1
|
Könighofer E, Mirgorodskaya E, Nyström K, Stiasny K, Kärmander A, Bergström T, Nordén R. Identification of Three Novel O-Linked Glycans in the Envelope Protein of Tick-Borne Encephalitis Virus. Viruses 2024; 16:1891. [PMID: 39772199 PMCID: PMC11680210 DOI: 10.3390/v16121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the Flaviviridae family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis. Here, we dissected the entire glycosylation profile of the E protein using liquid chromatography-tandem mass spectrometry and identified three novel O-linked glycans, which were found at relatively low frequency. One of the O-linked glycans was positioned close to the highly conserved N-linked glycan site, and structural analysis suggested that it may be relevant for the function of the E 150-loop. The N154 site was found to be glycosylated with a high frequency, containing oligomannose or complex-type structures, some of which were fucosylated. An unusually high portion of oligomannose N-linked glycan structures exhibited compositions that are normally observed on proteins when they are translocated from the endoplasmic reticulum to the trans-Golgi network, suggesting disruption of the glycan processing pathway in the infected cells from which the E protein was obtained.
Collapse
Affiliation(s)
- Ebba Könighofer
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Ekaterina Mirgorodskaya
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ambjörn Kärmander
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| |
Collapse
|
2
|
Olofsson S, Bally M, Trybala E, Bergström T. Structure and Role of O-Linked Glycans in Viral Envelope Proteins. Annu Rev Virol 2023; 10:283-304. [PMID: 37285578 DOI: 10.1146/annurev-virology-111821-121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
N- and O-glycans are both important constituents of viral envelope glycoproteins. O-linked glycosylation can be initiated by any of 20 different human polypeptide O-acetylgalactosaminyl transferases, resulting in an important functional O-glycan heterogeneity. O-glycans are organized as solitary glycans or in clusters of multiple glycans forming mucin-like domains. They are functional both in the viral life cycle and in viral colonization of their host. Negatively charged O-glycans are crucial for the interactions between glycosaminoglycan-binding viruses and their host. A novel mechanism, based on controlled electrostatic repulsion, explains how such viruses solve the conflict between optimized viral attachment to target cells and efficient egress of progeny virus. Conserved solitary O-glycans appear important for viral uptake in target cells by contributing to viral envelope fusion. Dual roles of viral O-glycans in the host B cell immune response, either epitope blocking or epitope promoting, may be exploitable for vaccine development. Finally, specific virus-induced O-glycans may be involved in viremic spread.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| | - Marta Bally
- Department of Clinical Microbiology, Wallenberg Centre for Molecular Medicine and Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden;
| |
Collapse
|
3
|
Pedersen JW, Nøstdal A, Wandall HH. Multiplexed Detection of Autoantibodies to Glycopeptides Using Microarray. Methods Mol Biol 2020; 2024:199-211. [PMID: 31364051 DOI: 10.1007/978-1-4939-9597-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Protein microarray is a highly sensitive tool for antibody detection in serum. Monitoring of patients' antibody titers to specific antigens is increasingly employed in the diagnosis of several conditions, ranging from infectious diseases, allergies, autoimmune diseases, and cancer. In this protocol, we present a detailed method for enzymatic generation of disease-specific O-glycopeptides and how to monitor the antibody response to these in serum using microarray technology.
Collapse
Affiliation(s)
- Johannes W Pedersen
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Nøstdal
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Martinez JER, Thomas B, Flitsch SL. Glycan Array Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:435-456. [PMID: 31907566 DOI: 10.1007/10_2019_112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.
Collapse
Affiliation(s)
| | - Baptiste Thomas
- School of Chemistry and MIB, The University of Manchester, Manchester, UK
| | | |
Collapse
|
5
|
Abstract
Carbohydrates or glycans and their conjugates are involved in a wide range of biological processes and play an important role in various diseases, including inflammation, viral and bacterial infections, and tumor progression and metastasis. Studying the biological significances of carbohydrates has been challenging due in part to their structural diversity and the limited access to complex carbohydrate-containing molecules. Conventional methods such as isothermal titration calorimetry and enzyme-linked lectin assay can be laborious and require significant amounts of time and materials. The emerging of glycan microarrays as high-throughput technology for studying carbohydrate interactions has overcome some of these challenges, and has greatly contributed to our understanding of the biological roles of carbohydrates and their glycoconjugates. In addition, glycan microarrays offer new applications in biomedical research, drug discovery and development. This chapter will focus on the biomedical applications of glycan microarrays and their potential role in drug discovery and development.
Collapse
|
6
|
Paull ML, Johnston T, Ibsen KN, Bozekowski JD, Daugherty PS. A general approach for predicting protein epitopes targeted by antibody repertoires using whole proteomes. PLoS One 2019; 14:e0217668. [PMID: 31490930 PMCID: PMC6730857 DOI: 10.1371/journal.pone.0217668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/22/2019] [Indexed: 12/23/2022] Open
Abstract
Antibodies are essential to functional immunity, yet the epitopes targeted by antibody repertoires remain largely uncharacterized. To aid in characterization, we developed a generalizable strategy to predict antibody-binding epitopes within individual proteins and entire proteomes. Specifically, we selected antibody-binding peptides for 273 distinct sera out of a random library and identified the peptides using next-generation sequencing. To predict antibody-binding epitopes and the antigens from which these epitopes were derived, we tiled the sequences of candidate antigens into short overlapping subsequences of length k (k-mers). We used the enrichment over background of these k-mers in the antibody-binding peptide dataset to predict antibody-binding epitopes. As a positive control, we used this approach, termed K-mer Tiling of Protein Epitopes (K-TOPE), to predict epitopes targeted by monoclonal and polyclonal antibodies of well-characterized specificity, accurately recovering their known epitopes. K-TOPE characterized a commonly targeted antigen from Rhinovirus A, predicting four epitopes recognized by antibodies present in 87% of sera (n = 250). An analysis of 2,908 proteins from 400 viral taxa that infect humans predicted seven enterovirus epitopes and five Epstein-Barr virus epitopes recognized by >30% of specimens. Analysis of Staphylococcus and Streptococcus proteomes similarly predicted 22 epitopes recognized by >30% of specimens. Twelve of these common viral and bacterial epitopes agreed with previously mapped epitopes with p-values < 0.05. Additionally, we predicted 30 HSV2-specific epitopes that were 100% specific against HSV1 in novel and previously reported antigens. Experimentally validating these candidate epitopes could help identify diagnostic biomarkers, vaccine components, and therapeutic targets. The K-TOPE approach thus provides a powerful new tool to elucidate the organisms, antigens, and epitopes targeted by human antibody repertoires.
Collapse
Affiliation(s)
- Michael L. Paull
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| | - Tim Johnston
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Kelly N. Ibsen
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Joel D. Bozekowski
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
| | - Patrick S. Daugherty
- Department of Chemical Engineering, University of California Santa Barbara, California, United States of America
- * E-mail: (MLP); (PSD)
| |
Collapse
|
7
|
Behren S, Westerlind U. Glycopeptides and -Mimetics to Detect, Monitor and Inhibit Bacterial and Viral Infections: Recent Advances and Perspectives. Molecules 2019; 24:E1004. [PMID: 30871155 PMCID: PMC6471658 DOI: 10.3390/molecules24061004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
The initial contact of pathogens with host cells is usually mediated by their adhesion to glycan structures present on the cell surface in order to enable infection. Furthermore, glycans play important roles in the modulation of the host immune responses to infection. Understanding the carbohydrate-pathogen interactions are of importance for the development of novel and efficient strategies to either prevent, or interfere with pathogenic infection. Synthetic glycopeptides and mimetics thereof are capable of imitating the multivalent display of carbohydrates at the cell surface, which have become an important objective of research over the last decade. Glycopeptide based constructs may function as vaccines or anti-adhesive agents that interfere with the ability of pathogens to adhere to the host cell glycans and thus possess the potential to improve or replace treatments that suffer from resistance. Additionally, synthetic glycopeptides are used as tools for epitope mapping of antibodies directed against structures present on various pathogens and have become important to improve serodiagnostic methods and to develop novel epitope-based vaccines. This review will provide an overview of the most recent advances in the synthesis and application of glycopeptides and glycopeptide mimetics exhibiting a peptide-like backbone in glycobiology.
Collapse
Affiliation(s)
- Sandra Behren
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
8
|
Recombinant Glycoprotein E of Varicella Zoster Virus Contains Glycan-Peptide Motifs That Modulate B Cell Epitopes into Discrete Immunological Signatures. Int J Mol Sci 2019; 20:ijms20040954. [PMID: 30813247 PMCID: PMC6412795 DOI: 10.3390/ijms20040954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
A recombinant subunit vaccine (Shingrix®) was recently licensed for use against herpes zoster. This vaccine is based on glycoprotein E (gE) of varicella zoster virus (VZV), the most abundantly expressed protein of VZV, harboring sites for N- and O-linked glycosylation. The subunit vaccine elicits stronger virus-specific CD4+ T cell response as well as antibody B cell response to gE, compared to the currently used live attenuated vaccine (Zostavax®). This situation is at variance with the current notion since a live vaccine, causing an active virus infection, should be far more efficient than a subunit vaccine based on only one single viral glycoprotein. We previously found gE to be heavily glycosylated, not least by numerous clustered O-linked glycans, when it was produced in human fibroblasts. However, in contrast to Zostavax®, which is produced in fibroblasts, the recombinant gE of Shingrix® is expressed in Chinese hamster ovary (CHO) cells. Hence, the glycan occupancy and glycan structures of gE may differ considerably between the two vaccine types. Here, we aimed at (i) defining the glycan structures and positions of recombinant gE and (ii) identifying possible features of the recombinant gE O-glycosylation pattern contributing to the vaccine efficacy of Shingrix®. Firstly, recombinant gE produced in CHO cells (“Shingrix situation”) is more scarcely decorated by O-linked glycans than gE from human fibroblasts (“Zostavax situation”), with respect to glycan site occupancy. Secondly, screening of immunodominant B cell epitopes of gE, using a synthetic peptide library against serum samples from VZV-seropositive individuals, revealed that the O-linked glycan signature promoted binding of IgG antibodies via a decreased number of interfering O-linked glycans, but also via specific O-linked glycans enhancing antibody binding. These findings may, in part, explain the higher protective efficacy of Shingrix®, and can also be of relevance for development of subunit vaccines to other enveloped viruses.
Collapse
|
9
|
Fritzen A, Risinger C, Korukluoglu G, Christova I, Corli Hitzeroth A, Viljoen N, Burt FJ, Mirazimi A, Blixt O. Epitope-mapping of the glycoprotein from Crimean-Congo hemorrhagic fever virus using a microarray approach. PLoS Negl Trop Dis 2018; 12:e0006598. [PMID: 29985929 PMCID: PMC6053253 DOI: 10.1371/journal.pntd.0006598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 07/19/2018] [Accepted: 06/08/2018] [Indexed: 12/19/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes severe acute human disease with lethal outcome. The knowledge about the immune response for this human health threat is highly limited. In this study, we have screened the glycoprotein of CCHFV for novel linear B-cell epitopic regions using a microarray approach. The peptide library consisted of 168 synthesized 20mer peptides with 10 amino acid overlap covering the entire glycoprotein. Using both pooled and individual human sera from survivors of CCHF disease in Turkey five peptide epitopes situated in the mucin-like region and GP 38 (G15-515) and GN G516-1037 region of the glycoprotein were identified as epitopes for a CCHF immune response. An epitope walk of the five peptides revealed a peptide sequence located in the GN region with high specificity and sensitivity. This peptide sequence, and a sequence downstream, reacted also against sera from survivors of CCHF disease in South Africa. The cross reactivity of these peptides with samples from a geographically distinct region where genetically diverse strains of the virus circulate, enabled the identification of unique peptide epitopes from the CCHF glycoprotein that could have application in development of diagnostic tools. In this study clinical samples from geographically distinct regions were used to identify conserved linear epitopic regions of the glycoprotein of CCHF. Crimean-Congo hemorrhagic fever (CCHF) is a widespread disease caused by a tick-borne virus belonging to the genus Orthonairovirus of the Nairoviridae family. The virus is responsible for outbreaks of severe viral hemorrhagic fever with a case fatality rate of approximately 30%. The CCHF virus is transmitted to people either by tick bites or through contact with infected animal blood or tissues. A mouse brain-derived vaccine against CCHF has been developed (included in this study) and used on a small scale in eastern Europe. There is no safe and effective vaccine widely available for human use. Currently, there are a limited number of serological assays commercially available for testing for CCHFV specific IgG and IgM. There are enzyme linked immunosorbent assays (ELISA) and imunnofluorescent assays (IFA) designed for screening human samples for diagnostic purposes however they are not cost effective for surveillance studies. The limiting factor for the replication of these protocols in other laboratories is the availability of antigens and (where relevant) specified monoclonal antibodies. To contribute to the improvement of the diagnostic methods for CCHFV, we aimed to identify and characterize new synthetic antigens that were more sensitive and specific and could be applied in epidemiologic surveys.
Collapse
Affiliation(s)
- Amanda Fritzen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Risinger
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | | | - Iva Christova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Arina Corli Hitzeroth
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Republic of South Africa
| | - Natalie Viljoen
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Republic of South Africa
| | - Felicity Jane Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, Republic of South Africa
- Division of Virology, NHLS Universitas, Bloemfontein, Republic of South Africa
| | - Ali Mirazimi
- Folkhälsomyndigheten, Solna, Stockholm, Sweden
- Department for Laboratory Medicine, Karolinska Institute and Karolinska Hospital University, Solna, Sweden
- National Veterinary Institute, Uppsala, Sweden
- * E-mail: (AM); (OB)
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
- Department for Laboratory Medicine, Karolinska Institute and Karolinska Hospital University, Solna, Sweden
- * E-mail: (AM); (OB)
| |
Collapse
|
10
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
11
|
Risinger C, Sørensen KK, Jensen KJ, Olofsson S, Bergström T, Blixt O. Linear Multiepitope (Glyco)peptides for Type-Specific Serology of Herpes Simplex Virus (HSV) Infections. ACS Infect Dis 2017; 3:360-367. [PMID: 28238255 DOI: 10.1021/acsinfecdis.7b00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Detection of type-specific antibodies is an important and essential part of accurate diagnosis, even in silent carriers of herpes simplex virus (HSV)-1 (oral) and HSV-2 (genital) infections. Serologic assays that identify HSV-1 and HSV-2 type-specific antibodies have been commercially available for more than a decade but often face problems related to cross-reactivity and similar issues. Attempts to identify type-specific peptide epitopes for use in serology for both HSV-1 and HSV-2 have been limited. We recently demonstrated epitope mapping of envelope glycoprotein G2 and identified a type-specific glycopeptide epitope that broadly recognized HSV-2 infected individuals. In the present work we have performed a comprehensive glycopeptide synthesis and microarray epitope mapping of 14 envelope proteins from HSV-1 and HSV-2, namely, gB, gC, gD, gE, gG, gH, and gI, using sera from HSV-1- and HSV-2-infected individuals and control sera. Several unique type-specific peptide epitopes with high sensitivity were identified and synthesized as one large linear multiepitope sequence using microwave-assisted solid-phase (glyco)peptide synthesis. Microarray validation with clinically defined HSV and Varicella Zoster (VZV) sera confirmed excellent cumulative specificities and sensitivities.
Collapse
Affiliation(s)
- Christian Risinger
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kasper K. Sørensen
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Knud J. Jensen
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry,
Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
13
|
Immunization with DNA Plasmids Coding for Crimean-Congo Hemorrhagic Fever Virus Capsid and Envelope Proteins and/or Virus-Like Particles Induces Protection and Survival in Challenged Mice. J Virol 2017; 91:JVI.02076-16. [PMID: 28250124 PMCID: PMC5411611 DOI: 10.1128/jvi.02076-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/20/2017] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR−/−) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates.
Collapse
|
14
|
Liu R, Li X, Xiao W, Lam KS. Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev 2017; 110-111:13-37. [PMID: 27210583 DOI: 10.1016/j.addr.2016.05.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
Cancer is one of the major and leading causes of death worldwide. Two of the greatest challenges in fighting cancer are early detection and effective treatments with no or minimum side effects. Widespread use of targeted therapies and molecular imaging in clinics requires high affinity, tumor-specific agents as effective targeting vehicles to deliver therapeutics and imaging probes to the primary or metastatic tumor sites. Combinatorial libraries such as phage-display and one-bead one-compound (OBOC) peptide libraries are powerful approaches in discovering tumor-targeting peptides. This review gives an overview of different combinatorial library technologies that have been used for the discovery of tumor-targeting peptides. Examples of tumor-targeting peptides identified from each combinatorial library method will be discussed. Published tumor-targeting peptide ligands and their applications will also be summarized by the combinatorial library methods and their corresponding binding receptors.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
15
|
Stuhr-Hansen N, Madl J, Villringer S, Aili U, Römer W, Blixt O. Synthesis of Cholesterol-Substituted Glycopeptides for Tailor-Made Glycocalyxification of Artificial Membrane Systems. Chembiochem 2016; 17:1403-6. [PMID: 27168414 DOI: 10.1002/cbic.201600258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 11/07/2022]
Abstract
Synthetic minimal membrane systems are extremely useful for better understanding of complex cellular structures and cell surface processes. We have developed a facile method for synthesis of cholesterylated peptides, each bearing a carbohydrate moiety and a fluorescent tag. The position of the cholesterol moiety on the peptide can be controlled by using a new Fmoc-protected cholesterol-triazole-lysine group, which we constructed by means of solid-phase peptide synthesis. We succeeded in integrating the glyco modules into giant unilamellar vesicles by electroformation or infusion in buffer solution. The glyco-decorated liposomes were recognized by a lectin and had unique topological membrane features. In conclusion, this work is a proof of principle for the functionalization of artificial membranes with a primitive synthetic glycocalyx useful for studying carbohydrate-protein interactions on a simplified cell-like membrane surface.
Collapse
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Josef Madl
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Sarah Villringer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ulrika Aili
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Winfried Römer
- Albert-Ludwigs-University Freiburg, Faculty of Biology, Centre for Biological Signalling Studies (BIOSS) and, Freiburg Centre for Interactive Materials and Bioinspired Technology (FIT), Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Ola Blixt
- Department of Chemistry, Chemical Biology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Bagdonaite I, Nordén R, Joshi HJ, King SL, Vakhrushev SY, Olofsson S, Wandall HH. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. J Biol Chem 2016; 291:12014-28. [PMID: 27129252 DOI: 10.1074/jbc.m116.721746] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Rickard Nordén
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sarah L King
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sigvard Olofsson
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| |
Collapse
|
17
|
Bovine Herpesvirus 4 Modulates Its β-1,6-N-Acetylglucosaminyltransferase Activity through Alternative Splicing. J Virol 2015; 90:2039-51. [PMID: 26656682 DOI: 10.1128/jvi.01722-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Carbohydrates play major roles in host-virus interactions. It is therefore not surprising that, during coevolution with their hosts, viruses have developed sophisticated mechanisms to hijack for their profit different pathways of glycan synthesis. Thus, the Bo17 gene of Bovine herpesvirus 4 (BoHV-4) encodes a homologue of the cellular core 2 protein β-1,6-N-acetylglucosaminyltransferase-mucin type (C2GnT-M), which is a key player for the synthesis of complex O-glycans. Surprisingly, we show in this study that, as opposed to what is observed for the cellular enzyme, two different mRNAs are encoded by the Bo17 gene of all available BoHV-4 strains. While the first one corresponds to the entire coding sequence of the Bo17 gene, the second results from the splicing of a 138-bp intron encoding critical residues of the enzyme. Antibodies generated against the Bo17 C terminus showed that the two forms of Bo17 are expressed in BoHV-4 infected cells, but enzymatic assays revealed that the spliced form is not active. In order to reveal the function of these two forms, we then generated recombinant strains expressing only the long or the short form of Bo17. Although we did not highlight replication differences between these strains, glycomic analyses and lectin neutralization assays confirmed that the splicing of the Bo17 gene gives the potential to BoHV-4 to fine-tune the global level of core 2 branching activity in the infected cell. Altogether, these results suggest the existence of new mechanisms to regulate the activity of glycosyltransferases from the Golgi apparatus. IMPORTANCE Viruses are masters of adaptation that hijack cellular pathways to allow their growth. Glycans play a central role in many biological processes, and several studies have highlighted mechanisms by which viruses can affect glycosylation. Glycan synthesis is a nontemplate process regulated by the availability of key glycosyltransferases. Interestingly, bovine herpesvirus 4 encodes one such enzyme which is a key enzyme for the synthesis of complex O-glycans. In this study, we show that, in contrast to cellular homologues, this virus has evolved to alternatively express two proteins from this gene. While the first one is enzymatically active, the second results from the alternative splicing of the region encoding the catalytic site of the enzyme. We postulate that this regulatory mechanism could allow the virus to modulate the synthesis of some particular glycans for function at the location and/or the moment of infection.
Collapse
|
18
|
Olofsson S, Blixt O, Bergström T, Frank M, Wandall HH. Viral O-GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins. Rev Med Virol 2015; 26:34-48. [PMID: 26524377 DOI: 10.1002/rmv.1859] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/01/2023]
Abstract
Viral envelope glycoproteins are major targets for antibodies that bind to and inactivate viral particles. The capacity of a viral vaccine to induce virus-neutralizing antibodies is often used as a marker for vaccine efficacy. Yet the number of known neutralization target epitopes is restricted owing to various viral escape mechanisms. We expand the range of possible viral glycoprotein targets, by presenting a previously unknown type of viral glycoprotein epitope based on a short peptide stretch modified with small O-linked glycans. Besides being immunologically active, these epitopes have a high potential for antigenic variation. Thus, sera from patients infected with EBV develop individual IgG responses addressing the different possible glycopeptide glycoforms of one short peptide backbone that reflect individual variations in the course of virus infection. In contrast, in HSV type 2 meningitis patients, CSF antibodies are focussed to only one single glycoform peptide of a major viral glycoprotein. Thus, dependent on the viral disease, the serological response may be variable or constant with respect to the number of targeted peptide glycoforms. Mapping of these epitopes relies on a novel three-step procedure that identifies any reactive viral O-glycosyl peptide epitope with respect to (i) relevant peptide sequence, (ii) the reactive glycoform out of several possible glycopeptide isomers of that peptide sequence, and (iii) possibly tolerated carbohydrate or peptide structural variations at glycosylation sites. In conclusion, the viral O-glycosyl peptide epitopes may be of relevance for development of subunit vaccines and for improved serodiagnosis of viral diseases. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Bergström
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | | | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Bagdonaite I, Nordén R, Joshi HJ, Dabelsteen S, Nyström K, Vakhrushev SY, Olofsson S, Wandall HH. A strategy for O-glycoproteomics of enveloped viruses--the O-glycoproteome of herpes simplex virus type 1. PLoS Pathog 2015; 11:e1004784. [PMID: 25830354 PMCID: PMC4382219 DOI: 10.1371/journal.ppat.1004784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of viral envelope proteins is important for infectivity and interaction with host immunity, however, our current knowledge of the functions of glycosylation is largely limited to N-glycosylation because it is difficult to predict and identify site-specific O-glycosylation. Here, we present a novel proteome-wide discovery strategy for O-glycosylation sites on viral envelope proteins using herpes simplex virus type 1 (HSV-1) as a model. We identified 74 O-linked glycosylation sites on 8 out of the 12 HSV-1 envelope proteins. Two of the identified glycosites found in glycoprotein B were previously implicated in virus attachment to immune cells. We show that HSV-1 infection distorts the secretory pathway and that infected cells accumulate glycoproteins with truncated O-glycans, nonetheless retaining the ability to elongate most of the surface glycans. With the use of precise gene editing, we further demonstrate that elongated O-glycans are essential for HSV-1 in human HaCaT keratinocytes, where HSV-1 produced markedly lower viral titers in HaCaT with abrogated O-glycans compared to the isogenic counterpart with normal O-glycans. The roles of O-linked glycosylation for viral entry, formation, secretion, and immune recognition are poorly understood, and the O-glycoproteomics strategy presented here now opens for unbiased discovery on all enveloped viruses. Information on site-specific O-glycosylation of viral envelope glycoproteins is generally very limited despite important functions. We present a powerful mass-spectrometry based strategy to globally identify O-glycosylation sites on viral envelope proteins of a given virus in the context of a productive infection. We successfully utilized the strategy to map O-linked glycosylation sites on the complex HSV-1 virus demonstrating that O-glycosylation is widely distributed on most envelope proteins. Moreover, we used genetically engineered keratinocytes lacking O-glycan elongation capacity to demonstrate that O-linked glycans are indeed important for HSV-1 biology as HSV-1 particles produced in these cells had significantly lower titers compared to wild-type keratinocytes. These tools enable wider discovery and detailed analysis of the role of site-specific O-glycosylation in virology.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rickard Nordén
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Institute of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Kristina Nyström
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Clinical Virology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
20
|
Nordén R, Halim A, Nyström K, Bennett EP, Mandel U, Olofsson S, Nilsson J, Larson G. O-linked glycosylation of the mucin domain of the herpes simplex virus type 1-specific glycoprotein gC-1 is temporally regulated in a seed-and-spread manner. J Biol Chem 2014; 290:5078-5091. [PMID: 25548287 DOI: 10.1074/jbc.m114.616409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) glycoprotein gC-1, participating in viral receptor interactions and immunity interference, harbors a mucin-like domain with multiple clustered O-linked glycans. Using HSV-1-infected diploid human fibroblasts, an authentic target for HSV-1 infection, and a protein immunoaffinity procedure, we enriched fully glycosylated gC-1 and a series of its biosynthetic intermediates. This fraction was subjected to trypsin digestion and a LC-MS/MS glycoproteomics approach. In parallel, we characterized the expression patterns of the 20 isoforms of human GalNAc transferases responsible for initiation of O-linked glycosylation. The gC-1 O-glycosylation was regulated in an orderly manner initiated by synchronous addition of one GalNAc unit each to Thr-87 and Thr-91 and one GalNAc unit to either Thr-99 or Thr-101, forming a core glycopeptide for subsequent additions of in all 11 GalNAc residues to selected Ser and Thr residues of the Thr-76-Lys-107 stretch of the mucin domain. The expression patterns of GalNAc transferases in the infected cells suggested that initial additions of GalNAc were carried out by initiating GalNAc transferases, in particular GalNAc-T2, whereas subsequent GalNAc additions were carried out by followup transferases, in particular GalNAc-T10. Essentially all of the susceptible Ser or Thr residues had to acquire their GalNAc units before any elongation to longer O-linked glycans of the gC-1-associated GalNAc units was permitted. Because the GalNAc occupancy pattern is of relevance for receptor binding of gC-1, the data provide a model to delineate biosynthetic steps of O-linked glycosylation of the gC-1 mucin domain in HSV-1-infected target cells.
Collapse
Affiliation(s)
- Rickard Nordén
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and; Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Kristina Nyström
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, University of Copenhagen, DK-2200 Copenhagen, Denmark, and
| | - Sigvard Olofsson
- From the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden
| | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, SE 413 45 Gothenburg, Sweden.
| |
Collapse
|
21
|
Garcia-Martin F, Matsushita T, Hinou H, Nishimura SI. Fast epitope mapping for the anti-MUC1 monoclonal antibody by combining a one-bead-one-glycopeptide library and a microarray platform. Chemistry 2014; 20:15891-902. [PMID: 25303614 DOI: 10.1002/chem.201403239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/13/2014] [Indexed: 12/25/2022]
Abstract
Anti-MUC1 monoclonal antibodies (mAbs) are powerful tools that can be used to recognize cancer-related MUC1 molecules, the O-glycosylation status of which is believed to affect binding affinity. We demonstrate the feasibility of using a rapid screening methodology to elucidate those effects. The approach involves i) "one-bead-one-compound"-based preparation of bilayer resins carrying glycopeptides on the shell and mass-tag tripeptides coding O-glycan patterns in the core, ii) on-resin screening with an anti-MUC1 mAb, iii) separating positive resins by utilizing secondary antibody conjugation with magnetic beads, and (iv) decoding the mass-tag that is detached from the positive resins pool by using mass spectrometric analysis. We tested a small library consisting of 27 MUC1 glycopeptides with different O-glycosylations against anti-MUC1 mAb clone VU-3C6. Qualitative mass-tag analysis showed that increasing the number of glycans leads to an increase in the binding affinity. Six glycopeptides selected from the library were validated by using a microarray-based assay. Our screening provides valuable information on O-glycosylations of epitopes leading to high affinity with mAb.
Collapse
Affiliation(s)
- Fayna Garcia-Martin
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo 001-0021 (Japan), Fax: (+81) 11-706-9042
| | | | | | | |
Collapse
|
22
|
Hornig J, McGregor A. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 2014; 9:891-915. [DOI: 10.1517/17460441.2014.922538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Arraying the post-translational glycoproteome (PTG). Curr Opin Chem Biol 2014; 18:62-9. [DOI: 10.1016/j.cbpa.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/30/2022]
|
24
|
D'Arrigo I, Cló E, Bergström T, Olofsson S, Blixt O. Diverse IgG serum response to novel glycopeptide epitopes detected within immunodominant stretches of Epstein-Barr virus glycoprotein 350/220: diagnostic potential of O-glycopeptide microarrays. Glycoconj J 2013; 30:633-40. [PMID: 23292036 DOI: 10.1007/s10719-012-9465-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/06/2012] [Accepted: 12/09/2012] [Indexed: 01/15/2023]
Abstract
The Epstein-Barr virus (EBV) envelope glycoprotein 350/220 (gp350/220) is the most abundant molecule on the viral surface and it is responsible for the initial viral attachment to cell surface of the host. As many other viral envelope proteins, it is highly glycosylated, not least with O-linked glycans, most of which essential for EBV life cycle. EBV gp350/220 is also a primary target for neutralizing antibodies in the human hosts and a promising candidate for an EBV vaccine. Here we showed that recombinant GalNAc transferases can glycosylate scan peptides of the EBV gp350/220 envelope protein immobilized on microarray glass slides. We also identified serum IgG antibodies to a selection of peptides and O-glycopeptides, whereas sera from EBV-IgG negative individuals remained negative. We here describe novel glycopeptide epitopes present within immunodominant stretches of EBV gp350/220 and demonstrate a remarkable variability between individual samples with respect to their reactivity patterns to peptides and glycopeptides. The study provides additional insights into the complex B-cell response towards the EBV gp350/220 envelope protein, which may have implications for diagnostic and vaccine developments.
Collapse
Affiliation(s)
- Isotta D'Arrigo
- Department of Cellular & Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
25
|
Abstract
In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of substrate specificities of glycosyltransferases. This review covers the construction of carbohydrate microarrays, detection methods of carbohydrate microarrays and their applications in biological and biomedical research.
Collapse
Affiliation(s)
- Sungjin Park
- National Creative Research Initiative Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
26
|
Abstract
O-glycosylation of proteins is an important modification which affects biological function and immunity. In this chapter, we provide protocols for efficient solid-phase O-glycopeptide synthesis (SPGPS) and protocols for the construction of glycopeptide microarray chips for screening applications. This will be exemplified for mucin-type glycopeptides and the construction of glycopeptide microarrays. To this end, the protocols provided are particularly suited for small-scale robotic parallel synthesis. N-Terminal amine capping of deletion peptides during synthesis stands out as vital to this strategy. It allows for direct on-slide enrichment of the full-length target product and thereby bypasses tedious isolation and purification procedures.
Collapse
Affiliation(s)
- Ola Blixt
- Department of Chemistry, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Nøstdal A, Wandall HH. Chemo-enzymatic production of O-glycopeptides for the detection of serum glycopeptide antibodies. Methods Mol Biol 2013; 1061:167-179. [PMID: 23963937 DOI: 10.1007/978-1-62703-589-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein microarray is a highly sensitive tool for antibody detection in serum. Monitoring of patients' antibody titers to specific antigens is increasingly employed in the diagnosis of several conditions, ranging from infectious diseases, allergies, autoimmune diseases, and cancer. In this protocol we present a detailed method for enzymatic generation of disease-specific O-glycopeptides and how to monitor the antibody response to these in serum using microarray technology.
Collapse
Affiliation(s)
- Alexander Nøstdal
- Department of Cellular and Molecular Medicine, University of Copenhagen, København, Denmark
| | | |
Collapse
|
28
|
Abstract
Infectious diseases are responsible for an overwhelming number of deaths worldwide and their clinical management is often hampered by the emergence of multi-drug-resistant strains. Therefore, prevention through vaccination currently represents the best course of action to combat them. However, immune escape and evasion by pathogens often render vaccine development difficult. Furthermore, most currently available vaccines were empirically designed. In this review, we discuss why rational design of vaccines is not only desirable but also necessary. We introduce recent developments towards specifically tailored antigens, adjuvants, and delivery systems, and discuss the methodological gaps and lack of knowledge still hampering true rational vaccine design. Finally, we address the potential and limitations of different strategies and technologies for advancing vaccine development.
Collapse
Affiliation(s)
- Christine Rueckert
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| |
Collapse
|