1
|
Modiyinji AF, Joffret ML, Nombot-Yazenguet MPDM, Endengue Zanga MC, Sadeuh-Mba S, Njouom R, Bessaud M. Molecular characterization of enteroviruses circulating among pigs and goats in two Central African countries, Cameroon and the Central African Republic. Access Microbiol 2025; 7:000886.v3. [PMID: 39995472 PMCID: PMC11848064 DOI: 10.1099/acmi.0.000886.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 02/26/2025] Open
Abstract
To date, data on animal enteroviruses (EVs) are scarce, especially in Central Africa. The aim of this study was to characterize EVs among pigs and goats in Cameroon and the Central African Republic (CAR). A total of 226 pig and goat faecal samples collected in two previous studies carried out in Cameroon and CAR were pooled and screened with molecular assays targeting EV-Es, EV-Fs and EV-Gs. EV genomes were amplified by RT-PCR and their sequences were obtained by Illumina sequencing and de novo assembly. Based on the capsid sequences, 27 EV-G sequences were identified and assigned to 11 virus types, while no EV-E or EV-F was observed. Phylogenetic analysis revealed that the EV-Gs detected in Central Africa do not form specific clusters compared to EV-Gs previously reported in other continents. This suggests a worldwide circulation of EV-Gs, which is likely due to the massive international trade of live animals. One human EV, EV-C99, which belongs to the species Enterovirus C, was detected in pigs. This is the third detection of such an event in a similar context, reinforcing the hypothesis that some EV-Cs could be infecting pigs. Our work provides new data on the genetic diversity of EVs circulating among domestic animals in Central Africa.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université de Paris Cité, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| | | | | | - Serge Sadeuh-Mba
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Richard Njouom
- Service de Virologie, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Maël Bessaud
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université de Paris Cité, Paris, France
- Laboratoire associé au Centre national de référence entérovirus/paréchovirus, Paris, France
| |
Collapse
|
2
|
Zhu P, Li ZH, Li ZR, Zhang ZX, Song JL. First isolation, identification, and pathogenicity evaluation of an EV-G6 strain in China. Front Vet Sci 2024; 11:1431180. [PMID: 39113722 PMCID: PMC11304196 DOI: 10.3389/fvets.2024.1431180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Enterovirus G (EV-G) belongs to the Picornaviridae family and infects porcine populations worldwide. A total of 20 EV-G genotypes (EV-G1 to EV-G20) have been identified. In this study, we isolated and characterized an EV-G strain, named EV-G/YN29/2022, from the feces of diarrheic pigs. This was the first EV-G6 strain isolated in China. Comparison of the whole genome nucleotide and corresponding amino acid sequences showed that the isolate was more closely related to those of the EV-G6 genotype than other genotypes, with the complete genome sequence similarity ranging from 83.7% (Iba46442) to 84.4% (PEV-B-KOR), and corresponding amino acid homology ranged from 96% (Iba46442) to 96.8% (PEV-B-KOR). Similarly, the VP1 gene and corresponding amino acid sequences of EV-G/YN29/2022 were highly similar to those of the EV-G6 genotype (>82.9% and >94.3%, respectively). Thus, the isolated strain was classified as EV-G6 genotype. This was the first EV-G6 strain isolated in China. Pathogenicity analyses revealed that EV-G/YN29/2022 infection caused mild diarrhea, typical skin lesions, and weight reduction. The strain was mainly distributed to the intestinal tissue but was also found in the brain, mesenteric lymph nodes, spleen, and liver. Our results can be used as a reference to further elucidate the epidemiology, evolution, and pathogenicity of EV-G.
Collapse
Affiliation(s)
- Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Zhen-Xing Zhang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jian-Ling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
3
|
Zell R, Groth M, Selinka L, Selinka HC. Diversity of Picorna-Like Viruses in the Teltow Canal, Berlin, Germany. Viruses 2024; 16:1020. [PMID: 39066183 PMCID: PMC11281612 DOI: 10.3390/v16071020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The viromes of freshwater bodies are underexplored. The Picornavirales order, with 371 acknowledged species, is one of the most expansive and diverse groups of eukaryotic RNA viruses. In this study, we add 513 picorna-like viruses to the assemblage of more than 2000 unassigned picorna-like viruses. Our set of the aquatic Picornavirales virome of the Teltow Canal in Berlin, Germany, consists of 239 complete and 274 partial genomes. This urban freshwater body is characterized by the predominance of marna-like viruses (30.8%) and dicistro-like viruses (19.1%), whereas picornaviruses, iflaviruses, solinvi-like viruses, polycipi-like viruses, and nora-like viruses are considerably less prevalent. Caliciviruses and secoviruses were absent in our sample. Although presenting characteristic domains of Picornavirales, more than 100 viruses (20.8%) could not be assigned to any of the 9 Picornavirales families. Thirty-three viruses of the Marnaviridae-mostly locarna-like viruses-exhibit a monocistronic genome layout. Besides a wealth of novel virus sequences, viruses with peculiar features are reported. Among these is a clade of untypeable marna-like viruses with dicistronic genomes, but with the capsid protein-encoding open reading frame located at the 5' part of their RNA. A virus with a similar genome layout but clustering with dicistroviruses was also observed. We further detected monocistronic viruses with a polymerase gene related to aparaviruses. The detection of Aichi virus and five novel posa-like viruses indicates a slight burden in municipal wastewater.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| | - Marco Groth
- CF Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Lukas Selinka
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, Department of Environmental Hygiene, German Environment Agency, 14195 Berlin, Germany
| |
Collapse
|
4
|
Ujike M, Suzuki T. Progress of research on coronaviruses and toroviruses in large domestic animals using reverse genetics systems. Vet J 2024; 305:106122. [PMID: 38641200 DOI: 10.1016/j.tvjl.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The generation of genetically engineered recombinant viruses from modified DNA/RNA is commonly referred to as reverse genetics, which allows the introduction of desired mutations into the viral genome. Reverse genetics systems (RGSs) are powerful tools for studying fundamental viral processes, mechanisms of infection, pathogenesis and vaccine development. However, establishing RGS for coronaviruses (CoVs) and toroviruses (ToVs), which have the largest genomes among vertebrate RNA viruses, is laborious and hampered by technical constraints. Hence, little research has focused on animal CoVs and ToVs using RGSs, especially in large domestic animals such as pigs and cattle. In the last decade, however, studies of porcine CoVs and bovine ToVs using RGSs have been reported. In addition, the coronavirus disease-2019 pandemic has prompted the development of new and simple CoV RGSs, which will accelerate RGS-based research on animal CoVs and ToVs. In this review, we summarise the general characteristics of CoVs and ToVs, the RGSs available for CoVs and ToVs and the progress made in the last decade in RGS-based research on porcine CoVs and bovine ToVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Tohru Suzuki
- Division of Zoonosis Research, Sapporo Research Station, National Institute of Animal Health, NARO, Sapporo, Hokkaido 062-0045, Japan
| |
Collapse
|
5
|
Hong D, Bian J, Zeng L, Huang S, Qin Y, Chen Y, Wei Z, Huang W, Ouyang K. A novel VP1-based enzyme-linked immunosorbent assay revealed widespread Enterovirus G infections in Guangxi, China. J Virol Methods 2024; 325:114873. [PMID: 38142820 DOI: 10.1016/j.jviromet.2023.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Enterovirus G (EV-G) has recently been shown to affect weight gain and cause neurological symptoms in piglets. However, the serological investigation of EV-G is limited. In this study, we developed a novel serological detection method based on the structural protein, VP1 of EV-G. The intra-assay and inter-assay coefficient variations were 3.2-8.9% and 2.6-8.0%, respectively. There was no cross-reaction of the VP1-based enzyme-linked immunosorbent assay (ELISA) with antisera against the other known porcine viruses. In addition, a comparison was made with other methods including the developed indirect ELISAs based on VP2 and VP3 proteins and western blot (WB) analysis, which demonstrated the reliability of the novel method. Using the VP1-based ELISA, we carried out the first seroepidemiological survey of EV-G in China by testing 1041 serum samples collected from different pig farms in Guangxi from 2019 to 2021. Our results showed that 68.78% of the serum samples and 100% of the pig farms were positive for EV-G, with a relatively high incidence of seropositivity in pigs of different ages. This was specifically evident in fattening pigs and sows, which may suggest that the piglets have experienced an infection with EV-G during their growth process. Our data provide the first serological evidence of EV-G infections in pigs from China and reveal the widespread presence of EV-G infections in Guangxi, China.
Collapse
Affiliation(s)
- Dalin Hong
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Jinni Bian
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Lingyou Zeng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shiting Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Yifeng Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Ying Chen
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Zuzhang Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Weijian Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China
| | - Kang Ouyang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530005, China.
| |
Collapse
|
6
|
Bhat S, Ansari MI, Kattoor JJ, Sircar S, Dar PS, Deol P, Vinodh Kumar OR, Thomas P, Ghosh S, El Zowalaty ME, Malik YS. Emerging porcine Enterovirus G infections, epidemiological, complete genome sequencing, evolutionary and risk factor analysis in India. Virology 2024; 590:109906. [PMID: 38096748 DOI: 10.1016/j.virol.2023.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024]
Abstract
The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.
Collapse
Affiliation(s)
- Sudipta Bhat
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Mohd Ikram Ansari
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Biosciences, Integral University Lucknow, India
| | - Jobin Jose Kattoor
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Comparative Pathobiology, Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Parvaiz Sikander Dar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pallavi Deol
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; Institute for Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - O R Vinodh Kumar
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine,Basseterre P.O. 334, Saint Kitts and Nevis, West Indies
| | - Mohamed E El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly 243122, India; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141001, India.
| |
Collapse
|
7
|
Ibrahim YM, Zhang W, Wang X, Werid GM, Fu L, Yu H, Wang Y. Molecular characterization and pathogenicity evaluation of enterovirus G isolated from diarrheic piglets. Microbiol Spectr 2023; 11:e0264323. [PMID: 37830808 PMCID: PMC10715025 DOI: 10.1128/spectrum.02643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Enterovirus G is a species of positive-sense single-stranded RNA viruses associated with several mammalian diseases. The porcine enterovirus strains isolated here were chimeric viruses with the PLCP gene of porcine torovirus, which grouped together with global EV-G1 strains. The isolated EV-G strain could infect various cell types from different species, suggesting its potential cross-species infection risk. Animal experiment showed the pathogenic ability of the isolated EV-G to piglets. Additionally, the EV-Gs were widely distributed in the swine herds. Our findings suggest that EV-G may have evolved a novel mechanism for broad tropism, which has important implications for disease control and prevention.
Collapse
Affiliation(s)
- Yassein M. Ibrahim
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gebremeskel Mamu Werid
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| | - Haidong Yu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
8
|
Huang S, Mi X, Ren T, Hong D, Qin Q, Long M, Qin Y, Chen Y, Wei Z, Huang W, Ouyang K. Evaluation of packaging capacity at the genomic 2C/3A junction region in Porcine enterovirus G. Virology 2023; 588:109899. [PMID: 37862828 DOI: 10.1016/j.virol.2023.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Porcine enterovirus G (EV-G) is endogenous to most pig farming countries worldwide. Reports that a papain-like protease (PLP) gene has been naturally inserted into the 2C/3A junction region of the EV-G genome, has increased the potential public health threats from this virus. We constructed a full-length infectious cDNA clone of EV-G, CH/17GXQZ/2017, in order to determine the packaging capacity at the 2C/3A insertion site. Subsequently, recombinants viruses containing the coding tags, GFP, iLOV and His at the 2C/3A junction region, were synthesized. The infectious virus was successfully rescued only with the insertion of the His-tag, which displayed similar virological and molecular properties to its parental strain. This study determined the packaging capacity of the 2C/3A insertion site, and it provides a practical tool for studying the functions and pathogenic mechanisms of EV-G in pigs.
Collapse
Affiliation(s)
- Shiting Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Xue Mi
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Tongwei Ren
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Daling Hong
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Qiuying Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Meijing Long
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China
| | - Yifeng Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Ying Chen
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Zuzhang Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Weijian Huang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China
| | - Kang Ouyang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning, 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530005, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, 530005, China.
| |
Collapse
|
9
|
Xiao D, Zhang L, Li S, Liang Y, Wu R, Wen Y, Yan Q, Du S, Zhao Q, Han X, Song J, Cao S, Huang X. Characterization, phylogenetic analysis, and pathogenicity of a novel genotype 2 porcine Enterovirus G. Virus Res 2023; 335:199185. [PMID: 37532142 PMCID: PMC10448215 DOI: 10.1016/j.virusres.2023.199185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Enterovirus G belongs to the family Picornaviridae and are associated with a variety of animal diseases. We isolated and characterized a novel EV-G2 strain, CHN-SCMY2021, the first genotype 2 strain isolated in China. CHN-SCMY2021 is about 25 nm diameter with morphology typical of picornaviruses and its genome is 7341 nucleotides. Sequence alignment and phylogenetic analysis based on VP1 indicated that this isolate is a genotype 2 strain. The whole genome similarity between CHN-SCMY2021 and other EV-G genotype 2 strains is 78.3-86.4%, the greatest similarity is to EVG/Porcine/JPN/Iba26-506/2014/G2 (LC316792.1). Recombination analysis indicated that CHN-SCMY2021 resulted from recombination between 714,171/CaoLanh_VN (KT265894.2) and LP 54 (AF363455.1). Except for ST cells, CHN-SCMY2021 has a broad spectrum of cellular adaptations, which are susceptible to BHK-21, PK-15, IPEC-J2, LLC-PK and Vero cells. In piglets, CHN-SCMY2021 causes mild diarrhea and thinning of the intestinal wall. The virus was mainly distributed to intestinal tissue but was also found in heart, liver, spleen, lung, kidney, brain, and spinal cord. CHN-SCMY2021 is the first systematically characterized EV-G genotype 2 strain from China, our results enrich the information on the epidemiology, molecular evolution and pathogenicity associated with EV-G.
Collapse
Affiliation(s)
- Dai Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Luwen Zhang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiqian Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianling Song
- Yunnan Animal Science and Veterinary Institute, Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Kunming 650224, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment Station of Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
10
|
Li ZH, Li ZR, Zhu P, Zhang ZX, Song JL. First Identification and Pathogenicity Evaluation of an EV-G17 Strain Carrying a Torovirus Papain-like Cysteine Protease (PLCP) Gene in China. Viruses 2023; 15:1747. [PMID: 37632087 PMCID: PMC10459844 DOI: 10.3390/v15081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Enterovirus G (EV-G) is prevalent in pig populations worldwide, and a total of 20 genotypes (G1 to G20) have been confirmed. Recently, recombinant EV-Gs carrying the papain-like cysteine protease (PLCP) gene of porcine torovirus have been isolated or detected, while their pathogenicity is poorly understood. In this study, an EV-G17-PLCP strain, 'EV-G/YN23/2022', was isolated from the feces of pigs with diarrhea, and the virus replicated robustly in numerous cell lines. The isolate showed the highest complete genome nucleotide (87.5%) and polyprotein amino acid (96.6%) identity in relation to the G17 strain 'IShi-Ya4' (LC549655), and a possible recombination event was detected at the 708 and 3383 positions in the EV-G/YN23/2022 genome. EV-G/YN23/2022 was nonlethal to piglets, but mild diarrhea, transient fever, typical skin lesions, and weight gain deceleration were observed. The virus replicated efficiently in multiple organs, and the pathological lesions were mainly located in the small intestine. All the challenged piglets showed seroconversion for EV-G/YN23/2022 at 6 to 9 days post-inoculation (dpi), and the neutralization antibody peaked at 15 dpi. The mRNA expression levels of IL-6, IL-18, IFN-α, IFN-β, and ISG-15 in the peripheral blood mononuclear cells (PBMCs) were significantly up-regulated during viral infection. This is the first documentation of the isolation and pathogenicity evaluation of the EV-G17-PLCP strain in China. The results may advance our understanding of the evolution characteristics and pathogenesis of EV-G-PLCP.
Collapse
Affiliation(s)
- Zhan-Hong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Zhuo-Ran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Zhen-Xing Zhang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| | - Jian-Ling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China; (Z.-H.L.); (Z.-R.L.); (P.Z.); (Z.-X.Z.)
- Key Laboratory of Transboundary Animal Diseases Prevention and Control (Co-Construction by Ministry and Province), Yunnan Animal Science and Veterinary Institute, Fengyu Road, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
11
|
Shang P, Simpson JD, Taylor GM, Sutherland DM, Welsh OL, Aravamudhan P, Natividade RDS, Schwab K, Michel JJ, Poholek AC, Wu Y, Rajasundaram D, Koehler M, Alsteens D, Dermody TS. Paired immunoglobulin-like receptor B is an entry receptor for mammalian orthoreovirus. Nat Commun 2023; 14:2615. [PMID: 37147336 PMCID: PMC10163058 DOI: 10.1038/s41467-023-38327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.
Collapse
Affiliation(s)
- Pengcheng Shang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua D Simpson
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Gwen M Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Kristina Schwab
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua J Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Imai R, Rongduo W, Kaixin L, Borjigin S, Matsumura H, Masuda T, Ozawa T, Oba M, Makino S, Nagai M, Mizutani T. Novel recombinant porcine enterovirus G viruses lacking structural proteins are maintained in pig farms in Japan. J Vet Med Sci 2023; 85:252-265. [PMID: 36543238 PMCID: PMC10017297 DOI: 10.1292/jvms.22-0505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 1 recombinant enterovirus G (EV-G), which carries the papain-like cysteine protease (PLCP) gene of torovirus between its 2C/3A regions, and type 2 recombinant EV-G, which carries the torovirus PLCP gene with its flanking regions having non-EV-G sequences in place of the viral structural genes, have been detected in pig farms in several countries. In a previous study, we collected 222 fecal samples from 77 pig farms from 2104 to 2016 and detected one type 2 recombinant EV-G genome by metagenomics sequencing. In this study, we reanalyzed the metagenomic data and detected 11 type 2 recombinant EV-G genomes. In addition, we discovered new type 2 recombinant EV-G genomes of the two strains from two pig farms samples in 2018 and 2019. Thus, we identified the genomes of 13 novel type 2 recombinant EV-Gs isolated from several pig farms in Japan. Type 2 recombinant EV-G has previously been detected only in neonatal piglets. The present findings suggest that type 2 recombinant EV-G replicates in weaning piglets and sows. The detection of type 1 recombinant EV-Gs and type 2 recombinant EV-Gs at 3-year and 2-year intervals, respectively, from the same pig farm suggests that the viruses were persistently infecting or circulating in these farms.
Collapse
Affiliation(s)
- Ryo Imai
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wen Rongduo
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Li Kaixin
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sumiya Borjigin
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hirofumi Matsumura
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Takuji Ozawa
- Japanese Animal Hospital Association, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Makoto Nagai
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
13
|
Yan X, Shang P, Yim-im W, Sun Y, Zhang J, Firth AE, Lowe J, Fang Y. Molecular characterization of emerging variants of PRRSV in the United States: new features of the -2/-1 programmed ribosomal frameshifting signal in the nsp2 region. Virology 2022; 573:39-49. [DOI: 10.1016/j.virol.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
14
|
Nikolaidis M, Markoulatos P, Van de Peer Y, Oliver SG, Amoutzias GD. The Neighborhood of the Spike Gene Is a Hotspot for Modular Intertypic Homologous and Nonhomologous Recombination in Coronavirus Genomes. Mol Biol Evol 2022; 39:msab292. [PMID: 34638137 PMCID: PMC8549283 DOI: 10.1093/molbev/msab292] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses (CoVs) have very large RNA viral genomes with a distinct genomic architecture of core and accessory open reading frames (ORFs). It is of utmost importance to understand their patterns and limits of homologous and nonhomologous recombination, because such events may affect the emergence of novel CoV strains, alter their host range, infection rate, tissue tropism pathogenicity, and their ability to escape vaccination programs. Intratypic recombination among closely related CoVs of the same subgenus has often been reported; however, the patterns and limits of genomic exchange between more distantly related CoV lineages (intertypic recombination) need further investigation. Here, we report computational/evolutionary analyses that clearly demonstrate a substantial ability for CoVs of different subgenera to recombine. Furthermore, we show that CoVs can obtain-through nonhomologous recombination-accessory ORFs from core ORFs, exchange accessory ORFs with different CoV genera, with other viruses (i.e., toroviruses, influenza C/D, reoviruses, rotaviruses, astroviruses) and even with hosts. Intriguingly, most of these radical events result from double crossovers surrounding the Spike ORF, thus highlighting both the instability and mobile nature of this genomic region. Although many such events have often occurred during the evolution of various CoVs, the genomic architecture of the relatively young SARS-CoV/SARS-CoV-2 lineage so far appears to be stable.
Collapse
Affiliation(s)
- Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
15
|
Amoutzias GD, Nikolaidis M, Tryfonopoulou E, Chlichlia K, Markoulatos P, Oliver SG. The Remarkable Evolutionary Plasticity of Coronaviruses by Mutation and Recombination: Insights for the COVID-19 Pandemic and the Future Evolutionary Paths of SARS-CoV-2. Viruses 2022; 14:78. [PMID: 35062282 PMCID: PMC8778387 DOI: 10.3390/v14010078] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) constitute a large and diverse subfamily of positive-sense single-stranded RNA viruses. They are found in many mammals and birds and have great importance for the health of humans and farm animals. The current SARS-CoV-2 pandemic, as well as many previous epidemics in humans that were of zoonotic origin, highlights the importance of studying the evolution of the entire CoV subfamily in order to understand how novel strains emerge and which molecular processes affect their adaptation, transmissibility, host/tissue tropism, and patho non-homologous genicity. In this review, we focus on studies over the last two years that reveal the impact of point mutations, insertions/deletions, and intratypic/intertypic homologous and non-homologous recombination events on the evolution of CoVs. We discuss whether the next generations of CoV vaccines should be directed against other CoV proteins in addition to or instead of spike. Based on the observed patterns of molecular evolution for the entire subfamily, we discuss five scenarios for the future evolutionary path of SARS-CoV-2 and the COVID-19 pandemic. Finally, within this evolutionary context, we discuss the recently emerged Omicron (B.1.1.529) VoC.
Collapse
Affiliation(s)
- Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Eleni Tryfonopoulou
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Katerina Chlichlia
- Laboratory of Molecular Immunology, Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (E.T.); (K.C.)
| | - Panayotis Markoulatos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
16
|
Dynamics of the Enteric Virome in a Swine Herd Affected by Non-PCV2/PRRSV Postweaning Wasting Syndrome. Viruses 2021; 13:v13122538. [PMID: 34960807 PMCID: PMC8705478 DOI: 10.3390/v13122538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
A commercial pig farm with no history of porcine circovirus 2 (PCV2) or porcine reproductive and respiratory syndrome virus (PRRSV) repeatedly reported a significant reduction in body weight gain and wasting symptoms in approximately 20–30% of the pigs in the period between three and six weeks after weaning. As standard clinical interventions failed to tackle symptomatology, viral metagenomics were used to describe and monitor the enteric virome at birth, 3 weeks, 4 weeks, 6 weeks, and 9 weeks of age. The latter four sampling points were 7 days, 3 weeks, and 6 weeks post weaning, respectively. Fourteen distinct enteric viruses were identified within the herd, which all have previously been linked to enteric diseases. Here we show that wasting is associated with alterations in the enteric virome of the pigs, characterized by: (1) the presence of enterovirus G at 3 weeks of age, followed by a higher prevalence of the virus in wasting pigs at 6 weeks after weaning; (2) rotaviruses at 3 weeks of age; and (3) porcine sapovirus one week after weaning. However, the data do not provide a causal link between specific viral infections and the postweaning clinical problems on the farm. Together, our results offer evidence that disturbances in the enteric virome at the preweaning stage and early after weaning have a determining role in the development of intestinal barrier dysfunctions and nutrient uptake in the postweaning growth phase. Moreover, we show that the enteric viral load sharply increases in the week after weaning in both healthy and wasting pigs. This study is also the first to report the dynamics and co-infection of porcine rotavirus species and porcine astrovirus genetic lineages during the first 9 weeks of the life of domestic pigs.
Collapse
|
17
|
Abstract
Historically part of the coronavirus (CoV) family, torovirus (ToV) was recently classified into the new family Tobaniviridae. While reverse genetics systems have been established for various CoVs, none exist for ToVs. Herein, we developed a reverse genetics system using an infectious full-length cDNA clone of bovine ToV (BToV) in a bacterial artificial chromosome (BAC). Recombinant BToV harboring genetic markers had the same phenotype as wild-type (wt) BToV. To generate two types of recombinant virus, the hemagglutinin-esterase (HE) gene was edited, as cell-adapted wtBToV generally loses full-length HE (HEf), resulting in soluble HE (HEs). First, recombinant viruses with HEf and HA-tagged HEf or HEs genes were rescued. These exhibited no significant differences in their effect on virus growth in HRT18 cells, suggesting that HE is not essential for viral replication in these cells. Thereafter, we generated recombinant virus (rEGFP), wherein HE was replaced by the enhanced green fluorescent protein (EGFP) gene. The rEGFP expressed EGFP in infected cells, but showed significantly lower viral growth compared to wtBToV. Moreover, the rEGFP readily deleted the EGFP gene after one passage. Interestingly, rEGFP variants with two mutations (C1442F and I3562T) in non-structural proteins (NSPs) that emerged during passages exhibited improved EGFP expression, EGFP gene retention, and viral replication. An rEGFP into which both mutations were introduced displayed a similar phenotype to these variants, suggesting that the mutations contributed to EGFP gene acceptance. The current findings provide new insights into BToV, and reverse genetics will help advance the current understanding of this neglected pathogen. Importance ToVs are diarrhea-causing pathogens detected in various species, including humans. Through the development of a BAC-based BToV, we introduced the first reverse genetics system for Tobaniviridae. Utilizing this system, recombinant BToVs with a full-length HE gene were generated. Remarkably, although clinical BToVs generally lose the HE gene after a few passages, some recombinant viruses generated in the current study retained the HE gene for up to 20 passages while accumulating mutations in NSPs, which suggested that these mutations may be involved in HE gene retention. The EGFP gene of recombinant viruses was unstable, but rEGFP into which two NSP mutations were introduced exhibited improved EGFP expression, gene retention, and viral replication. These data suggested the existence of an NSP-based acceptance or retention mechanism for exogenous RNA or HE genes. Recombinant BToVs and reverse genetics are powerful tools for understanding fundamental viral processes, infection pathogenesis, and BToV vaccine development.
Collapse
|
18
|
Dai X, Lu S, Shang G, Zhu W, Yang J, Liu L, Xu J. Characterization and Identification of a Novel Torovirus Associated With Recombinant Bovine Torovirus From Tibetan Antelope in Qinghai-Tibet Plateau of China. Front Microbiol 2021; 12:737753. [PMID: 34552576 PMCID: PMC8451951 DOI: 10.3389/fmicb.2021.737753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Toroviruses (ToVs) are enteric pathogens and comprise three species, equine torovirus (EToV), bovine torovirus (BToV), and porcine torovirus (PToV). In this study, a novel torovirus (antelope torovirus, AToV) was discovered from fecal samples of Tibetan antelopes (Pantholops hodgsonii) with viral loads of 2.10×109 to 1.76×1010 copies/g. The genome of AToV is 28,438 nucleotides (nt) in length encoding six open reading frames (ORFs) with 11 conserved domains in pp1ab and a putative slippery sequence (14171UUUAAAC14177) in the overlapping region of ORF1a and ORF1b. Phylogenetic analysis illustrated strains of AToV form a unique clade within ToVs and comparative analysis showed AToV share relatively low sequence identity with other ToVs in six ORFs (68.2–91.6% nucleotide identity). These data suggested that AToV represents a novel and distinct species of ToVs. Based on the M genes, evolutionary analysis with BEAST of AToV and other ToVs led to a most recent common ancestor estimate of 366years ago. Remarkably, recombination analysis revealed AToV was the unknown parental ToV that once involving in the recombinant events of HE genes of two Dutch strains of BToV (B150 and B155), which indicated that AToV occurred cross-species transmission and existed both in the Netherlands and China. This study revealed a novel torovirus, a natural reservoir host (Tibetan antelope) of toroviruses for the first time, and appealed to further related studies to better understand the diversity of toroviruses.
Collapse
Affiliation(s)
- Xiaoyi Dai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Guobao Shang
- Haixi Prefecture Center for Disease Control and Prevention, Qinghai, China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Mi X, Yang C, Lu Y, Wang H, Qin Q, Chen R, Chen Z, Luo Y, Chen Y, Wei Z, Huang W, Ouyang K. Isolation, Identification, and Evaluation of the Pathogenicity of a Porcine Enterovirus G Isolated From China. Front Vet Sci 2021; 8:712679. [PMID: 34368288 PMCID: PMC8339413 DOI: 10.3389/fvets.2021.712679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
Enterovirus G (EV-G) infects porcine populations worldwide and the infections are generally asymptomatic, with the insertion of the papain-like cysteine protease gene (PLCP) increasing the potential public health threats. However, the genetic and pathogenic characteristics of EV-G itself are not fully understood as yet. In the present study, one EV-G strain, named CH/17GXQZ/2017, was isolated and purified from piglets with diarrheic symptoms from the Guangxi Province, China. This strain produced stable cytopathic effects on Marc-145 cells with a titer of 5 × 106 PFU/mL. The spherical enterovirus particles with diameters of 25–30 nm were observed by using transmission electron microscopy. The whole genome sequence of the CH/17GXQZ/2017 strain consists of 7,364 nucleotides, and the phylogenetic tree based on the amino acid sequences of VP1 indicated this strain was clustered to the G1 genotype. Seven-day-old piglets were inoculated orally with the CH/17GXQZ/2017 strain in order to evaluate its pathogenicity. Although none of the infected piglets died during the experiment, clinical neurological symptoms were observed manifesting as mild hyperemia and Nissl bodies vacuolization in the cerebrum. In addition, the infection with the CH/17GXQZ/2017 strain decelerated the weight gain of suckling piglets significantly. This study demonstrates that CH/17GXQZ/2017 is pathogenic to neonatal piglets and advance knowledge on the biological characteristics, evolution and pathogenicity of EV-G.
Collapse
Affiliation(s)
- Xue Mi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chunjie Yang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Lu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hejie Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiuying Qin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ronglin Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhenkong Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yunyan Luo
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
20
|
Proulx J, Borgmann K, Park IW. Role of Virally-Encoded Deubiquitinating Enzymes in Regulation of the Virus Life Cycle. Int J Mol Sci 2021; 22:ijms22094438. [PMID: 33922750 PMCID: PMC8123002 DOI: 10.3390/ijms22094438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-(817)-735-5115; Fax: +1-(817)-735-2610
| |
Collapse
|
21
|
Ujike M, Taguchi F. Recent Progress in Torovirus Molecular Biology. Viruses 2021; 13:435. [PMID: 33800523 PMCID: PMC7998386 DOI: 10.3390/v13030435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although it belonged to the Coronavirus (CoV) family historically. ToVs are associated with enteric diseases in animals and humans. In contrast to CoVs, which are recognised as pathogens of veterinary and medical importance, little attention has been paid to ToVs because their infections are usually asymptomatic or not severe; for a long time, only one equine ToV could be propagated in cultured cells. However, bovine ToVs, which predominantly cause diarrhoea in calves, have been detected worldwide, leading to economic losses. Porcine ToVs have also spread globally; although they have not caused serious economic losses, coinfections with other pathogens can exacerbate their symptoms. In addition, frequent inter- or intra-recombination among ToVs can increase pathogenesis or unpredicted host adaptation. These findings have highlighted the importance of ToVs as pathogens and the need for basic ToV research. Here, we review recent progress in the study of ToV molecular biology including reverse genetics, focusing on the similarities and differences between ToVs and CoVs.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| |
Collapse
|
22
|
Qin P, Yang YL, Hu ZM, Zhang YQ, Mei XQ, Liang QZ, Lu Z, Wang B, Chen R, Huang YW. A novel spike subunit 1-based enzyme-linked immunosorbent assay reveals widespread porcine torovirus infection in eastern China. Transbound Emerg Dis 2021; 69:598-608. [PMID: 33555108 DOI: 10.1111/tbed.14026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 11/26/2022]
Abstract
Toroviruses (ToVs), closely related but genetically distinct from coronaviruses, are known to infect horses, cows, pigs, goats and humans, mainly causing enteritic disorders. However, due to the lack of an adaptive culture system, porcine ToV (PToV) has received less attention. In this study, we developed a novel serological detection method based on the PToV envelope spike subunit 1 (S1) protein for the first time, and compared it to an existing indirect enzyme-linked immunosorbent assay (ELISA) based on the nucleocapsid protein. By using the S1-based ELISA, we carried out the first seroepidemiological survey of PToV in China, assaying both specific IgG and IgA responses in 1,037 serum samples collected from diarrheic pigs in eastern China. There was a relatively high incidence of seropositivity in pigs of different ages, especially one-week-old piglets and sows (78% and 43%), the former probably reflecting maternal antibodies. Furthermore, 3/20 (15%) of faecal samples collected from one PToV-seropositive swine herd in Zhejiang province tested positive by RT-PCR. The complete PToV genome was sequenced from one of these samples, and its phylogenetic relationship with other full-length PToV sequences available in GenBank was determined. Our data provide the first serological evidence for PToV infection in pigs from China, which will help elucidate the potential pathogenicity of PToV in pigs.
Collapse
Affiliation(s)
- Pan Qin
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zhang-Min Hu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Yu-Qi Zhang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Xiao-Qiang Mei
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zongji Lu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Bin Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Ruiai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
23
|
Multiple genotypes of enterovirus G carrying a papain-like cysteine protease (PL-CP) sequence circulating on two pig farms in Japan: first identification of enterovirus G10 carrying a PL-CP sequence. Arch Virol 2020; 165:2909-2914. [PMID: 32951133 DOI: 10.1007/s00705-020-04816-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Two and three genotypes of enterovirus G (EV-G) carrying a papain-like cysteine protease (PL-CP) sequence were detected on two pig farms and classified into genotypes G1 and G10, and G1, G8, and G17, respectively, based on VP1 sequences. A G10 EV-G virus bearing a PL-CP sequence was detected for the first time. Phylogenetic analysis of the P2 and P3 regions grouped the viruses by farm with high sequence similarity. Furthermore, clear recombination break points were detected in the 2A region, suggesting that PL-CP EV-G-containing strains gained sequence diversity through recombination events among the multiple circulating EV-G genotypes on the farms.
Collapse
|
24
|
Impairment of the DeISGylation Activity of Foot-and-Mouth Disease Virus Lpro Causes Attenuation In Vitro and In Vivo. J Virol 2020; 94:JVI.00341-20. [PMID: 32295921 PMCID: PMC7307143 DOI: 10.1128/jvi.00341-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 01/25/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) affects several pathways of the host innate immune response. Previous studies in bovine cells demonstrated that deletions (leaderless [LLV]) or point mutations in Lpro result in increased expression of interferon (IFN) and IFN-stimulated genes (ISGs), including, among others, the ubiquitin-like protein modifier ISG15 and the ubiquitin specific peptidase USP18. In addition to its conventional papain-like protease activity, Lpro acts as a deubiquitinase (DUB) and deISGylase. In this study, we identified a conserved residue in Lpro that is involved in its interaction with ISG15. Mutation W105A rendered Escherichia coli-expressed Lpro unable to cleave the synthetic substrate pro-ISG15 while preserving cellular eIF4G cleavage. Interestingly, mutant FMDV W105A was viable. Overexpression of ISG15 and the ISGylation machinery in porcine cells resulted in moderate inhibition of FMDV replication, along with a decrease of the overall state of ISGylation in wild-type (WT)-infected cells. In contrast, reduced deISGylation was observed upon infection with W105A and leaderless virus. Reduction in the levels of deubiquitination was also observed in cells infected with the FMDV LproW105A mutant. Surprisingly, similarly to WT, infection with W105A inhibited IFN/ISG expression despite displaying an attenuated phenotype in vivo in mice. Altogether, our studies indicate that abolishing/reducing the deISGylase/DUB activity of Lpro causes viral attenuation independently of its ability to block the expression of IFN and ISG mRNA. Furthermore, our studies highlight the potential of ISG15 to be developed as a novel biotherapeutic molecule against FMD.IMPORTANCE In this study, we identified an aromatic hydrophobic residue in foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) (W105) that is involved in the interaction with ISG15. Mutation in Lpro W105 (A12-LproW105A) resulted in reduced deISGylation in vitro and in porcine-infected cells. Impaired deISGylase activity correlated with viral attenuation in vitro and in vivo and did not affect the ability of Lpro to block expression of type I interferon (IFN) and other IFN-stimulated genes. Moreover, overexpression of ISG15 resulted in the reduction of FMDV viral titers. Thus, our study highlights the potential use of Lpro mutants with modified deISGylase activity for development of live attenuated vaccine candidates, and ISG15 as a novel biotherapeutic against FMD.
Collapse
|
25
|
Nagata A, Sekiguchi Y, Oi T, Sunaga F, Madarame H, Imai R, Sano K, Katayama Y, Omatsu T, Oba M, Furuya T, Shirai J, Okabayashi T, Misawa N, Oka T, Mizutani T, Nagai M. Genetic diversity of enterovirus G detected in faecal samples of wild boars in Japan: identification of novel genotypes carrying a papain-like cysteine protease sequence. J Gen Virol 2020; 101:840-852. [PMID: 32553066 DOI: 10.1099/jgv.0.001446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity of enterovirus G (EV-G) was investigated in the wild-boar population in Japan. EV-G-specific reverse transcription PCR demonstrated 30 (37.5 %) positives out of 80 faecal samples. Of these, viral protein 1 (VP1) fragments of 20 samples were classified into G1 (3 samples), G4 (1 sample), G6 (2 samples), G8 (4 samples), G11 (1 sample), G12 (7 samples), G14 (1 sample) and G17 (1 sample), among which 11 samples had a papain-like cysteine protease (PL-CP) sequence, believed to be the first discoveries in G1 (2 samples) or G17 (1 sample) wild-boar EV-Gs, and in G8 (2 samples) or G12 (6 samples) EV-Gs from any animals. Sequences of the non-structural protein regions were similar among EV-Gs possessing the PL-CP sequence (PL-CP EV-Gs) regardless of genotype or origin, suggesting the existence of a common ancestor for these strains. Interestingly, for the two G8 and two G12 samples, the genome sequences contained two versions, with or without the PL-CP sequence, together with the homologous 2C/PL-CP and PL-CP/3A junction sequences, which may explain how the recombination and deletion of the PL-CP sequences occured in the PL-CP EV-G genomes. These findings shed light on the genetic plasticity and evolution of EV-G.
Collapse
Affiliation(s)
- Ayaka Nagata
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuya Sekiguchi
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Oi
- Faculty of Bioresources and Environmental Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Fujiko Sunaga
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hiroo Madarame
- School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Ryo Imai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junsuke Shirai
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Naoaki Misawa
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tomoichiro Oka
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.,School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
26
|
Arhab Y, Bulakhov AG, Pestova TV, Hellen CU. Dissemination of Internal Ribosomal Entry Sites (IRES) Between Viruses by Horizontal Gene Transfer. Viruses 2020; 12:E612. [PMID: 32512856 PMCID: PMC7354566 DOI: 10.3390/v12060612] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Members of Picornaviridae and of the Hepacivirus, Pegivirus and Pestivirus genera of Flaviviridae all contain an internal ribosomal entry site (IRES) in the 5'-untranslated region (5'UTR) of their genomes. Each class of IRES has a conserved structure and promotes 5'-end-independent initiation of translation by a different mechanism. Picornavirus 5'UTRs, including the IRES, evolve independently of other parts of the genome and can move between genomes, most commonly by intratypic recombination. We review accumulating evidence that IRESs are genetic entities that can also move between members of different genera and even between families. Type IV IRESs, first identified in the Hepacivirus genus, have subsequently been identified in over 25 genera of Picornaviridae, juxtaposed against diverse coding sequences. In several genera, members have either type IV IRES or an IRES of type I, II or III. Similarly, in the genus Pegivirus, members contain either a type IV IRES or an unrelated type; both classes of IRES also occur in members of the genus Hepacivirus. IRESs utilize different mechanisms, have different factor requirements and contain determinants of viral growth, pathogenesis and cell type specificity. Their dissemination between viruses by horizontal gene transfer has unexpectedly emerged as an important facet of viral evolution.
Collapse
Affiliation(s)
| | | | | | - Christopher U.T. Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (Y.A.); (A.G.B.); (T.V.P.)
| |
Collapse
|
27
|
Hyper-phosphorylation of nsp2-related proteins of porcine reproductive and respiratory syndrome virus. Virology 2020; 543:63-75. [PMID: 32174300 PMCID: PMC7112050 DOI: 10.1016/j.virol.2020.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/07/2023]
Abstract
Viruses exploit phosphorylation of both viral and host proteins to support viral replication. In this study, we demonstrate that porcine reproductive and respiratory syndrome virus replicase nsp2, and two nsp2-related −2/−1 frameshifting products, nsp2TF and nsp2N, are hyper-phosphorylated. By mapping phosphorylation sites, we subdivide an extended, previously uncharacterized region, located between the papain-like protease-2 (PLP2) domain and frameshifting site, into three distinct domains. These domains include two large hypervariable regions (HVR) with putative intrinsically disordered structures, separated by a conserved and partly structured interval domain that we defined as the inter-HVR conserved domain (IHCD). Abolishing phosphorylation of the inter-species conserved residue serine918, which is located within the IHCD region, abrogates accumulation of viral genomic and subgenomic RNAs and recombinant virus production. Our study reveals the biological significance of phosphorylation events in nsp2-related proteins, emphasizes pleiotropic functions of nsp2-related proteins in the viral life cycle, and presents potential links to pathogenesis.
Collapse
|
28
|
Pan Z, Lu J, Wang N, He WT, Zhang L, Zhao W, Su S. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence 2020; 11:707-718. [PMID: 32490723 PMCID: PMC7549975 DOI: 10.1080/21505594.2020.1771980] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 01/03/2023] Open
Abstract
With the outbreak of the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, coronaviruses have become a global research hotspot in the field of virology. Coronaviruses mainly cause respiratory and digestive tract diseases, several coronaviruses are responsible for porcine diarrhea, such as porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and emerging swine acute diarrhea syndrome coronavirus (SADS-CoV). Those viruses have caused huge economic losses and are considered as potential public health threats. Porcine torovirus (PToV) and coronaviruses, sharing similar genomic structure and replication strategy, belong to the same order Nidovirales. Here, we developed a multiplex TaqMan-probe-based real-time PCR for the simultaneous detection of PEDV, PDCoV, PToV, and SADS-CoV for the first time. Specific primers and TaqMan fluorescent probes were designed targeting the ORF1a region of PDEV, PToV, and SADS-CoV and the ORF1b region of PDCoV. The method showed high sensitivity and specificity, with a detection limit of 1 × 102 copies/μL for each pathogen. A total of 101 clinical swine samples with signs of diarrhea were analyzed using this method, and the result showed good consistency with conventional reverse transcription PCR (RT-PCR). This method improves the efficiency for surveillance of these emerging and reemerging swine enteric viruses and can help reduce economic losses to the pig industry, which also benefits animal and public health.
Collapse
Affiliation(s)
- Zhongzhou Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiaxuan Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ningning Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wan-Ting He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Letian Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wen Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
30
|
Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F. Recombination in Enteroviruses, a Multi-Step Modular Evolutionary Process. Viruses 2019; 11:E859. [PMID: 31540135 PMCID: PMC6784155 DOI: 10.3390/v11090859] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/15/2023] Open
Abstract
RNA recombination is a major driving force in the evolution and genetic architecture shaping of enteroviruses. In particular, intertypic recombination is implicated in the emergence of most pathogenic circulating vaccine-derived polioviruses, which have caused numerous outbreaks of paralytic poliomyelitis worldwide. Recent experimental studies that relied on recombination cellular systems mimicking natural genetic exchanges between enteroviruses provided new insights into the molecular mechanisms of enterovirus recombination and enabled to define a new model of genetic plasticity for enteroviruses. Homologous intertypic recombinant enteroviruses that were observed in nature would be the final products of a multi-step process, during which precursor nonhomologous recombinant genomes are generated through an initial inter-genomic RNA recombination event and can then evolve into a diversity of fitter homologous recombinant genomes over subsequent intra-genomic rearrangements. Moreover, these experimental studies demonstrated that the enterovirus genome could be defined as a combination of genomic modules that can be preferentially exchanged through recombination, and enabled defining the boundaries of these recombination modules. These results provided the first experimental evidence supporting the theoretical model of enterovirus modular evolution previously elaborated from phylogenetic studies of circulating enterovirus strains. This review summarizes our current knowledge regarding the mechanisms of recombination in enteroviruses and presents a new evolutionary process that may apply to other RNA viruses.
Collapse
Affiliation(s)
- Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito EC170125, Pichincha, Ecuador.
| | - Alice Mac Kain
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Maël Bessaud
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, 75015 Paris, France.
| | - Bruno Blondel
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| | - Francis Delpeyroux
- Institut Pasteur, Biology of Enteric Viruses Unit, 75015 Paris, France.
- INSERM U994, Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France.
| |
Collapse
|
31
|
Imai R, Nagai M, Oba M, Sakaguchi S, Ujike M, Kimura R, Kida M, Masuda T, Kuroda M, Wen R, Li K, Katayama Y, Naoi Y, Tsuchiaka S, Omatsu T, Yamazato H, Makino S, Mizutani T. A novel defective recombinant porcine enterovirus G virus carrying a porcine torovirus papain-like cysteine protease gene and a putative anti-apoptosis gene in place of viral structural protein genes. INFECTION GENETICS AND EVOLUTION 2019; 75:103975. [PMID: 31344488 PMCID: PMC7105976 DOI: 10.1016/j.meegid.2019.103975] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Enterovirus G (EV-G) belongs to the family of Picornaviridae. Two types of recombinant porcine EV-Gs carrying papain-like cysteine protease (PLCP) gene of porcine torovirus, a virus in Coronaviridae, are reported. Type 1 recombinant EV-Gs are detected in pig feces in Japan, USA, and Belgium and carry the PLPC gene at the junction site of 2C/3A genes, while PLPC gene replaces the viral structural genes in type 2 recombinant EV-G detected in pig feces in a Chinese farm. We identified a novel type 2 recombinant EV-G carrying the PLCP gene with flanking sequences in place of the viral structural genes in pig feces in Japan. The ~0.3 kb-long upstream flanking sequence had no sequence homology with any proteins deposited in GenBank, while the downstream ~0.9 kb-long flanking sequence included a domain having high amino acid sequence homology with a baculoviral inhibitor of apoptosis repeat superfamily. The pig feces, where the novel type 2 recombinant EV-G was detected, also carried type 1 recombinant EV-G. The amount of type 1 and type 2 recombinant EV-G genomes was almost same in the pig feces. Although the phylogenetic analysis suggested that these two recombinant EV-Gs have independently evolved, type 1 recombinant EV-G might have served as a helper virus by providing viral structural proteins for dissemination of the type 2 recombinant EV-G. A novel type 2 recombinant EV-G was discovered in pig feces in Japan. Type 2 recombinant EV-G carried the PLCP torovirus gene with unknown flanking genes, in place of the viral structural proteins. Amount of type 2 recombinant EV-G in the pig feces was almost same with type 1. Type 2 recombinant EV-G belonged to be a different cluster from the cluster of type 1.
Collapse
Affiliation(s)
- Ryo Imai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | | | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan; Osaka Medical College, Osaka, Japan
| | - Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Ruka Kimura
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Moeko Kida
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, Japan
| | - Moegi Kuroda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, Japan
| | - Rongduo Wen
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Kaixin Li
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Hiroshi Yamazato
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States of America
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
| |
Collapse
|
32
|
Alexandersen S, Knowles NJ, Belsham GJ, Dekker A, Nfon C, Zhang Z, Koenen F. Picornaviruses. DISEASES OF SWINE 2019:641-684. [DOI: 10.1002/9781119350927.ch40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
33
|
Hu ZM, Yang YL, Xu LD, Wang B, Qin P, Huang YW. Porcine Torovirus (PToV)-A Brief Review of Etiology, Diagnostic Assays and Current Epidemiology. Front Vet Sci 2019; 6:120. [PMID: 31058174 PMCID: PMC6482245 DOI: 10.3389/fvets.2019.00120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/29/2019] [Indexed: 01/23/2023] Open
Abstract
Porcine torovirus (PToV) is a potential enteric swine pathogen, found at especially high rates in piglets with diarrhea. It was first reported in the Netherlands in 1998 and has emerged in many countries around the world. Infections are generally asymptomatic and have not directly caused large economic losses, though co-infections with other swine pathogens and intertype recombination may lead to unpredictable outcomes. This review introduces progress in PToV research regarding its discovery, relationship with other Toroviruses, virion morphological characteristics, genetic structure and variation, recent epidemiology, diagnostic methods, and possibilities for future research.
Collapse
Affiliation(s)
- Zhang-Min Hu
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Le Yang
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ling-Dong Xu
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pan Qin
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yao-Wei Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture and Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Molecular Identification of Enteroviruses from Cattle and Goat Feces and Environment in Thailand. Appl Environ Microbiol 2019; 85:AEM.02420-18. [PMID: 30552188 DOI: 10.1128/aem.02420-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
The identification and characterization of viruses of the genus Enterovirus in healthy and infected livestock, including cattle and goats, have been increasing. Enterovirus E (EV-E) and Enterovirus F (EV-F) are commonly found in cattle, whereas Enterovirus G (EV-G) is found in goats. In this study, molecular and phylogenetic analyses were performed to determine the prevalence of EVs in cattle and goat feces from Kanchanaburi Province, Thailand. The presence of EVs in water samples and the feces of other animals collected from the areas surrounding cattle and goat farms was also investigated. By use of 5'-untranslated region (5' UTR) real-time reverse transcription-PCR (RT-PCR), EVs were detected in 39.5% of cattle samples, 47% of goat samples, 35.3% of water samples, and one pool of chicken feces. Phylogenetic analysis revealed the presence of EV-E and EV-F in cattle, EV-E and EV-G in goats, and EV-F in water samples and chicken feces. Analysis of enteroviral VP1 sequences from cattle revealed that the EV-E genotypes circulating in the study region were EV-E1, with a possible new genotype that is closely related to EV-E2. Analysis of enteroviral VP1 sequences from goats suggested the circulation of EV-G5 and a possible new genotype that is closely related to EV-G20. Sequence analyses also suggested that although the VP1 sequences from goats were closely related to those of EV-G, which were considered porcine enterovirus sequences, their 5' UTRs form a separated cluster with sequences of sheep and goat origin, suggesting a new classification of the ovine/caprine-specific enterovirus group.IMPORTANCE Possible new EV-E and EV-G genotypes were identified for EVs detected in this study. The EV-E viruses were also successfully isolated from MDBK cells. The goat EV sequence analysis suggested the presence of an ovine/caprine-specific EV group that is different from EV-G of porcine origin. The significance of our research is that it identifies and characterizes possible novel EVs, thereby indicating that enteroviruses in animals are continually evolving. The facts that enteroviruses can persist in the environment, contaminate it for long periods, and be transmitted between animals raise serious concerns regarding this group of viruses as emerging livestock pathogens.
Collapse
|
35
|
Lee S, Lee C. First detection of novel enterovirus G recombining a torovirus papain-like protease gene associated with diarrhoea in swine in South Korea. Transbound Emerg Dis 2018; 66:1023-1028. [PMID: 30431236 PMCID: PMC7168547 DOI: 10.1111/tbed.13073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/17/2018] [Accepted: 11/08/2018] [Indexed: 01/02/2023]
Abstract
Enterovirus species G (EV-G) comprises a highly diversity of 20 genotypes that is prevalent in pig populations, with or without diarrhoea. In the present study, a novel EV-G strain (KOR/KNU-1811/2018) that resulted from cross-order recombination was discovered in diagnostic faecal samples from neonatal pigs with diarrhoea that were negative for swine enteric coronaviruses and rotavirus. The recombinant EV-G genome possessed an exogenous 594-nucleotide (198-amino acid) sequence, flanked by two viral 3Cpro cleavage sites at the 5' and 3' ends in its 2C/3A junction region. This insertion encoded a predicted protease similar to the porcine torovirus papain-like cysteine protease (PLCP), which was recently found in the EV-G1, -G2, and -G17 genomes. The complete KNU-1811 genome shared 73.7% nucleotide identity with a prototype EV-G1 strain, but had 83.9%-86.7% sequence homology with the global EV-G1-PLCP strains. Genetic and phylogenetic analyses demonstrated that the Korean recombinant EV-G's own VP1 and inserted foreign PLCP genes are most closely related independently to contemporary chimeric G1-PLCP and G17-PLCP strains respectively. These results implied that the torovirus-derived PLCP gene might have undergone continuous nucleotide mutations in the respective EV-G genome following its independent acquisition through naturally occurring recombination. Our results advance the understanding of the genetic evolution of EV-G driven by infrequent viral recombination events, by which EV-G populations laterally gain an exotic gene encoding a virulence factor from heterogeneous virus families, thereby causing clinical disease in swine.
Collapse
Affiliation(s)
- Sunhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
36
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
37
|
Theuns S, Vanmechelen B, Bernaert Q, Deboutte W, Vandenhole M, Beller L, Matthijnssens J, Maes P, Nauwynck HJ. Nanopore sequencing as a revolutionary diagnostic tool for porcine viral enteric disease complexes identifies porcine kobuvirus as an important enteric virus. Sci Rep 2018; 8:9830. [PMID: 29959349 PMCID: PMC6026206 DOI: 10.1038/s41598-018-28180-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Enteric diseases in swine are often caused by different pathogens and thus metagenomics are a useful tool for diagnostics. The capacities of nanopore sequencing for viral diagnostics were investigated here. First, cell culture-grown porcine epidemic diarrhea virus and rotavirus A were pooled and sequenced on a MinION. Reads were already detected at 7 seconds after start of sequencing, resulting in high sequencing depths (19.2 to 103.5X) after 3 h. Next, diarrheic feces of a one-week-old piglet was analyzed. Almost all reads (99%) belonged to bacteriophages, which may have reshaped the piglet's microbiome. Contigs matched Bacteroides, Escherichia and Enterococcus phages. Moreover, porcine kobuvirus was discovered in the feces for the first time in Belgium. Suckling piglets shed kobuvirus from one week of age, but an association between peak of viral shedding (106.42-107.01 copies/swab) and diarrheic signs was not observed during a follow-up study. Retrospective analysis showed the widespread (n = 25, 56.8% positive) of genetically moderately related kobuviruses among Belgian diarrheic piglets. MinION enables rapid detection of enteric viruses. Such new methodologies will change diagnostics, but more extensive validations should be conducted. The true enteric pathogenicity of porcine kobuvirus should be questioned, while its subclinical importance cannot be excluded.
Collapse
Affiliation(s)
- Sebastiaan Theuns
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke, Belgium.
| | - Bert Vanmechelen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Quinten Bernaert
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke, Belgium
| | - Ward Deboutte
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, Leuven, Belgium
| | - Marilou Vandenhole
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke, Belgium
| | - Leen Beller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research, Leuven, Belgium
| | - Piet Maes
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Clinical Virology, Rega Institute for Medical Research, Leuven, Belgium
| | - Hans J Nauwynck
- Ghent University, Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Laboratory of Virology, Merelbeke, Belgium
| |
Collapse
|
38
|
Wang Y, Zhang W, Liu Z, Fu X, Yuan J, Zhao J, Lin Y, Shen Q, Wang X, Deng X, Delwart E, Shan T, Yang S. Full-length and defective enterovirus G genomes with distinct torovirus protease insertions are highly prevalent on a Chinese pig farm. Arch Virol 2018; 163:2471-2476. [PMID: 29786119 DOI: 10.1007/s00705-018-3875-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Recombination occurs frequently between enteroviruses (EVs) which are classified within the same species of the Picornaviridae family. Here, using viral metagenomics, the genomes of two recombinant EV-Gs (strains EVG 01/NC_CHI/2014 and EVG 02/NC_CHI/2014) found in the feces of pigs from a swine farm in China are described. The two strains are characterized by distinct insertion of a papain-like protease gene from toroviruses classified within the Coronaviridae family. According to recent reports the site of the torovirus protease insertion was located at the 2C/3A junction region in EVG 02/NC_CHI/2014. For the other variant EVG 01/NC_CHI/2014, the inserted protease sequence replaced the entire viral capsid protein region up to the VP1/2A junction. These two EV-G strains were highly prevalent in the same pig farm with all animals shedding the full-length genome (EVG 02/NC_CHI/2014) while 65% also shed the capsid deletion mutant (EVG 01/NC_CHI/2014). A helper-defective virus relationship between the two co-circulating EV-G recombinants is hypothesized.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhijian Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xingli Fu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jiaqi Yuan
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jieji Zhao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yuan Lin
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750000, Ningxia, People's Republic of China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, California, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 200240, Jiangsu, People's Republic of China.
| |
Collapse
|
39
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|
40
|
Tsuchiaka S, Naoi Y, Imai R, Masuda T, Ito M, Akagami M, Ouchi Y, Ishii K, Sakaguchi S, Omatsu T, Katayama Y, Oba M, Shirai J, Satani Y, Takashima Y, Taniguchi Y, Takasu M, Madarame H, Sunaga F, Aoki H, Makino S, Mizutani T, Nagai M. Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population. PLoS One 2018; 13:e0190819. [PMID: 29324778 PMCID: PMC5764308 DOI: 10.1371/journal.pone.0190819] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
To study the genetic diversity of enterovirus G (EV-G) among Japanese pigs, metagenomics sequencing was performed on fecal samples from pigs with or without diarrhea, collected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were classified into G1 (17 strains), G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two strains), G9 (six strains), G10 (five strains), and a new genotype (one strain). Remarkably, 16 G1 and one G2 strain identified in diarrheic (23.5%; four strains) or normal (76.5%; 13 strains) fecal samples possessed a papain-like cysteine protease (PL-CP) sequence, which was recently found in the USA and Belgium in the EV-G genome, at the 2C–3A junction site. This paper presents the first report of the high prevalence of viruses carrying PL-CP in the EV-G population. Furthermore, possible inter- and intragenotype recombination events were found among EV-G strains, including G1-PL-CP strains. Our findings may advance the understanding of the molecular epidemiology and genetic evolution of EV-Gs.
Collapse
Affiliation(s)
- Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Ryo Imai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tsuneyuki Masuda
- Kurayoshi Livestock Hygiene Service Center, Kurayoshi, Tottori, Japan
| | - Mika Ito
- Ishikawa Nanbu Livestock Hygiene Service Center, Kanazawa, Ishikawa, Japan
| | | | - Yoshinao Ouchi
- Kenpoku Livestock Hygiene Service Center, Mito, Ibaraki, Japan
| | - Kazuo Ishii
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Shoichi Sakaguchi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Yuki Satani
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Yasuhiro Takashima
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
- Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| | - Yuji Taniguchi
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Hiroo Madarame
- Laboratory of Small Animal Clinics, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Fujiko Sunaga
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- * E-mail: (TM); (MN)
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- * E-mail: (TM); (MN)
| |
Collapse
|
41
|
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and Function of Viral Deubiquitinating Enzymes. J Mol Biol 2017; 429:3441-3470. [PMID: 28625850 PMCID: PMC7094624 DOI: 10.1016/j.jmb.2017.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication.
Collapse
Affiliation(s)
- Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Robert C M Knaap
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
42
|
Bunke J, Receveur K, Oeser AC, Fickenscher H, Zell R, Krumbholz A. High genetic diversity of porcine enterovirus G in Schleswig-Holstein, Germany. Arch Virol 2017; 163:489-493. [PMID: 29081014 DOI: 10.1007/s00705-017-3612-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Between 2012 and 2015, 495 pooled snout swabs from fattening pigs raised in Schleswig-Holstein, Germany, were screened for the presence of enterovirus G (EV-G) RNA. Nucleic acids were tested in diverse reverse transcription polymerase chain reaction assays applying published oligonucleotide primers specific for the viral protein (VP) 1 and 2/4 encoding regions as well as for 3D polymerase. Phylogenetic analyses of VP1 revealed the presence of 12 EV-G types, three of which had highly divergent sequences suggesting putative new types. Co-circulation of EV-G types was observed in several pigsties. Thus, genetic diversity of EV-G was demonstrated in this small geographic area.
Collapse
Affiliation(s)
- Jennifer Bunke
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Kerstin Receveur
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Ann Christin Oeser
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Helmut Fickenscher
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany
| | - Roland Zell
- Sektion für Experimentelle Virologie, Institut für Medizinische Mikrobiologie, Friedrich Schiller Universität Jena und Universitätsklinikum Jena, Hans-Knöll-Straße 2, 07743, Jena, Germany
| | - Andi Krumbholz
- Institut für Infektionsmedizin, Christian-Albrechts-Universität zu Kiel und Universitätsklinikum Schleswig-Holstein, Brunswiker Straße 4, 24105, Kiel, Germany.
| |
Collapse
|
43
|
Abstract
Picornaviruses are small, nonenveloped, icosahedral RNA viruses with positive-strand polarity. Although the vast majority of picornavirus infections remain asymptomatic, many picornaviruses are important human and animal pathogens and cause diseases that affect the central nervous system, the respiratory and gastrointestinal tracts, heart, liver, pancreas, skin and eye. A stunning increase in the number of newly identified picornaviruses in the past decade has shown that picornaviruses are globally distributed and infect vertebrates of all classes. Moreover, picornaviruses exhibit a surprising diversity of both genome sequences and genome layouts, sometimes challenging the definition of taxonomic relevant criteria. At present, 35 genera comprising 80 species and more than 500 types are acknowledged. Fifteen species within five new and three existing genera have been proposed in 2017, but more than 50 picornaviruses still remain unassigned.
Collapse
Affiliation(s)
- Roland Zell
- Division of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
44
|
Conceição-Neto N, Theuns S, Cui T, Zeller M, Yinda CK, Christiaens I, Heylen E, Van Ranst M, Carpentier S, Nauwynck HJ, Matthijnssens J. Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus Evol 2017; 3:vex024. [PMID: 28924489 PMCID: PMC5591953 DOI: 10.1093/ve/vex024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diarrhea outbreaks in pig farms have raised major concerns in Europe and USA, as they can lead to dramatic pig losses. During a suspected outbreak in Belgium of porcine epidemic diarrhea virus (PEDV), we performed viral metagenomics to assess other potential viral pathogens. Although PEDV was detected, its low abundance indicated that other viruses were involved in the outbreak. Interestingly, a porcine bocavirus and several enteroviruses were most abundant in the sample. We also observed the presence of a porcine enterovirus genome with a gene insertion, resembling a C28 peptidase gene found in toroviruses, which was confirmed using re-sequencing, bioinformatics, and proteomics approaches. Moreover, the predicted cleavage sites for the insertion suggest that this gene was being expressed as a single protein, rather than a fused protein. Recombination in enteroviruses has been reported as a major mechanism to generate genetic diversity, but gene insertions across viral families are rather uncommon. Although such inter-family recombinations are rare, our finding suggests that these events may significantly contribute to viral evolution.
Collapse
Affiliation(s)
- Nádia Conceição-Neto
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Sebastiaan Theuns
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Tingting Cui
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Mark Zeller
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Claude Kwe Yinda
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Isaura Christiaens
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Elisabeth Heylen
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Facility for Systems Biology Based Mass Spectrometry (SYBIOMA), KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|