1
|
Guliy OI, Evstigneeva SS, Khanadeev VA, Dykman LA. Antibody Phage Display Technology for Sensor-Based Virus Detection: Current Status and Future Prospects. BIOSENSORS 2023; 13:640. [PMID: 37367005 DOI: 10.3390/bios13060640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Viruses are widespread in the environment, and many of them are major pathogens of serious plant, animal, and human diseases. The risk of pathogenicity, together with the capacity for constant mutation, emphasizes the need for measures to rapidly detect viruses. The need for highly sensitive bioanalytical methods to diagnose and monitor socially significant viral diseases has increased in the past few years. This is due, on the one hand, to the increased incidence of viral diseases in general (including the unprecedented spread of a new coronavirus infection, SARS-CoV-2), and, on the other hand, to the need to overcome the limitations of modern biomedical diagnostic methods. Phage display technology antibodies as nano-bio-engineered macromolecules can be used for sensor-based virus detection. This review analyzes the commonly used virus detection methods and approaches and shows the prospects for the use of antibodies prepared by phage display technology as sensing elements for sensor-based virus detection.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Vitaly A Khanadeev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia
| |
Collapse
|
2
|
Qi R, Wang G, Wang X, Li C, Huang L, Xiao W, Shao B, Zhou C, Ding X, Li F, Zhou W. A full genome tiling array enhanced the inspection and quarantine of SARS-CoV-2. Virol J 2023; 20:42. [PMID: 36872317 PMCID: PMC9985699 DOI: 10.1186/s12985-023-02000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023] Open
Abstract
As the worldwide spreading epidemic of SARS-CoV-2, quick inspection and quarantine of passengers for SARS-CoV-2 infection are essential for controlling the spread of SARS-CoV-2, especially the cross-border transmission. This study reports a SARS-CoV-2 genome sequencing method based on a re-sequencing tiling array successfully used in border inspection and quarantine. The tiling array chip has four cores, with one core of 240,000 probes dedicated to the whole genome sequencing of the SAR-CoV-2 genome. The assay protocol has been improved to reduce the detection time to within one day and can detect 96 samples in parallel. The detection accuracy has been validated. This fast and simple procedure is also of low cost and high accuracy, and it is particularly suitable for the rapid tracking of viral genetic variants in custom inspection applications. Combining these properties means this method has significant application potential in the clinical investigation and quarantine of SARS-CoV-2. We used this SARS-CoV-2 genome re-sequencing tiling array to inspect and quarantine China's entry and exit ports in the Zhejiang Province. From November 2020 to January 2022, we observed the gradual shift of SARS-CoV-2 variants from the D614G type to the Delta Variant, and then to the dominance of the Omicron variant recently, consistently with the global emergency pattern of the new SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Runzi Qi
- Hangzhou Xiaoshan Airport Customs of the People's Republic of China, Hangzhou, 311241, China.
| | - Gang Wang
- Hangzhou International Travel Healthcare Center, Hangzhou, 310061, China
| | - Xu Wang
- Centrillion Technology (Hangzhou) Co., Ltd, Hangzhou, 310053, China
| | - Cheng Li
- Hangzhou Customs Logistics Management Center, Hangzhou, 310005, China
| | - Lei Huang
- Zhoushan International Travel Healthcare Center Clinic, Zhoushan, 316004, China
| | - Weixi Xiao
- Centrillion Technology (Hangzhou) Co., Ltd, Hangzhou, 310053, China
| | - Bing Shao
- Centrillion Technology (Hangzhou) Co., Ltd, Hangzhou, 310053, China
| | - Chunya Zhou
- Hangzhou Xiaoshan Airport Customs of the People's Republic of China, Hangzhou, 311241, China
| | - Xun Ding
- Centrillion Technologies, Palo Alto, CA, 94303, USA
| | - Feng Li
- Centrillion Technology (Hangzhou) Co., Ltd, Hangzhou, 310053, China
| | - Wei Zhou
- Centrillion Technologies, Palo Alto, CA, 94303, USA
| |
Collapse
|
3
|
Guliy OI, Zaitsev BD, Semyonov AP, Karavaeva OA, Fomin AS, Staroverov SA, Burov AM, Borodina IA. Sensor System Based on a Piezoelectric Resonator with a Lateral Electric Field for Virus Diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:901-911. [PMID: 35232607 DOI: 10.1016/j.ultrasmedbio.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
A sensor system based on a piezoelectric resonator with a lateral electric field in the frequency range 6-7 MHz of the electric field for virus detection is described. Through use of the transmissible virus causing gastroenteritis in pigs and specific antibodies, the possibility of detecting the virus in suspension in real time was determined. It was found that the frequency dependence of the real and imaginary parts of the electrical impedance of such a resonator loaded with a virus suspension changes significantly after the addition of specific antibodies to the suspension. No changes are observed if the antibodies are not specific. Thus, the results obtained illustrate the possibility of detecting viruses in situ, directly in the liquid phase, if the change in the real or imaginary parts of the electrical impedance after the addition of antibodies is used as an analytical signal. The possibility of virus detection in the presence of foreign viral particles has been illustrated.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia.
| | - Boris D Zaitsev
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| | - Alexander P Semyonov
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| | - Olga A Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Sergey A Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Andrey M Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center of the Russian Academy of Sciences, Saratov, Russia
| | - Irina A Borodina
- Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| |
Collapse
|
4
|
Tiper I, Kourout M, Lanning B, Fisher C, Konduru K, Purkayastha A, Kaplan G, Duncan R. Tracking ebolavirus genomic drift with a resequencing microarray. PLoS One 2022; 17:e0263732. [PMID: 35143574 PMCID: PMC8830711 DOI: 10.1371/journal.pone.0263732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Filoviruses are emerging pathogens that cause acute fever with high fatality rate and present a global public health threat. During the 2013–2016 Ebola virus outbreak, genome sequencing allowed the study of virus evolution, mutations affecting pathogenicity and infectivity, and tracing the viral spread. In 2018, early sequence identification of the Ebolavirus as EBOV in the Democratic Republic of the Congo supported the use of an Ebola virus vaccine. However, field-deployable sequencing methods are needed to enable a rapid public health response. Resequencing microarrays (RMA) are a targeted method to obtain genomic sequence on clinical specimens rapidly, and sensitively, overcoming the need for extensive bioinformatic analysis. This study presents the design and initial evaluation of an ebolavirus resequencing microarray (Ebolavirus-RMA) system for sequencing the major genomic regions of four Ebolaviruses that cause disease in humans. The design of the Ebolavirus-RMA system is described and evaluated by sequencing repository samples of three Ebolaviruses and two EBOV variants. The ability of the system to identify genetic drift in a replicating virus was achieved by sequencing the ebolavirus glycoprotein gene in a recombinant virus cultured under pressure from a neutralizing antibody. Comparison of the Ebolavirus-RMA results to the Genbank database sequence file with the accession number given for the source RNA and Ebolavirus-RMA results compared to Next Generation Sequence results of the same RNA samples showed up to 99% agreement.
Collapse
Affiliation(s)
- Irina Tiper
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Moussa Kourout
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Bryan Lanning
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Carolyn Fisher
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Krishnamurthy Konduru
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | | | - Gerardo Kaplan
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
| | - Robert Duncan
- Division of Emerging and Transfusion-Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
5
|
Guliy O, Zaitsev B, Teplykh A, Balashov S, Fomin A, Staroverov S, Borodina I. Acoustical Slot Mode Sensor for the Rapid Coronaviruses Detection. SENSORS 2021; 21:s21051822. [PMID: 33807879 PMCID: PMC7961855 DOI: 10.3390/s21051822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/02/2022]
Abstract
A method for the rapid detection of coronaviruses is presented on the example of the transmissible gastroenteritis virus (TGEV) directly in aqueous solutions with different conductivity. An acoustic sensor based on a slot wave in an acoustic delay line was used for the research. The addition of anti-TGEV antibodies (Abs) diluted in an aqueous solution led to a change in the depth and frequency of resonant peaks on the frequency dependence of the insertion loss of the sensor. The difference in the output parameters of the sensor before and after the biological interaction of the TGE virus in solutions with the specific antibodies allows drawing a conclusion about the presence/absence of the studied viruses in the analyzed solution. The possibility for virus detection in aqueous solutions with the conductivity of 1.9–900 μs/cm, as well as in the presence of the foreign viral particles, has been demonstrated. The analysis time did not exceed 10 min.
Collapse
Affiliation(s)
- Olga Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Boris Zaitsev
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Andrey Teplykh
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
| | - Sergey Balashov
- Information Technology Center Renato Archer, Campinas CEP, SP 13069-901, Brazil;
| | - Alexander Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Sergey Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia; (O.G.); (A.F.); (S.S.)
| | - Irina Borodina
- Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Saratov Branch, Saratov 410019, Russia; (B.Z.); (A.T.)
- Correspondence: ; Tel.: +7-8452-272401
| |
Collapse
|
6
|
Wang J, Yu P, Xie Z, Yan T, Chen C, Shen X, Chen X, Li L, Wang X, Sun S, Ma X. A resequencing pathogen microarray method for high-throughput molecular diagnosis of multiple etiologies associated with central nervous system infection. Arch Virol 2017; 162:3769-3778. [PMID: 28913577 PMCID: PMC7087039 DOI: 10.1007/s00705-017-3550-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022]
Abstract
Central nervous system infection (CNSI) results in significant health and economic burdens worldwide, but the diversity of causative pathogens makes differential diagnosis very difficult. Although PCR and real-time fluorescent quantitative PCR (q-PCR) assays are widely applied for pathogen detection, they are generally optimized for the detection of a single or limited number of targets and are not suitable for the diagnosis of numerous CNSI agents. In this study, we describe the development of a resequencing pathogen microarray (RPM-IVDC4) method for the simultaneous detection of viruses, bacteria, fungi and parasites that cause CNSI. The test panel of this assay included more than 100 microorganism species across 45 genera and 30 families. The analytical specificity and sensitivity were examined using a panel of positive reference strains, and the clinical performance was evaluated using 432 clinical samples by comparing the results with q-PCR assays. Our results demonstrated good performance of the RPM-IVDC4 assay in terms of sensitivity, specificity and detection range, suggesting that the platform can be further developed for high-throughput CNSI diagnosis.
Collapse
Affiliation(s)
- Ji Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Panhui Yu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Neurology Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Zhengde Xie
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tengfei Yan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,No. 1 Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chen Chen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinxin Shen
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangpeng Chen
- MOE Key Laboratory of Major Diseases in Children, National Key Discipline of Pediatrics, National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Lixin Li
- No. 1 Hospital of Shijiazhuang, Shijiazhuang, China
| | - Xiuxia Wang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suzhen Sun
- Neurology Department, Children's Hospital of Hebei Province, Shijiazhuang, China.
| | - Xuejun Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
7
|
Doggett NA, Mukundan H, Lefkowitz EJ, Slezak TR, Chain PS, Morse S, Anderson K, Hodge DR, Pillai S. Culture-Independent Diagnostics for Health Security. Health Secur 2017; 14:122-42. [PMID: 27314653 DOI: 10.1089/hs.2015.0074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past decade has seen considerable development in the diagnostic application of nonculture methods, including nucleic acid amplification-based methods and mass spectrometry, for the diagnosis of infectious diseases. The implications of these new culture-independent diagnostic tests (CIDTs) include bypassing the need to culture organisms, thus potentially affecting public health surveillance systems, which continue to use isolates as the basis of their surveillance programs and to assess phenotypic resistance to antimicrobial agents. CIDTs may also affect the way public health practitioners detect and respond to a bioterrorism event. In response to a request from the Department of Homeland Security, Los Alamos National Laboratory and the Centers for Disease Control and Prevention cosponsored a workshop to review the impact of CIDTs on the rapid detection and identification of biothreat agents. Four panel discussions were held that covered nucleic acid amplification-based diagnostics, mass spectrometry, antibody-based diagnostics, and next-generation sequencing. Exploiting the extensive expertise available at this workshop, we identified the key features, benefits, and limitations of the various CIDT methods for providing rapid pathogen identification that are critical to the response and mitigation of a bioterrorism event. After the workshop we conducted a thorough review of the literature, investigating the current state of these 4 culture-independent diagnostic methods. This article combines information from the literature review and the insights obtained at the workshop.
Collapse
|
8
|
DNA Microarray Detection of 18 Important Human Blood Protozoan Species. PLoS Negl Trop Dis 2016; 10:e0005160. [PMID: 27911895 PMCID: PMC5135439 DOI: 10.1371/journal.pntd.0005160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 01/22/2023] Open
Abstract
Background Accurate detection of blood protozoa from clinical samples is important for diagnosis, treatment and control of related diseases. In this preliminary study, a novel DNA microarray system was assessed for the detection of Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia in humans, animals, and vectors, in comparison with microscopy and PCR data. Developing a rapid, simple, and convenient detection method for protozoan detection is an urgent need. Methodology/Principal Findings The microarray assay simultaneously identified 18 species of common blood protozoa based on the differences in respective target genes. A total of 20 specific primer pairs and 107 microarray probes were selected according to conserved regions which were designed to identify 18 species in 5 blood protozoan genera. The positive detection rate of the microarray assay was 91.78% (402/438). Sensitivity and specificity for blood protozoan detection ranged from 82.4% (95%CI: 65.9% ~ 98.8%) to 100.0% and 95.1% (95%CI: 93.2% ~ 97.0%) to 100.0%, respectively. Positive predictive value (PPV) and negative predictive value (NPV) ranged from 20.0% (95%CI: 2.5% ~ 37.5%) to 100.0% and 96.8% (95%CI: 95.0% ~ 98.6%) to 100.0%, respectively. Youden index varied from 0.82 to 0.98. The detection limit of the DNA microarrays ranged from 200 to 500 copies/reaction, similar to PCR findings. The concordance rate between microarray data and DNA sequencing results was 100%. Conclusions/Significance Overall, the newly developed microarray platform provides a convenient, highly accurate, and reliable clinical assay for the determination of blood protozoan species. More than 1 billion people are infected with blood protozoan diseases worldwide. The most common blood protozoa in humans, animals, and vectors include Plasmodium, Leishmania, Trypanosoma, Toxoplasma gondii and Babesia. Due to similar morphology among different blood protozoan species, misdiagnosis always occurs. Most molecular techniques are only carried out in laboratories, with a small number of samples detected simultaneously. Meanwhile, common detection methods may not be convenient for field investigation of large amounts of samples. In order to better manage blood protozoan infection, proper tools are required for the monitoring of these pathogens. Here, a comprehensive and sensitive DNA microarray was developed and tested, which allowed the parallel detection of 18 blood protozoan species.
Collapse
|
9
|
Kourout M, Fisher C, Purkayastha A, Tibbetts C, Winkelman V, Williamson P, Nakhasi HL, Duncan R. Multiplex detection and identification of viral, bacterial, and protozoan pathogens in human blood and plasma using a high-density resequencing pathogen microarray platform. Transfusion 2016; 56:1537-47. [DOI: 10.1111/trf.13524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Moussa Kourout
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | - Carolyn Fisher
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | | | | | | | | | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| | - Robert Duncan
- Division of Emerging and Transfusion Transmitted Diseases; OBRR, CBER, FDA; Silver Spring Maryland
| |
Collapse
|
10
|
Using Nucleic Acid Amplification Techniques in a Syndrome-Oriented Approach: Detection of Respiratory Agents. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Shen H, Zhu B, Wang S, Mo H, Wang J, Li J, Zhang C, Zeng H, Guan L, Shi W, Zhang Y, Ma X. Association of targeted multiplex PCR with resequencing microarray for the detection of multiple respiratory pathogens. Front Microbiol 2015; 6:532. [PMID: 26074910 PMCID: PMC4446546 DOI: 10.3389/fmicb.2015.00532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022] Open
Abstract
A large number of viral and bacterial organisms are responsible for community-acquired pneumonia (CAP) which contributes to substantial burden on health management. A new resequencing microarray (RPM-IVDC1) associated with targeted multiplex PCR was recently developed and validated for multiple respiratory viruses detection and discrimination. In this study, we evaluated the capability of RPM-IVDC1 for simultaneous identification of multiple viral and bacterial organisms. The nasopharyngeal aspirates (NPAs) of 110 consecutive CAP patients, aged from 1 month to 96 years old, were collected from five distinct general hospitals in Beijing during 1-year period. The samples were subjected to the RPM-IVDC1 established protocol as compared to a real-time PCR (qRT-PCR), which was used as standard. The results of virus detection were consistent with those previously described. A total of 37 of Streptococcus pneumoniae, 14 of Haemophilus influenzae, 10 of Mycoplasma pneumoniae, two of Klebsiella pneumoniae and one of Moraxella catarrhalis were detected by RPM-IVDC1. The sensitivities and specificities were compared with those of qRT-PCR for S. pneumoniae (100, 100%, respectively), H. influenzae (92.3, 97.9%, respectively), M. pneumoniae (69.2, 99.0%, respectively), K. pneumoniae (100, 100%, respectively), and M. catarrhalis (100, 100%, respectively). Additional 22 of Streptococcus spp., 24 of Haemophilus spp. and 16 of Neisseria spp. were identified. In addition, methicillin-resistant and carbapenemases allele were also found in nine of Staphylococcus spp. and one of K. pneumoniae, respectively. These results demonstrated the capability of RPM-IVDC1 for simultaneous detection of broad-spectrum respiratory pathogens in complex backgrounds and the advantage of accessing to the actual sequences, showing great potential use of epidemic outbreak investigation. The detection results should be carefully interpreted when introducing this technique in the clinical diagnostics.
Collapse
Affiliation(s)
- Hongwei Shen
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China ; Futian District Center for Disease Control and Prevention Shenzhen, China
| | - Bingqing Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention Beijing, China
| | - Shulian Wang
- Third Hospital of Beijing Armed Police Corps Laboratory Beijing, China
| | - Haolian Mo
- Futian District Center for Disease Control and Prevention Shenzhen, China
| | - Ji Wang
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China
| | - Jin Li
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China
| | - Chen Zhang
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China
| | - Huashu Zeng
- Futian District Center for Disease Control and Prevention Shenzhen, China
| | - Li Guan
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China
| | - Weixian Shi
- Beijing Center for Disease Control and Prevention, Institute for Infectious Disease and Endemic Disease Control Beijing, China
| | - Yong Zhang
- Futian District Center for Disease Control and Prevention Shenzhen, China
| | - Xuejun Ma
- Key Laboratory of Medical Virology, Ministry of Health, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention Beijing, China
| |
Collapse
|
12
|
Application of Multiplex PCR Coupled with Matrix-Assisted Laser Desorption Ionization-Time of Flight Analysis for Simultaneous Detection of 21 Common Respiratory Viruses. J Clin Microbiol 2015; 53:2549-54. [PMID: 26019198 DOI: 10.1128/jcm.00943-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
Respiratory infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory viruses. To compensate for the limits of current respiratory virus detection methods, we developed a 24-plex analysis (common respiratory virus-mass spectrometry [CRV-MS]) that can simultaneously detect and identify 21 common respiratory viruses based on a matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry system. To evaluate the efficacy of the CRV-MS method, we used 102 samples that were confirmed positive for these common respiratory viruses. All tests using the CRV-MS method were effective, with no cross-reactivity observed with other common respiratory viruses. To confirm the usefulness of the CRV-MS method, we screened 336 nasal and throat swabs that were collected from adults or children with suspected viral acute respiratory tract infections using the CRV-MS method and consensus PCR/reverse transcription-PCR (RT-PCR) methods. Excluding four RNase P-negative samples, the CRV-MS and consensus PCR/RT-PCR methods detected respiratory viruses in 92.5% (307/332) and 89.5% (297/332) of the samples, respectively. The two methods yielded identical results for 306 (92.2%) samples, including negative results for 25 samples (7.5%) and positive results for 281 samples (84.6%). Differences between the two methods may reflect their different sensitivities. The CRV-MS method proved to be sensitive and robust, and it can be used in large-scale epidemiological studies of common respiratory virus infections.
Collapse
|
13
|
Miller S, Karaoz U, Brodie E, Dunbar S. Solid and Suspension Microarrays for Microbial Diagnostics. METHODS IN MICROBIOLOGY 2015; 42:395-431. [PMID: 38620236 PMCID: PMC7172482 DOI: 10.1016/bs.mim.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.
Collapse
Affiliation(s)
- Steve Miller
- Clinical Microbiology Laboratory, University of California, San Francisco, California, USA
| | - Ulas Karaoz
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Eoin Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
14
|
Godehardt AW, Rodrigues Costa M, Tönjes RR. Review on porcine endogenous retrovirus detection assays--impact on quality and safety of xenotransplants. Xenotransplantation 2015; 22:95-101. [PMID: 25641488 PMCID: PMC4413356 DOI: 10.1111/xen.12154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 01/27/2023]
Abstract
Xenotransplantation of porcine organs, tissues, and cells inherits a risk for xenozoonotic infections. Viable tissues and cells intended for transplantation have to be considered as potentially contaminated non-sterile products. The demands on microbial testing, based on the regulatory requirements, are often challenging due to a restricted shelf life or the complexity of the product itself. In Europe, the regulatory framework for xenogeneic cell therapy is based on the advanced therapy medicinal products (ATMP) regulation (2007), the EMA CHMP Guideline on xenogeneic cell-based medicinal products (2009), as well as the WHO and Council of Europe recommendations. In the USA, FDA guidance for industry (2003) regulates the use of xenotransplants. To comply with the regulations, validated test methods need to be established that reveal the microbial status of a transplant within its given shelf life, complemented by strictly defined action alert limits and supported by breeding in specific pathogen-free (SPF) facilities. In this review, we focus on assays for the detection of the porcine endogenous retroviruses PERV-A/-B/-C, which exhibit highly polymorphic proviral loci in pig genomes. PERVs are transmitted vertically and cannot be completely eliminated by breeding or gene knock out technology. PERVs entail a public health concern that will persist even if no evidence of PERV infection of xenotransplant recipients in vivo has been revealed yet. Nevertheless, infectious risks must be minimized by full assessment of pigs as donors by combining different molecular screening assays for sensitive and specific detection as well as a functional analysis of the infectivity of PERV including an adequate monitoring of recipients.
Collapse
|
15
|
Abstract
Gastroenteritis is a clinical illness of humans and other animals that is characterized by vomiting and diarrhea and caused by a variety of pathogens, including viruses. An increasing number of viral species have been associated with gastroenteritis or have been found in stool samples as new molecular tools have been developed. In this work, a DNA microarray capable in theory of parallel detection of more than 100 viral species was developed and tested. Initial validation was done with 10 different virus species, and an additional 5 species were validated using clinical samples. Detection limits of 1 × 10(3) virus particles of Human adenovirus C (HAdV), Human astrovirus (HAstV), and group A Rotavirus (RV-A) were established. Furthermore, when exogenous RNA was added, the limit for RV-A detection decreased by one log. In a small group of clinical samples from children with gastroenteritis (n = 76), the microarray detected at least one viral species in 92% of the samples. Single infection was identified in 63 samples (83%), and coinfection with more than one virus was identified in 7 samples (9%). The most abundant virus species were RV-A (58%), followed by Anellovirus (15.8%), HAstV (6.6%), HAdV (5.3%), Norwalk virus (6.6%), Human enterovirus (HEV) (9.2%), Human parechovirus (1.3%), Sapporo virus (1.3%), and Human bocavirus (1.3%). To further test the specificity and sensitivity of the microarray, the results were verified by reverse transcription-PCR (RT-PCR) detection of 5 gastrointestinal viruses. The RT-PCR assay detected a virus in 59 samples (78%). The microarray showed good performance for detection of RV-A, HAstV, and calicivirus, while the sensitivity for HAdV and HEV was low. Furthermore, some discrepancies in detection of mixed infections were observed and were addressed by reverse transcription-quantitative PCR (RT-qPCR) of the viruses involved. It was observed that differences in the amount of genetic material favored the detection of the most abundant virus. The microarray described in this work should help in understanding the etiology of gastroenteritis in humans and animals.
Collapse
|
16
|
Metzgar D, Sampath R, Rounds MA, Ecker DJ. The value and validation of broad spectrum biosensors for diagnosis and biodefense. Virulence 2013; 4:752-8. [PMID: 24128433 PMCID: PMC3925709 DOI: 10.4161/viru.26652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/29/2013] [Indexed: 12/05/2022] Open
Abstract
Broad spectrum biosensors capable of identifying diverse organisms are transitioning from the realm of research into the clinic. These technologies simultaneously capture signals from a wide variety of biological entities using universal processes. Specific organisms are then identified through bioinformatic signature-matching processes. This is in contrast to currently accepted molecular diagnostic technologies, which utilize unique reagents and processes to detect each organism of interest. This paradigm shift greatly increases the breadth of molecular diagnostic tools with little increase in biochemical complexity, enabling simultaneous diagnostic, epidemiologic, and biothreat surveillance capabilities at the point of care. This, in turn, offers the promise of increased biosecurity and better antimicrobial stewardship. Efficient realization of these potential gains will require novel regulatory paradigms reflective of the generalized, information-based nature of these assays, allowing extension of empirical data obtained from readily available organisms to support broader reporting of rare, difficult to culture, or extremely hazardous organisms.
Collapse
Affiliation(s)
- David Metzgar
- Ibis Biosciences; An Abbott Company; Carlsbad, CA USA
| | | | | | - David J Ecker
- Ibis Biosciences; An Abbott Company; Carlsbad, CA USA
| |
Collapse
|
17
|
Abstract
Influenza viruses cause recurring epidemic outbreaks every year associated with high morbidity and mortality. Despite extensive research and surveillance efforts to control influenza outbreaks, the primary mitigation treatment for influenza is the development of yearly vaccine mixes targeted for the most prevalent virus strains. Consequently, the focus of many detection technologies has evolved toward accurate identification of subtype and understanding the evolution and molecular determinants of novel and pathogenic forms of influenza. The recent availability of potential antiviral treatments are only effective if rapid and accurate diagnostic tests for influenza epidemic management are available; thus, early detection of influenza infection is still important for prevention, containment, patient management, and infection control. This review discusses the current and emerging technologies for detection and strain identification of influenza virus and their specific gene targets, as well as their implications in patient management.
Collapse
Affiliation(s)
- Anthony P Malanoski
- Center for Bio/Molecular Science and Engineering, U. S. Naval Research Laboratory, 4555 Overlook Avenue, S. W., Code 6900, Washington, DC, 20375, USA
| | | |
Collapse
|
18
|
Shen H, Shi W, Wang J, Wang M, Li J, Zhang C, Nie K, Yang M, Zhang Y, Li A, Tan W, Ma X. Development of a new resequencing pathogen microarray based assay for detection of broad-spectrum respiratory tract viruses in patients with community-acquired pneumonia. PLoS One 2013; 8:e75704. [PMID: 24086618 PMCID: PMC3785410 DOI: 10.1371/journal.pone.0075704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022] Open
Abstract
A Resequencing Pathogen Microarray (RPM) is a single, highly multiplexed assay for detecting and differentiating similarly related pathogens by using closely overlapping probe sets to determine a target organism’s nucleotide sequence. In this study, a new RPM (RPM-IVDC1) that consisted of 224-bp detector tiles corresponding to 9 influenza A subtypes, 11 rhinoviruses, 28 enteroviruses and 38 other respiratory viruses was developed and optimized to provide individual and simultaneous detection sensitivities ranging from 15 to 750 genomic copies for 16 common respiratory pathogens. A total of 110 consecutive patients with community-acquired pneumonia (CAP) admitted to 5 district general hospitals in Beijing during a 1-year period were assessed using the new assay. Among the children (under age 5) and adult patients (above age 18), respiratory syncytial virus (RSV) and rhinovirus (RV) were the most common etiological agents, respectively, which is consistent with reference assays. Atypical pathogens that may cause CAP-like illness, including rubella virus, measles virus, influenza type C virus, human herpesvirus (HHV) were also detected. The results show the capability of RPM-IVDC1 for the accurate detection and identification of multiple virus types, which may be of significant use in epidemic surveillance and outbreak investigations of atypical pathogens.
Collapse
Affiliation(s)
- Hongwei Shen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Futian District Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Weixian Shi
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Ji Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin Li
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Zhang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Nie
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zhang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Aihua Li
- Institute for Immunization and Prevention, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (XJM); (WJT)
| | - Xuejun Ma
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (XJM); (WJT)
| |
Collapse
|
19
|
Visual analysis of DNA microarray data for accurate molecular identification of non-albicans Candida isolates from patients with candidemia episodes. J Clin Microbiol 2013; 51:3826-9. [PMID: 23784121 DOI: 10.1128/jcm.01050-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The performance of a visual slide-based DNA microarray for the identification of non-albicans Candida spp. was evaluated. Among 167 isolates that had previously been identified by Vitek 2, the agreement between DNA microarray and sequencing results was 97.6%. This DNA microarray platform showed excellent performance.
Collapse
|
20
|
Lipkin WI, Firth C. Viral surveillance and discovery. Curr Opin Virol 2013; 3:199-204. [PMID: 23602435 DOI: 10.1016/j.coviro.2013.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/20/2013] [Indexed: 01/27/2023]
Abstract
The field of virus discovery has burgeoned with the advent of high throughput sequencing platforms and bioinformatics programs that enable rapid identification and molecular characterization of known and novel agents, investments in global microbial surveillance that include wildlife and domestic animals as well as humans, and recognition that viruses may be implicated in chronic as well as acute diseases. Here we review methods for viral surveillance and discovery, strategies and pitfalls in linking discoveries to disease, and identify opportunities for improvements in sequencing instrumentation and analysis, the use of social media and medical informatics that will further advance clinical medicine and public health.
Collapse
Affiliation(s)
- Walter Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health of Columbia University, 722 West 168th Street, New York, NY 10025, USA.
| | | |
Collapse
|
21
|
Kostina EV, Riabinin VA, Maksakova GA, Siniakov AN. [The second generation universal oligonucleotide microarray for subtyping of influenza virus A]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 38:676-82. [PMID: 23547471 DOI: 10.1134/s1068162012060052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The microchip for influenza A subtyping was developed, functioning on a principle "one spot--one subtype". Each spot contains the set of oligonucleotide probes, specific for a particular subtype of hemagglutinin, neuraminidase or matrix gene. Reliability of the proposed chip version is the same as for earlier created in our group full-size microchip for separate hemagglutinin and neuraminidase subtyping. To visualize the image, analyzed DNA can be labeled by either fluorescent dye or biotin with the further fixation in system streptavidin-gold nanoparticles and image development by silver precipitation. In the second case common version of scanner can be used for the image analysis, that essentially simplifies procedure of influenza A subtyping.
Collapse
|
22
|
Wheeler EK, Baker BR, Piggott WT, Mabery SL, Hara CA, DeOtte J, Benett W, Mukerjee EV, Dzenitis J, Beer NR. On-chip laser-induced DNA dehybridization. Analyst 2013; 138:3692-6. [DOI: 10.1039/c3an00288h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Berthet N, Paulous S, Coffey LL, Frenkiel MP, Moltini I, Tran C, Matheus S, Ottone C, Ungeheuer MN, Renaudat C, Caro V, Dussart P, Gessain A, Desprès P. Resequencing microarray method for molecular diagnosis of human arboviral diseases. J Clin Virol 2012; 56:238-43. [PMID: 23219893 DOI: 10.1016/j.jcv.2012.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Resequencing DNA microarray (RMA) technology uses probes designed to identify a panel of viral sequences. It can be used for detecting emerging viruses by revealing the nucleotide polymorphisms within the target of interest. OBJECTIVES/STUDY DESIGN As a new tool for molecular diagnosis of arbovirus infection, high density PathogenID v2.0 RMA (PID2-RMA) was assessed for the detection and genetic analysis of dengue, West Nile, and Chikungunya viruses in spiked blood samples or sera from individuals infected with dengue virus. Viral RNAs extracted from biological samples were retrotranscribed into cDNA and amplified using the Phi 29 polymerase-based method. This amplified cDNA was used for hybridization on PID2-RMA. RESULTS A good specificity of RMA-based detection was demonstrated using a panel of arboviruses including Dengue, West Nile and Chikungunya viruses. This technology was also efficient for the detection and genetic analysis of the different serotypes of dengue virus in sera of infected patients. Furthermore, the mixing of dengue, West Nile and Chikungunya prototype viruses within a single sample of human blood did not interfere with the sensitivity of PID2-RMA. CONCLUSIONS Our data show that high density PID2-RMA was suitable for the identification of medically important arboviruses. It appears to be particularly adapted to the genetic analysis of dengue, West Nile, and Chikungunya viruses in urgent clinical situations where the rapid identification and characterization of the pathogen is essential.
Collapse
Affiliation(s)
- N Berthet
- Institut Pasteur, Epidemiology and Physiopathology of Oncogenic Viruses Unit, 28 rue du Docteur Roux, F75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zimmerman CE, Stamper PD, Bryant L, Farley J, Golova J, Holmberg R, Howard T, Linger Y, Meyers K, Perov A, Rudy GB, Carroll KC, Chandler DP. Development of a simple, low-density array to detect methicillin-resistant Staphylococcus aureus and mecA dropouts in nasal swabs. J Microbiol Methods 2012; 91:366-76. [PMID: 23041495 DOI: 10.1016/j.mimet.2012.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/10/2012] [Accepted: 09/11/2012] [Indexed: 01/22/2023]
Abstract
Detection of methicillin-resistant Staphylococcus aureus (MRSA) is important for prevention and control of MRSA infections, but the discovery of mecA dropouts and SCCmec junction sequences with homology to coagulase-negative staphylococci (CoNS) has challenged several real-time PCR tests. The objective of this study was to develop a user-friendly, gel element microarray test for MRSA detection, to estimate the analytical performance characteristics of the test on bacterial isolates, and to perform an initial evaluation of the test on nasopharyngeal swabs from patients known to have a high prevalence of S. aureus containing mecA dropouts. The assay limit of detection for the test was 250 fg (or less) of genomic DNA per amplification reaction (approximately 80 cell equivalents) and MRSA was consistently detected at a ratio of 1:12,000 in a non-target background. Of 87 bacterial isolates, the test accurately classified 86 (98.8%) overall, and correctly identified 14 mecA dropout specimens that were falsely positive in the BD GeneOhm MRSA test or BD GeneOhm StaphSR test. A retrospective analysis of 246 nasal swab samples acquired from a high-risk patient population (overall prevalence=10.8% by culture) resulted in 80.5% sensitivity (95% CI=68.4%, 92.6%) and 96.6% specificity. Of these 246 samples, 174 (71%) were positive for mecA, 86 (35%) were positive for S. aureus tufA and 46 (19%) were positive for a SCCmec junction sequence. To estimate method repeatability, 48 samples representing the full range of phenotypes, genotypes and microarray probe SNR values were tested in triplicate, with three discordant results for a concordance rate of 97.9% (141/144 tests). These data demonstrate that a very simple microarray test can identify mecA dropouts with high specificity in either cultured isolates or nasal swabs from a high-prevalence, high-risk patient population. However, the clinical sensitivity of the test will likely depend on local microbial ecology and the prevalence of mecA positive CoNS in any given patient population.
Collapse
Affiliation(s)
- Cynthia E Zimmerman
- Akonni Biosystems, Inc., 400 Sagner Avenue, Frederick, MD 21701, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Leski TA, Ansumana R, Malanoski AP, Jimmy DH, Bangura U, Barrows BR, Alpha M, Koroma BM, Long NC, Sundufu AJ, Bockarie AS, Lin B, Stenger DA. Leapfrog diagnostics: Demonstration of a broad spectrum pathogen identification platform in a resource-limited setting. Health Res Policy Syst 2012; 10:22. [PMID: 22759725 PMCID: PMC3418216 DOI: 10.1186/1478-4505-10-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
Background Resource-limited tropical countries are home to numerous infectious pathogens of both human and zoonotic origin. A capability for early detection to allow rapid outbreak containment and prevent spread to non-endemic regions is severely impaired by inadequate diagnostic laboratory capacity, the absence of a “cold chain” and the lack of highly trained personnel. Building up detection capacity in these countries by direct replication of the systems existing in developed countries is not a feasible approach and instead requires “leapfrogging” to the deployment of the newest diagnostic systems that do not have the infrastructure requirements of systems used in developed countries. Methods A laboratory for molecular diagnostics of infectious agents was established in Bo, Sierra Leone with a hybrid solar/diesel/battery system to ensure stable power supply and a satellite modem to enable efficient communication. An array of room temperature stabilization and refrigeration technologies for reliable transport and storage of reagents and biological samples were also tested to ensure sustainable laboratory supplies for diagnostic assays. Results The laboratory demonstrated its operational proficiency by conducting an investigation of a suspected avian influenza outbreak at a commercial poultry farm at Bo using broad range resequencing microarrays and real time RT-PCR. The results of the investigation excluded influenza viruses as a possible cause of the outbreak and indicated a link between the outbreak and the presence of Klebsiella pneumoniae. Conclusions This study demonstrated that by application of a carefully selected set of technologies and sufficient personnel training, it is feasible to deploy and effectively use a broad-range infectious pathogen detection technology in a severely resource-limited setting.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington DC, 20375, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bhat N, O'Brien KL, Karron RA, Driscoll AJ, Murdoch DR, the Pneumonia Methods Working Group. Use and evaluation of molecular diagnostics for pneumonia etiology studies. Clin Infect Dis 2012; 54 Suppl 2:S153-8. [PMID: 22403230 PMCID: PMC3297547 DOI: 10.1093/cid/cir1060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/21/2011] [Indexed: 01/16/2023] Open
Abstract
Comprehensive microbiological testing will be a core function of the Pneumonia Etiology Research for Child Health (PERCH) project. The development stage of PERCH provided the time and resources necessary for us to conduct a comprehensive review of the current state of respiratory diagnostics. These efforts allowed us to articulate the unique requirements of PERCH, establish that molecular methods would be central to our testing strategy, and focus on a short list of candidate platforms. This process also highlighted critical challenges in the general design and interpretation of diagnostic evaluation studies, particularly in the field of respiratory infections. Although our final molecular diagnostic platform was ultimately selected on the basis of operational and strategic considerations determined by the specific context of PERCH, our review highlighted several conceptual and practical challenges in respiratory diagnostics that have broader relevance for the performance and interpretation of pneumonia research studies.
Collapse
Affiliation(s)
- Niranjan Bhat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins School of Medicine
| | | | - Ruth A. Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - David R. Murdoch
- Department of Pathology, University of Otago
- Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | | |
Collapse
|
28
|
Hasib L, Dilcher M, Hufert F, Meyer-König U, Weidmann M. Development of a flow-through [corrected] microarray based reverse transcriptase multiplex ligation-dependent probe amplification assay for the detection of European Bunyaviruses. [corrected]. Mol Biotechnol 2012; 49:176-86. [PMID: 21390485 PMCID: PMC3172416 DOI: 10.1007/s12033-011-9389-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is suspected that apart from tick-borne encephalitis virus several additional European Arboviruses such as the sandfly borne Toscana virus, sandfly fever Sicilian virus and sandfly fever Naples virus, mosquito-borne Tahyna virus, Inkoo virus, Batai virus and tick-borne Uukuniemi virus cause aseptic meningo-encephalitis or febrile disease in Europe. Currently, the microarray technology is developing rapidly and there are many efforts to apply it to infectious diseases diagnostics. In order to arrive at an assay system useful for high throughput analysis of samples from aseptic meningo-encephalitis cases the authors developed a combined multiplex ligation-dependent probe amplification and flow-through microarray assay for the detection of European Bunyaviruses. These results show that this combined assay indeed is highly sensitive, and specific for the accurate detection of multiple viruses.
Collapse
Affiliation(s)
- Lekbira Hasib
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57 37075, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
29
|
Update on the Detection and Characterization of Bacterial Pathogens by Nucleic Acid Amplification. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Application of a broad-range resequencing array for detection of pathogens in desert dust samples from Kuwait and Iraq. Appl Environ Microbiol 2011; 77:4285-92. [PMID: 21571877 DOI: 10.1128/aem.00021-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A significant percentage of the human population is exposed to high levels of naturally occurring airborne dusts. Although the link between airborne particulate inhalation and a variety of respiratory diseases has long been established, little is known about the pathogenic role of the microbial component of the dust. In this study, we applied highly multiplexed PCR and a high-density resequencing microarray (RPM-TEI version 1.0) to screen samples of fine topsoil particles and airborne dust collected in 19 locations in Iraq and Kuwait for the presence of a broad range of human pathogens. The results indicated the presence of potential human pathogens, including Mycobacterium, Brucella, Coxiella burnetii, Clostridium perfringens, and Bacillus. The presence of Coxiella burnetii, a highly infectious potential biowarfare agent, was confirmed and detected in additional samples by use of a more sensitive technique (real-time PCR), indicating a high prevalence of this organism in the analyzed samples. The detection of potentially viable pathogens in breathable dusts from arid regions of Iraq and Kuwait underscores the importance of further study of these environments.
Collapse
|
31
|
Universal oligonucleotide microarray for sub-typing of Influenza A virus. PLoS One 2011; 6:e17529. [PMID: 21559081 PMCID: PMC3084687 DOI: 10.1371/journal.pone.0017529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022] Open
Abstract
A universal microchip was developed for genotyping Influenza A viruses. It contains two sets of oligonucleotide probes allowing viruses to be classified by the subtypes of hemagglutinin (H1-H13, H15, H16) and neuraminidase (N1-N9). Additional sets of probes are used to detect H1N1 swine influenza viruses. Selection of probes was done in two steps. Initially, amino acid sequences specific to each subtype were identified, and then the most specific and representative oligonucleotide probes were selected. Overall, between 19 and 24 probes were used to identify each subtype of hemagglutinin (HA) and neuraminidase (NA). Genotyping included preparation of fluorescently labeled PCR amplicons of influenza virus cDNA and their hybridization to microarrays of specific oligonucleotide probes. Out of 40 samples tested, 36 unambiguously identified HA and NA subtypes of Influenza A virus.
Collapse
|
32
|
Riabinin VA, Kostina EV, Neverov AA, Maksakova GA, Siniakov AN. [Oligonucleotide microarray for subtyping of influenza virus A neuraminidase]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 36:688-99. [PMID: 21063456 DOI: 10.1134/s1068162010050122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Microarray for influenza A neuraminidase subtyping was presented. Selection of oligoprobes proceeded in two steps. First step included selection of peptides specific for each subtype of neuraminidase. At the second step oligoprobes were calculated using found peptides structures with the subsequent additional selection of the most specific and representative probes. From 19 to 24 probes were used for determination of each subtype of neuraminidase. Microchip testing for 19 samples with the most widespread types (N1 and N2) specifies in unequivocal definition 18 of them and only one isolate has not been identified.
Collapse
|
33
|
Atreya C, Nakhasi H, Mied P, Epstein J, Hughes J, Gwinn M, Kleinman S, Dodd R, Stramer S, Walderhaug M, Ganz P, Goodrich R, Tibbetts C, Asher D. FDA workshop on emerging infectious diseases: evaluating emerging infectious diseases (EIDs) for transfusion safety. Transfusion 2011; 51:1855-71. [DOI: 10.1111/j.1537-2995.2011.03084.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Abstract
Platforms for pathogen discovery have improved since the days of Koch and Pasteur; nonetheless, the challenges of proving causation are at least as daunting as they were in the late 1800 s. Although we will almost certainly continue to accumulate low-hanging fruit, where simple relationships will be found between the presence of a cultivatable agent and a disease, these successes will be increasingly infrequent. The future of the field rests instead in our ability to follow footprints of infectious agents that cannot be characterized using classical microbiological techniques and to develop the laboratory and computational infrastructure required to dissect complex host-microbe interactions. I have tried to refine the criteria used by Koch and successors to prove linkage to disease. These refinements are working constructs that will continue to evolve in light of new technologies, new models, and new insights. What will endure is the excitement of the chase. Happy hunting!
Collapse
|
35
|
Berthet N, Deletoile A, Passet V, Kennedy GC, Manuguerra JC, Cole ST, Brisse S. Reconstructed ancestral sequences improve pathogen identification using resequencing DNA microarrays. PLoS One 2010; 5:e15243. [PMID: 21187950 PMCID: PMC3004854 DOI: 10.1371/journal.pone.0015243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022] Open
Abstract
We describe the benefit of using reconstructed ancestral sequences (RAS) on resequencing microarrays for rapid pathogen identification, with Enterobacteriaceae rpoB sequences as a model. Our results demonstrate a sharp improvement of call rate and accuracy when using RASs as compared to extant sequences. This improvement was attributed to the lower sequence divergence of RASs, which also expanded the sequence space covered by the microarray. Extension of this novel microarray design strategy to viruses, antimicrobial resistance elements or toxins is straightforward.
Collapse
Affiliation(s)
- Nicolas Berthet
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
- Institut Pasteur, Epidemiology and Pathophysiology Oncogenic Virus Unit, CNRS URA3015, Paris, France
| | - Alexis Deletoile
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
| | - Virginie Passet
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
| | | | | | - Stewart T. Cole
- Global Health Institute, Laboratory of Microbial Pathogenesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Brisse
- Institut Pasteur, Genotyping of Pathogens and Public Health, Paris, France
- * E-mail:
| |
Collapse
|
36
|
Thaitrong N, Liu P, Briese T, Lipkin WI, Chiesl TN, Higa Y, Mathies RA. Integrated capillary electrophoresis microsystem for multiplex analysis of human respiratory viruses. Anal Chem 2010; 82:10102-9. [PMID: 21114282 PMCID: PMC3076062 DOI: 10.1021/ac1020744] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed a two-layer, four-channel polymerase chain reaction (PCR)-capillary electrophoresis microdevice that integrates nucleic acid amplification, sample cleanup and concentration, capillary electrophoretic separation, and detection for multiplex analysis of four human respiratory viral pathogens, influenza A, influenza B, coronavirus OC43, and human metapneumovirus. Biotinylated and fluorescently labeled double-stranded (ds) deoxyribonucleic acid (DNA) amplification products are generated in a 100 nL PCR reactor incorporating an integrated heater and a temperature sensor. After amplification, the products are captured and concentrated in a cross-linked acrylamide gel capture matrix copolymerized with acrydite-functionalized streptavidin-capture agents. Thermal dehybridization releases the fluorescently labeled DNA strand for capillary electrophoresis injection, separation, and detection. Using plasmid standards containing the viral genes of interest, each target can be detected starting from as few as 10 copies/reactor. When a two-step reverse transcription PCR amplification is employed, the device can detect ribonucleic acid (RNA) analogues of all four viral targets with detection limits in the range of 25-100 copies/reactor. The utility of the microdevice for analyzing samples from nasopharyngeal swabs is demonstrated. When size-based separation is combined with four-color detection, this platform provides excellent product discrimination, making it readily extendable to higher-order multiplex assays. This portable microsystem is also suitable for performing automated assays in point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Numrin Thaitrong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | | | | | | | | | | |
Collapse
|
37
|
A microbial detection array (MDA) for viral and bacterial detection. BMC Genomics 2010; 11:668. [PMID: 21108826 PMCID: PMC3017867 DOI: 10.1186/1471-2164-11-668] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022] Open
Abstract
Background Identifying the bacteria and viruses present in a complex sample is useful in disease diagnostics, product safety, environmental characterization, and research. Array-based methods have proven utility to detect in a single assay at a reasonable cost any microbe from the thousands that have been sequenced. Methods We designed a pan-Microbial Detection Array (MDA) to detect all known viruses (including phages), bacteria and plasmids and developed a novel statistical analysis method to identify mixtures of organisms from complex samples hybridized to the array. The array has broader coverage of bacterial and viral targets and is based on more recent sequence data and more probes per target than other microbial detection/discovery arrays in the literature. Family-specific probes were selected for all sequenced viral and bacterial complete genomes, segments, and plasmids. Probes were designed to tolerate some sequence variation to enable detection of divergent species with homology to sequenced organisms, and to have no significant matches to the human genome sequence. Results In blinded testing on spiked samples with single or multiple viruses, the MDA was able to correctly identify species or strains. In clinical fecal, serum, and respiratory samples, the MDA was able to detect and characterize multiple viruses, phage, and bacteria in a sample to the family and species level, as confirmed by PCR. Conclusions The MDA can be used to identify the suite of viruses and bacteria present in complex samples.
Collapse
|
38
|
Use of consensus sequences for the design of high density resequencing microarrays: the influenza virus paradigm. BMC Genomics 2010; 11:586. [PMID: 20961419 PMCID: PMC3091733 DOI: 10.1186/1471-2164-11-586] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A resequencing microarray called PathogenID v2.0 has been developed and used to explore various strategies of sequence selection for its design. The part dedicated to influenza viruses was based on consensus sequences specific for one gene generated from global alignments of a large number of influenza virus sequences available in databanks. RESULTS For each HA (H1, H2, H3, H5, H7 and H9) and NA (N1, N2 and N7) molecular type chosen to be tested, 1 to 3 consensus sequences were computed and tiled on the microarray. A total of 12 influenza virus samples from different host origins (humans, pigs, horses and birds) and isolated over a period of about 50 years were used in this study. Influenza viruses were correctly identified, and in most cases with the accurate information of the time of their emergence. CONCLUSIONS PathogenID v2.0 microarray demonstrated its ability to type and subtype influenza viruses, often to the level of viral variants, with a minimum number of tiled sequences. This validated the strategy of using consensus sequences, which do not exist in nature, for our microarray design. The versatility, rapidity and high discriminatory power of the PathogenID v2.0 microarray could prove critical to detect and identify viral genome reassortment events resulting in a novel virus with epidemic or pandemic potential and therefore assist health authorities to make efficient decisions about patient treatment and outbreak management.
Collapse
|
39
|
|
40
|
Woo PCY, Lau SKP, Lee P, Miao J, Fung AMY, Choi GKY, Ellis-Behnke R, Yuen KY. Resequencing microarray for detection of human adenoviruses in patients with community-acquired gastroenteritis: a proof-of-concept study. J Med Microbiol 2010; 59:1387-1390. [PMID: 20671084 DOI: 10.1099/jmm.0.023796-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Patrick C Y Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Paul Lee
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Ji Miao
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Ami M Y Fung
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Garnet K Y Choi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Rutledge Ellis-Behnke
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anatomy, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong SAR
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong SAR
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong SAR
| |
Collapse
|
41
|
Application of broad-spectrum resequencing microarray for genotyping rhabdoviruses. J Virol 2010; 84:9557-74. [PMID: 20610710 DOI: 10.1128/jvi.00771-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rapid and accurate identification of pathogens is critical in the control of infectious disease. To this end, we analyzed the capacity for viral detection and identification of a newly described high-density resequencing microarray (RMA), termed PathogenID, which was designed for multiple pathogen detection using database similarity searching. We focused on one of the largest and most diverse viral families described to date, the family Rhabdoviridae. We demonstrate that this approach has the potential to identify both known and related viruses for which precise sequence information is unavailable. In particular, we demonstrate that a strategy based on consensus sequence determination for analysis of RMA output data enabled successful detection of viruses exhibiting up to 26% nucleotide divergence with the closest sequence tiled on the array. Using clinical specimens obtained from rabid patients and animals, this method also shows a high species level concordance with standard reference assays, indicating that it is amenable for the development of diagnostic assays. Finally, 12 animal rhabdoviruses which were currently unclassified, unassigned, or assigned as tentative species within the family Rhabdoviridae were successfully detected. These new data allowed an unprecedented phylogenetic analysis of 106 rhabdoviruses and further suggest that the principles and methodology developed here may be used for the broad-spectrum surveillance and the broader-scale investigation of biodiversity in the viral world.
Collapse
|
42
|
Wacharapluesadee S, Hemachudha T. Ante- and post-mortem diagnosis of rabies using nucleic acid-amplification tests. Expert Rev Mol Diagn 2010; 10:207-18. [PMID: 20214539 DOI: 10.1586/erm.09.85] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sensitivity, specificity and short turn-around time nucleic acid-amplification tests (NATs) have been steadily improving. NATs have been employed in the diagnosis of rabies to distinct different strains, as well as to identify new lyssaviruses. NATs have advantages over traditional methods, such as the direct fluorescence antibody test. They can be applied to fluid samples and brain tissue that is substantially decomposed. NATs can be used as an alternative method for confirmation or exclusion of the diagnosis in a suspected rabies patient. Real-time PCR methods are more favored than conventional reverse-transcription PCR methods by several laboratories. Second-round PCR, either nested or heminested, has been used for ante-mortem diagnosis to detect low levels of RNA. This review the details obstacles in making a diagnosis, how to properly utilize NATs (sample preparation, nucleic amplification techniques, amplification targets and primer design); and interprets the results obtained in recent studies.
Collapse
Affiliation(s)
- Supaporn Wacharapluesadee
- WHO Collaborating Centre for Research and Training on Viral Zoonoses, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand, 10330.
| | | |
Collapse
|
43
|
Loens K, Goossens H, Ieven M. Acute respiratory infection due to Mycoplasma pneumoniae: current status of diagnostic methods. Eur J Clin Microbiol Infect Dis 2010; 29:1055-69. [PMID: 20526788 PMCID: PMC7088226 DOI: 10.1007/s10096-010-0975-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/18/2010] [Indexed: 11/30/2022]
Abstract
Because of the absence of well-standardized both in-house and FDA-approved commercially available diagnostic tests, the reliable diagnosis of respiratory infection due to Mycoplasma pneumoniae remains difficult. In addition, no formal external quality assessment schemes which would allow to conclude about the performance of M. pneumoniae diagnostic tests exist. In this review, the current state of knowledge of M. pneumoniae-associated respiratory infections in the context of epidemiological studies published during the past 5 years is discussed, with particular emphasis on the diagnostic strategies used and their impact on results. The role of M. pneumoniae as a cause of respiratory tract infections (RTIs) differs from study to study due to geographical and epidemiological differences, as well as to the application of different diagnostic techniques and criteria used.
Collapse
Affiliation(s)
- K Loens
- Department of Microbiology, Vaccine and Infectious Disease Institute (VIDI), University of Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
44
|
Wang Z, Malanoski AP, Lin B, Long NC, Leski TA, Blaney KM, Hansen CJ, Brown J, Broderick M, Stenger DA, Tibbetts C, Russell KL, Metzgar D. Broad spectrum respiratory pathogen analysis of throat swabs from military recruits reveals interference between rhinoviruses and adenoviruses. MICROBIAL ECOLOGY 2010; 59:623-34. [PMID: 20217405 DOI: 10.1007/s00248-010-9636-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 01/13/2010] [Indexed: 05/28/2023]
Abstract
Military recruits experience a high incidence of febrile respiratory illness (FRI), leading to significant morbidity and lost training time. Adenoviruses, group A Streptococcus pyogenes, and influenza virus are implicated in over half of the FRI cases reported at recruit training center clinics, while the etiology of the remaining cases is unclear. In this study, we explore the carriage rates and disease associations of adenovirus, enterovirus, rhinovirus, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis in military recruits using high-density resequencing microarrays. The results showed that rhinoviruses, adenoviruses, S. pneumoniae, H. influenzae, and N. meningitidis were widely distributed in recruits. Of these five agents, only adenovirus showed significant correlation with illness. Among the samples tested, only pathogens associated with FRI, such as adenovirus 4 and enterovirus 68, revealed strong temporal and spatial clustering of specific strains, indicating that they are transmitted primarily within sites. The results showed a strong negative association between adenoviral FRI and the presence of rhinoviruses in recruits, suggesting some form of viral interference.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tang P, Chiu C. Metagenomics for the discovery of novel human viruses. Future Microbiol 2010; 5:177-89. [PMID: 20143943 DOI: 10.2217/fmb.09.120] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Modern laboratory techniques for the detection of novel human viruses are greatly needed as physicians and epidemiologists increasingly deal with infectious diseases caused by new or previously unrecognized pathogens. There are many clinical syndromes in which viruses are suspected to play a role, but for which traditional microbiology techniques routinely fail in uncovering the etiologic agent. In addition, new viruses continue to challenge the human population owing to the encroachment of human settlements into animal and livestock habitats, globalization, climate change, growing numbers of immunocompromised people and bioterrorism. Metagenomics-based tools, such as microarrays and high-throughput sequencing are ideal for responding to these challenges. Pan-viral microarrays, containing representative sequences from all known viruses, have been used to detect novel and distantly-related variants of known viruses. Sequencing-based methods have also been successfully employed to detect novel viruses and have the potential to detect the full spectrum of viruses, including those present in low numbers.
Collapse
Affiliation(s)
- Patrick Tang
- British Columbia Centre for Disease Control, Department of Pathology & Laboratory Medicine, University of British Columbia, 655 West 12th Avenue, Vancouver, BC, V5Z 4R4, Canada.
| | | |
Collapse
|
46
|
Sensitive and simple detection of Escherichia coli strain based on time-resolved fluorescence DNA hybridization assay. Anal Chim Acta 2010; 664:95-9. [DOI: 10.1016/j.aca.2010.01.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/27/2010] [Accepted: 01/31/2010] [Indexed: 11/21/2022]
|
47
|
Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2010; 29:673-93. [PMID: 19892228 PMCID: PMC7130760 DOI: 10.1016/j.cll.2009.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This article describes several emerging molecular assays that have potential applications in the diagnosis and monitoring of respiratory viral infections. These techniques include direct nucleic acid detection by quantum dots, loop-mediated isothermal amplification, multiplex ligation-dependent probe amplification, amplification using arbitrary primers, target-enriched multiplexing amplification, pyrosequencing, padlock probes, solid and suspension microarrays, and mass spectrometry. Several of these systems already are commercially available to provide multiplex amplification and high-throughput detection and identification of a panel of respiratory viral pathogens. Further validation and implementation of such emerging molecular assays in routine clinical virology services will enhance the rapid diagnosis of respiratory viral infections and improve patient care.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
48
|
Leski TA, Malanoski AP, Stenger DA, Lin B. Target amplification for broad spectrum microbial diagnostics and detection. Future Microbiol 2010; 5:191-203. [DOI: 10.2217/fmb.09.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microarrays are massively parallel detection platforms that were first used extensively for gene expression studies, but have also been successfully applied to microbial detection in a number of diverse fields requiring broad-range microbial identification. This technology has enabled researchers to gain an insight into the microbial diversity of environmental samples, facilitated discovery of a number of new pathogens and enabled studies of multipathogen infections. In contrast to gene expression studies, the concentrations of targets in analyzed samples for microbial detection are usually much lower, and require the use of nucleic acid amplification techniques. The rapid advancement of manufacturing technologies has increased the content of the microarrays; thus, the required amplification is a challenging problem. The constant parallel improvements in both microarray and sample amplification techniques in the near future may lead to a radical progression in medical diagnostics and systems for efficient detection of microorganisms in the environment.
Collapse
Affiliation(s)
- Tomasz A Leski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA and Nova Research Inc., 1900 Elkin Street, Suite 230, Alexandria, VA, USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - David A Stenger
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Code 6900, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
49
|
Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2010; 22:611-33. [PMID: 19822891 DOI: 10.1128/cmr.00019-09] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple microarray platforms exist, including printed double-stranded DNA and oligonucleotide arrays, in situ-synthesized arrays, high-density bead arrays, electronic microarrays, and suspension bead arrays. One aim of this paper is to review microarray technology, highlighting technical differences between them and each platform's advantages and disadvantages. Although the use of microarrays to generate gene expression data has become routine, applications pertinent to clinical microbiology continue to rapidly expand. This review highlights uses of microarray technology that impact diagnostic microbiology, including the detection and identification of pathogens, determination of antimicrobial resistance, epidemiological strain typing, and analysis of microbial infections using host genomic expression and polymorphism profiles.
Collapse
|
50
|
Woo PCY, Lau SKP, Choi GKY, Fung HT, Shek KC, Miao J, Chan BYL, Ng KHL, Ngan AHY, Ellis-Behnke R, Que TL, Kam CW, Yuen KY. Resequencing microarray for detection of human adenoviruses in patients with conjunctivitis. J Clin Virol 2010; 47:282-5. [PMID: 20071220 PMCID: PMC7172538 DOI: 10.1016/j.jcv.2009.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/17/2009] [Accepted: 12/22/2009] [Indexed: 11/27/2022]
Abstract
Background Although high-density resequencing microarray is useful for detection and tracking the evolution of viruses associated with respiratory tract infections, no report on using this technology for the detection of viruses in patients with conjunctivitis is available. Objectives To test if high-density resequencing microarray can be applied to detection of viruses in conjunctival swabs for patients with conjunctivitis. Study design In this prospective proof-of-concept study, every 4 or 5 bacterial culture-negative conjunctival swab samples were pooled and subject to viral detection using TessArray™ Resequencing Pathogen Microarrays-Flu 3.1 (RPM-Flu-3.1). Results were compared with human adenovirus (HAdV) hexon gene PCR sequencing and viral culture. Results Thirty-two of the 38 conjunctival swab samples were bacterial culture-negative. Four of the 7 pooled samples were positive for HAdV using RPM-Flu-3.1. Hexon gene PCR sequencing on the 38 original individual samples showed that 3 and 4 samples contained HAdVs species D and B respectively. All the 6 samples that were positive for hexon gene PCR but negative for bacterial culture were also positive by the resequencing microarray. Viral culture was positive for HAdV type 3 in 1 sample, which was also positive by PCR and resequencing microarray. Conclusions Resequencing microarray is as sensitive as PCR for detection of HAdV in conjunctival swabs. Unlike viral culture and hexon gene PCR sequencing, resequencing microarray was not able to differentiate the type and species of HAdV. Development of microarrays for conjunctivitis can be performed for rapid diagnosis of the viral cause of conjunctivitis.
Collapse
Affiliation(s)
- Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|