1
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
2
|
Tat VY, Drelich AK, Huang P, Khanipov K, Hsu JC, Widen SG, Tseng CTK, Golovko G. Characterizing temporal and global host innate immune responses against SARS-CoV-1 and -2 infection in pathologically relevant human lung epithelial cells. PLoS One 2025; 20:e0317921. [PMID: 39874350 PMCID: PMC11774383 DOI: 10.1371/journal.pone.0317921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells). Total RNA extracted at 12, 24, and 48 hours after β-CoVs or mock infection of Calu-3/2B4 cells were subjected to RNA sequencing and functional enrichment analysis to select genes whose expressions were significantly modulated post-infection. The results demonstrate that SARS-CoV-1 and -2 stimulate similar yet distinct innate antiviral signaling pathways in pathologically relevant human lung epithelial cells. Furthermore, we found that many genes related to the viral life cycle, interferons, and interferon-stimulated genes (ISGs) were upregulated at multiple time points. Based on their profound modulation upon infection by SARS-CoV-1, SARS-CoV-2, and Omicron BA.1, four ISGs, i.e., bone marrow stromal cell antigen 2 (BST2), Z-DNA Binding Protein 1 (ZBP1), C-X-C Motif Chemokine Ligand 11 (CXCL11), and Interferon Induced Transmembrane Protein 1 (IFITM1), were identified as potential drug targets against β-CoVs. Our findings suggest that these genes affect both pathogens directly and indirectly through the innate immune response, making them potential targets for host-directed antivirals. Altogether, our results demonstrate that SARS-CoV-1 and SARS-CoV-2 infection induce differential effects on host innate immune responses.
Collapse
Affiliation(s)
- Vivian Y Tat
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra K Drelich
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pinghan Huang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jason C Hsu
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Steven G Widen
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chien-Te Kent Tseng
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - George Golovko
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Kordbacheh R, Ashley M, Cutts WD, Keyzer TE, Chatterjee S, Altman TJ, Alexander NG, Sparer TE, Kim BJ, Sin J. Common Chemical Plasticizer Di(2-Ethhylhexyl) Phthalate Exposure Exacerbates Coxsackievirus B3 Infection. Viruses 2024; 16:1821. [PMID: 39772131 PMCID: PMC11680387 DOI: 10.3390/v16121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis. Though CVB infections are common, severe illness is relatively rare, and it is unclear what factors mediate disease severity. In this study, we sought to determine the effects that DEHP has on CVB infection in a variety of human cell types to evaluate whether this plastic-derived pollutant could represent a proviral environmental factor. METHODS HeLa cervical cancer cells, human induced pluripotent stem cell-derived brain-like endothelial cells (iBECs), and Caco-2 colon carcinoma cells were exposed to 40 µg/mL DEHP for 24 h prior to infecting with enhanced green fluorescent protein (EGFP)-expressing CVB. The severity of the infection was evaluated via fluorescence microscopy and flow cytometry-based viral EGFP detection, viral plaque assay on tissue culture media, and Western blotting to detect VP1 viral capsid protein. Interferon-associated proteins such as interferon regulatory factor (IRF) 3, IRF7, interferon-induced transmembrane (IFITM) 2, and IFITM3 were measured by Western blotting. The roles of IFITM2 and IFITM3 in the context of CVB infection were evaluated via siRNA silencing. RESULTS We found that DEHP drastically increased CVB infection in each of the cell types we tested, and, while the cellular processes underlying DEHP's proviral properties were not entirely clear, we observed that DEHP may subvert CVB-induced interferon signaling and elevate levels of IFITMs, which appeared to bolster CVB infection. CONCLUSIONS DEHP may represent a major environmental factor associated with the severity of CVB infection. Further understanding of how DEHP exacerbates infection may better elucidate its potential role as a proviral environmental factor.
Collapse
Affiliation(s)
- Ramina Kordbacheh
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Madelyn Ashley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - William D. Cutts
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Taryn E. Keyzer
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Shruti Chatterjee
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Tyler J. Altman
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Natalie G. Alexander
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Timothy E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Brandon J. Kim
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; (R.K.); (M.A.); (W.D.C.); (T.E.K.); (S.C.); (T.J.A.); (N.G.A.); (B.J.K.)
| |
Collapse
|
4
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
5
|
Le Pen J, Paniccia G, Kinast V, Moncada-Velez M, Ashbrook AW, Bauer M, Hoffmann HH, Pinharanda A, Ricardo-Lax I, Stenzel AF, Rosado-Olivieri EA, Dinnon KH, Doyle WC, Freije CA, Hong SH, Lee D, Lewy T, Luna JM, Peace A, Schmidt C, Schneider WM, Winkler R, Yip EZ, Larson C, McGinn T, Menezes MR, Ramos-Espiritu L, Banerjee P, Poirier JT, Sànchez-Rivera FJ, Cobat A, Zhang Q, Casanova JL, Carroll TS, Glickman JF, Michailidis E, Razooky B, MacDonald MR, Rice CM. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist. PLoS Biol 2024; 22:e3002767. [PMID: 39316623 PMCID: PMC11486371 DOI: 10.1371/journal.pbio.3002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/17/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024] Open
Abstract
Interferons (IFNs) play a crucial role in the regulation and evolution of host-virus interactions. Here, we conducted a genome-wide arrayed CRISPR knockout screen in the presence and absence of IFN to identify human genes that influence Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We then performed an integrated analysis of genes interacting with SARS-CoV-2, drawing from a selection of 67 large-scale studies, including our own. We identified 28 genes of high relevance in both human genetic studies of Coronavirus Disease 2019 (COVID-19) patients and functional genetic screens in cell culture, with many related to the IFN pathway. Among these was the IFN-stimulated gene PLSCR1. PLSCR1 did not require IFN induction to restrict SARS-CoV-2 and did not contribute to IFN signaling. Instead, PLSCR1 specifically restricted spike-mediated SARS-CoV-2 entry. The PLSCR1-mediated restriction was alleviated by TMPRSS2 overexpression, suggesting that PLSCR1 primarily restricts the endocytic entry route. In addition, recent SARS-CoV-2 variants have adapted to circumvent the PLSCR1 barrier via currently undetermined mechanisms. Finally, we investigate the functional effects of PLSCR1 variants present in humans and discuss an association between PLSCR1 and severe COVID-19 reported recently.
Collapse
Affiliation(s)
- Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Gabrielle Paniccia
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Volker Kinast
- Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Department for Molecular and Medical Virology, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - Alison W. Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Michael Bauer
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ana Pinharanda
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Ansgar F. Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Edwin A. Rosado-Olivieri
- Laboratory of Synthetic Embryology, The Rockefeller University, New York, New York, United States of America
| | - Kenneth H. Dinnon
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - William C. Doyle
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Catherine A. Freije
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Danyel Lee
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Tyler Lewy
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Carltin Schmidt
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
| | - William M. Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Roni Winkler
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Elaine Z. Yip
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Chloe Larson
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Timothy McGinn
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Miriam-Rose Menezes
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Lavoisier Ramos-Espiritu
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Priyam Banerjee
- Bio-Imaging Resource Center, The Rockefeller University, New York, New York, United States of America
| | - John T. Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, New York, United States of America
| | - Francisco J. Sànchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, United States of America
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, United States of America
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, New York, United States of America
| | - J. Fraser Glickman
- Fisher Drug Discovery Resource Center, The Rockefeller University, New York, New York, United States of America
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
6
|
Kaushik A, Chang I, Han X, He Z, Komlosi ZI, Ji X, Cao S, Akdis CA, Boyd S, Pulendran B, Maecker HT, Davis MM, Chinthrajah RS, DeKruyff RH, Nadeau KC. Single cell multi-omic analysis identifies key genes differentially expressed in innate lymphoid cells from COVID-19 patients. Front Immunol 2024; 15:1374828. [PMID: 39026668 PMCID: PMC11255397 DOI: 10.3389/fimmu.2024.1374828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Innate lymphoid cells (ILCs) are enriched at mucosal surfaces where they respond rapidly to environmental stimuli and contribute to both tissue inflammation and healing. Methods To gain insight into the role of ILCs in the pathology and recovery from COVID-19 infection, we employed a multi-omics approach consisting of Abseq and targeted mRNA sequencing to respectively probe the surface marker expression, transcriptional profile and heterogeneity of ILCs in peripheral blood of patients with COVID-19 compared with healthy controls. Results We found that the frequency of ILC1 and ILC2 cells was significantly increased in COVID-19 patients. Moreover, all ILC subsets displayed a significantly higher frequency of CD69-expressing cells, indicating a heightened state of activation. ILC2s from COVID-19 patients had the highest number of significantly differentially expressed (DE) genes. The most notable genes DE in COVID-19 vs healthy participants included a) genes associated with responses to virus infections and b) genes that support ILC self-proliferation, activation and homeostasis. In addition, differential gene regulatory network analysis revealed ILC-specific regulons and their interactions driving the differential gene expression in each ILC. Discussion Overall, this study provides mechanistic insights into the characteristics of ILC subsets activated during COVID-19 infection.
Collapse
Affiliation(s)
- Abhinav Kaushik
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Iris Chang
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Zsolt I. Komlosi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Swiss Institute of Allergy and Asthma (SIAF), University of Zurich, Davos, Switzerland
| | - Xuhuai Ji
- Human Immune Monitoring Center, Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, United States
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Scott Boyd
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Bali Pulendran
- Department of Pathology, Stanford University, Stanford, CA, United States
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Holden T. Maecker
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | - Mark M. Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemarie H. DeKruyff
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Kari C. Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
8
|
Li H, Chen M, Zheng T, Lei X, Lin C, Li S, Mo J, Ning Z. IFITM1 and IFITM2 inhibit the replication of senecavirus A by positive feedback with RIG-I signaling pathway. Vet Microbiol 2024; 292:110050. [PMID: 38484578 DOI: 10.1016/j.vetmic.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
The role of host factors in the replication of emerging senecavirus A (SVA) which induced porcine idiopathic vesicular disease (PIVD) distributed worldwide remains obscure. Here, interferon-induced transmembrane (IFITM) protein 1 and 2 inhibit SVA replication by positive feedback with RIG-I signaling pathway was reported. The expression levels of IFITM1 and IFITM2 increased significantly in SVA infected 3D4/21 cells. Infection experiments of cells with over and interference expression of IFITM1 and IFITM2 showed that these two proteins inhibit SVA replication by regulating the expression of interferon beta (IFN-β), IFN-stimulated gene 15 (ISG-15), interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha (TNF-α), IFN regulatory factor-3 (IRF3), and IRF7. Further results showed that antiviral responses of IFITM1 and IFITM2 were achieved by activating retinoic acid-inducible gene I (RIG-I) signaling pathway which in turn enhanced the expression of IFITM1 and IFITM2. It is noteworthy that conserved domains of these two proteins also paly the similar role. These findings provide new data on the role of host factors in infection and replication of SVA and help to develop new agents against the virus.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cunhao Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiacong Mo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| |
Collapse
|
9
|
Le Pen J, Rice CM. The antiviral state of the cell: lessons from SARS-CoV-2. Curr Opin Immunol 2024; 87:102426. [PMID: 38795501 PMCID: PMC11260430 DOI: 10.1016/j.coi.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/20/2024] [Accepted: 05/06/2024] [Indexed: 05/28/2024]
Abstract
In this review, we provide an overview of the intricate host-virus interactions that have emerged from the study of SARS-CoV-2 infection. We focus on the antiviral mechanisms of interferon-stimulated genes (ISGs) and their modulation of viral entry, replication, and release. We explore the role of a selection ISGs, including BST2, CD74, CH25H, DAXX, IFI6, IFITM1-3, LY6E, NCOA7, PLSCR1, OAS1, RTP4, and ZC3HAV1/ZAP, in restricting SARS-CoV-2 infection and discuss the virus's countermeasures. By synthesizing the latest research on SARS-CoV-2 and host antiviral responses, this review aims to provide a deeper understanding of the antiviral state of the cell under SARS-CoV-2 and other viral infections, offering insights for the development of novel antiviral strategies and therapeutics.
Collapse
Affiliation(s)
- Jérémie Le Pen
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Marceau T, Braibant M. Role of Viral Envelope Proteins in Determining Susceptibility of Viruses to IFITM Proteins. Viruses 2024; 16:254. [PMID: 38400030 PMCID: PMC10892237 DOI: 10.3390/v16020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of proteins which inhibit infections of various enveloped viruses. While their general mechanism of inhibition seems to be non-specific, involving the tightening of membrane structures to prevent fusion between the viral envelope and cell membrane, numerous studies have underscored the importance of viral envelope proteins in determining the susceptibility of viruses to IFITMs. Mutations in envelope proteins may lead to viral escape from direct interaction with IFITM proteins or result in indirect resistance by modifying the viral entry pathway, allowing the virus to modulate its exposure to IFITMs. In a broader context, the nature of viral envelope proteins and their interaction with IFITMs can play a crucial role in the context of adaptive immunity, leading to viral envelope proteins that are more susceptible to antibody neutralization. The precise mechanisms underlying these observations remain unclear, and further studies in this field could contribute to a better understanding of how IFITMs control viral infections.
Collapse
|
11
|
Shi G, Li T, Lai KK, Johnson RF, Yewdell JW, Compton AA. Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue. Nat Commun 2024; 15:889. [PMID: 38291024 PMCID: PMC10828397 DOI: 10.1038/s41467-024-45075-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Omicron emerged following COVID-19 vaccination campaigns, displaced previous SARS-CoV-2 variants of concern worldwide, and gave rise to lineages that continue to spread. Here, we show that Omicron exhibits increased infectivity in primary adult upper airway tissue relative to Delta. Using recombinant forms of SARS-CoV-2 and nasal epithelial cells cultured at the liquid-air interface, we show that mutations unique to Omicron Spike enable enhanced entry into nasal tissue. Unlike earlier variants of SARS-CoV-2, our findings suggest that Omicron enters nasal cells independently of serine transmembrane proteases and instead relies upon metalloproteinases to catalyze membrane fusion. Furthermore, we demonstrate that this entry pathway unlocked by Omicron Spike enables evasion from constitutive and interferon-induced antiviral factors that restrict SARS-CoV-2 entry following attachment. Therefore, the increased transmissibility exhibited by Omicron in humans may be attributed not only to its evasion of vaccine-elicited adaptive immunity, but also to its superior invasion of nasal epithelia and resistance to the cell-intrinsic barriers present therein.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Reed F Johnson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Alex A Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
12
|
Zech F, Jung C, Jacob T, Kirchhoff F. Causes and Consequences of Coronavirus Spike Protein Variability. Viruses 2024; 16:177. [PMID: 38399953 PMCID: PMC10892391 DOI: 10.3390/v16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Coronaviruses are a large family of enveloped RNA viruses found in numerous animal species. They are well known for their ability to cross species barriers and have been transmitted from bats or intermediate hosts to humans on several occasions. Four of the seven human coronaviruses (hCoVs) are responsible for approximately 20% of common colds (hCoV-229E, -NL63, -OC43, -HKU1). Two others (SARS-CoV-1 and MERS-CoV) cause severe and frequently lethal respiratory syndromes but have only spread to very limited extents in the human population. In contrast the most recent human hCoV, SARS-CoV-2, while exhibiting intermediate pathogenicity, has a profound impact on public health due to its enormous spread. In this review, we discuss which initial features of the SARS-CoV-2 Spike protein and subsequent adaptations to the new human host may have helped this pathogen to cause the COVID-19 pandemic. Our focus is on host forces driving changes in the Spike protein and their consequences for virus infectivity, pathogenicity, immune evasion and resistance to preventive or therapeutic agents. In addition, we briefly address the significance and perspectives of broad-spectrum therapeutics and vaccines.
Collapse
Affiliation(s)
- Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Christoph Jung
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Timo Jacob
- Institute of Electrochemistry, Ulm University, 89081 Ulm, Germany; (C.J.); (T.J.)
- Helmholtz-Institute Ulm (HIU) Electrochemical Energy Storage, 89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
13
|
Ghosh MK, Tabassum S, Basu M. COVID‐19 and cancer: Dichotomy of the menacing dilemma. MEDCOMM – ONCOLOGY 2023; 2. [DOI: 10.1002/mog2.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic brought about unprecedented challenges to global healthcare systems. Among the most vulnerable populations are cancer patients, who face dilemmas due to their compromised immune systems and the intricate interplay with the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) virus. This comprehensive review delves into the multifaceted relationship between COVID‐19 and cancer. Through an analysis of existing literature and clinical data, this review unravels the structural intricacies of the virus and examines its profound implications for cancer patients, thereby bridging the knowledge gap between virology and oncology. The review commences with an introduction regarding the COVID‐19 pandemic and cancer. It then transitions into a detailed examination of the SARS‐CoV‐2 virus and its variants such as Alpha (PANGO lineage B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529 lineage). Subsequently, an insightful analysis of the impact of COVID‐19 on major cancer types (viz., Lung, Colon, Brain, and gastrointestinal cancer) is elaborated. Finally, the therapeutic avenues, oncological care, and management are discussed. The nexus between COVID‐19 and cancer adds a layer of complexity to patient care, emphasizing the importance of tailored approaches for those grappling with both conditions. Amid the landscape defined by the evolving viral strains, this review navigates through the multifaceted implications of COVID‐19 on cancer patients and underscores the significance of integrating virology and oncology.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Shaheda Tabassum
- Cancer Biology and Inflammatory Disorder Division Council of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB) Kolkata West Bengal India
| | - Malini Basu
- Department of Microbiology Dhruba Chand Halder College Dakshin Barasat West Bengal India
| |
Collapse
|
14
|
Yu C, Wang G, Liu Q, Zhai J, Xue M, Li Q, Xian Y, Zheng C. Host antiviral factors hijack furin to block SARS-CoV-2, ebola virus, and HIV-1 glycoproteins cleavage. Emerg Microbes Infect 2023; 12:2164742. [PMID: 36591809 PMCID: PMC9897805 DOI: 10.1080/22221751.2022.2164742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.
Collapse
Affiliation(s)
- Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China
| | - Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong, People’s Republic of China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, People’s Republic of China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China,Mengzhou Xue
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China,Qiang Li
| | - Yuanhua Xian
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, People’s Republic of China,Yuanhua Xian
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, People’s Republic of China,Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada, Chunfu Zheng
| |
Collapse
|
15
|
Liang T, Wang X, Wang Y, Ma W. IFN-γ Triggered IFITM2 Expression to Induce Malignant Phenotype in Elderly GBM. J Mol Neurosci 2023; 73:946-955. [PMID: 37889394 DOI: 10.1007/s12031-023-02156-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Advanced age is an important risk factor for the worse clinical presentation of gliomas, especially glioblastoma (GBM). The tumor microenvironment (TME) in elderly GBM (eGBM) patients is considerably different from that in young ones, which causes the inferior clinical outcome. Based on the data from the Chinese Glioma Genome Atlas RNA sequence (CGGA RNA-seq), the Cancer Genome Atlas RNA array (TCGA RNA-array), and gene set enrichment (GSE) 16011 array sets, the differential genes and function between eGBM (≥ 60 years old) and young GBM (yGBM, 20-60 years old) groups were explored. Immunohistochemistry (IHC) was utilized to depict the abundance of CD8+ cells (the main resource of IFN-γ) and IFITM2 protein expression in GBM samples. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to verify the link between IFN-γ and IFITM2. Moreover, the small-interfering RNA (siRNA) of IFITM2 was used to explore the function of IFITM2 in GBM. Characterized by inflammatory TME and higher IFITM2 expression, eGBM harbored a shorter survival time. Chemotaxis and inflammatory cytokine-related genes were enriched in the eGBM group, with more infiltrative CD8+ T cells. The IHC of CD8 and IFITM2-staining could demonstrate these results. In addition, the IFN-γ response pathway was activated in eGBM and resulted in a dismal outcome. Next, it was found that IFITM2 triggered by IFN-γ played a key role in IFN-γ-induced malignant phenotype in eGBM.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
16
|
An Y, He Y, Ge N, Guo J, Yang F, Sun S. Organoids to Remodel SARS-CoV-2 Research: Updates, Limitations and Perspectives. Aging Dis 2023; 14:1677-1699. [PMID: 37196111 PMCID: PMC10529756 DOI: 10.14336/ad.2023.0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 05/19/2023] Open
Abstract
The novel COVID-19 pneumonia caused by the SARS-CoV-2 virus poses a significant threat to human health. Scientists have made significant efforts to control this virus, consequently leading to the development of novel research methods. Traditional animal and 2D cell line models might not be suitable for large-scale applications in SARS-CoV-2 research owing to their limitations. As an emerging modelling method, organoids have been applied in the study of various diseases. Their advantages include their ability to closely mirror human physiology, ease of cultivation, low cost, and high reliability; thus, they are considered to be a suitable choice to further the research on SARS-CoV-2. During the course of various studies, SARS-CoV-2 was shown to infect a variety of organoid models, exhibiting changes similar to those observed in humans. This review summarises the various organoid models used in SARS-CoV-2 research, revealing the molecular mechanisms of viral infection and exploring the drug screening tests and vaccine research that have relied on organoid models, hence illustrating the role of organoids in remodelling SARS-CoV-2 research.
Collapse
Affiliation(s)
- Yucheng An
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, USA
| | - Nan Ge
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Fan Yang
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
18
|
Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, Überla K, Thomas M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023; 15:1500. [PMID: 37515187 PMCID: PMC10384293 DOI: 10.3390/v15071500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.
Collapse
Affiliation(s)
- Nina Reuter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Wang H, Liu C, Xie X, Niu M, Wang Y, Cheng X, Zhang B, Zhang D, Liu M, Sun R, Ma Y, Ma S, Wang H, Zhu G, Lu Y, Huang B, Su P, Chen X, Zhao J, Wang H, Shen L, Fu L, Huang Q, Yang Y, Wang H, Wu C, Ge W, Chen C, Huo Q, Wang Q, Wang Y, Geng L, Xie Y, Xie Y, Liu L, Qi J, Chen H, Wu J, Jiang E, Jiang W, Wang X, Shen Z, Guo T, Zhou J, Zhu P, Cheng T. Multi-omics blood atlas reveals unique features of immune and platelet responses to SARS-CoV-2 Omicron breakthrough infection. Immunity 2023; 56:1410-1428.e8. [PMID: 37257450 PMCID: PMC10186977 DOI: 10.1016/j.immuni.2023.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.
Collapse
Affiliation(s)
- Hong Wang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Cuicui Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaowei Xie
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mingming Niu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yingrui Wang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Xuelian Cheng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Biao Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Dong Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mengyao Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Rui Sun
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Yezi Ma
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shihui Ma
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Huijun Wang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Guoqing Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yang Lu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Baiming Huang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Pei Su
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiaoyuan Chen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingjing Zhao
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hongtao Wang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Long Shen
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lixia Fu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Qianqian Huang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yang Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - He Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Chunlong Wu
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Chen Chen
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd., Hangzhou 310024, China
| | - Qianyu Huo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Qingping Wang
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Ying Wang
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Li Geng
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Yan Xie
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Yi Xie
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Lijun Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jianwei Qi
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Huaiyong Chen
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Junping Wu
- Department of Tuberculosis, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Erlie Jiang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Wentao Jiang
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China
| | - Ximo Wang
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin, China.
| | - Zhongyang Shen
- Organ Transplant Center, Tianjin First Center Hospital, Tianjin 300192, China; NHC Key Laboratory for Critical Care Medicine, Tianjin First Center Hospital, Tianjin 300192, China; Research Institute of Transplant Medicine, Nankai University, Tianjin 300192, China.
| | - Tiannan Guo
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| | - Jiaxi Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Ping Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| | - Tao Cheng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China.
| |
Collapse
|
20
|
Nchioua R, Schundner A, Klute S, Koepke L, Hirschenberger M, Noettger S, Fois G, Zech F, Graf A, Krebs S, Braubach P, Blum H, Stenger S, Kmiec D, Frick M, Kirchhoff F, Sparrer KM. Reduced replication but increased interferon resistance of SARS-CoV-2 Omicron BA.1. Life Sci Alliance 2023; 6:e202201745. [PMID: 36977594 PMCID: PMC10053418 DOI: 10.26508/lsa.202201745] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Annika Schundner
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Peter Braubach
- Hannover Medical School, Institute for Pathology, Hannover, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
21
|
Kenney AD, Zani A, Kawahara J, Eddy AC, Wang X, Mahesh KC, Lu M, Thomas J, Kohlmeier JE, Suthar MS, Hemann EA, Li J, Peeples ME, Hall‐Stoodley L, Forero A, Cai C, Ma J, Yount JS. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. EMBO Rep 2023; 24:e56660. [PMID: 36880581 PMCID: PMC10074051 DOI: 10.15252/embr.202256660] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Ashley Zani
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jeffrey Kawahara
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adrian C Eddy
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | | | - KC Mahesh
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | - Mijia Lu
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Jeronay Thomas
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Jacob E Kohlmeier
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Mehul S Suthar
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
- Department of PediatricsEmory University School of MedicineAtlantaGAUSA
- Emory Vaccine Center, Yerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Emily A Hemann
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jianrong Li
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Mark E Peeples
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
| | - Luanne Hall‐Stoodley
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adriana Forero
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Chuanxi Cai
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jianjie Ma
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jacob S Yount
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
22
|
Basile A, Zannella C, De Marco M, Sanna G, Franci G, Galdiero M, Manzin A, De Laurenzi V, Chetta M, Rosati A, Turco MC, Marzullo L. Spike-mediated viral membrane fusion is inhibited by a specific anti-IFITM2 monoclonal antibody. Antiviral Res 2023; 211:105546. [PMID: 36669656 DOI: 10.1016/j.antiviral.2023.105546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The early steps of viral infection involve protein complexes and structural lipid rearrangements which characterize the peculiar strategies of each virus to invade permissive host cells. Members of the human immune-related interferon-induced transmembrane (IFITM) protein family have been described as inhibitors of the entry of a broad range of viruses into the host cells. Recently, it has been shown that SARS-CoV-2 is able to hijack IFITM2 for efficient infection. Here, we report the characterization of a newly generated specific anti-IFITM2 mAb able to impair Spike-mediated internalization of SARS-CoV-2 in host cells and, consequently, to reduce the SARS-CoV-2 cytopathic effects and syncytia formation. Furthermore, the anti-IFITM2 mAb reduced HSVs- and RSV-dependent cytopathic effects, suggesting that the IFITM2-mediated mechanism of host cell invasion might be shared with other viruses besides SARS-CoV-2. These results show the specific role of IFITM2 in mediating viral entry into the host cell and its candidacy as a cell target for antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Anna Basile
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| | - Giuseppina Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Aldo Manzin
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, 09042, Italy
| | - Vincenzo De Laurenzi
- FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy; Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N, Cardarelli, Naples, 80131, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy.
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, 84081, Italy; FIBROSYS s.r.l., University of Salerno, Baronissi, SA, 84081, Italy
| |
Collapse
|
23
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 383] [Impact Index Per Article: 191.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
24
|
Csöbönyeiová M, Klein M, Kuniaková M, Varga I, Danišovič Ľ. Induced Pluripotent Stem Cell-Derived Organoids: Their Implication in COVID-19 Modeling. Int J Mol Sci 2023; 24:3459. [PMID: 36834870 PMCID: PMC9961667 DOI: 10.3390/ijms24043459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a significant global health issue. This novel virus's high morbidity and mortality rates have prompted the scientific community to quickly find the best COVID-19 model to investigate all pathological processes underlining its activity and, more importantly, search for optimal drug therapy with minimal toxicity risk. The gold standard in disease modeling involves animal and monolayer culture models; however, these models do not fully reflect the response to human tissues affected by the virus. However, more physiological 3D in vitro culture models, such as spheroids and organoids derived from induced pluripotent stem cells (iPSCs), could serve as promising alternatives. Different iPSC-derived organoids, such as lung, cardiac, brain, intestinal, kidney, liver, nasal, retinal, skin, and pancreatic organoids, have already shown immense potential in COVID-19 modeling. In the present comprehensive review article, we summarize the current knowledge on COVID-19 modeling and drug screening using selected iPSC-derived 3D culture models, including lung, brain, intestinal, cardiac, blood vessels, liver, kidney, and inner ear organoids. Undoubtedly, according to reviewed studies, organoids are the state-of-the-art approach to COVID-19 modeling.
Collapse
Affiliation(s)
- Mária Csöbönyeiová
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Marcela Kuniaková
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ľuboš Danišovič
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
25
|
Mesner D, Reuschl AK, Whelan MVX, Bronzovich T, Haider T, Thorne LG, Ragazzini R, Bonfanti P, Towers GJ, Jolly C. SARS-CoV-2 evolution influences GBP and IFITM sensitivity. Proc Natl Acad Sci U S A 2023; 120:e2212577120. [PMID: 36693093 PMCID: PMC9945951 DOI: 10.1073/pnas.2212577120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 spike requires proteolytic processing for viral entry. A polybasic furin-cleavage site (FCS) in spike, and evolution toward an optimized FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Here we show interferon-inducible restriction factors Guanylate-binding proteins (GBP) 2 and 5 interfere with furin-mediated spike cleavage and inhibit the infectivity of early-lineage isolates Wuhan-Hu-1 and VIC. By contrast, VOCs Alpha and Delta escape restriction by GBP2/5 that we map to the spike substitution D614G present in these VOCs. Despite inhibition of spike cleavage, these viruses remained sensitive to plasma membrane IFITM1, but not endosomal IFITM2 and 3, consistent with a preference for TMPRSS2-dependent plasma membrane entry. Strikingly, we find that Omicron is unique among VOCs, being sensitive to restriction factors GBP2/5, and also IFITM1, 2, and 3. Using chimeric spike mutants, we map the Omicron phenotype and show that the S1 domain determines Omicron's sensitivity to GBP2/5, whereas the S2' domain determines its sensitivity to endosomal IFITM2/3 and preferential use of TMPRSS2-independent entry. We propose that evolution of SARS-CoV-2 for the D614G substitution has allowed for escape from GBP restriction factors, but the selective pressures on Omicron for spike changes that mediate antibody escape, and altered tropism, have come at the expense of increased sensitivity to innate immune restriction factors that target virus entry.
Collapse
Affiliation(s)
- Dejan Mesner
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Matthew V. X. Whelan
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Taylor Bronzovich
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, E1 2ATLondon, UK
| | - Lucy G. Thorne
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| |
Collapse
|
26
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|