1
|
Fernandez DJ, Cheng S, Prins R, Hamm-Alvarez SF, Kast WM. Human Papillomavirus Type 16 Stimulates WAVE1- and WAVE2-Dependent Actin Protrusions for Endocytic Entry. Viruses 2025; 17:542. [PMID: 40284985 PMCID: PMC12031361 DOI: 10.3390/v17040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Human papillomavirus type 16 (HPV16) is an etiological agent of human cancers that requires endocytosis to initiate infection. HPV16 entry into epithelial cells occurs through a non-canonical endocytic pathway that is actin-driven, but it is not well understood how HPV16-cell surface interactions trigger actin reorganization in a way that facilitates entry. This study provides evidence that Wiskott-Aldrich syndrome protein family verprolin-homologous proteins 1 and 2 (WAVE1 and WAVE2) are molecular mediators of actin protrusions that occur at the cellular surface upon HPV addition to cells, and that this stimulation is a key step prior to endocytosis and intracellular trafficking. We demonstrate through post-transcriptional gene silencing and genome editing that WAVE1 and WAVE2 are critical for efficient HPV16 infection, and that restoration of each in knockout cells rescues HPV16 infection. Cells lacking WAVE1, WAVE2, or both internalize HPV16 at a significantly reduced rate. Microscopic analysis of fluorescently labeled cells revealed that HPV16, WAVE1, WAVE2, and actin are all colocalized at the cellular dorsal surface within a timeframe that precedes endocytosis. Within that same timeframe, we also found that HPV16-treated cells express cellular dorsal surface filopodia, which does not occur in cells lacking WAVE1 and WAVE2. Taken together, this study provides evidence that WAVE1 and WAVE2 mediate a key step prior to HPV entry into cells that involves actin reorganization in the form of cellular dorsal surface protrusions.
Collapse
Affiliation(s)
- Daniel J. Fernandez
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Stephanie Cheng
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Ruben Prins
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Sarah F. Hamm-Alvarez
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA; (D.J.F.); (S.C.); (R.P.)
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
3
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A peptide derived from sorting nexin 1 inhibits HPV16 entry, retrograde trafficking, and L2 membrane spanning. Tumour Virus Res 2024; 18:200287. [PMID: 38909779 PMCID: PMC11255958 DOI: 10.1016/j.tvr.2024.200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024] Open
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Zachary L Williamson
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Feng Y, van Bodegraven D, Kádek A, L B Munguira I, Soria-Martinez L, Nentwich S, Saha S, Chardon F, Kavan D, Uetrecht C, Schelhaas M, Roos WH. Glycan-induced structural activation softens the human papillomavirus capsid for entry through reduction of intercapsomere flexibility. Nat Commun 2024; 15:10076. [PMID: 39572555 PMCID: PMC11582657 DOI: 10.1038/s41467-024-54373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) cause various cancers. While type-specific prophylactic vaccines are available, additional anti-viral strategies are highly desirable. Initial HPV cell entry involves receptor-switching induced by structural capsid modifications. These modifications are initiated by interactions with cellular heparan sulphates (HS), however, their molecular nature and functional consequences remain elusive. Combining virological assays with hydrogen/deuterium exchange mass spectrometry, and atomic force microscopy, we investigate the effect of capsid-HS binding and structural activation. We show how HS-induced structural activation requires a minimal HS-chain length and simultaneous engagement of several binding sites by a single HS molecule. This engagement introduces a pincer-like force that stabilizes the capsid in a conformation with extended capsomer linkers. It results in capsid enlargement and softening, thereby likely facilitating L1 proteolytic cleavage and subsequent L2-externalization, as needed for cell entry. Our data supports the further devising of prophylactic strategies against HPV infections.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Alan Kádek
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Ignacio L B Munguira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Sarah Nentwich
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany
| | - Sreedeepa Saha
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | - Daniel Kavan
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic
| | - Charlotte Uetrecht
- CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY & Leibniz Institute of Virology (LIV), Notkestraße 85, Hamburg, Germany.
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany.
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| |
Collapse
|
5
|
Bano F, Soria-Martinez L, van Bodegraven D, Thorsteinsson K, Brown AM, Fels I, Snyder NL, Bally M, Schelhaas M. Site-specific sulfations regulate the physicochemical properties of papillomavirus-heparan sulfate interactions for entry. SCIENCE ADVANCES 2024; 10:eado8540. [PMID: 39365863 PMCID: PMC11451526 DOI: 10.1126/sciadv.ado8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Certain human papillomaviruses (HPVs) are etiological agents for several anogenital and oropharyngeal cancers. During initial infection, HPV16, the most prevalent cancer-causing type, specifically interacts with heparan sulfates (HSs), not only enabling initial cell attachment but also triggering a crucial conformational change in viral capsids termed structural activation. It is unknown, whether these HPV16-HS interactions depend on HS sulfation patterns. Thus, we probed potential roles of HS sulfations using cell-based functional and physicochemical assays, including single-molecule force spectroscopy. Our results demonstrate that N-sulfation of HS is crucial for virus binding and structural activation by providing high-affinity sites, and that additional 6O-sulfation is required to mechanically stabilize the interaction, whereas 2O-sulfation and 3O-sulfation are mostly dispensable. Together, our findings identify the contribution of HS sulfation patterns to HPV16 binding and structural activation and reveal how distinct sulfation groups of HS synergize to facilitate HPV16 entry, which, in turn, likely influences the tropism of HPVs.
Collapse
Affiliation(s)
- Fouzia Bano
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Dominik van Bodegraven
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anna M. Brown
- Department of Chemistry, Davidson College, Davidson, NC, USA
| | - Ines Fels
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | | | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| |
Collapse
|
6
|
Li S, Williamson ZL, Christofferson MA, Jeevanandam A, Campos SK. A Peptide Derived from Sorting Nexin 1 Inhibits HPV16 Entry, Retrograde Trafficking, and L2 Membrane Spanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.25.595865. [PMID: 38826391 PMCID: PMC11142256 DOI: 10.1101/2024.05.25.595865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
| | - Zachary L Williamson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Microbiologics, Inc. Saint Cloud, MN USA
- Biochemistry and Molecular & Cellular Biology Graduate Program, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| | - Matthew A Christofferson
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC Canada
| | - Advait Jeevanandam
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Current Address: Department of Immunobiology, Yale University, New Haven, CT USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ USA
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ USA
- BIO5 Institute, University of Arizona, Tucson, AZ USA, HPV16
| |
Collapse
|
7
|
Ishii Y, Yamaji T, Sekizuka T, Homma Y, Mori S, Takeuchi T, Kukimoto I. Folliculin Prevents Lysosomal Degradation of Human Papillomavirus To Support Infectious Cell Entry. J Virol 2023; 97:e0005623. [PMID: 37167561 PMCID: PMC10231244 DOI: 10.1128/jvi.00056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Human papillomavirus (HPV) infects epithelial basal cells in the mucosa and either proliferates with the differentiation of the basal cells or persists in them. Multiple host factors are required to support the HPV life cycle; however, the molecular mechanisms involved in cell entry are not yet fully understood. In this study, we performed a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) knockout (KO) screen in HeLa cells and identified folliculin (FLCN), a GTPase-activating protein for Rag GTPases, as an important host factor for HPV infection. The introduction of single guide RNAs for the FLCN gene into HeLa, HaCaT, and ectocervical Ect1 cells reduced infection by HPV18 pseudovirions (18PsVs) and 16PsVs. FLCN KO HeLa cells also exhibited strong resistance to infection with 18PsVs and 16PsVs; nevertheless, they remained highly susceptible to infections with vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus. Immunofluorescence microscopy revealed that the numbers of virions binding to the cell surface were slightly increased in FLCN KO cells. However, virion internalization analysis showed that the internalized virions were rapidly degraded in FLCN KO cells. This degradation was blocked by treatment with the lysosome inhibitor bafilomycin A1. Furthermore, the virion degradation phenotype was also observed in Ras-related GTP-binding protein C (RagC) KO cells. These results suggest that FLCN prevents the lysosomal degradation of incoming HPV virions by enhancing lysosomal RagC activity. IMPORTANCE Cell entry by human papillomavirus (HPV) involves a cellular retrograde transport pathway from the endosome to the trans-Golgi network/Golgi apparatus. However, the mechanism by which this viral trafficking is safeguarded is poorly understood. This is the first study showing that the GTPase-activating protein folliculin (FLCN) protects incoming HPV virions from lysosomal degradation and supports infectious cell entry by activating the Rag GTPases, presumably through the suppression of excessive lysosomal biosynthesis. These findings provide new insights into the effects of small GTPase activity regulation on HPV cell entry and enhance our understanding of the HPV degradation pathway.
Collapse
Affiliation(s)
- Yoshiyuki Ishii
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuta Homma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Rizzato M, Mao F, Chardon F, Lai KY, Villalonga-Planells R, Drexler HCA, Pesenti ME, Fiskin M, Roos N, King KM, Li S, Gamez ER, Greune L, Dersch P, Simon C, Masson M, Van Doorslaer K, Campos SK, Schelhaas M. Master mitotic kinases regulate viral genome delivery during papillomavirus cell entry. Nat Commun 2023; 14:355. [PMID: 36683055 PMCID: PMC9868124 DOI: 10.1038/s41467-023-35874-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis.
Collapse
Affiliation(s)
- Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Fuxiang Mao
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Florian Chardon
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | | | | | - Mert Fiskin
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Eduardo R Gamez
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813-5525, USA
| | - Lilo Greune
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Petra Dersch
- Institute of Infectiology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, Tübingen, Germany
| | - Murielle Masson
- UMR 7242 Biotechnologie et signalisation cellulaire, CNRS, UdS, ESBS, Illkirch, France
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Samuel K Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany.
- Interfaculty Centre 'Cells in Motion' (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany.
| |
Collapse
|
9
|
Ishii Y, Mori S, Kukimoto I. [Identification of new host factors supporting the human papillomavirus life cycle]. Uirusu 2023; 73:189-198. [PMID: 39343554 DOI: 10.2222/jsv.73.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
|
10
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
11
|
Wang Y, Qu M, Liu Y, Wang H, Dong Y, Zhou X. KLK12 Regulates MMP-1 and MMP-9 via Bradykinin Receptors: Biomarkers for Differentiating Latent and Active Bovine Tuberculosis. Int J Mol Sci 2022; 23:ijms232012257. [PMID: 36293113 PMCID: PMC9603359 DOI: 10.3390/ijms232012257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
It has been established that kallikrein12 (KLK12) expression is closely related to bovine tuberculosis (bTB) development. Herein, we sought to clarify the regulatory mechanism of KLK12 and its application in tuberculosis diagnosis. KLK12 knockdown macrophages were produced by siRNA transfection. Bradykinin receptors (BR, including B1R and B2R) were blocked with specific inhibitors. Mannose-capped lipoarabinomannan (ManLAM) was extracted from Mycobacterium bovis (M. bovis) and used to study the mechanism of KLK12 activation. In addition, we constructed different mouse models representing the latent and active stages of M. bovis infection. Mouse models and clinical serum samples were used to assess the diagnostic value of biomarkers. Through the above methods, we confirmed that KLK12 regulates MMP-1 and MMP-9 via BR. KLK12 upregulation is mediated by the M. bovis-specific antigen ManLAM. KLK12, MMP-1, and MMP-9 harbor significant value as serological markers for differentiating between latent and active bTB, especially KLK12. In conclusion, we identified a novel signaling pathway, KLK12/BR/ERK/MMPs, in M. bovis-infected macrophages, which is activated by ManLAM. From this signaling pathway, KLK12 can be used as a serological marker to differentiate between latent and active bTB. Importantly, KLK12 also has enormous potential for the clinical diagnosis of human tuberculosis (TB).
Collapse
|
12
|
Modeling HPV-Associated Disease and Cancer Using the Cottontail Rabbit Papillomavirus. Viruses 2022; 14:v14091964. [PMID: 36146770 PMCID: PMC9503101 DOI: 10.3390/v14091964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 01/06/2023] Open
Abstract
Approximately 5% of all human cancers are attributable to human papillomavirus (HPV) infections. HPV-associated diseases and cancers remain a substantial public health and economic burden worldwide despite the availability of prophylactic HPV vaccines. Current diagnosis and treatments for HPV-associated diseases and cancers are predominantly based on cell/tissue morphological examination and/or testing for the presence of high-risk HPV types. There is a lack of robust targets/markers to improve the accuracy of diagnosis and treatments. Several naturally occurring animal papillomavirus models have been established as surrogates to study HPV pathogenesis. Among them, the Cottontail rabbit papillomavirus (CRPV) model has become known as the gold standard. This model has played a pivotal role in the successful development of vaccines now available to prevent HPV infections. Over the past eighty years, the CRPV model has been widely applied to study HPV carcinogenesis. Taking advantage of a large panel of functional mutant CRPV genomes with distinct, reproducible, and predictable phenotypes, we have gained a deeper understanding of viral–host interaction during tumor progression. In recent years, the application of genome-wide RNA-seq analysis to the CRPV model has allowed us to learn and validate changes that parallel those reported in HPV-associated cancers. In addition, we have established a selection of gene-modified rabbit lines to facilitate mechanistic studies and the development of novel therapeutic strategies. In the current review, we summarize some significant findings that have advanced our understanding of HPV pathogenesis and highlight the implication of the development of novel gene-modified rabbits to future mechanistic studies.
Collapse
|
13
|
Balaji D, Kalarani IB, Mohammed V, Veerabathiran R. Potential role of human papillomavirus proteins associated with the development of cancer. Virusdisease 2022; 33:322-333. [PMID: 36277412 PMCID: PMC9481806 DOI: 10.1007/s13337-022-00786-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022] Open
Abstract
Papillomaviruses are viruses with double-stranded DNA that are epitheliotropic and non-enveloped that infects cutaneous epithelial and mucosal cells in a species-specific way in several higher vertebrate species and cause cellular growth."There are around 100 different human papillomaviruses (HPVs)", as "more than 150 HPV types have been isolated and fully sequenced". We classify the probability of cancer development following viral infection with each HPV genotype into two types: "low-risk" and "high-risk." As a result, HPV diagnosis is a critical component of HPV genotype identification and characterization. Based on its activities, we may classify the HPV genome into three regions: the long control region (LCR) or the non-coding upstream regulatory region (URR), the late (L) region, and the early (E) region. Functional proteins are mostly static things that are not inflexible; they have undergone both local and global movements at various times and time ranges. The structural differences between HPV16 and 18 discovered by molecular modeling of the E6 oncoprotein were associated with their carcinogenic characteristics. Similarly, the E6 protein has two sets of C-X-X-C motifs that play significant roles in transformation, transcriptional activation, interactions, and immortalization with other proteins of cells in the host environment. Here, we review the literature regarding the protein mechanisms associated with HPV and how they cause cancer. Unless otherwise noted, it described all protein activities in terms of HPV proteins. The term "papillomaviruses" refers to groups of papillomavirus proteins that have a characteristic in common. HPV proteins can study the genetic influences on pathogenicity and the therapeutic applications of genomics. The future study provides a potential advancement in HPV infections and malignant illnesses to improve preventive and treatment strategies. Patients have been able to conquer this condition using a range of therapies and vaccines that were projected to be effective and robust enough to put an end to the ailment completely. In cancer prevention strategies, HPV vaccination is one of the most effective. It is safe, efficient, and long-lasting.
Collapse
Affiliation(s)
- Dhanvee Balaji
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| | - Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103 India
| |
Collapse
|
14
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
15
|
The Key Role of Lysosomal Protease Cathepsins in Viral Infections. Int J Mol Sci 2022; 23:ijms23169089. [PMID: 36012353 PMCID: PMC9409221 DOI: 10.3390/ijms23169089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins encompass a family of lysosomal proteases that mediate protein degradation and turnover. Although mainly localized in the endolysosomal compartment, cathepsins are also found in the cytoplasm, nucleus, and extracellular space, where they are involved in cell signaling, extracellular matrix assembly/disassembly, and protein processing and trafficking through the plasma and nuclear membrane and between intracellular organelles. Ubiquitously expressed in the body, cathepsins play regulatory roles in a wide range of physiological processes including coagulation, hormone secretion, immune responses, and others. A dysregulation of cathepsin expression and/or activity has been associated with many human diseases, including cancer, diabetes, obesity, cardiovascular and inflammatory diseases, kidney dysfunctions, and neurodegenerative disorders, as well as infectious diseases. In viral infections, cathepsins may promote (1) activation of the viral attachment glycoproteins and entry of the virus into target cells; (2) antigen processing and presentation, enabling the virus to replicate in infected cells; (3) up-regulation and processing of heparanase that facilitates the release of viral progeny and the spread of infection; and (4) activation of cell death that may either favor viral clearance or assist viral propagation. In this review, we report the most relevant findings on the molecular mechanisms underlying cathepsin involvement in viral infection physiopathology, and we discuss the potential of cathepsin inhibitors for therapeutical applications in viral infectious diseases.
Collapse
|
16
|
Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico. Int J Mol Sci 2022; 23:ijms23158566. [PMID: 35955700 PMCID: PMC9368912 DOI: 10.3390/ijms23158566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be a major public health problem in Mexico, ranking second among cancers in women. A persistent infection with human papillomaviruses (HPV) is the main risk factor for CC development. In addition, a significant fraction of other cancers including those of the anus, oropharynx, and penis are also related to HPV infection. In CC, HPV-16 is the most prevalent high-risk HPV type, followed by HPV-18, both being responsible for 70% of cases. HPV intratype variant lineages differ in nucleotide sequences by 1–10%, while sublineages differ by 0.5–1%. Several studies have postulated that the nucleotide changes that occur between HPV intratype variants are reflected in functional differences and in pathogenicity. Moreover, it has been demonstrated that HPV-16 and -18 intratype variants differentially affect molecular processes in infected cells, changing their biological behavior that finally impacts in the clinical outcome of patients. Mexico has participated in providing knowledge on the geographical distribution of intratype variants of the most prevalent HPVs in premalignant lesions of the cervix and cervical cancer, as well as in other HPV-related tumors. In addition, functional studies have been carried out to assess the cellular effects of intratype variations in HPV proteins. This review addresses the state of the art on the epidemiology of HPV-16 and HPV-18 intratype variants in the Mexican population, as well as their association with persistence, precancer and cervical cancer, and functional aspects related to their biological behavior.
Collapse
|
17
|
Schweiger L, Lelieveld-Fast LA, Mikuličić S, Strunk J, Freitag K, Tenzer S, Clement AM, Florin L. HPV16 Induces Formation of Virus-p62-PML Hybrid Bodies to Enable Infection. Viruses 2022; 14:1478. [PMID: 35891458 PMCID: PMC9315800 DOI: 10.3390/v14071478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated upon HPV entry. At the same time, the virus modulates cellular antiviral processes and structures such as promyelocytic leukemia nuclear bodies (PML NBs) to enable infection. Here, we uncover the autophagy adaptor p62, also known as p62/sequestosome-1, as a novel proviral factor in infections by the high-risk HPV type 16 (HPV16). Proteomics, imaging and interaction studies of HPV16 pseudovirus-treated HeLa cells display that p62 is recruited to virus-filled endosomes, interacts with incoming capsids, and accompanies the virus to PML NBs, the sites of viral transcription and replication. Cellular depletion of p62 significantly decreased the delivery of HPV16 viral DNA to PML NBs and HPV16 infection rate. Moreover, the absence of p62 leads to an increase in the targeting of viral components to autophagic structures and enhanced degradation of the viral capsid protein L2. The proviral role of p62 and formation of virus-p62-PML hybrid bodies have also been observed in human primary keratinocytes, the HPV target cells. Together, these findings suggest the previously unrecognized virus-induced formation of p62-PML hybrid bodies as a viral mechanism to subvert the cellular antiviral defense, thus enabling viral gene expression.
Collapse
Affiliation(s)
- Linda Schweiger
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Laura A. Lelieveld-Fast
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Johannes Strunk
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany;
| | - Albrecht M. Clement
- Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128 Mainz, Germany;
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| |
Collapse
|
18
|
Vieira GV, Somera dos Santos F, Lepique AP, da Fonseca CK, Innocentini LMAR, Braz-Silva PH, Quintana SM, Sales KU. Proteases and HPV-Induced Carcinogenesis. Cancers (Basel) 2022; 14:cancers14133038. [PMID: 35804810 PMCID: PMC9264903 DOI: 10.3390/cancers14133038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Human papillomavirus (HPV) infection is a sexually transmitted disease with high prevalence worldwide. Although most HPV infections do not lead to cancer, some HPV types are correlated with the majority of cervical cancers, and with some anogenital and oropharyngeal cancers. Moreover, enzymes known as proteases play an essential role in the pathogenic process in HPV-induced carcinogenesis. This review highlights the role of proteases and recent epidemiological data regarding HPV-dependent carcinogenesis. Abstract Persistent infection with Human papillomavirus (HPV) is the main etiologic factor for pre-malignant and malignant cervical lesions. Moreover, HPV is also associated with oropharynx and other anogenital carcinomas. Cancer-causing HPV viruses classified as group 1 carcinogens include 12 HPV types, with HPV 16 and 18 being the most prevalent. High-risk HPVs express two oncoproteins, E6 and E7, the products of which are responsible for the inhibition of p53 and pRB proteins, respectively, in human keratinocytes and cellular immortalization. p53 and pRB are pleiotropic proteins that regulate the activity of several signaling pathways and gene expression. Among the important factors that are augmented in HPV-mediated carcinogenesis, proteases not only control processes involved in cellular carcinogenesis but also control the microenvironment. For instance, genetic polymorphisms of matrix metalloproteinase 1 (MMP-1) are associated with carcinoma invasiveness. Similarly, the serine protease inhibitors hepatocyte growth factor activator inhibitor-1 (HAI-1) and -2 (HAI-2) have been identified as prognostic markers for HPV-dependent cervical carcinomas. This review highlights the most crucial mechanisms involved in HPV-dependent carcinogenesis, and includes a section on the proteolytic cascades that are important for the progression of this disease and their impact on patient health, treatment, and survival.
Collapse
Affiliation(s)
- Gabriel Viliod Vieira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Fernanda Somera dos Santos
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Ana Paula Lepique
- Department of Immunology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo 05508-000, SP, Brazil;
| | - Carol Kobori da Fonseca
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
| | - Lara Maria Alencar Ramos Innocentini
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Clinical Hospital of Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of Sao Paulo, São Paulo 05508-000, SP, Brazil;
- Laboratory of Virology, Institute of Tropical Medicine of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo 05403-000, SP, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (F.S.d.S.); (S.M.Q.)
| | - Katiuchia Uzzun Sales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil; (G.V.V.); (C.K.d.F.); (L.M.A.R.I.)
- Correspondence: ; Tel.: +55-16-3315-9113
| |
Collapse
|
19
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
20
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Bondu V, Sterk RT, Surviladze Z, Ozbun MA. Protamine Sulfate Is a Potent Inhibitor of Human Papillomavirus Infection In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0151321. [PMID: 34723633 PMCID: PMC8765401 DOI: 10.1128/aac.01513-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Human papillomavirus (HPV) infections are transmitted through sexual or other close contact and are etiologically associated with epithelial warts, papillomas, and intraepithelial lesions that may progress to cancer. Indeed, 4.8% of the global cancer burden is linked to HPV infection. Highly effective vaccines protect against two to nine of the most medically important HPV genotypes, yet vaccine uptake is inadequate and/or cost prohibitive in many settings. With HPV-related cancer incidence expected to rise over the coming decades, there is a need for effective HPV microbicides. Herein, we demonstrate the strong inhibitory activity of the heparin-neutralizing drug protamine sulfate (PS) against HPV infection. Pretreatment of cells with PS greatly reduced infection, regardless of HPV genotype or virus source. Vaginal application of PS prevented infection of the murine genital tract by HPV pseudovirions. Time-of-addition assays where PS was added to cells before infection, during infection, or after viral attachment demonstrated strong inhibitory activities on early infection steps. No effect on virus infection was found for cell lines deficient in heparan sulfate expression, suggesting that PS binds to heparan sulfate on the cell surface. Consistent with this, prophylactic PS exposure prevented viral attachment, including under low-pH conditions akin to the human vaginal tract. Our findings suggest PS acts dually to prevent HPV infection: prophylactic treatment prevents HPV attachment to host cells, and postattachment administration alters viral entry. Clinical trials are warranted to determine whether protamine-based products are effective as topical microbicides against genital HPVs.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Amira Zine El Abidine
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ricardo A. Gómez-Martinez
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Virginie Bondu
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosa T. Sterk
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Zurab Surviladze
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Michelle A. Ozbun
- Department of Molecular Genetics & Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Department of Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| |
Collapse
|
21
|
Carse S, Lang D, Katz AA, Schäfer G. Exogenous Vimentin Supplementation Transiently Affects Early Steps during HPV16 Pseudovirus Infection. Viruses 2021; 13:v13122471. [PMID: 34960740 PMCID: PMC8703489 DOI: 10.3390/v13122471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating the early steps in oncogenic Human Papillomavirus (HPV) infection has great cancer-preventative potential, as this virus is the etiological agent of virtually all cervical cancer cases and is associated with many other anogenital and oropharyngeal cancers. Previous work from our laboratory has identified cell-surface-expressed vimentin as a novel HPV16 pseudovirus (HPV16-PsVs)-binding molecule modulating its infectious potential. To further explore its mode of inhibiting HPV16-PsVs internalisation, we supplemented it with exogenous recombinant human vimentin and show that only the globular form of the molecule (as opposed to the filamentous form) inhibited HPV16-PsVs internalisation in vitro. Further, this inhibitory effect was only transient and not sustained over prolonged incubation times, as demonstrated in vitro and in vivo, possibly due to full-entry molecule engagement by the virions once saturation levels have been reached. The vimentin-mediated delay of HPV16-PsVs internalisation could be narrowed down to affecting multiple steps during the virus’ interaction with the host cell and was found to affect both heparan sulphate proteoglycan (HSPG) binding as well as the subsequent entry receptor complex engagement. Interestingly, decreased pseudovirus internalisation (but not infection) in the presence of vimentin was also demonstrated for oncogenic HPV types 18, 31 and 45. Together, these data demonstrate the potential of vimentin as a modulator of HPV infection which can be used as a tool to study early mechanisms in infectious internalisation. However, further refinement is needed with regard to vimentin’s stabilisation and formulation before its development as an alternative prophylactic means.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dirk Lang
- Department of Human Biology, Division of Cell Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Arieh A. Katz
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- SA-MRC-UCT Gynaecological Cancer Research Centre, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa;
- Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa;
- Department of Integrative Biomedical Sciences, Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-404-7688
| |
Collapse
|
22
|
Mikuličić S, Strunk J, Florin L. HPV16 Entry into Epithelial Cells: Running a Gauntlet. Viruses 2021; 13:v13122460. [PMID: 34960729 PMCID: PMC8706107 DOI: 10.3390/v13122460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.
Collapse
|
23
|
Veronez CL, Christiansen SC, Smith TD, Riedl MA, Zuraw BL. COVID-19 and hereditary angioedema: Incidence, outcomes, and mechanistic implications. Allergy Asthma Proc 2021; 42:506-514. [PMID: 34871158 DOI: 10.2500/aap.2021.42.210083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: Patients with hereditary angioedema (HAE) have been postulated to be at increased risk for coronavirus disease 2019 (COVID-19) infection due to inherent dysregulation of the plasma kallikrein-kinin system. Only limited data have been available to explore this hypothesis. Objective: To assess the interrelationship(s) between COVID-19 and HAE. Methods: Self-reported COVID-19 infection, complications, morbidity, and mortality were surveyed by using an online questionnaire. The participants included subjects with HAE with C1 inhibitor (C1INH) deficiency (HAE-C1INH) and subjects with HAE with normal C1-inhibitor (HAE-nl-C1INH), and household controls (normal controls). The impact of HAE medications was examined. Results: A total of 1162 participants who completed the survey were analyzed, including: 695 subjects with HAE-C1INH, 175 subjects with HAE-nl-C1INH, and 292 normal controls. The incidence of reported COVID-19 was not significantly different between the normal controls (9%) and the subjects with HAE-C1INH (11%) but was greater in the subjects with HAE-nl-C1INH (19%; p = 0.006). Obesity was positively correlated with COVID-19 across the overall population (p = 0.012), with a similar but nonsignificant trend in the subjects with HAE-C1INH. Comorbid autoimmune disease was a risk factor for COVID-19 in the subjects with HAE-C1INH (p = 0.047). COVID-19 severity and complications were similar in all the groups. Reported COVID-19 was reduced in the subjects with HAE-C1INH who received prophylactic subcutaneous C1INH (5.6%; p = 0.0371) or on-demand icatibant (7.8%; p = 0.0016). The subjects with HAE-C1INH and not on any HAE medications had an increased risk of COVID-19 compared with the normal controls (24.5%; p = 0.006). Conclusion: The subjects with HAE-C1INH who were not taking HAE medications had a significantly higher rate of reported COVID-19 infection. Subcutaneous C1INH and icatibant use were associated with a significantly reduced rate of reported COVID-19. The results implicated potential roles for the complement cascade and tissue kallikrein-kinin pathways in the pathogenesis of COVID-19 in patients with HAE-C1INH.
Collapse
Affiliation(s)
- Camila Lopes Veronez
- From the Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California; and
| | - Sandra C. Christiansen
- From the Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California; and
| | - Tukisa D. Smith
- From the Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California; and
| | - Marc A. Riedl
- From the Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California; and
| | - Bruce L. Zuraw
- From the Division of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California; and
| |
Collapse
|
24
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
25
|
Pampalakis G, Zingkou E, Panagiotidis C, Sotiropoulou G. Kallikreins emerge as new regulators of viral infections. Cell Mol Life Sci 2021; 78:6735-6744. [PMID: 34459952 PMCID: PMC8404027 DOI: 10.1007/s00018-021-03922-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 01/13/2023]
Abstract
Kallikrein-related peptidases (KLKs) or kallikreins have been linked to diverse (patho) physiological processes, such as the epidermal desquamation and inflammation, seminal clot liquefaction, neurodegeneration, and cancer. Recent mounting evidence suggests that KLKs also represent important regulators of viral infections. It is well-established that certain enveloped viruses, including influenza and coronaviruses, require proteolytic processing of their hemagglutinin or spike proteins, respectively, to infect host cells. Similarly, the capsid protein of the non-enveloped papillomavirus L1 should be proteolytically cleaved for viral uncoating. Consequently, extracellular or membrane-bound proteases of the host cells are instrumental for viral infections and represent potential targets for drug development. Here, we summarize how extracellular proteolysis mediated by the kallikreins is implicated in the process of influenza (and potentially coronavirus and papillomavirus) entry into host cells. Besides direct proteolytic activation of viruses, KLK5 and 12 promote viral entry indirectly through proteolytic cascade events, like the activation of thrombolytic enzymes that also can process hemagglutinin, while additional functions of KLKs in infection cannot be excluded. In the light of recent evidence, KLKs represent potential host targets for the development of new antivirals. Humanized animal models to validate their key functions in viral infections will be valuable.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| | - Christos Panagiotidis
- Department of Pharmacognosy-Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, 265 04, Rion-Patras, Greece
| |
Collapse
|
26
|
Ozbun MA, Campos SK. The long and winding road: human papillomavirus entry and subcellular trafficking. Curr Opin Virol 2021; 50:76-86. [PMID: 34416595 DOI: 10.1016/j.coviro.2021.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Human papillomaviruses (HPVs) infect and replicate in differentiating mucosal and cutaneous epithelium. Most HPV infections are asymptomatic or cause transient benign neoplasia. However, persistent infections by oncogenic HPV types can progress to cancer. During infectious entry into host keratinocytes, HPV particles interact with many host proteins, beginning with major capsid protein L1 binding to cellular heparan sulfate and a series of enzymatic capsid modifications that promote infectious cellular entry. After utilizing the endosomal pathway to uncoat the viral genome (vDNA), the minor capsid protein L2/vDNA complex is retrograde trafficked to the Golgi, and thereafter, to the nucleus where viral transcription initiates. Post-Golgi trafficking is dependent on mitosis, with L2-dependent tethering of vDNA to mitotic chromosomes before accumulation at nuclear substructures in G1. This review summarizes the current knowledge of the HPV entry pathway, the role of cellular proteins in this process, and notes many gaps in our understanding.
Collapse
Affiliation(s)
- Michelle A Ozbun
- Departments of Molecular Genetics & Microbiology, Obstetrics & Gynecology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Samuel K Campos
- Departments of Immunobiology, Molecular & Cellular Biology, and the Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, AZ 85721, USA; The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
27
|
Lai KY, Rizzato M, Aydin I, Villalonga-Planells R, Drexler HCA, Schelhaas M. A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathog 2021; 17:e1009580. [PMID: 33974675 PMCID: PMC8139508 DOI: 10.1371/journal.ppat.1009580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex. Human papillomaviruses (HPVs) cause proliferative lesions such as benign warts or malignant invasive cancers. Like other DNA viruses, HPV has to deliver its genome to the nucleus for viral genome transcription and replication. After initial attachment, HPVs are endocytosed to be eventually directed to the trans-Golgi-network (TGN) by intracellular trafficking, where they reside until cell division. Mitosis onset enables access of the virus to cellular chromatin after nuclear envelope breakdown. Tethering of the virus to mitotic chromatin ensures nuclear delivery upon reformation of the nuclear envelope after mitosis. Our previous work showed that the minor capsid protein L2 facilitates nuclear delivery. However, the detailed mechanism, namely, how HPV trafficks from cytosol to the nuclear space, is barely understood. Here, we identified for the first time cellular proteins that interacted with L2 for nuclear import. Mechanistically, the proteins formed a hitherto unknown cellular transport complex that interacted with L2 to direct the virus to mitotic chromosomes by microtubular transport. Our findings provided not only evidence for a transport mechanism of a poorly understood step of HPV entry, but also discovered a novel cellular transport complex.
Collapse
Affiliation(s)
- Kun-Yi Lai
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Matteo Rizzato
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | - Inci Aydin
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
| | | | - Hannes C. A. Drexler
- Biomolecular Mass Spectrometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, Westphalian Wilhelms-University of Münster, Münster, Germany
- Interfaculty Centre ‘Cells in Motion’ (CiM), Westphalian Wilhelms-University of Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
28
|
Carse S, Bergant M, Schäfer G. Advances in Targeting HPV Infection as Potential Alternative Prophylactic Means. Int J Mol Sci 2021; 22:2201. [PMID: 33672181 PMCID: PMC7926419 DOI: 10.3390/ijms22042201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Infection by oncogenic human papillomavirus (HPV) is the primary cause of cervical cancer and other anogenital cancers. The majority of cervical cancer cases occur in low- and middle- income countries (LMIC). Concurrent infection with Human Immunodeficiency Virus (HIV) further increases the risk of HPV infection and exacerbates disease onset and progression. Highly effective prophylactic vaccines do exist to combat HPV infection with the most common oncogenic types, but the accessibility to these in LMIC is severely limited due to cost, difficulties in accessing the target population, cultural issues, and maintenance of a cold chain. Alternative preventive measures against HPV infection that are more accessible and affordable are therefore also needed to control cervical cancer risk. There are several efforts in identifying such alternative prophylactics which target key molecules involved in early HPV infection events. This review summarizes the current knowledge of the initial steps in HPV infection, from host cell-surface engagement to cellular trafficking of the viral genome before arrival in the nucleus. The key molecules that can be potentially targeted are highlighted, and a discussion on their applicability as alternative preventive means against HPV infection, with a focus on LMIC, is presented.
Collapse
Affiliation(s)
- Sinead Carse
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Martina Bergant
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB) Cape Town, Observatory 7925, South Africa;
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
29
|
Milewska A, Falkowski K, Kulczycka M, Bielecka E, Naskalska A, Mak P, Lesner A, Ochman M, Urlik M, Diamandis E, Prassas I, Potempa J, Kantyka T, Pyrc K. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci Signal 2020; 13:13/659/eaba9902. [PMID: 33234691 PMCID: PMC7857416 DOI: 10.1126/scisignal.aba9902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Unlike SARS-CoV-2, the human coronavirus HKU1 normally causes relatively mild respiratory tract infections; however, it shares with SARS-CoV-2 the mechanism of using its surface spike (S) protein to enter target cells. Because the host receptor for HCoV-HKU1 is unknown, efforts to study the virus in cell culture systems have proved difficult. Milewska et al. found that knockout of the protease kallikrein 13 (KLK13) in human airway epithelial cells blocked their infection by HCoV-HKU1, that overexpression of KLK13 in nonpermissive cells enabled their infection by the virus, and that KLK13 cleaved the viral S protein. Together, these findings suggest that KLK13 is a priming enzyme for viral entry and may help to establish cell lines that can facilitate further investigation of the mechanism of viral pathogenesis. Human coronavirus HKU1 (HCoV-HKU1) is associated with respiratory disease and is prevalent worldwide, but an in vitro model for viral replication is lacking. An interaction between the coronaviral spike (S) protein and its receptor is the primary determinant of tissue and host specificity; however, viral entry is a complex process requiring the concerted action of multiple cellular elements. Here, we found that the protease kallikrein 13 (KLK13) was required for the infection of human respiratory epithelial cells and was sufficient to mediate the entry of HCoV-HKU1 into nonpermissive RD cells. We also demonstrated the cleavage of the HCoV-HKU1 S protein by KLK13 in the S1/S2 region, suggesting that KLK13 is the priming enzyme for this virus. Together, these data suggest that protease distribution and specificity determine the tissue and cell specificity of the virus and may also regulate interspecies transmission.
Collapse
Affiliation(s)
- Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.,Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Katherine Falkowski
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Magdalena Kulczycka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Ewa Bielecka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Antonina Naskalska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marek Ochman
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Maciej Urlik
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Elftherios Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Tomasz Kantyka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
30
|
Uhlorn BL, Jackson R, Li S, Bratton SM, Van Doorslaer K, Campos SK. Vesicular trafficking permits evasion of cGAS/STING surveillance during initial human papillomavirus infection. PLoS Pathog 2020; 16:e1009028. [PMID: 33253291 PMCID: PMC7728285 DOI: 10.1371/journal.ppat.1009028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022] Open
Abstract
Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.
Collapse
Affiliation(s)
- Brittany L. Uhlorn
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Robert Jackson
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Shuaizhi Li
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Shauna M. Bratton
- Department of Physiology, The University of Arizona, Tucson, Arizona, United States of America
| | - Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Genetics Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, The University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, The University of Arizona, Tucson, Arizona, United States of America
- Department of Molecular & Cellular Biology, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
31
|
Harwood MC, Dupzyk AJ, Inoue T, DiMaio D, Tsai B. p120 catenin recruits HPV to γ-secretase to promote virus infection. PLoS Pathog 2020; 16:e1008946. [PMID: 33085724 PMCID: PMC7577436 DOI: 10.1371/journal.ppat.1008946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/29/2022] Open
Abstract
During internalization and trafficking, human papillomavirus (HPV) moves from the cell surface to the endosome where the transmembrane protease γ-secretase promotes insertion of the viral L2 capsid protein into the endosome membrane. Protrusion of L2 through the endosome membrane into the cytosol allows the recruitment of cytosolic host factors that target the virus to the Golgi en route for productive infection. How endosome-localized HPV is delivered to γ-secretase, a decisive infection step, is unclear. Here we demonstrate that cytosolic p120 catenin, likely via an unidentified transmembrane protein, interacts with HPV at early time-points during viral internalization and trafficking. In the endosome, p120 is not required for low pH-dependent disassembly of the HPV L1 capsid protein from the incoming virion. Rather, p120 is required for HPV to interact with γ-secretase-an interaction that ensures the virus is transported along a productive route. Our findings clarify an enigmatic HPV infection step and provide critical insights into HPV infection that may lead to new therapeutic strategies against HPV-induced diseases.
Collapse
Affiliation(s)
- Mara Calypso Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Allison Jade Dupzyk
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takamasa Inoue
- Pathogen Research Section, Central Research Laboratory, Research and Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, CT, United States of America
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
32
|
Mella C, Figueroa CD, Otth C, Ehrenfeld P. Involvement of Kallikrein-Related Peptidases in Nervous System Disorders. Front Cell Neurosci 2020; 14:166. [PMID: 32655372 PMCID: PMC7324807 DOI: 10.3389/fncel.2020.00166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidases (KLKs) are a family of serine proteases that when dysregulated may contribute to neuroinflammation and neurodegeneration. In the present review article, we describe what is known about their physiological and pathological roles with an emphasis on KLK6 and KLK8, two KLKs that are highly expressed in the adult central nervous system (CNS). Altered expression and activity of KLK6 have been linked to brain physiology and the development of multiple sclerosis. On the other hand, altered levels of KLK6 in the brain and serum of people affected by Alzheimer's disease and Parkinson's disease have been documented, pointing out to its function in amyloid metabolism and development of synucleinopathies. People who have structural genetic variants of KLK8 can suffer mental illnesses such as intellectual and learning disabilities, seizures, and autism. Increased expression of KLK8 has also been implicated in schizophrenia, bipolar disorder, and depression. Also, we discuss the possible link that exists between KLKs activity and certain viral infections that can affect the nervous system. Although little is known about the exact mechanisms that mediate KLKs function and their participation in neuroinflammatory and neurodegenerative disorders will open a new field to develop novel therapies to modulate their levels and/or activity and their harmful effects on the CNS.
Collapse
Affiliation(s)
- Cinthia Mella
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D. Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carola Otth
- Faculty of Medicine, Institute of Clinical Microbiology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology, and Pathology, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
33
|
Epidermal Growth Factor Receptor and Abl2 Kinase Regulate Distinct Steps of Human Papillomavirus 16 Endocytosis. J Virol 2020; 94:JVI.02143-19. [PMID: 32188731 DOI: 10.1128/jvi.02143-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus 16 (HPV16), the leading cause of cervical cancer, exploits a novel endocytic pathway during host cell entry. This mechanism shares many requirements with macropinocytosis but differs in the mode of vesicle formation. Previous work indicated a role of the epidermal growth factor receptor (EGFR) in HPV16 endocytosis. However, the functional outcome of EGFR signaling and its downstream targets during HPV16 uptake are not well characterized. Here, we analyzed the functional importance of signal transduction via EGFR and its downstream effectors for endocytosis of HPV16. Our findings indicate two phases of EGFR signaling as follows: a-likely dispensable-transient activation with or shortly after cell binding and signaling required throughout the process of asynchronous internalization of HPV16. Interestingly, EGFR inhibition interfered with virus internalization and strongly reduced the number of endocytic pits, suggesting a role for EGFR signaling in the induction of HPV16 endocytosis. Moreover, we identified the Src-related kinase Abl2 as a novel regulator of virus uptake. Inhibition of Abl2 resulted in an accumulation of misshaped endocytic pits, indicating Abl2's importance for endocytic vesicle maturation. Since Abl2 rather than Src, a regulator of membrane ruffling during macropinocytosis, mediated downstream signaling of EGFR, we propose that the selective effector targeting downstream of EGFR determines whether HPV16 endocytosis or macropinocytosis is induced.IMPORTANCE Human papillomaviruses are small, nonenveloped DNA viruses that infect skin and mucosa. The so-called high-risk HPVs (e.g., HPV16, HPV18, HPV31) have transforming potential and are associated with various anogenital and oropharyngeal tumors. These viruses enter host cells by a novel endocytic pathway with unknown cellular function. To date, it is unclear how endocytic vesicle formation occurs mechanistically. Here, we addressed the role of epidermal growth factor receptor signaling, which has previously been implicated in HPV16 endocytosis and identified the kinase Abl2 as a novel regulator of virus uptake. Since other viruses, such as influenza A virus and lymphocytic choriomeningitis virus, possibly make use of related mechanisms, our findings shed light on fundamental strategies of virus entry and may in turn help to develop new host cell-targeted antiviral strategies.
Collapse
|
34
|
Xie J, Zhang P, Crite M, DiMaio D. Papillomaviruses Go Retro. Pathogens 2020; 9:E267. [PMID: 32272661 PMCID: PMC7238053 DOI: 10.3390/pathogens9040267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses are important pathogens responsible for approximately 5% of cancer as well as other important human diseases, but many aspects of the papillomavirus life cycle are poorly understood. To undergo genome replication, HPV DNA must traffic from the cell surface to the nucleus. Recent findings have revolutionized our understanding of HPV entry, showing that it requires numerous cellular proteins and proceeds via a series of intracellular membrane-bound vesicles that comprise the retrograde transport pathway. This paper reviews the evidence supporting this unique entry mechanism with a focus on the crucial step by which the incoming virus particle is transferred from the endosome into the retrograde pathway. This new understanding provides novel insights into basic cellular biology and suggests novel rational approaches to inhibit HPV infection.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA;
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, P.O. Box 208024, New Haven, CT 06520-8024, USA
- Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA
| |
Collapse
|
35
|
Finke J, Mikuličić S, Loster AL, Gawlitza A, Florin L, Lang T. Anatomy of a viral entry platform differentially functionalized by integrins α3 and α6. Sci Rep 2020; 10:5356. [PMID: 32210347 PMCID: PMC7093462 DOI: 10.1038/s41598-020-62202-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
During cell invasion, human papillomaviruses use large CD151 patches on the cell surface. Here, we studied whether these patches are defined architectures with features for virus binding and/or internalization. Super-resolution microscopy reveals that the patches are assemblies of closely associated nanoclusters of CD151, integrin α3 and integrin α6. Integrin α6 is required for virus attachment and integrin α3 for endocytosis. We propose that CD151 organizes viral entry platforms with different types of integrin clusters for different functionalities. Since numerous viruses use tetraspanin patches, we speculate that this building principle is a blueprint for cell-surface architectures utilized by viral particles.
Collapse
Affiliation(s)
- Jérôme Finke
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Anna-Lena Loster
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Alexander Gawlitza
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
36
|
Soria-Martinez L, Bauer S, Giesler M, Schelhaas S, Materlik J, Janus K, Pierzyna P, Becker M, Snyder NL, Hartmann L, Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J Am Chem Soc 2020; 142:5252-5265. [PMID: 32105452 DOI: 10.1021/jacs.9b13484] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we investigate the potential of highly sulfated synthetic glycomimetics to act as inhibitors of viral binding/infection. Our results indicate that both long-chain glycopolymers and short-chain glycooligomers are capable of preventing viral infection. Notably, glycopolymers efficiently inhibit Human Papillomavirus (HPV16) infection in vitro and maintain their antiviral activity in vivo, while the glycooligomers exert their inhibitory function post attachment of viruses to cells. Moreover, when we tested the potential for broader activity against several other human pathogenic viruses, we observed broad-spectrum antiviral activity of these compounds beyond our initial assumptions. While the compounds tested displayed a range of antiviral efficacies, viruses with rather diverse glycan specificities such as Herpes Simplex Virus (HSV), Influenza A Virus (IAV), and Merkel Cell Polyomavirus (MCPyV) could be targeted. This opens new opportunities to develop broadly active glycomimetic inhibitors of viral entry and infection.
Collapse
Affiliation(s)
- Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Sebastian Bauer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Markus Giesler
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| | - Jennifer Materlik
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Kevin Janus
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Pierzyna
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Miriam Becker
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Nicole L Snyder
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| |
Collapse
|
37
|
Guion LG, Sapp M. The Role of Promyelocytic Leukemia Nuclear Bodies During HPV Infection. Front Cell Infect Microbiol 2020; 10:35. [PMID: 32154186 PMCID: PMC7045071 DOI: 10.3389/fcimb.2020.00035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/17/2020] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) nuclear bodies (NBs) are highly dynamic subnuclear structures. Their name giving major component, PML protein, is essential for their formation. PML is present in many different isoforms due to differential splicing, which seem to contribute differently to PML NBs function. Sp100 and DAXX are also permanently residing in these structures. PML NBs disassemble in mitosis to form large cytoplasmic aggregates and reassemble after completion of cell division. Posttranslational modifications such as SUMOylation play important roles for protein association with PML NBs. In addition to the factors permanently associated with PML NBs, a large number of proteins may transiently reside in PML NBs dependent on cell stage, type, and condition. PML NBs have been indirectly implicated in a large number of cellular processes including apoptosis, transcriptional regulation, DNA repair and replication. They are considered hot spots for posttranslational modifications and may serve as readily accessible protein depots. However, a precise function has been difficult to assign. Many DNA viruses target PML NBs after entry often resulting in reorganization of these subnuclear structures. Antiviral activity has been assigned to PML NBs partially based on the observation that PML protein is an interferon stimulated gene. In contrast, human papillomavirus (HPV) infection requires the presence of PML protein suggesting that PML NBs may be essential to establish infection. This review will summarize and discuss recent advances in our understanding of the role of PML NBs and individual protein components in the establishment of HPV infection.
Collapse
Affiliation(s)
- Lucile G Guion
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Martin Sapp
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.,Feist Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
38
|
Li S, Bronnimann MP, Williams SJ, Campos SK. Glutathione contributes to efficient post-Golgi trafficking of incoming HPV16 genome. PLoS One 2019; 14:e0225496. [PMID: 31743367 PMCID: PMC6863556 DOI: 10.1371/journal.pone.0225496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen in the United States, causing 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires transport of the viral genome (vDNA) into the nucleus of basal keratinocytes. During this process, minor capsid protein L2 facilitates subcellular retrograde trafficking of the vDNA from endosomes to the Golgi, and accumulation at host chromosomes during mitosis for nuclear retention and localization during interphase. Here we investigated the relationship between cellular glutathione (GSH) and HPV16 infection. siRNA knockdown of GSH biosynthetic enzymes results in a partial decrease of HPV16 infection. Likewise, infection of HPV16 in GSH depleted keratinocytes is inefficient, an effect that was not seen with adenoviral vectors. Analysis of trafficking revealed no defects in cellular binding, entry, furin cleavage of L2, or retrograde trafficking of HPV16, but GSH depletion hindered post-Golgi trafficking and translocation, decreasing nuclear accumulation of vDNA. Although precise mechanisms have yet to be defined, this work suggests that GSH is required for a specific post-Golgi trafficking step in HPV16 infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Spencer J. Williams
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Samuel K. Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
39
|
Izaguirre G. The Proteolytic Regulation of Virus Cell Entry by Furin and Other Proprotein Convertases. Viruses 2019; 11:v11090837. [PMID: 31505793 PMCID: PMC6784293 DOI: 10.3390/v11090837] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
A wide variety of viruses exploit furin and other proprotein convertases (PCs) of the constitutive protein secretion pathway in order to regulate their cell entry mechanism and infectivity. Surface proteins of enveloped, as well as non-enveloped, viruses become processed by these proteases intracellularly during morphogenesis or extracellularly after egress and during entry in order to produce mature virions activated for infection. Although viruses also take advantage of other proteases, it is when some viruses become reactive with PCs that they may develop high pathogenicity. Besides reacting with furin, some viruses may also react with the PCs of the other specificity group constituted by PC4/PC5/PACE4/PC7. The targeting of PCs for inhibition may result in a useful strategy to treat infections with some highly pathogenic viruses. A wide variety of PC inhibitors have been developed and tested for their antiviral activity in cell-based assays.
Collapse
Affiliation(s)
- Gonzalo Izaguirre
- College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
40
|
Young JM, Zine El Abidine A, Gómez-Martinez RA, Ozbun MA. The Known and Potential Intersections of Rab-GTPases in Human Papillomavirus Infections. Front Cell Dev Biol 2019; 7:139. [PMID: 31475144 PMCID: PMC6702953 DOI: 10.3389/fcell.2019.00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Papillomaviruses (PVs) were the first viruses recognized to cause tumors and cancers in mammalian hosts by Shope, nearly a century ago (Shope and Hurst, 1933). Over 40 years ago, zur Hausen (1976) first proposed that human papillomaviruses (HPVs) played a role in cervical cancer; in 2008, he shared the Nobel Prize in Medicine for his abundant contributions demonstrating the etiology of HPVs in genital cancers. Despite effective vaccines and screening, HPV infection and morbidity remain a significant worldwide burden, with HPV infections and HPV-related cancers expected increase through 2040. Although HPVs have long-recognized roles in tumorigenesis and cancers, our understanding of the molecular mechanisms by which these viruses interact with cells and usurp cellular processes to initiate infections and produce progeny virions is limited. This is due to longstanding challenges in both obtaining well-characterized infectious virus stocks and modeling tissue-based infection and the replicative cycles in vitro. In the last 20 years, the development of methods to produce virus-like particles (VLPs) and pseudovirions (PsV) along with more physiologically relevant cell- and tissue-based models has facilitated progress in this area. However, many questions regarding HPV infection remain difficult to address experimentally and are, thus, unanswered. Although an obligatory cellular uptake receptor has yet to be identified for any PV species, Rab-GTPases contribute to HPV uptake and transport of viral genomes toward the nucleus. Here, we provide a general overview of the current HPV infection paradigm, the epithelial differentiation-dependent HPV replicative cycle, and review the specifics of how HPVs usurp Rab-related functions during infectious entry. We also suggest other potential interactions based on how HPVs alter cellular activities to complete their replicative-cycle in differentiating epithelium. Understanding how HPVs interface with Rab functions during their complex replicative cycle may provide insight for the development of therapeutic interventions, as current viral counter-measures are solely prophylactic and therapies for HPV-positive individuals remain archaic and limited.
Collapse
Affiliation(s)
- Jesse M. Young
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Amira Zine El Abidine
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Ricardo A. Gómez-Martinez
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| | - Michelle A. Ozbun
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
- Department of Obstetrics & Gynecology, University of New Mexico School of Medicine, UNM Comprehensive Cancer Center, Albuquerque, NM, United States
| |
Collapse
|
41
|
Yan H, Foo SS, Chen W, Yoo JS, Shin WJ, Wu C, Jung JU. Efficient Inhibition of Human Papillomavirus Infection by L2 Minor Capsid-Derived Lipopeptide. mBio 2019; 10:e01834-19. [PMID: 31387913 PMCID: PMC6686047 DOI: 10.1128/mbio.01834-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
The amino (N)-terminal region of human papillomavirus (HPV) minor capsid protein (L2) is a highly conserved region which is essential for establishing viral infection. Despite its importance in viral infectivity, the role of the HPV N-terminal domain has yet to be fully characterized. Using fine mapping analysis, we identified a 36-amino-acid (aa) peptide sequence of the L2 N terminus, termed L2N, that is critical for HPV infection. Ectopic expression of L2N with the transmembrane sequence on the target cell surface conferred resistance to HPV infection. Additionally, L2N peptide with chemical or enzymatic lipidation at the carboxyl (C) terminus efficiently abrogated HPV infection in target cells. Among the synthetic L2N lipopeptides, a stearoylated lipopeptide spanning aa 13 to 46 (13-46st) exhibited the most potent anti-HPV activity, with a half-maximal inhibitory concentration (IC50) of ∼200 pM. Furthermore, we demonstrated that the 13-46st lipopeptide inhibited HPV entry by blocking trans-Golgi network retrograde trafficking of virion particles, leading to rapid degradation. Fundamentally, the inhibitory effect of L2N lipopeptides appeared to be evolutionarily conserved, as they showed cross-type inhibition among various papillomaviruses. In conclusion, our findings provide new insights into the critical role of the L2N sequence in the HPV entry mechanism and identify the therapeutic potential of L2N lipopeptide as an effective anti-HPV agent.IMPORTANCE HPV is a human oncogenic virus that causes a major public health problem worldwide, which is responsible for approximately 5% of total human cancers and almost all cases of cervical cancers. HPV capsid consists of two structure proteins, the major capsid L1 protein and the minor capsid L2 protein. While L2 plays critical roles during the viral life cycle, the molecular mechanism in viral entry remains elusive. Here, we performed fine mapping of the L2 N-terminal region and defined a short 36-amino-acid peptide, called L2N, which is critical for HPV infection. Specifically, L2N peptide with carboxyl-terminal lipidation acted as a potent and cross-type HPV inhibitor. Taken together, data from our study highlight the essential role of the L2N sequence at the early step of HPV entry and suggests the L2N lipopeptide as a new strategy to broadly prevent HPV infection.
Collapse
Affiliation(s)
- Huan Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Suan-Sin Foo
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Weiqiang Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Woo-Jin Shin
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christine Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
42
|
Kishibe M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J Dermatol Sci 2019; 95:50-55. [DOI: 10.1016/j.jdermsci.2019.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
|
43
|
Liu Y, Li H, Pi R, Yang Y, Zhao X, Qi X. Current strategies against persistent human papillomavirus infection (Review). Int J Oncol 2019; 55:570-584. [PMID: 31364734 DOI: 10.3892/ijo.2019.4847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, exhibiting a tropism for the epidermis and mucosae. The link between persistent HPV infection and malignancies involving the anogenital tract as well as the head and neck has been well‑established, and it is estimated that HPV‑related cancers involving various anatomical sites account for 4.5% of all human cancers. Current prophylactic vaccines against HPV have enabled the prevention of associated malignancies. However, the sizeable population base of current infection in whom prophylactic vaccines are not applicable, certain high‑risk HPV types not included in vaccines, and the vast susceptible population in developing countries who do not have access to the costly prophylactic vaccines, put forward an imperative need for effective therapies targeting persistent infection. In this article, the life cycle of HPV, the mechanisms facilitating HPV evasion of recognition and clearance by the host immune system, and the promising therapeutic strategies currently under investigation, particularly antiviral drugs and therapeutic vaccines, are reviewed.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
44
|
Human Papillomavirus 16 Capsids Mediate Nuclear Entry during Infection. J Virol 2019; 93:JVI.00454-19. [PMID: 31092566 DOI: 10.1128/jvi.00454-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/04/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious human papillomavirus 16 (HPV16) L1/L2 pseudovirions were found to remain largely intact during vesicular transport to the nucleus. By electron microscopy, capsids with a diameter of 50 nm were clearly visible within small vesicles attached to mitotic chromosomes and to a lesser extent within interphase nuclei, implying nuclear disassembly. By confocal analysis, it was determined that nuclear entry of assembled L1 is dependent upon the presence of the minor capsid protein, L2, but independent of encapsidated DNA. We also demonstrate that L1 nuclear localization and mitotic chromosome association can occur in vivo in the murine cervicovaginal challenge model of HPV16 infection. These findings challenge the prevailing concepts of PV uncoating and disassembly. More generally, they document that a largely intact viral capsid can enter the nucleus within a transport vesicle, establishing a novel mechanism by which a virus accesses the nuclear cellular machinery.IMPORTANCE Papillomaviruses (PVs) comprise a large family of nonenveloped DNA viruses that include HPV16, among other oncogenic types, the causative agents of cervical cancer. Delivery of the viral DNA into the host cell nucleus is necessary for establishment of infection. This was thought to occur via a subviral complex following uncoating of the larger viral capsid. In this study, we demonstrate that little disassembly of the PV capsid occurs prior to nuclear delivery. These surprising data reveal a previously unrecognized viral strategy to access the nuclear replication machinery. Understanding viral entry mechanisms not only increases our appreciation of basic cell biological pathways but also may lead to more effective antiviral interventions.
Collapse
|
45
|
Abstract
Viruses must navigate the complex endomembranous network of the host cell to cause infection. In the case of a non-enveloped virus that lacks a surrounding lipid bilayer, endocytic uptake from the plasma membrane is not sufficient to cause infection. Instead, the virus must travel within organelle membranes to reach a specific cellular destination that supports exposure or arrival of the virus to the cytosol. This is achieved by viral penetration across a host endomembrane, ultimately enabling entry of the virus into the nucleus to initiate infection. In this review, we discuss the entry mechanisms of three distinct non-enveloped DNA viruses-adenovirus (AdV), human papillomavirus (HPV), and polyomavirus (PyV)-highlighting how each exploit different intracellular transport machineries and membrane penetration apparatus associated with the endosome, Golgi, and endoplasmic reticulum (ER) membrane systems to infect a host cell. These processes not only illuminate a highly-coordinated interplay between non-enveloped viruses and their host, but may provide new strategies to combat non-enveloped virus-induced diseases.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mara C Harwood
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
46
|
Post-Translational Modification-Dependent Activity of Matrix Metalloproteinases. Int J Mol Sci 2019; 20:ijms20123077. [PMID: 31238509 PMCID: PMC6627178 DOI: 10.3390/ijms20123077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Due to their capacity to process different proteins of the extracellular matrix (ECM), matrix metalloproteinases (MMPs) were initially described as a family of secreted proteases, functioning as main ECM regulators. However, through proteolytic processing of various biomolecules, MMPs also modulate intra- and extracellular pathways and networks. Thereby, they are functionally implicated in the regulation of multiple physiological and pathological processes. Consequently, MMP activity is tightly regulated through a combination of epigenetic, transcriptional, and post-transcriptional control of gene expression, proteolytic activation, post-translational modifications (PTMs), and extracellular inhibition. In addition, MMPs, their substrates and ECM binding partners are frequently modified by PTMs, which suggests an important role of PTMs in modulating the pleiotropic activities of these proteases. This review summarizes the recent progress towards understanding the role of PTMs (glycosylation, phosphorylation, glycosaminoglycans) on the activity of several members of the MMP family.
Collapse
|
47
|
Siddiqa A, Massimi P, Pim D, Banks L. Diverse Papillomavirus Types Induce Endosomal Tubulation. Front Cell Infect Microbiol 2019; 9:175. [PMID: 31192164 PMCID: PMC6546808 DOI: 10.3389/fcimb.2019.00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
Previous studies have shown that the endoplasmic reticulum (ER)-anchored protein VAP is strictly required by human papillomavirus type 16 (HPV-16) for successful infectious entry. Entry appeared to be mediated in part through the induction of endosomal tubulation and subsequent transport of the virion to the trans-Golgi network (TGN). In this study, we were interested in investigating whether this mechanism of infectious entry is conserved across multiple Papillomavirus types. To do this, we analyzed the role of VAP and endosomal tubulation following infection with Pseudovirions (PsVs) derived from the alpha, beta, delta, kappa, and pi papillomavirus genera, reflecting viruses that are important human and animal pathogens. We demonstrate that VAP is essential for infection with all PV types analyzed. Furthermore, we find that VAP and EGFR-dependent endosomal tubulation is also induced by all these different Papillomaviruses. These results indicate an evolutionarily conserved requirement for VAP-induced endocytic tubulation during Papillomavirus infectious entry.
Collapse
Affiliation(s)
- Abida Siddiqa
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.,Department of Microbiology and Immunology, Center for Molecular Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University (LSU) Health Shreveport, Shreveport, LA, United States
| | - Paola Massimi
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - David Pim
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
48
|
Mikuličić S, Finke J, Boukhallouk F, Wüstenhagen E, Sons D, Homsi Y, Reiss K, Lang T, Florin L. ADAM17-dependent signaling is required for oncogenic human papillomavirus entry platform assembly. eLife 2019; 8:44345. [PMID: 31107240 PMCID: PMC6557631 DOI: 10.7554/elife.44345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/17/2019] [Indexed: 01/23/2023] Open
Abstract
Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jérôme Finke
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Fatima Boukhallouk
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elena Wüstenhagen
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yahya Homsi
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Karina Reiss
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
49
|
Gheit T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front Oncol 2019; 9:355. [PMID: 31134154 PMCID: PMC6517478 DOI: 10.3389/fonc.2019.00355] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Papillomaviridae is a family of small non-enveloped icosahedral viruses with double-stranded circular DNA. More than 200 different human papillomaviruses (HPVs) have been listed so far. Based on epidemiological data, a subgroup of alphapapillomaviruses (alpha HPVs) was referred to as high-risk (HR) HPV types. HR HPVs are the etiological agents of anogenital cancer and a subset of head and neck cancers. The cutaneous HPV types, mainly from beta and gamma genera, are widely present on the surface of the skin in the general population. However, there is growing evidence of an etiological role of betapapillomaviruses (beta HPVs) in non-melanoma skin cancer (NMSC), together with ultraviolet (UV) radiation. Studies performed on mucosal HR HPV types, such as 16 and 18, showed that both oncoproteins E6 and E7 play a key role in cervical cancer by altering pathways involved in the host immune response to establish a persistent infection and by promoting cellular transformation. Continuous expression of E6 and E7 of mucosal HR HPV types is essential to initiate and to maintain the cellular transformation process, whereas expression of E6 and E7 of cutaneous HPV types is not required for the maintenance of the skin cancer phenotype. Beta HPV types appear to play a role in the initiation of skin carcinogenesis, by exacerbating the accumulation of UV radiation-induced DNA breaks and somatic mutations (the hit-and-run mechanism), and they would therefore act as facilitators rather than direct actors in NMSC. In this review, the natural history of HPV infection and the transforming properties of various HPV genera will be described, with a particular focus on describing the state of knowledge about the role of cutaneous HPV types in NMSC.
Collapse
Affiliation(s)
- Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
50
|
Sabir N, Hussain T, Liao Y, Wang J, Song Y, Shahid M, Cheng G, Mangi MH, Yao J, Yang L, Zhao D, Zhou X. Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells 2019; 8:cells8050415. [PMID: 31060300 PMCID: PMC6562459 DOI: 10.3390/cells8050415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Guangyu Cheng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|