1
|
Rivas L, Szeto J, Elvy J, Dyet K, Wright J, Williams E, Gilpin B. Antimicrobial susceptibility and treatment of clinical cases of yersiniosis in Aotearoa | New Zealand. Microbiol Spectr 2025:e0275124. [PMID: 40162756 DOI: 10.1128/spectrum.02751-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Yersiniosis is the second most notified bacterial disease in Aotearoa | New Zealand (NZ). National clinical treatment guidelines for yersiniosis are available, but there is a lack of supporting antimicrobial susceptibility data for clinical isolates of Yersinia spp. and prescribing data for yersiniosis cases. Data were collected through interviews with 148 consenting individuals notified with yersiniosis. Forty-three percent (n = 63) of cases indicated antimicrobial use while symptomatic with yersiniosis, including two cases with dual diagnosis (Campylobacteriosis). Children under the age of 5 were predominantly notified with Yersinia enterocolitica (YE) biotype (BT) 2/3 (87%; 27/31) and reported significantly (P = 0.008) less antimicrobial use compared to adults (aged 20-70+ years). Antimicrobial use was significantly (P = 0.006) higher for cases reporting pre-existing gastrointestinal condition(s) and with YE BT 1A (26%; 12/47) compared to YE BT 2/3 (8%; 7/86). Eighty-six percent (44/51) of cases that indicated antimicrobial use identified the commencement date. Of these, 9% (4/44), 77% (34/44), and 14% (6/44) received an antimicrobial(s) as either empirical, directed, or empirical and directed treatment, respectively. Trimethoprim-sulfamethoxazole (49% [25/51]), ciprofloxacin (16% [8/51]), and doxycycline (10% [5/51]) were the most prescribed antimicrobials. Phenotypic antimicrobial susceptibility testing demonstrated clinical Yersinia spp. were susceptible to all antimicrobials commonly prescribed for the treatment of yersiniosis. Whole-genome sequence (WGS) analysis showed very few (1-3) antimicrobial resistance (AMR) genes within the Yersinia genomes. The results support the current antimicrobial prescribing recommendation for the treatment of yersiniosis in NZ and the utility of WGS to assess for AMR profiles in Yersinia spp. IMPORTANCE This study demonstrates that currently almost half of yersiniosis cases interviewed receive antimicrobial treatment, with most prescriptions as directed therapy after a diagnosis has been made. This study also confirms the appropriateness of current treatment guidelines for the management of yersiniosis in NZ, and that most primary care practitioners in the study areas follow these recommendations. Phenotypic testing was well correlated with the genomic assessments of antimicrobial resistance (AMR). Both types of analysis indicated a low level of AMR for Yersinia spp. in New Zealand (NZ) compared to data from overseas studies. However, ongoing surveillance given the burden of yersiniosis and high rates of treatment in NZ is paramount to ensuring timely detection of emerging multi-drug resistance and to help devise evidence-informed interventions.
Collapse
Affiliation(s)
- Lucia Rivas
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, Canterbury, New Zealand
| | - Jenny Szeto
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, Wellington, New Zealand
| | - Juliet Elvy
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, Wellington, New Zealand
- Awanui Labs, Dunedin Hospital, Dunedin, Otago, New Zealand
| | - Kristin Dyet
- Institute of Environmental Science and Research, Kenepuru Science Centre, Porirua, Wellington, New Zealand
| | - Jackie Wright
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, Canterbury, New Zealand
| | - Ernest Williams
- Institute of Environmental Science and Research, Wallaceville Science Centre, Upper Hutt, Wellington, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, Canterbury, New Zealand
| |
Collapse
|
2
|
Zhou S, Wang H, Li H, Yang Y, Shi D, Yang Z, Yang D, Chen T, Li J, Jin M. Emergence of polymyxin-resistant Yersinia enterocolitica strains in natural aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125341. [PMID: 39571713 DOI: 10.1016/j.envpol.2024.125341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Aquatic environments serve as ideal reservoirs for antibiotic-resistant bacteria and resistance genes. However, the presence of polymyxin-resistant Yersinia enterocolitica, the pathogen responsible for human yersiniosis, in aquatic environments remains poorly understood. Herein, we isolated polymyxin-resistant Y. enterocolitica strains from natural water for the first time. In addition to intrinsic resistance to ampicillin and cefazolin, the strains demonstrated high resistance to polymyxin B and polymyxin E. All isolates were capable of biofilm production and exerted high virulent effects in Galleria mellonella, with 90% mortality occurring within 48 h post-infection. Furthermore, whole genome sequencing identified 26 antibiotic resistance genes, including polymyxin resistance determinants (arnA and PmrF), beta-lactam resistance determinants (vatF and blaA), and 60 virulence genes such as yaxA and yaxB in Y. enterocolitica isolates. Notably, phylogenetic analysis revealed that Y. enterocolitica involved multilocus sequence types ST937 and ST631, which were clustered with strains isolated from a human in the United States or swine in China. The close relatedness to clinical isolates suggests that polymyxin-resistant Y. enterocolitica may pose considerable health risk to humans. Our findings provide evidence of the presence of polymyxin-resistant Y. enterocolitica in aquatic environments and raise concerns about health risks due to their potential high virulence.
Collapse
Affiliation(s)
- Shuqing Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Huaran Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Haibei Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Yidi Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Danyang Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Zhongwei Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Dong Yang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Tianjiao Chen
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Junwen Li
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China
| | - Min Jin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, China.
| |
Collapse
|
3
|
Rivas L, Horn B, Armstrong B, Wright J, Strydom H, Wang J, Paine S, Thom K, Orton A, Robson B, Lin S, Wong J, Brunton C, Smith D, Cooper J, Mangalasseril L, Thornley C, Gilpin B. A case-control study and molecular epidemiology of yersiniosis in Aotearoa New Zealand. J Clin Microbiol 2024; 62:e0075424. [PMID: 39311564 PMCID: PMC11481505 DOI: 10.1128/jcm.00754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 10/17/2024] Open
Abstract
The objective of this study was to determine risk factors and sources attributed to yersiniosis in Aotearoa New Zealand (NZ). A risk factor questionnaire was administered to 247 notified yersiniosis cases and 258 control participants from the Canterbury and/or Wellington regions of NZ. Yersinia sp. isolates from clinical cases and a range of food sources were whole-genome sequenced and genetically compared. Yersinia enterocolitica (YE) bioserotype 2/3, O:9 [McNally multi-locus sequence type (ST) 12] and YE Biotype (BT) 1A (46 different STs) predominated within the consented cases (45 and 27%, respectively). Exposure to pork was identified as a significant risk factor for cases associated with YE ST12. The presence of YE ST12 was confirmed in retail raw meat, primarily raw pork. Single-nucleotide polymorphism (SNP) analysis identified multiple genomically very closely related clusters (0-5 SNPs) of YE ST12, predominately from raw pork with clinical cases from one or both regions. Risk factors associated with YE BT 1A included the consumption of cooked seafood, sushi, tofu, and some vegetable types. Analysis of specific risk factors and SNP analysis, combined, indicate that raw pork is a significant risk factor for exposure and infection to pathogenic YE cases, but not BT 1A cases.
Collapse
Affiliation(s)
- Lucia Rivas
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Beverley Horn
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Bridget Armstrong
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Jackie Wright
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Hugo Strydom
- Institute of Environmental Science and Research (ESR), Wallaceville Science Centre, Wellington, New Zealand
| | - Jing Wang
- Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, Porirua, New Zealand
| | - Shevaun Paine
- Institute of Environmental Science and Research (ESR), Kenepuru Science Centre, Porirua, New Zealand
| | - Kristin Thom
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Ashley Orton
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| | - Jimmy Wong
- National Public Health Service, Christchurch, New Zealand
| | - Cheryl Brunton
- National Public Health Service, Christchurch, New Zealand
| | - Debbie Smith
- National Public Health Service, Christchurch, New Zealand
| | - Jess Cooper
- National Public Health Service, Lower Hutt, New Zealand
| | | | | | - Brent Gilpin
- Institute of Environmental Science and Research (ESR), Christchurch Science Centre, Christchurch, New Zealand
| |
Collapse
|
4
|
Palau R, Bloomfield SJ, Jenkins C, Greig DR, Jorgensen F, Mather AE. Yersinia enterocolitica biovar 1A: An underappreciated potential pathogen in the food chain. Int J Food Microbiol 2024; 412:110554. [PMID: 38176093 DOI: 10.1016/j.ijfoodmicro.2023.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Yersinia enterocolitica is an underreported cause of foodborne gastroenteritis. Little is known of the diversity of Y. enterocolitica isolated from food and which food commodities contribute to human disease. In this study, Y. enterocolitica was isolated from 37/50 raw chicken, 8/10 pork, 8/10 salmon and 1/10 leafy green samples collected at retail in the UK. Up to 10 presumptive Y. enterocolitica isolates per positive sample underwent whole genome sequencing (WGS) and were compared with publicly available genomes. In total, 207 Y. enterocolitica isolates were analyzed and belonged to 38 sequence types (STs). Up to five STs of Y. enterocolitica were isolated from individual food samples and isolates belonging to the same sample and ST differed by 0-74 single nucleotide polymorphisms (SNPs). Biotype was predicted for 205 (99 %) genomes that all belonged to biotype 1A, previously described as non-pathogenic. However, around half (51 %) of food samples contained isolates belonging to the same ST as previously isolated from UK human cases. The closest human-derived isolates shared between 17 and 7978 single nucleotide polymorphisms (SNPs) with the food isolates. Extensive food surveillance is required to determine what food sources are responsible for Y. enterocolitica infections and to re-examine the role of biotype 1A as a human pathogen.
Collapse
Affiliation(s)
- Raphaёlle Palau
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Samuel J Bloomfield
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
| | - Claire Jenkins
- United Kingdom Health Security Agency, London, United Kingdom
| | - David R Greig
- United Kingdom Health Security Agency, London, United Kingdom
| | | | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom; University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
5
|
Siddi G, Piras F, Meloni MP, Gymoese P, Torpdahl M, Fredriksson-Ahomaa M, Migoni M, Cabras D, Cuccu M, De Santis EPL, Scarano C. Hunted Wild Boars in Sardinia: Prevalence, Antimicrobial Resistance and Genomic Analysis of Salmonella and Yersinia enterocolitica. Foods 2023; 13:65. [PMID: 38201093 PMCID: PMC10778173 DOI: 10.3390/foods13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this investigation was to evaluate Salmonella and Yersinia enterocolitica prevalence in wild boars hunted in Sardinia and further characterize the isolates and analyse antimicrobial resistance (AMR) patterns. In order to assess slaughtering hygiene, an evaluation of carcasses microbial contamination was also carried out. Between 2020 and 2022, samples were collected from 66 wild boars hunted during two hunting seasons from the area of two provinces in northern and central Sardinia (Italy). Samples collected included colon content samples, mesenteric lymph nodes samples and carcass surface samples. Salmonella and Y. enterocolitica detection was conducted on each sample; also, on carcass surface samples, total aerobic mesophilic count and Enterobacteriaceae count were evaluated. On Salmonella and Y. enterocolitica isolates, antimicrobial susceptibility was tested and whole genome sequencing was applied. Salmonella was identified in the colon content samples of 3/66 (4.5%) wild boars; isolates were S. enterica subs. salamae, S. ser. elomrane and S. enterica subs. enterica. Y. enterocolitica was detected from 20/66 (30.3%) wild boars: in 18/66 (27.3%) colon contents, in 3/66 (4.5%) mesenteric lymph nodes and in 3/49 (6.1%) carcass surface samples. In all, 24 Y. enterocolitica isolates were analysed and 20 different sequence types were detected, with the most common being ST860. Regarding AMR, no resistance was detected in Salmonella isolates, while expected resistance towards β-lactams (blaA gene) and streptogramin (vatF gene) was observed in Y. enterocolitica isolates (91.7% and 4.2%, respectively). The low presence of AMR is probably due to the low anthropic impact in the wild areas. Regarding the surface contamination of carcasses, values (mean ± standard deviation log10 CFU/cm2) were 2.46 ± 0.97 for ACC and 1.07 ± 1.18 for Enterobacteriaceae. The results of our study confirm that wild boars can serve as reservoirs and spreaders of Salmonella and Y. enterocolitica; the finding of Y. enterocolitica presence on carcass surface highlights how meat may become superficially contaminated, especially considering that contamination is linked to the conditions related to the hunting, handling and processing of game animals.
Collapse
Affiliation(s)
- Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Pernille Gymoese
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Mia Torpdahl
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark; (P.G.); (M.T.)
| | - Maria Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, FI-00014 Helsinki, Finland;
| | - Mattia Migoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Daniela Cabras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Mario Cuccu
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Enrico Pietro Luigi De Santis
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (G.S.); (M.P.M.); (M.M.); (D.C.); (M.C.); (E.P.L.D.S.); (C.S.)
| |
Collapse
|
6
|
Huang S, Li Y, Hong C, Jin Y, Li S, Xu X, Xia Y, Zhang L, Lou Y, Guan W. Whole-genome sequencing-based analysis of antimicrobial resistance, virulence factors, and genetic diversity in Yersinia isolated in Wenzhou, China 2020. Mol Phylogenet Evol 2023; 188:107903. [PMID: 37574177 DOI: 10.1016/j.ympev.2023.107903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.
Collapse
Affiliation(s)
- Shaojie Huang
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Yi Li
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Chengji Hong
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Yafang Jin
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xuelian Xu
- Yuhang Center for Disease Control and Prevention, Yuhang, China.
| | - Yanmei Xia
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Leyi Zhang
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Wanchun Guan
- Wenzhou Key Laboratory of Sanitary Microbiology, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Piras F, Siddi G, Le Guern AS, Brémont S, Fredriksson-Ahomaa M, Sanna R, Meloni MP, De Santis EPL, Scarano C. Traceability, virulence and antimicrobial resistance of Yersinia enterocolitica in two industrial cheese-making plants. Int J Food Microbiol 2023; 398:110225. [PMID: 37126899 DOI: 10.1016/j.ijfoodmicro.2023.110225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Between 2018 and 2019, 309 environmental and food samples were collected from two industrial cheese-making plants located in Sardinia, in order to investigate Y. enterocolitica presence and to characterize the isolates. Y. enterocolitica isolates were further compared with isolates detected during a previous investigation from sheep and goat raw milk samples. Y. enterocolitica was detected in 7.4 % of the samples and the prevalence was higher, even if not significantly (P > 0.05) higher in non-food contact surface samples (10.2 %) than in food contact surface samples (3.8 %). The highest prevalence was detected in floor samples (13.5 %), followed by drain samples (7.2 %), which might serve as main harborage sites for further contamination. Y. enterocolitica was also detected in food contact surfaces, namely shelves of the Ricotta cooling room and packaging room, one cheese cutting machine surface and one raw milk filter sample. The biotype 1A isolates identified in this study were classified into six different serotypes. Additionally, a bioserotype 2/O:5,27 isolate was identified in one goat milk sample. All 1A isolates possessed the virulence genes invA and ystB while the 2/O:5,27 isolate showed the presence of ail, ystA, invA and yadA genes, thus confirming a pathogenic potential. The isolates showed intrinsic resistance to amoxicillin-clavulanic acid, ticarcillin and cefoxitin due to the presence of the blaA gene. Whole genome sequencing allowed to identify seven different sequence types among the 1A isolates, thus showing a high genetic diversity. The same Y. enterocolitica sequence type (ST3) was detected from three different areas of the same cheese-making plant, indicating a possible transfer of the microorganism along the processing lines. Y. enterocolitica contamination in cheese-making plants can pose a risk to human health. Preventive measures include the hygienic design of the plant layout and equipment, in association with proper cleaning and disinfection programmes.
Collapse
Affiliation(s)
- Francesca Piras
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | - Giuliana Siddi
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Anne-Sophie Le Guern
- Yersinia Research Unit and National Reference Laboratory for Plague and other Yersiniosis, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris, France
| | - Sylvie Brémont
- Yersinia Research Unit and National Reference Laboratory for Plague and other Yersiniosis, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris, France
| | - Maria Fredriksson-Ahomaa
- Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Rita Sanna
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Maria Pina Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | - Christian Scarano
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
8
|
Yue Y, Zheng J, Sheng M, Liu X, Hao Q, Zhang S, Xu S, Liu Z, Hou X, Jing H, Liu Y, Zhou X, Li Z. Public health implications of Yersinia enterocolitica investigation: an ecological modeling and molecular epidemiology study. Infect Dis Poverty 2023; 12:41. [PMID: 37085902 PMCID: PMC10120104 DOI: 10.1186/s40249-023-01063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/05/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Yersinia enterocolitica has been sporadically recovered from animals, foods, and human clinical samples in various regions of Ningxia, China. However, the ecological and molecular characteristics of Y. enterocolitica, as well as public health concerns about infection in the Ningxia Hui Autonomous Region, remain unclear. This study aims to analyze the ecological and molecular epidemiological characteristics of Y. enterocolitis in order to inform the public health intervention strategies for the contains of related diseases. METHODS A total of 270 samples were collected for isolation [animals (n = 208), food (n = 49), and patients (n = 13)], then suspect colonies were isolated and identified by the API20E biochemical identification system, serological tests, biotyping tests, and 16S rRNA-PCR. Then, we used an ecological epidemiological approach combined with machine learning algorithms (general linear model, random forest model, and eXtreme Gradient Boosting) to explore the associations between ecological factors and the pathogenicity of Y. enterocolitis. Furthermore, average nucleotide identity (ANI) estimation, single nucleotide polymorphism (SNP), and core gene multilocus sequence typing (cgMLST) were applied to characterize the molecular profile of isolates based on whole genome sequencing. The statistical test used single-factor analysis, Chi-square tests, t-tests/ANOVA-tests, Wilcoxon rank-sum tests, and Kruskal-Wallis tests. RESULTS A total of 270 isolates of Yersinia were identified from poultry and livestock (n = 191), food (n = 49), diarrhoea patients (n = 13), rats (n = 15), and hamsters (n = 2). The detection rates of samples from different hosts were statistically different (χ2 = 22.636, P < 0.001). According to the relatedness clustering results, 270 isolates were divided into 12 species, and Y. enterocolitica (n = 187) is a predominated species. Pathogenic isolates made up 52.4% (98/187), while non-pathogenic isolates made up 47.6% (89/187). Temperature and precipitation were strongly associated with the pathogenicity of the isolates (P < 0.001). The random forest (RF) prediction model showed the best performance. The prediction result shows a high risk of pathogenicity Y. enterocolitica was located in the northern, northwestern, and southern of the Ningxia Hui Autonomous Region. The Y. enterocolitica isolates were classified into 54 sequence types (STs) and 125 cgMLST types (CTs), with 4/O:3 being the dominant bioserotype in Ningxia. The dominant STs and dominant CTs of pathogenic isolates in Ningxia were ST429 and HC100_2571, respectively. CONCLUSIONS The data indicated geographical variations in the distribution of STs and CTs of Y. enterocolitica isolates in Ningxia. Our work offered the first evidence that the pathogenicity of isolates was directly related to fluctuations in temperature and precipitation of the environment. CgMLST typing strategies showed that the isolates were transmitted to the population via pigs and food. Therefore, strengthening health surveillance on pig farms in high-risk areas and focusing on testing food of pig origin are optional strategies to prevent disease outbreaks.
Collapse
Affiliation(s)
- Yuan Yue
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, People's Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Ningxia Hui Autonomous Region Food Testing and Research Institute, Yinchuan, People's Republic of China
| | - Jinxin Zheng
- Department of Nephrology, Ruijin Hospital, Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Mei Sheng
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, People's Republic of China
| | - Xiang Liu
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, People's Republic of China
| | - Qiong Hao
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, People's Republic of China
| | - Shunxian Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research-Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhiguo Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xuexin Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yang Liu
- Department of Computer Science, Hong Kong Baptist University, Hong Kong, Special Administrative Region, People's Republic of China
| | - Xuezhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, People's Republic of China.
| | - Zhenjun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
9
|
INDEL-Typing of <i>Yersinia pseudotuberculosis</i> Strains. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-102-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The aim of this study was to develop a new method of intraspecific genetic differentiation of Yersinia pseudotuberculosis, based on the detection of INDEL-markers using PCR. Materials and methods. Analyzed were 308 strains from the NCBI database and 15 strains sequenced within the frames of this study. The nucleotide sequences of the strains were determined using the MiSeq technology platform. The genomes of the strains sequenced in the work, as well as genomes from the NCBI database, were assessed using in silico PCR with 7 pairs of primers designed in the study. As a result of a comparison of genome-wide sequences of 22 Y. pseudotuberculosis strains from the NCBI database, using the author’s software (GenExpert), 7 INDEL-markers were selected that make it possible to effectively distinguish between strains of the causative agent of pseudotuberculosis. Based on these markers, 7 pairs of primers were designed and synthesized for the analysis of different strains using PCR. Analysis of 323 strains in PCR in silico and 70 strains in PCR in vitro allowed for dividing them into 30 genetic groups. Comparison of the results of PCR in silico and in vitro confirmed the possibility of using the proposed primers for intraspecific differentiation of Y. pseudotuberculosis. Based on the data obtained, a dendrogram reflecting the phylogenetic relations of different strains of Y. pseudotuberculosis was constructed. When analyzing the distribution of Y. pseudotuberculosis strains by various clusters and genetic groups, a number of patterns were revealed. Conducted in silico and in vitro PCR show that the proposed method of INDEL-typing can be used for intraspecific genetic differentiation of the causative agent of pseudotuberculosis.
Collapse
|
10
|
Sim EM, Koh B, Ng J, Nguyen T, Wang Q, Ginn AN, Brown M, Pham D, Sintchenko V. Case report: a genomics-guided reclassification of a blood culture isolate misassigned by MALDI-TOF as Yersinia pestis. Access Microbiol 2022; 4:acmi000422. [PMID: 36415732 PMCID: PMC9675175 DOI: 10.1099/acmi.0.000422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
In this report, we describe a case where Gram-negative rods were isolated from a blood culture which subsequently presented a discordant Yersinia species result by MALDI-TOF. Rapid sequencing provided high-resolution identification of the isolate as Yersinia pseudotuberculosis , which was subsequently confirmed by biochemical tests.
Collapse
Affiliation(s)
- Eby M. Sim
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia,*Correspondence: Eby M. Sim,
| | - Bryant Koh
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Jimmy Ng
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Trang Nguyen
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Qinning Wang
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Andrew N. Ginn
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Mitchell Brown
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - David Pham
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology- Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, New South Wales, Australia,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia,Centre for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Yue Y, Shen M, Liu X, Hao Q, Kang Y, Che Y, Li F, Chen S, Xu S, Jing H, Li ZJ, Zhou XZ. Whole-genome sequencing-based prediction and analysis of antimicrobial resistance in Yersinia enterocolitica from Ningxia, China. Front Microbiol 2022; 13:936425. [PMID: 35942314 PMCID: PMC9356307 DOI: 10.3389/fmicb.2022.936425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022] Open
Abstract
Focusing on resistance trends and transmission patterns of pathogenic microorganisms is a major priority for national surveillance programs. The use of whole-genome sequencing for antimicrobial susceptibility testing (WGS-AST) is a powerful alternative to traditional microbiology laboratory methods. Yersinia enterocolitica antimicrobial resistance (AMR) in the Ningxia Hui Autonomous Region has yet to be described thoroughly in current studies. We assessed and monitored the development of Y. enterocolitica AMR in the Ningxia Hui Autonomous Region during 2007–2019 based on WGS-AST. Resistance genotypes were predicted based on WGS. Antimicrobial resistance testing using classical microbiology determined resistance to 13 antimicrobial agents in 189 Y. enterocolitica isolates from Ningxia. The highest resistance level was 97.88% for cefazolin, followed by ampicillin (AMP) (44.97%), ciprofloxacin (CIP) (25.40%), streptomycin (STR) (11.11%), and tetracycline (TET) (10.58%). Isolates emerged as chloramphenicol (CHL) and trimethoprim/sulfamethoxazole (SXT) resistant. The primary plasmid types were IncFII(Y) and ColRNAI. The TET, STR, and SXT resistance were mediated by the tetA, aph(6)-Id, aph(3″)-Ib, and sul2 genes located on the IncQ1 plasmid. The resistant strains were predominantly biotype 4/O:3/ST429 and the hosts were pigs and patients. The number of multidrug-resistant (MDR) strains was of concern, at 27.51%. At present, the prediction of antimicrobial resistance based on WGS requires a combination of phenotypes. From 2007 to 2019, Y. enterocolitica isolates from the Ningxia Hui Autonomous Region showed a relatively high rate of resistance to cefazolin (CZO) and some resistance to AMP, CIP, STR, and TET. CIP, SXT, and TET showed a relatively clear trend of increasing resistance. Plasmids carrying multiple drug resistance genes are an important mechanism for the spread of antimicrobial resistance. Isolates with low pathogenicity were more likely to present an AMR phenotype than non-pathogenic isolates.
Collapse
Affiliation(s)
- Yuan Yue
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Ningxia Hui Autonomous Region Food Testing and Research Institute, Yinchuan, China
| | - Mei Shen
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Xiang Liu
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Qiong Hao
- Ningxia Hui Autonomous Region Centre for Disease Control and Prevention, Yinchuan, China
| | - Yutong Kang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Che
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shenglin Chen
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhen-jun Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Zhen-jun Li,
| | - Xue-zhang Zhou
- Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Ningxia University, Yinchuan, China
- Xue-zhang Zhou,
| |
Collapse
|
12
|
Prevalence, virulence determinants, and genetic diversity in Yersinia enterocolitica isolated from slaughtered pigs and pig carcasses. Int J Food Microbiol 2022; 376:109756. [DOI: 10.1016/j.ijfoodmicro.2022.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022]
|
13
|
Osteomyelitis in a slaughter turkey flock caused by Yersinia pseudotuberculosis sequence type ST42. Vet Microbiol 2022; 269:109424. [DOI: 10.1016/j.vetmic.2022.109424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
|
14
|
Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Food Res Int 2022; 152:110917. [DOI: 10.1016/j.foodres.2021.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
|
15
|
Terentjeva M, Ķibilds J, Meistere I, Gradovska S, Alksne L, Streikiša M, Ošmjana J, Valciņa O. Virulence Determinants and Genetic Diversity of Yersinia Species Isolated from Retail Meat. Pathogens 2021; 11:37. [PMID: 35055985 PMCID: PMC8778217 DOI: 10.3390/pathogens11010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Yersinia enterocolitica is an important foodborne pathogen, and the determination of its virulence factors and genetic diversity within the food chain could help understand the epidemiology of yersiniosis. The aim of the present study was to detect the prevalence, and characterize the virulence determinants and genetic diversity, of Yersinia species isolated from meat. A total of 330 samples of retailed beef (n = 150) and pork (n = 180) in Latvia were investigated with culture and molecular methods. Whole genome sequencing (WGS) was applied for the detection of virulence and genetic diversity. The antimicrobial resistance of pathogenic Y. enterocolitica isolates was detected in accordance with EUCAST. Yersinia species were isolated from 24% (79/330) of meats, and the prevalence of Y. enterocolitica in pork (24%, 44/180) was significantly higher (p < 0.05) than in beef (13%, 19/150). Y. enterocolitica pathogenic bioserovars 2/O:9 and 4/O:3 were isolated from pork samples (3%, 6/180). Only resistance to ampicillin was confirmed in Y. enterocolitica 4/O:3 and 2/O:9 isolates, but not in other antimicrobials. Major virulence determinants, including ail, inv, virF, ystA and myfA, were confirmed with WGS in Y. enterocolitica 2/O:9 and 4/O:3. MLST typing revealed 15 STs (sequence types) of Y. enterocolitica with ST12 and ST18, which were associated with pathogenic bioserovars. For Y. enterocolitica 1A, Y. kristensenii, Y. intermedia and Y. frederiksenii, novel STs were registered (ST680-688). The presence of virulence genes and genetic characteristics of certain Y. enterocolitica STs confirm the common knowledge that pork could be an important source of pathogenic Yersinia.
Collapse
Affiliation(s)
- Margarita Terentjeva
- Institute of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Juris Ķibilds
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Irēna Meistere
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Silva Gradovska
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Laura Alksne
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Madara Streikiša
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Jevgēnija Ošmjana
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| | - Olga Valciņa
- Institute of Food Safety, Animal Health and Environment BIOR, LV-1076 Riga, Latvia; (J.Ķ.); (I.M.); (S.G.); (L.A.); (M.S.); (J.O.); (O.V.)
| |
Collapse
|
16
|
Wang L, Zhu W, Lu G, Wu P, Wei Y, Su Y, Jia T, Li L, Guo X, Huang M, Yang Q, Huang D, Liu B. In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data. Int J Food Microbiol 2021; 358:109405. [PMID: 34563883 DOI: 10.1016/j.ijfoodmicro.2021.109405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Cronobacter spp. are foodborne pathogens that can cause severe infections in neonates through contaminated powdered infant formula. Accurate and rapid pathogen identification and serotyping are crucial to limit the detrimental effects of bacterial infections, and to prevent outbreaks and sporadic infections. Conventional serotyping is tedious, laborious, and time-consuming; however, with whole-genome sequencing (WGS) becoming faster and cheaper, WGS has vast potential in routine typing and surveillance. Hence, in this study, we developed a publicly available tool, CroTrait (CronobacterTraits), for in silico species identification and O serotyping of Cronobacter isolates based on WGS data. CroTrait showed excellent performance in species identification and O serotyping when 810 genomes with known species identities and 276 genomes with known O serotype were tested. Moreover, CroTrait allows rapid prediction of new potential O serotypes. We identified 11 novel potential O serotypes of Cronobacter using CroTrait. Therefore, CroTrait is a convenient and promising tool for species identification and O serotyping of Cronobacter isolates.
Collapse
Affiliation(s)
- Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Wenxuan Zhu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Gege Lu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Yi Wei
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Yingying Su
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Linxing Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Xi Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Qian Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China.
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, People's Republic of China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People's Republic of China; Center for Microbial Functional Genomics and Detection Technology, Ministry of Education, Tianjin, People's Republic of China.
| |
Collapse
|
17
|
Hahn K, Veiga IB, Schediwy M, Wiederkehr D, Meniri M, Schneeberger M, den Broek PRV, Gurtner C, Fasel NJ, Kittl S, Fredriksson-Ahomaa M, Schmitt S, Stokar-Regenscheit N. Yersinia pseudotuberculosis serotype O:1 infection in a captive Seba's short tailed-fruit bat (Carollia perspicillata) colony in Switzerland. BMC Vet Res 2021; 17:92. [PMID: 33639950 PMCID: PMC7912865 DOI: 10.1186/s12917-021-02796-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/04/2021] [Indexed: 01/01/2023] Open
Abstract
Background Between February and April 2016, a slight increase in mortality was observed in a colony consisting of 400 captive Seba’s short-tailed bats (Carollia perspicillata). These animals cohabited with other nocturnal animal species in a dome of a private zoo in Switzerland. Results Gross and histological analysis of two (14.3%) out of the 13 animals submitted for necropsy within this period revealed a necrosuppurative pneumonia, hepatitis, splenitis, enterocolitis, and endometritis, with abundant intralesional colonies of Gram-negative rods. Yersinia (Y.) pseudotuberculosis serotype O:1 and biotype 1 belonging to the sequence type ST90 was isolated from the affected organs in both animals. Following this diagnosis, ¼ of the colony (99 animals) was culled and submitted for gross and histopathological analysis, and a bacterial culture selective for Yersinia spp. of lung, liver, and spleen was performed. From these 99 animals, one gravid female was tested and found to be positive for Y. pseudotuberculosis in the absence of clinical symptoms and histopathological lesions. PCR analysis of altogether three bacterial isolates for virulence factors revealed the presence of the ail gene, and one isolate was also positive for the virF and yadA plasmid genes. Conclusions These findings suggest that Carollia perspicillata are susceptible to lethal yersiniosis but do not represent a regular reservoir for Y. pseudotuberculosis. Culling of ¼ of the population was sufficient to limit the spread of this infection among the colony. Moreover, no infections were detected in cohabitant nocturnal animals and caretakers, indicating that the zoonotic risk in this case was low.
Collapse
Affiliation(s)
- K Hahn
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - I B Veiga
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland. .,Institute of Virology and Immunology, Bern, Switzerland.
| | - M Schediwy
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland.,Vetmedics Praxis Dr. Schediwy GmbH, Muri-Gümligen, Switzerland
| | - D Wiederkehr
- Department of Agronomy, School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - M Meniri
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - M Schneeberger
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | | | - C Gurtner
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - N J Fasel
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - S Kittl
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - M Fredriksson-Ahomaa
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - S Schmitt
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, Section of Veterinary Bacteriology, University of Zurich, Zurich, Switzerland
| | - N Stokar-Regenscheit
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Rivas L, Strydom H, Paine S, Wang J, Wright J. Yersiniosis in New Zealand. Pathogens 2021; 10:191. [PMID: 33578727 PMCID: PMC7916520 DOI: 10.3390/pathogens10020191] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/19/2022] Open
Abstract
The rate of yersiniosis in New Zealand (NZ) is high compared with other developed countries, and rates have been increasing over recent years. Typically, >99% of human cases in NZ are attributed to Yersinia enterocolitica (YE), although in 2014, a large outbreak of 220 cases was caused by Yersinia pseudotuberculosis. Up until 2012, the most common NZ strain was YE biotype 4. The emergent strain since this time is YE biotype 2/3 serotype O:9. The pathogenic potential of some YE biotypes remains unclear. Most human cases of yersiniosis are considered sporadic without an identifiable source. Key restrictions in previous investigations included insufficient sensitivity for the isolation of Yersinia spp. from foods, although foodborne transmission is the most likely route of infection. In NZ, YE has been isolated from a variety of sick and healthy domestic and farm animals but the pathways from zoonotic reservoir to human remain unproven. Whole-genome sequencing provides unprecedented discriminatory power for typing Yersinia and is now being applied to NZ epidemiological investigations. A "One-Health" approach is necessary to elucidate the routes of transmission of Yersinia and consequently inform targeted interventions for the prevention and management of yersiniosis in NZ.
Collapse
Affiliation(s)
- Lucia Rivas
- Christchurch Science Centre, Institute of Environmental Science and Research Limited, Ilam, Christchurch 8041, New Zealand;
| | - Hugo Strydom
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| | - Shevaun Paine
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jing Wang
- Kenepuru Science Centre, Institute of Environmental Science and Research Limited, Porirua, Wellington 5022, New Zealand; (S.P.); (J.W.)
| | - Jackie Wright
- National Centre for Biosecurity and Infectious Disease, Institute of Environmental Science and Research Limited, Upper Hutt, Wellington 5018, New Zealand;
| |
Collapse
|
19
|
Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 2021; 11:3493. [PMID: 33568758 PMCID: PMC7876001 DOI: 10.1038/s41598-021-82925-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM) which causes economically significant losses in farmed salmonids, especially Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss, Walbaum). However, very little is known about the genetic relationships of disease-causing isolates in these two host species or about factors responsible for disease. Phylogenetic analyses of 16 representative isolates based on the nucleotide sequences of 19 housekeeping genes suggests that pathogenic Atlantic salmon and rainbow trout isolates represent distinct host-specific lineages. However, the apparent phylogenies of certain isolates has been influenced by horizontal gene transfer and recombinational exchange. Splits decomposition analysis demonstrated a net-like phylogeny based on the housekeeping genes, characteristic of recombination. Comparative analysis of the distribution of individual housekeeping gene alleles across the isolates demonstrated evidence of genomic mosaicism and recombinational exchange involving certain Atlantic salmon and rainbow trout isolates. Comparative nucleotide sequence analysis of the key outer membrane protein genes ompA and ompF revealed that the corresponding gene trees were both non-congruent with respect to the housekeeping gene phylogenies providing evidence that horizontal gene transfer has influenced the evolution of both these surface protein-encoding genes. Analysis of inferred amino acid sequence variation in OmpA identified a single variant, OmpA.1, that was present in serotype O1 and O8 isolates representing typical pathogenic strains in rainbow trout and Atlantic salmon, respectively. In particular, the sequence of surface-exposed loop 3 differed by seven amino acids to that of other Y. ruckeri isolates. These findings suggest that positive selection has likely influenced the presence of OmpA.1 in these isolates and that loop 3 may play an important role in virulence. Amino acid sequence variation of OmpF was greater than that of OmpA and was similarly restricted mainly to the surface-exposed loops. Two OmpF variants, OmpF.1 and OmpF.2, were associated with pathogenic rainbow trout and Atlantic salmon isolates, respectively. These OmpF proteins had very similar amino acid sequences suggesting that positive evolutionary pressure has also favoured the selection of these variants in pathogenic strains infecting both species.
Collapse
|
20
|
Nguyen SV, Muthappa DM, Eshwar AK, Buckley JF, Murphy BP, Stephan R, Lehner A, Fanning S. Comparative genomic insights into Yersinia hibernica - a commonly misidentified Yersinia enterocolitica-like organism. Microb Genom 2020; 6:mgen000411. [PMID: 32701425 PMCID: PMC7643974 DOI: 10.1099/mgen.0.000411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Food-associated outbreaks linked to enteropathogenic Yersinia enterocolitica are of concern to public health. Pigs and their meat are recognized risk factors for transmission of Y. enterocolitica. This study aimed to describe the comparative genomics of Y. enterocolitica along with a number of misclassified Yersinia isolates, now constituting the recently described Yersinia hibernica. The latter was originally cultured from an environmental sample taken at a pig slaughterhouse. Unique features were identified in the genome of Y. hibernica, including a novel integrative conjugative element (ICE), denoted as ICEYh-1 contained within a 255 kbp region of plasticity. In addition, a zebrafish embryo infection model was adapted and applied to assess the virulence potential among Yersinia isolates including Y. hibernica.
Collapse
Affiliation(s)
- Scott Van Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Dechamma Mundanda Muthappa
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Athmanya K. Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - James F. Buckley
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Brenda P. Murphy
- Veterinary Food Safety Laboratory, Cork County Council, Inniscarra, Co. Cork and Department of Microbiology, National University of Ireland, Cork, College Road, Cork, Ireland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5AG, UK
| |
Collapse
|
21
|
Dai H, Lu B, Li Z, Huang Z, Cai H, Yu K, Wang D. Multilocus sequence analysis for the taxonomic updating and identification of the genus Proteus and reclassification of Proteus genospecies 5 O'Hara et al. 2000, Proteus cibarius Hyun et al. 2016 as later heterotypic synonyms of Proteus terrae Behrendt et al. 2015. BMC Microbiol 2020; 20:152. [PMID: 32522175 PMCID: PMC7288399 DOI: 10.1186/s12866-020-01844-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background Members of the genus Proteus are mostly opportunistic pathogens that cause a variety of infections in humans. The molecular evolutionary characteristics and genetic relationships among Proteus species have not been elucidated to date. In this study, we developed a multilocus sequence analysis (MLSA) approach based on five housekeeping genes (HKGs) to delineate phylogenetic relationships of species within the genus Proteus. Results Of all 223 Proteus strains collected in the current study, the phylogenetic tree of five concatenated HKGs (dnaJ, mdh, pyrC, recA and rpoD) divided 223 strains into eleven clusters, which were representative of 11 species of Proteus. Meanwhile, the phylogenetic trees of the five individual HKGs also corresponded to that of the concatenated tree, except for recA, which clustered four strains at an independent cluster. The evaluation of inter- and intraspecies distances of HKG concatenation indicated that all interspecies distances were significantly different from intraspecies distances, which revealed that these HKG concatenations can be used as gene markers to distinguish different Proteus species. Further web-based DNA-DNA hybridization estimated by genome of type strains confirmed the validity of the MLSA, and each of eleven clusters was congruent with the most abundant Proteus species. In addition, we used the established MLSA method to identify the randomly collected Proteus and found that P. mirabilis is the most abundant species. However, the second most abundant species is P. terrae but not P. vulgaris. Combined with the genetic, genomic and phenotypic characteristics, these findings indicate that three species, P. terrae, P. cibarius and Proteus genospecies 5, should be regarded as heterotypic synonyms, and the species should be renamed P. terrae, while Proteus genospecies 5 has not been named to date. Conclusions This study suggested that MLSA is a powerful method for the discrimination and classification of Proteus at the species level. The MLSA scheme provides a rapid and inexpensive means of identifying Proteus strains. The identification of Proteus species determined by the MLSA approach plays an important role in the clinical diagnosis and treatment of Proteus infection.
Collapse
Affiliation(s)
- Hang Dai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Zhenpeng Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China
| | - Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Hongyan Cai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China.,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Changbai Road 155, Changping, Beijing, 102206, China. .,Center for Human Pathogen Collection, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206, China.
| |
Collapse
|
22
|
Nguyen SV, Greig DR, Hurley D, Donoghue O, Cao Y, McCabe E, Mitchell M, Schaffer K, Jenkins C, Fanning S. Yersinia canariae sp. nov., isolated from a human yersiniosis case. Int J Syst Evol Microbiol 2020; 70:2382-2387. [DOI: 10.1099/ijsem.0.004047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A Gram-negative rod from the
Yersinia
genus was isolated from a clinical case of yersiniosis in the United Kingdom. Long read sequencing data from an Oxford Nanopore Technologies (ONT) MinION in conjunction with Illumina HiSeq reads were used to generate a finished quality genome of this strain. Overall Genome Related Index (OGRI) of the strain was used to determine that it was a novel species within
Yersinia
, despite biochemical similarities to
Yersinia enterocolitica
. The 16S ribosomal RNA gene accessions are MN434982-MN434987 and the accession number for the complete and closed chromosome is CP043727. The type strain is SRR7544370T (=NCTC 14382T/=LMG 31573T).
Collapse
Affiliation(s)
- Scott V. Nguyen
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - David R. Greig
- National Infection Services, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Daniel Hurley
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Orla Donoghue
- Department of Microbiology, St Vincent's University Hospital, 196 Merrion Road, Elm Park, Dublin D04 T6F4, Ireland
| | - Yu Cao
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Molly Mitchell
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Kirsten Schaffer
- Department of Microbiology, St Vincent's University Hospital, 196 Merrion Road, Elm Park, Dublin D04 T6F4, Ireland
| | - Claire Jenkins
- National Infection Services, Public Health England, 61 Colindale Avenue, London NW9 5HT, UK
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| |
Collapse
|
23
|
Zhou Z, Alikhan NF, Mohamed K, Fan Y, Achtman M. The EnteroBase user's guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res 2020; 30:138-152. [PMID: 31809257 PMCID: PMC6961584 DOI: 10.1101/gr.251678.119] [Citation(s) in RCA: 588] [Impact Index Per Article: 117.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
EnteroBase is an integrated software environment that supports the identification of global population structures within several bacterial genera that include pathogens. Here, we provide an overview of how EnteroBase works, what it can do, and its future prospects. EnteroBase has currently assembled more than 300,000 genomes from Illumina short reads from Salmonella, Escherichia, Yersinia, Clostridioides, Helicobacter, Vibrio, and Moraxella and genotyped those assemblies by core genome multilocus sequence typing (cgMLST). Hierarchical clustering of cgMLST sequence types allows mapping a new bacterial strain to predefined population structures at multiple levels of resolution within a few hours after uploading its short reads. Case Study 1 illustrates this process for local transmissions of Salmonella enterica serovar Agama between neighboring social groups of badgers and humans. EnteroBase also supports single nucleotide polymorphism (SNP) calls from both genomic assemblies and after extraction from metagenomic sequences, as illustrated by Case Study 2 which summarizes the microevolution of Yersinia pestis over the last 5000 years of pandemic plague. EnteroBase can also provide a global overview of the genomic diversity within an entire genus, as illustrated by Case Study 3, which presents a novel, global overview of the population structure of all of the species, subspecies, and clades within Escherichia.
Collapse
|
24
|
Söderlund R, Skarin H, Börjesson S, Sannö A, Jernberg T, Aspán A, Ågren EO, Hansson I. Prevalence and genomic characteristics of zoonotic gastro-intestinal pathogens and ESBL/pAmpC producing Enterobacteriaceae among Swedish corvid birds. Infect Ecol Epidemiol 2019; 9:1701399. [PMID: 32002147 PMCID: PMC6968639 DOI: 10.1080/20008686.2019.1701399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/30/2019] [Indexed: 10/28/2022] Open
Abstract
Introduction: Wild birds pose a potential threat to animal and human health by spreading infectious diseases. In the present study, we studied the occurrence of bacterial zoonotic pathogens as well as enterobacteria with transferrable antimicrobial resistance genes among Swedish corvids. Materials and methods: Intestines from 66 jackdaws, crows, rooks and magpies from the vicinity of livestock farms at 14 locations in 7 counties were analysed by direct culture or PCR screening followed by culture. Isolates were investigated by whole-genome sequencing. Results and discussion: Campylobacter jejuni were detected in 82% and Yersinia in 3% of the birds. ESBL-producing E. coli were found in one sample (2%) and carried bla CTX-M-55. No Enterobacteriaceae with transferable carbapenem resistance were identified. No Salmonella or E. coli O157:H7 were found, but PCR analysis for enterohaemorrhagic E. coli virulence genes revealed 35% positive samples for intimin, 9% for verotoxin 1 and 17% for verotoxin 2. C. jejuni isolates from corvids were compared to previously published isolates from Swedish sources by multi-locus sequence typing based on genome sequences. All corvid C. jejuni isolates formed a cluster, intermingled with human and chicken isolates. Our results indicate that C. jejuni is ubiquitous among Swedish corvid birds, with sporadic transmission to poultry and humans.
Collapse
Affiliation(s)
- Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Hanna Skarin
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Stefan Börjesson
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- Division of Microbiology, Infection and Inflammation, Linköping University, Linköping, Sweden
| | - Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Therese Jernberg
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik O. Ågren
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Ingrid Hansson
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
25
|
Savin C, Criscuolo A, Guglielmini J, Le Guern AS, Carniel E, Pizarro-Cerdá J, Brisse S. Genus-wide Yersinia core-genome multilocus sequence typing for species identification and strain characterization. Microb Genom 2019; 5:e000301. [PMID: 31580794 PMCID: PMC6861861 DOI: 10.1099/mgen.0.000301] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
The genus Yersinia comprises species that differ widely in their pathogenic potential and public-health significance. Yersinia pestis is responsible for plague, while Yersinia enterocolitica is a prominent enteropathogen. Strains within some species, including Y. enterocolitica, also vary in their pathogenic properties. Phenotypic identification of Yersinia species is time-consuming, labour-intensive and may lead to incorrect identifications. Here, we developed a method to automatically identify and subtype all Yersinia isolates from their genomic sequence. A phylogenetic analysis of Yersinia isolates based on a core subset of 500 shared genes clearly demarcated all existing Yersinia species and uncovered novel, yet undefined Yersinia taxa. An automated taxonomic assignment procedure was developed using species-specific thresholds based on core-genome multilocus sequence typing (cgMLST). The performance of this method was assessed on 1843 isolates prospectively collected by the French National Surveillance System and analysed in parallel using phenotypic reference methods, leading to nearly complete (1814; 98.4 %) agreement at species and infra-specific (biotype and serotype) levels. For 29 isolates, incorrect phenotypic assignments resulted from atypical biochemical characteristics or lack of phenotypic resolution. To provide an identification tool, a database of cgMLST profiles and reference taxonomic information has been made publicly accessible (https://bigsdb.pasteur.fr/yersinia). Genomic sequencing-based identification and subtyping of any Yersinia is a powerful and reliable novel approach to define the pathogenic potential of isolates of this medically important genus.
Collapse
Affiliation(s)
- Cyril Savin
- Yersinia Research Unit, Institut Pasteur, Paris, France
- National Reference Laboratory for Plague and Other Yersinioses, Institut Pasteur, Paris, France
- WHO Collaborating Centre for Yersinia, Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Hub de Bioinformatique et Biostatistique – Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Julien Guglielmini
- Hub de Bioinformatique et Biostatistique – Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, Paris, France
- National Reference Laboratory for Plague and Other Yersinioses, Institut Pasteur, Paris, France
- WHO Collaborating Centre for Yersinia, Institut Pasteur, Paris, France
| | - Elisabeth Carniel
- Yersinia Research Unit, Institut Pasteur, Paris, France
- National Reference Laboratory for Plague and Other Yersinioses, Institut Pasteur, Paris, France
- WHO Collaborating Centre for Yersinia, Institut Pasteur, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, Paris, France
- National Reference Laboratory for Plague and Other Yersinioses, Institut Pasteur, Paris, France
- WHO Collaborating Centre for Yersinia, Institut Pasteur, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Harch SAJ, Jennison AV, Bastian I. Yersinia pseudotuberculosis bacteraemia: a diagnostic dilemma in the era of MALDI-TOF mass spectrometry. Pathology 2019; 51:434-436. [PMID: 31000169 DOI: 10.1016/j.pathol.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Susan A J Harch
- Department of Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA, Australia.
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, Qld, Australia
| | - Ivan Bastian
- Department of Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
27
|
Identification and typing of Yersinia enterocolitica and Yersinia pseudotuberculosis isolated from human clinical specimens in England between 2004 and 2018. J Med Microbiol 2019; 68:538-548. [DOI: 10.1099/jmm.0.000943] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Sauvala M, Laaksonen S, Laukkanen-Ninios R, Jalava K, Stephan R, Fredriksson-Ahomaa M. Microbial contamination of moose (Alces alces) and white-tailed deer (Odocoileus virginianus) carcasses harvested by hunters. Food Microbiol 2019; 78:82-88. [DOI: 10.1016/j.fm.2018.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
|
29
|
Strydom H, Wang J, Paine S, Dyet K, Cullen K, Wright J. Evaluating sub-typing methods for pathogenic Yersinia enterocolitica to support outbreak investigations in New Zealand. Epidemiol Infect 2019; 147:e186. [PMID: 31364520 PMCID: PMC6518587 DOI: 10.1017/s0950268819000773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 11/07/2022] Open
Abstract
Incidence of human yersiniosis in New Zealand has increased between 2013 and 2017. For surveillance and outbreak investigations it is essential that an appropriate level of discrimination between pathogenic Yersinia enterocolitica isolates is provided, in order to support epidemiological linking of connected cases. Subtyping of 227 Y. enterocolitica isolates was performed using a range of different typing methods, including biotyping, serotyping and seven loci multiple-locus variable-number tandem-repeat analysis (MLVA). In addition, core genome single-nucleotide polymorphism (core SNP) analysis and multi-locus sequence typing were performed on a subset of 69 isolates. Sixty-seven different MLVA types were identified. One MLVA profile was associated with an outbreak in the Bay of Plenty region, supported by epidemiological data. Core SNP analysis showed that all the outbreak-related isolates clustered together. The subtyping and epidemiological evidence suggests that the outbreak of yersiniosis in the Bay of Plenty region between October and December 2016 could be attributed to a point source. However, subtyping results further suggest that the same clone was isolated from several regions between August 2016 and March 2017. Core SNP analysis and MLVA typing failed to differentiate between Y. enterocolitica biotype 2 and biotype 3. For this reason, we propose that these biotypes should be reported as a single type namely: Y. enterocolitica biotype 2/3 and that the serotype should be prioritised as an indicator of prevalence.
Collapse
Affiliation(s)
- H. Strydom
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| | - J. Wang
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| | - S. Paine
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| | - K. Dyet
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| | - K. Cullen
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| | - J. Wright
- Institute of Environmental Science & Research (ESR), Porirua, New Zealand
| |
Collapse
|
30
|
Inns T, Flanagan S, Greig DR, Jenkins C, Seddon K, Chin T, Cartwright J. First use of whole-genome sequencing to investigate a cluster of Yersinia enterocolitica, Liverpool, United Kingdom, 2017. J Med Microbiol 2018; 67:1747-1752. [DOI: 10.1099/jmm.0.000856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Thomas Inns
- 1Field Service, National Infection Service, Public Health England, Liverpool, UK
- 2Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
- 3NIHR Health Protection Research Unit in Gastrointestinal Infections, Liverpool, UK
| | - Stephen Flanagan
- 4North West Health Protection Team, Public Health England, Liverpool, UK
| | - David R. Greig
- 5National Infection Service, Public Health England, London, UK
| | - Claire Jenkins
- 5National Infection Service, Public Health England, London, UK
| | - Keeley Seddon
- 6Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Toong Chin
- 6Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - Joanna Cartwright
- 4North West Health Protection Team, Public Health England, Liverpool, UK
| |
Collapse
|
31
|
Sannö A, Jacobson M, Sterner S, Thisted-Lambertz S, Aspán A. The development of a screening protocol for Salmonella spp. and enteropathogenic Yersinia spp. in samples from wild boar (Sus scrofa) also generating MLVA-data for Y. enterocolitica and Y. pseudotuberculosis. J Microbiol Methods 2018; 150:32-38. [PMID: 29792943 DOI: 10.1016/j.mimet.2018.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/02/2023]
Abstract
Salmonellosis and yersiniosis are notifiable human diseases that are commonly associated with contaminated food. Domestic pigs as well as wild boars and other wild-life have been identified as reservoirs of these bacteria. Methods for cultivation and molecular epidemiological investigations of Salmonella spp. are well established, however, cultivation of enteropathogenic Yersinia spp. is time- consuming and the commonly used method for molecular epidemiological investigations, pulsed-field gel electrophoresis, lack in discriminatory power. The aim of this study was to develop and evaluate a screening protocol well suited for wildlife samples and other highly contaminated samples. The method is based on PCR-screening followed by Multiple Loci Variant number tandem repeat Analysis (MLVA) on enrichment broth to obtain molecular epidemiological data for enteropathogenic Yersinia spp. without the need for pure isolates. The performance of the protocol was evaluated using wild boar samples (n=354) including tonsils, faeces and lymph nodes from 90 Swedish wild boars. The new protocol performed as well as or better than the established ISO-standards for detection and cultivation of Y. enterocolitica and Salmonella spp., however for cultivation of Y. pseudotuberculosis, further development is needed. The selection for motility seems beneficial for the enrichment of Salmonella spp. and Y. enterocolitica. Further, the selective enrichment prior to PCR-analysis eliminates inhibitory factors present in the original sample. In total, ten isolates of Y. enterocolitica of various bio-serotypes were obtained, and the MLVA-profile of these isolates were consistent with the profiles from the corresponding enrichment broth. Further, 22 isolates of Salmonella spp. comprising six different serovars were obtained with S. Fulica, S. Hadar and a monophasic S. Typhimurium being the most common. In conclusion, the presented screening protocol offers a rapid and efficient way to obtain prevalence data from a large sample set as well as MLVA-data within a short time frame. These results can hence improve the knowledge on the epidemiology and distribution of these pathogens and their importance to public health.
Collapse
Affiliation(s)
- Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Sandra Sterner
- School of Health Sciences, Örebro University, Örebro, Sweden.
| | | | - Anna Aspán
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
32
|
Identification of Yersinia at the Species and Subspecies Levels Is Challenging. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0088-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Petsios S, Fredriksson-Ahomaa M, Sakkas H, Papadopoulou C. Conventional and molecular methods used in the detection and subtyping of Yersinia enterocolitica in food. Int J Food Microbiol 2016; 237:55-72. [DOI: 10.1016/j.ijfoodmicro.2016.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 07/28/2016] [Accepted: 08/11/2016] [Indexed: 01/08/2023]
|
34
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
35
|
Alenizi D, Ringwood T, Redhwan A, Bouraha B, Wren BW, Prentice M, McNally A. All Yersinia enterocolitica are pathogenic: virulence of phylogroup 1 Y. enterocolitica in a Galleria mellonella infection model. MICROBIOLOGY-SGM 2016; 162:1379-1387. [PMID: 27221796 DOI: 10.1099/mic.0.000311] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Yersinia enterocolitica is a zoonotic pathogen and a common cause of gastroenteritis in humans. The species is composed of six diverse phylogroups, of which strains of phylogroup 1 are considered non-pathogenic to mammals due to the lack of the major virulence plasmid pYV, and their lack of virulence in a mouse infection model. In the present report we present data examining the pathogenicity of strains of Y. enterocolitica across all six phylogroups in a Galleria mellonellla model. We have demonstrated that in this model strains of phylogroup 1 exhibit severe pathogenesis with a lethal dose of as low as 10 c.f.u., that this virulence is an active process and that flagella play a major role in the virulence phenotype. We have also demonstrated that the complete lack of virulence in Galleria of the mammalian pathogenic phylogroups is not due to carriage of the pYV virulence plasmid. Our data suggest that all Y. enterocolitica can be pathogenic, which may be a reflection of the true natural habitat of the species, and that we may need to reconsider the eco-evo perspective of this important bacterial species.
Collapse
Affiliation(s)
- Dhahi Alenizi
- Nottingham Trent University, Pathogen Research Group, Clifton Lane, Nottingham NG11 8NS, UK
| | - Tamara Ringwood
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Alya Redhwan
- Nottingham Trent University, Pathogen Research Group, Clifton Lane, Nottingham NG11 8NS, UK
| | - Bouchra Bouraha
- Nottingham Trent University, Pathogen Research Group, Clifton Lane, Nottingham NG11 8NS, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael Prentice
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Alan McNally
- Nottingham Trent University, Pathogen Research Group, Clifton Lane, Nottingham NG11 8NS, UK
| |
Collapse
|