes to warn of emergent pandemic strains. The utility of wastewater surveillance (WWS) during the COVID-19 pandemic as a less resource intensive replacement or complement for clinical surveillance has been predicated on analyzing viral fragments in wastewater. We show here that influenza virus targets are stable in wastewater and partitions favorably to the solids fraction. By quantifying, typing, and subtyping the virus in municipal wastewater and primary sludge during a community outbreak, we forecasted a citywide flu outbreak with a 17-day lead time and provided population-level viral subtyping in near real-time to show the feasibility of influenza virus WWS at the municipal and neighbourhood levels in near real time using minimal resources and infrastructure.
Collapse
Affiliation(s)
- Elisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Jian-Jun Jia
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Zhihao Zhang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Julio Plaza-Diaz
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Md Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Wanting Fang
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Aaron Cowan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean E Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
42
|
Performance Comparison of a Duplex Implementation of the CDC EUA 2019-nCoV Assay with the Seegene Allplex-SARS-CoV-2 Assay for the Detection of SARS-CoV-2 in Nasopharyngeal Swab Samples. Methods Protoc 2022; 5:mps5050073. [DOI: 10.3390/mps5050073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
RT-PCR tests have become the gold standard for detecting the SARS-CoV-2 virus in the context of the COVID-19 pandemic. Because of the extreme number of cases in periodic waves of infection, there is a severe financial and logistical strain on diagnostic laboratories. For this reason, alternative implementations and validations of academic protocols that employ the lowest cost and the most widely available equipment and reagents found in different regions are essential. In this study, we report an alternative implementation of the EUA 2019-nCoV CDC assay which uses a previously characterized duplex PCR reaction for the N1 and RNAse P target regions and an additional uniplex reaction for the N2 target region. Taking advantage of the Abbott m2000 Sample Preparation System and NEB Luna Universal Probe One-Step RT-qPCR kit, some of the most widely available and inexpensive nucleic acid extraction and amplification platforms, this modified test shows state-of-the-art analytical and clinical sensitivities and specificities when compared with the Seegene Allplex-SARS-CoV-2 assay. This implementation has the potential to be verified and implemented by diagnostic laboratories around the world to guarantee low-cost RT-PCR tests that can take advantage of widely available equipment and reagents.
Collapse
|
43
|
da Silva SJR, do Nascimento JCF, Germano Mendes RP, Guarines KM, Targino Alves da Silva C, da Silva PG, de Magalhães JJF, Vigar JRJ, Silva-Júnior A, Kohl A, Pardee K, Pena L. Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infect Dis 2022; 8:1758-1814. [PMID: 35940589 PMCID: PMC9380879 DOI: 10.1021/acsinfecdis.2c00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and virulent human-infecting coronavirus that emerged in late December 2019 in Wuhan, China, causing a respiratory disease called coronavirus disease 2019 (COVID-19), which has massively impacted global public health and caused widespread disruption to daily life. The crisis caused by COVID-19 has mobilized scientists and public health authorities across the world to rapidly improve our knowledge about this devastating disease, shedding light on its management and control, and spawned the development of new countermeasures. Here we provide an overview of the state of the art of knowledge gained in the last 2 years about the virus and COVID-19, including its origin and natural reservoir hosts, viral etiology, epidemiology, modes of transmission, clinical manifestations, pathophysiology, diagnosis, treatment, prevention, emerging variants, and vaccines, highlighting important differences from previously known highly pathogenic coronaviruses. We also discuss selected key discoveries from each topic and underline the gaps of knowledge for future investigations.
Collapse
Affiliation(s)
- Severino Jefferson Ribeiro da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jessica Catarine Frutuoso do Nascimento
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Renata Pessôa Germano Mendes
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Klarissa Miranda Guarines
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Caroline Targino Alves da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Poliana Gomes da Silva
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| | - Jurandy Júnior Ferraz de Magalhães
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), 52171-011 Recife, Pernambuco, Brazil.,University of Pernambuco (UPE), Serra Talhada Campus, 56909-335 Serra Talhada, Pernambuco, Brazil.,Public Health Laboratory of the XI Regional Health, 56912-160 Serra Talhada, Pernambuco, Brazil
| | - Justin R J Vigar
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Abelardo Silva-Júnior
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), 57072-900 Maceió, Alagoas, Brazil
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lindomar Pena
- Laboratory of Virology and Experimental Therapy (LAVITE), Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), 50670-420 Recife, Pernambuco, Brazil
| |
Collapse
|
44
|
Yu Z, Fang W, Yang Y, Yao H, Hu P, Shi J. Non-PCR Ultrasensitive Detection of Viral RNA by a Nanoprobe-Coupling Strategy: SARS-CoV-2 as an Example. Adv Healthc Mater 2022; 11:e2200031. [PMID: 35678310 PMCID: PMC9347949 DOI: 10.1002/adhm.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Indexed: 01/27/2023]
Abstract
Developing efficient and highly sensitive diagnostic techniques for early detections of pathogenic viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is vitally important for preventing its widespread. However, the conventional polymerase chain reaction (PCR)-based detection features high complexity, excessive time-consumption, and labor-intensiveness, while viral protein-based detections suffer from moderate sensitivity and specificity. Here, a non-PCR but ultrasensitive viral RNA detection strategy is reported based on a facile nanoprobe-coupling strategy without enzymatic amplification, wherein PCR-induced bias and other shortcomings are successfully circumvented. This approach endows the viral RNA detection with ultra-low background to maximum signal ratio in the linear signal amplification by using Au nanoparticles as reporters. The present strategy exhibits 100% specificity toward SARS-CoV-2 N gene, and ultrasensitive detection of as low as 52 cp mL-1 of SARS-CoV-2 N gene without pre-PCR amplification. This approach presents a novel ultrasensitive tool for viral RNA detections for fighting against COVID-19 and other types of pathogenic virus-caused diseases.
Collapse
Affiliation(s)
- Zhiguo Yu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQueensland4072Australia
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| |
Collapse
|
45
|
Shrestha L, Lin MJ, Xie H, Mills MG, Mohamed Bakhash SA, Gaur VP, Livingston RJ, Castor J, Bruce EA, Botten JW, Huang ML, Jerome KR, Greninger AL, Roychoudhury P. Clinical Performance Characteristics of the Swift Normalase Amplicon Panel for Sensitive Recovery of Severe Acute Respiratory Syndrome Coronavirus 2 Genomes. J Mol Diagn 2022; 24:963-976. [PMID: 35863699 PMCID: PMC9290336 DOI: 10.1016/j.jmoldx.2022.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/24/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Amplicon-based sequencing methods are central in characterizing the diversity, transmission, and evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but need to be rigorously assessed for clinical utility. Herein, we validated the Swift Biosciences' SARS-CoV-2 Swift Normalase Amplicon Panels using remnant clinical specimens. High-quality genomes meeting our established library and sequence quality criteria were recovered from positive specimens, with 95% limit of detection of 40.08 SARS-CoV-2 copies/PCR. Breadth of genome recovery was evaluated across a range of CT values (11.3 to 36.7; median, 21.6). Of 428 positive samples, 413 (96.5%) generated genomes with <10% unknown bases, with a mean genome coverage of 13,545× ± SD 8382×. No genomes were recovered from PCR-negative specimens (n = 30) or from specimens positive for non-SARS-CoV-2 respiratory viruses (n = 20). Compared with whole-genome shotgun metagenomic sequencing (n = 14) or Sanger sequencing for the spike gene (n = 11), pairwise identity between consensus sequences was 100% in all cases, with highly concordant allele frequencies (R2 = 0.99) between Swift and shotgun libraries. When samples from different clades were mixed at varying ratios, expected variants were detected even in 1:99 mixtures. When deployed as a clinical test, 268 tests were performed in the first 23 weeks, with a median turnaround time of 11 days, ordered primarily for outbreak investigations and infection control.
Collapse
Affiliation(s)
- Lasata Shrestha
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Michelle J Lin
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Hong Xie
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Margaret G Mills
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Shah A Mohamed Bakhash
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Vinod P Gaur
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Robert J Livingston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jared Castor
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Emily A Bruce
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Jason W Botten
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|
46
|
SARS-CoV-2 Virus Culture, Genomic and Subgenomic RNA Load, and Rapid Antigen Test in Experimentally Infected Syrian Hamsters. J Virol 2022; 96:e0103422. [PMID: 36040179 PMCID: PMC9517720 DOI: 10.1128/jvi.01034-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.
Collapse
|
47
|
The New SARS-CoV-2 Variants and Their Epidemiological Impact in Mexico. mBio 2022; 13:e0106021. [PMID: 35972143 PMCID: PMC9600628 DOI: 10.1128/mbio.01060-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The COVID-19 disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus started its deadly journey into a global pandemic in Wuhan, China, in December 2019, where it was first isolated. Subsequently, multiple variants of the virus have been identified worldwide. In this review, we discuss the overall landscape of the pandemic in Mexico, including its most prevalent variants, their surveillance at a genomic level, and how they impacted the epidemiology of the disease. We also evaluate the heterologous vaccination in Mexico and how it may have influenced group immunity and helped mitigate the pandemic. Finally, we present an integrated view that could help us to understand the pandemic and serve as an example of the situation in Latin America.
Collapse
|
48
|
Punchoo R, Bhoora S, Bangalee A. Laboratory Considerations for Reporting Cycle Threshold Value in COVID-19. EJIFCC 2022; 33:80-93. [PMID: 36313906 PMCID: PMC9562486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic is caused by the SARS-CoV-2 RNA virus. Nucleic acid amplification testing (NAAT) is the mainstay to confirm infection. A large number of reverse transcriptase polymerase chain reaction (RT-PCR) assays are currently available for qualitatively assessing SARS-CoV-2 infection. Although these assays show variation in cycle threshold values (Ct), advocacy for reporting Ct values (in addition to the qualitative result) is tabled to guide patient clinical management decisions. This article provides critical commentary on qualitative RT-PCR laboratory and clinical considerations for Ct value reporting. Factors contributing to Ct variation are discussed by considering relevant viral life-cycle factors, patient factors and the laboratory total testing processes that contribute to the Ct variation and mitigate against the reporting of Ct values by qualitative NAAT.
Collapse
Affiliation(s)
- Rivak Punchoo
- Tshwane Academic Division, National Health Laboratory Services, Pretoria, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sachin Bhoora
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Avania Bangalee
- Tshwane Academic Division, National Health Laboratory Services, Pretoria, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
49
|
Ejima K, Kim KS, Bento AI, Iwanami S, Fujita Y, Aihara K, Shibuya K, Iwami S. Estimation of timing of infection from longitudinal SARS-CoV-2 viral load data: mathematical modelling study. BMC Infect Dis 2022; 22:656. [PMID: 35902832 PMCID: PMC9331019 DOI: 10.1186/s12879-022-07646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple waves of the COVID-19 epidemic have hit most countries by the end of 2021. Most of those waves are caused by emergence and importation of new variants. To prevent importation of new variants, combination of border control and contact tracing is essential. However, the timing of infection inferred by interview is influenced by recall bias and hinders the contact tracing process. METHODS We propose a novel approach to infer the timing of infection, by employing a within-host model to capture viral load dynamics after the onset of symptoms. We applied this approach to ascertain secondary transmission which can trigger outbreaks. As a demonstration, the 12 initial reported cases in Singapore, which were considered as imported because of their recent travel history to Wuhan, were analyzed to assess whether they are truly imported. RESULTS Our approach suggested that 6 cases were infected prior to the arrival in Singapore, whereas other 6 cases might have been secondary local infection. Three among the 6 potential secondary transmission cases revealed that they had contact history to previously confirmed cases. CONCLUSIONS Contact trace combined with our approach using viral load data could be the key to mitigate the risk of importation of new variants by identifying cases as early as possible and inferring the timing of infection with high accuracy.
Collapse
Affiliation(s)
- Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA.
- The Tokyo Foundation for Policy Research, Tokyo, Japan.
| | - Kwang Su Kim
- Interdisciplinary Biology Laboratory, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Science system simulation, Pukyong National University, Busan, South Korea
| | - Ana I Bento
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- Interdisciplinary Biology Laboratory, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Kenji Shibuya
- The Tokyo Foundation for Policy Research, Tokyo, Japan
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama, Japan.
- Science Groove Inc., Fukuoka, Japan.
| |
Collapse
|
50
|
Weller SA, Armstrong SR, Bailey S, Burnell HT, Burt EL, Cant NE, Cawthorne KR, Chester M, Choules JE, Coe NA, Coward L, Cox VL, Emery ER, Evans CP, Finn A, Halford CM, Hamblin KA, Harrison GV, Hartley MG, Hudson C, James B, Jones HE, Keyser E, Lonsdale CL, Marshall LE, Maule CE, Miles JA, Newstead SL, Nicholls M, Osborne C, Pearcy AS, Penny LD, Perrot R, Rachwal P, Robinson V, Rushton D, Stahl FM, Staplehurst SV, Stapleton HL, Steeds K, Stephenson K, Thompson IJ, Thwaite JE, Ulaeto DO, Waters N, Wills DJ, Wills ZS, Rees C, Hutley EJ. Development and operation of the defence COVID-19 lab as a SARS-CoV-2 diagnostic screening capability for UK military personnel. BMJ Mil Health 2022; 170:e002134. [PMID: 35878971 PMCID: PMC10958320 DOI: 10.1136/military-2022-002134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND In the face of the COVID-19 pandemic, the Defence Science and Technology Laboratory (Dstl) and Defence Pathology combined to form the Defence Clinical Lab (DCL), an accredited (ISO/IEC 17025:2017) high-throughput SARS-CoV-2 PCR screening capability for military personnel. LABORATORY STRUCTURE AND RESOURCE The DCL was modular in organisation, with laboratory modules and supporting functions combining to provide the accredited SARS-CoV-2 (envelope (E)-gene) PCR assay. The DCL was resourced by Dstl scientists and military clinicians and biomedical scientists. LABORATORY RESULTS Over 12 months of operation, the DCL was open on 289 days and tested over 72 000 samples. Six hundred military SARS-CoV-2-positive results were reported with a median E-gene quantitation cycle (Cq) value of 30.44. The lowest Cq value for a positive result observed was 11.20. Only 64 samples (0.09%) were voided due to assay inhibition after processing started. CONCLUSIONS Through a sustained effort and despite various operational issues, the collaboration between Dstl scientific expertise and Defence Pathology clinical expertise provided the UK military with an accredited high-throughput SARS-CoV-2 PCR test capability at the height of the COVID-19 pandemic. The DCL helped facilitate military training and operational deployments contributing to the maintenance of UK military capability. In offering a bespoke capability, including features such as testing samples in unit batches and oversight by military consultant microbiologists, the DCL provided additional benefits to the UK Ministry of Defence that were potentially not available from other SARS-CoV-2 PCR laboratories. The links between Dstl and Defence Pathology have also been strengthened, benefitting future research activities and operational responses.
Collapse
Affiliation(s)
- Simon A Weller
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - S R Armstrong
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - S Bailey
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - H T Burnell
- Operations Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - E L Burt
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - N E Cant
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - K R Cawthorne
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - M Chester
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - J E Choules
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - N A Coe
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - L Coward
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - V L Cox
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - E R Emery
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C P Evans
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - A Finn
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C M Halford
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - K A Hamblin
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - G V Harrison
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - M G Hartley
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C Hudson
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
| | - B James
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - H E Jones
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - E Keyser
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C L Lonsdale
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - L E Marshall
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C E Maule
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - J A Miles
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - S L Newstead
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - M Nicholls
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
| | - C Osborne
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - A S Pearcy
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - L D Penny
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - R Perrot
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - P Rachwal
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - V Robinson
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - D Rushton
- Platform Systems Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, UK
| | - F M Stahl
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - S V Staplehurst
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - H L Stapleton
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - K Steeds
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - K Stephenson
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - I J Thompson
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - J E Thwaite
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - D O Ulaeto
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - N Waters
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - D J Wills
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - Z S Wills
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - C Rees
- CBR Division, Defence Science and Technology Laboratory Porton Down, Salisbury, UK
| | - E J Hutley
- Defence Pathology, Royal Centre for Defence Medicine, Birmingham, UK
| |
Collapse
|