1
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
2
|
Ward JC, Lasecka-Dykes L, Dobson SJ, Gold S, Kingston NJ, Herod MR, King DP, Tuthill TJ, Rowlands DJ, Stonehouse NJ. The dual role of a highly structured RNA (the S fragment) in the replication of foot-and-mouth disease virus. FASEB J 2024; 38:e23822. [PMID: 39072864 DOI: 10.1096/fj.202400500r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.
Collapse
Affiliation(s)
- Joseph C Ward
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - Samuel J Dobson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - Natalie J Kingston
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Morgan R Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | | | - David J Rowlands
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Aleem MT, Munir F, Shakoor A, Gao F. mRNA vaccines against infectious diseases and future direction. Int Immunopharmacol 2024; 135:112320. [PMID: 38788451 DOI: 10.1016/j.intimp.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Vaccines are used for the control of infectious diseases of animals. Over other types of vaccinations like live attenuated or killed vaccines, mRNA-based vaccines have significant advantages. As only a small portion of the pathogen's genetic material is employed and the dose rate of mRNA-based vaccines is low, there is the least possibility that the pathogen will reverse itself. A carrier or vehicle that shields mRNA-based vaccines from the host's cellular RNases is necessary for their delivery. mRNA vaccines have been shown to be effective and to induce both a cell-mediated immune response and a humoral immune response in clinical trials against various infectious diseases (viral and parasitic) affecting the animals, including rabies, foot and mouth disease, toxoplasmosis, Zikavirus, leishmaniasis, and COVID-19. The current review aims to highlight the use of mRNA-based vaccines both in viral and parasitic diseases of animals.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Clevaland State University, Clevaland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
4
|
Rodríguez-Pulido M, Calvo-Pinilla E, Polo M, Saiz JC, Fernández-González R, Pericuesta E, Gutiérrez-Adán A, Sobrino F, Martín-Acebes MA, Sáiz M. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Front Immunol 2023; 14:1166725. [PMID: 37063925 PMCID: PMC10090856 DOI: 10.3389/fimmu.2023.1166725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Raúl Fernández-González
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eva Pericuesta
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Margarita Sáiz,
| |
Collapse
|
5
|
Rodríguez-Pulido M, Polo M, Borrego B, Sáiz M. Use of Foot-and-Mouth Disease Virus Non-coding Synthetic RNAs as Vaccine Adjuvants. Methods Mol Biol 2022; 2465:125-135. [PMID: 35118619 DOI: 10.1007/978-1-0716-2168-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ncRNAs are short RNA transcripts with sequence and structure resembling that of specific domains in the non-coding regions of the foot-and-mouth disease (FMD) virus (FMDV ) genome. These synthetic molecules induce a robust antiviral response and have been shown to enhance the immune response and protection induced by an FMD inactivated vaccine in pigs. Here, we describe the method for ncRNAs synthesis, formulation, and delivery into mice and pigs for studies focused on testing the adjuvant effect of RNA-based strategies in combination with veterinarian vaccines.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
6
|
Penza V, Russell SJ, Schulze AJ. The long-lasting enigma of polycytidine (polyC) tract. PLoS Pathog 2021; 17:e1009739. [PMID: 34347852 PMCID: PMC8336851 DOI: 10.1371/journal.ppat.1009739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long polycytidine (polyC) tracts varying in length from 50 to 400 nucleotides were first described in the 5'-noncoding region (NCR) of genomes of picornaviruses belonging to the Cardio- and Aphthovirus genera over 50 years ago, but the molecular basis of their function is still unknown. Truncation or complete deletion of the polyC tracts in picornaviruses compromises virulence and pathogenicity but do not affect replicative fitness in vitro, suggesting a role as "viral security" RNA element. The evidence available suggests that the presence of a long polyC tract is required for replication in immune cells, which impacts viral distribution and targeting, and, consequently, pathogenic progression. Viral attenuation achieved by reduction of the polyC tract length has been successfully used for vaccine strategies. Further elucidation of the role of the polyC tract in viral replication cycle and its connection with replication in immune cells has the potential to expand the arsenal of tools in the fight against cancer in oncolytic virotherapy (OV). Here, we review the published data on the biological significance and mechanisms of action of the polyC tract in viral pathogenesis in Cardio- and Aphthoviruses.
Collapse
Affiliation(s)
- Velia Penza
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Autumn J. Schulze
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
7
|
Pulido MR, Martínez-Salas E, Sobrino F, Sáiz M. MDA5 cleavage by the Leader protease of foot-and-mouth disease virus reveals its pleiotropic effect against the host antiviral response. Cell Death Dis 2020; 11:718. [PMID: 32879301 PMCID: PMC7468288 DOI: 10.1038/s41419-020-02931-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
The RIG-I-like receptor (RLR) melanoma differentiation-associated gene 5 (MDA5) plays a key role in triggering innate antiviral response during infection by RNA viruses. MDA5 activation leads to transcription induction of type-I interferon (IFN) and proinflammatory cytokines. MDA5 has also been associated with autoimmune and autoinflammatory diseases by dysfunctional activation of innate immune response in the absence of infection. Here, we show how foot-and-mouth disease virus (FMDV) counteracts the specific antiviral effect exerted by MDA5 targeting the protein for cleavage by the viral Leader protease (Lpro). MDA5 overexpression had an inhibitory effect on FMDV infection in IFN-competent cells. Remarkably, immunostimulatory viral RNA co-immunoprecipitated with MDA5 in infected cells. Moreover, specific cleavage of MDA5 by Lpro was detected in co-transfected cells, as well as during the course of FMDV infection. A significant reduction in IFN induction associated with MDA5 cleavage was detected by comparison with a non-cleavable MDA5 mutant protein with preserved antiviral activity. The Lpro cleavage site in MDA5 was identified as the RGRAR sequence in the conserved helicase motif VI, coinciding with that recently reported for Lpro in LGP2, another member of the RLRs family involved in antiviral defenses. Interestingly, specific mutations within the MDA5 Lpro target sequence have been associated with immune disease in mice and humans. Our results reveal a pleiotropic strategy for immune evasion based on a viral protease targeting phylogenetically conserved domains of immune sensors. Identification of viral strategies aimed to disrupt MDA5 functionality may also contribute to develop new treatment tools for MDA5-related disorders.
Collapse
Affiliation(s)
| | | | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
8
|
Rodríguez Pulido M, H B R, Sáiz M. A Wide-Ranging Antiviral Response in Wild Boar Cells Is Triggered by Non-coding Synthetic RNAs From the Foot-and-Mouth Disease Virus Genome. Front Vet Sci 2020; 7:495. [PMID: 32851049 PMCID: PMC7417647 DOI: 10.3389/fvets.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious viral disease that affects multiple cloven-hooved hosts including important livestock (pigs, cattle, sheep and goats) as well as several wild animal species. Crossover of FMDV between domestic and wildlife populations may prolong virus circulation during outbreaks. The wild boar (Sus scrofa) is considered a reservoir of various pathogens that can infect other wildlife, domestic animals, and humans. As wild boar and domestic pigs are susceptible to the same pathogens and can infect each other, infected wild boar populations may represent a threat to the pig industry and to international trade. The ncRNAs are synthetic non-coding RNA transcripts, mimicking structural domains in the FMDV genome, known to exert a broad-spectrum antiviral and immunomodulatory effect in swine, bovine and mice cells. Here, we show the type I interferon-dependent, robust and broad range antiviral activity induced by the ncRNAs in a cell line derived from wild boar lung cells (WSL). Transfection of WSL cells with the ncRNAs exerted a protective effect against infection with FMDV, vesicular stomatitis virus (VSV), swine vesicular disease virus (SVDV) and African swine fever virus (ASFV). Our results prove the biological activity of the ncRNAs in cells of an FMDV wild animal host species against a variety of viruses affecting pigs, including relevant viral pathogens of epizootic risk.
Collapse
Affiliation(s)
| | - Ranjitha H B
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
9
|
Liu Y, Zhang Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao X, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Structures and Functions of the 3' Untranslated Regions of Positive-Sense Single-Stranded RNA Viruses Infecting Humans and Animals. Front Cell Infect Microbiol 2020; 10:453. [PMID: 32974223 PMCID: PMC7481400 DOI: 10.3389/fcimb.2020.00453] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
The 3′ untranslated region (3′ UTR) of positive-sense single-stranded RNA [ssRNA(+)] viruses is highly structured. Multiple elements in the region interact with other nucleotides and proteins of viral and cellular origin to regulate various aspects of the virus life cycle such as replication, translation, and the host-cell response. This review attempts to summarize the primary and higher order structures identified in the 3′UTR of ssRNA(+) viruses and their functional roles.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Medina GN, de los Santos T, Diaz-San Segundo F. Use of IFN-Based Biotherapeutics to Harness the Host Against Foot-And-Mouth Disease. Front Vet Sci 2020; 7:465. [PMID: 32851039 PMCID: PMC7431487 DOI: 10.3389/fvets.2020.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals that severely constrains international trade of livestock and animal products. Currently, disease control measures include broad surveillance, enforcement of sanitary policy, and use of an inactivated vaccine. While use of these measures has contributed to eliminating foot-and-mouth disease virus (FMDV) from a vast area of the world, the disease remains endemic in three continents, and outbreaks occasionally appear in previously declared FMD-free zones, causing economic and social devastation. Among others, a very fast rate of viral replication and the need for 7 days to achieve vaccine-induced protection are the main limitations in controlling the disease. New fast-acting antiviral strategies targeted to boost the innate immunity of the host to block viral replication are needed. Here we review the knowledge on the multiple strategies FMDV has evolved to block the host innate immunity, with particularly focus on the past and current research toward the development of interferon (IFN)-based biotherapeutics in relevant livestock species.
Collapse
Affiliation(s)
- Gisselle N. Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
| | | |
Collapse
|
11
|
Cañas-Arranz R, Forner M, Defaus S, Rodríguez-Pulido M, de León P, Torres E, Bustos MJ, Borrego B, Sáiz M, Blanco E, Andreu D, Sobrino F. A bivalent B-cell epitope dendrimer peptide can confer long-lasting immunity in swine against foot-and-mouth disease. Transbound Emerg Dis 2020; 67:1614-1622. [PMID: 31994334 DOI: 10.1111/tbed.13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/12/2023]
Abstract
Foot-and-mouth disease virus (FMDV) causes a widely extended contagious disease of livestock. We have previously reported that a synthetic dendrimeric peptide, termed B2 T(mal), consisting of two copies of a B-cell epitope [VP1(140-158)] linked through maleimide groups to a T-cell epitope [3A(21-35)] of FMDV, elicits potent B- and T-cell-specific responses and confers solid protection in pigs to type O FMDV challenge. Longer duration of the protective response and the possibility of inducing protection after a single dose are important requirements for an efficient FMD vaccine. Herein, we show that administration of two doses of B2 T(mal) elicited high levels of specific total IgGs and neutralizing antibodies that lasted 4-5 months after the peptide boost. Additionally, concomitant levels of IFN-γ-producing specific T cells were observed. Immunization with two doses of B2 T(mal) conferred a long-lasting reduced susceptibility to FMDV infection, up to 136 days (19/20 weeks) post-boost. Remarkably, a similar duration of the protective response was achieved by a single dose of B2 T(mal). The effect on the B2 T(mal) vaccine of RNA transcripts derived from non-coding regions in the FMDV genome, known to enhance the immune response and protection induced by a conventional inactivated vaccine, was also analysed. The contribution of our results to the development of FMD dendrimeric vaccines is discussed.
Collapse
Affiliation(s)
| | - Mar Forner
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Sira Defaus
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - María J Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Spain
| | - David Andreu
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
12
|
Najafi H, FallahMehrabadi MH, Hosseini H, Ziafati Kafi Z, Modiri Hamdan A, Ghalyanchilangeroudi A. The first full genome characterization of an Iranian foot and mouth disease virus. Virus Res 2020; 279:197888. [PMID: 32023478 DOI: 10.1016/j.virusres.2020.197888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/20/2019] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
High transmissibility of FMDV and drop in productivity following infection, make FMD an important economically disease of livestock. According to the endemic nature of the disease in Iran, vaccines have been routinely applied, but not able to prevent frequent outbreaks. Circulation of different FMDV types in Iran along with unrestricted animal movements complicates epidemiological situations. The relatively short length of VP1 does not provide high resolution molecular epidemiological data, therefore FMDV full genome sequencing has been employed. Outbreaks of FMD occurred in Qom province, Iran during 2017. A 8190 nucleotide-long FMDV complete genome was sequenced. Phylogenetic analysis clustered the virus into Asia 1 serotype. Complete genome analysis revealed a high level of homology of the virus to Asia 1 viruses previously detected in Turkey, India, Israel, and Pakistan. The data suggest that Asia 1/Shimi/2017 probably originated from India, have circulating in Iran since the last couple of years and reached Turkey in 2013. The results highlight the role of Iran in westward spreading of FMDV among South-central Asia, hinting the urgent need for an effective vaccine against Asia 1 type FMDV and also applying restriction rules on animal movements.
Collapse
Affiliation(s)
- Hamideh Najafi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hossein FallahMehrabadi
- Department of Poultry Diseases, RAZI Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Karaj Branch, Karaj, Iran
| | - Zahra Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Modiri Hamdan
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
14
|
Chen JH, Zhang RH, Lin SL, Li PF, Lan JJ, Song SS, Gao JM, Wang Y, Xie ZJ, Li FC, Jiang SJ. The Functional Role of the 3' Untranslated Region and Poly(A) Tail of Duck Hepatitis A Virus Type 1 in Viral Replication and Regulation of IRES-Mediated Translation. Front Microbiol 2018; 9:2250. [PMID: 30319572 PMCID: PMC6167517 DOI: 10.3389/fmicb.2018.02250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/04/2018] [Indexed: 01/04/2023] Open
Abstract
The duck hepatitis A virus type 1 (DHAV-1) is a member of Picornaviridae family, the genome of the virus contains a 5′ untranslated region (5′ UTR), a large open reading frame that encodes a polyprotein precursor and a 3′ UTR followed by a poly(A) tail. The translation initiation of virus proteins depends on the internal ribosome-entry site (IRES) element within the 5′ UTR. So far, little information is known about the role of the 3′ UTR and poly(A) tail during the virus proliferation. In this study, the function of the 3′ UTR and poly(A) tail of DHAV-1 in viral replication and IRES-mediated translation was investigated. The results showed that both 3′ UTR and poly(A) tail are important for maintaining viral genome RNA stability and viral genome replication. During DHAV-1 proliferation, at least 20 adenines were required for the optimal genome replication and the virus replication could be severely impaired when the poly (A) tail was curtailed to 10 adenines. In addition to facilitating viral genome replication, the presence of 3′ UTR and poly(A) tail significantly enhance IRES-mediated translation efficiency. Furthermore, 3′ UTR or poly(A) tail could function as an individual element to enhance the DHAV-1 IRES-mediated translation, during which process, the 3′ UTR exerts a greater initiation efficiency than the poly(A)25 tail.
Collapse
Affiliation(s)
- Jun-Hao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Rui-Hua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Shao-Li Lin
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng-Fei Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Jing-Jing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Sha-Sha Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Ji-Ming Gao
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Yu Wang
- Department of Basic Medical Sciences, Taishan Medical College, Tai'an, China
| | - Zhi-Jing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Fu-Chang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Shi-Jin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| |
Collapse
|
15
|
Rodríguez Pulido M, Sánchez-Aparicio MT, Martínez-Salas E, García-Sastre A, Sobrino F, Sáiz M. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathog 2018; 14:e1007135. [PMID: 29958302 PMCID: PMC6042790 DOI: 10.1371/journal.ppat.1007135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/12/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-β mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.
Collapse
Affiliation(s)
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
16
|
Rodríguez Pulido M, Del Amo L, Sobrino F, Sáiz M. Synthetic RNA derived from the foot-and-mouth disease virus genome elicits antiviral responses in bovine and porcine cells through IRF3 activation. Vet Microbiol 2018; 221:8-12. [PMID: 29981712 DOI: 10.1016/j.vetmic.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly transmissible disease affecting wild and domestic animals including pigs, cattle and sheep. The ability of synthetic RNA transcripts mimicking distinct domains in the non-coding regions of the FMDV genome (ncRNAs) to induce a potent innate immune response in swine cultured cells and mice has been previously described, as well as their enhancing effect on conventional inactivated FMD vaccines. Here, we provide evidence of the activation of interferon regulatory factor 3 (IRF3), a key transcriptional regulator of type I interferon (IFN)-dependent immune responses after transfection of swine and bovine cells with transcripts corresponding to the FMDV 3´ non-coding region (3´NCR). Induction of IFN-β and Mx1expression, concomitantly with antiviral activity and IRF3 activation was observed in bovine MDBK cells transfected with the 3´NCR. Our results link the stimulation of the innate immune response observed in 3´NCR-transfected cells to the intracellular type I IFN signaling pathway and suggest the potential use of these molecules for antiviral strategies in cattle.
Collapse
Affiliation(s)
| | - Laura Del Amo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Kloc A, Rai DK, Rieder E. The Roles of Picornavirus Untranslated Regions in Infection and Innate Immunity. Front Microbiol 2018; 9:485. [PMID: 29616004 PMCID: PMC5870040 DOI: 10.3389/fmicb.2018.00485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/28/2018] [Indexed: 11/17/2022] Open
Abstract
Viral genomes have evolved to maximize their potential of overcoming host defense mechanisms and to induce a variety of disease syndromes. Structurally, a genome of a virus consists of coding and noncoding regions, and both have been shown to contribute to initiation and progression of disease. Accumulated work in picornaviruses has stressed out the importance of the noncoding RNAs, or untranslated 5′- and 3′-regions (UTRs), in both replication and translation of viral genomes. Unsurprisingly, defects in these processes have been reported to cause viral attenuation and affect viral pathogenicity. However, substantial evidence suggests that these untranslated RNAs may influence the outcome of the host innate immune response. This review discusses the involvement of 5′- and 3′-terminus UTRs in induction and regulation of host immunity and its consequences for viral life cycle and virulence.
Collapse
Affiliation(s)
- Anna Kloc
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Devendra K Rai
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Elizabeth Rieder
- Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
18
|
Foot-and-mouth disease virus 5'-terminal S fragment is required for replication and modulation of the innate immune response in host cells. Virology 2017; 512:132-143. [PMID: 28961454 DOI: 10.1016/j.virol.2017.08.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022]
Abstract
The S fragment of the FMDV 5' UTR is predicted to fold into a long stem-loop structure and it has been implicated in virus-host protein interactions. In this study, we report the minimal S fragment sequence required for virus viability and show a direct correlation between the extent of the S fragment deletion mutations and attenuated phenotypes. Furthermore, we provide novel insight into the role of the S fragment in modulating the host innate immune response. Importantly, in an FMDV mouse model system, all animals survive the inoculation with the live A24 FMDV-S4 mutant, containing a 164 nucleotide deletion in the upper S fragment loop, at a dose 1000 higher than the one causing lethality by parental A24 FMDV, indicating that the A24 FMDV-S4 virus is highly attenuated in vivo. Additionally, mice exposed to high doses of live A24 FMDV-S4 virus are fully protected when challenged with parental A24 FMDV virus.
Collapse
|
19
|
Borrego B, Blanco E, Rodríguez Pulido M, Mateos F, Lorenzo G, Cardillo S, Smitsaart E, Sobrino F, Sáiz M. Combined administration of synthetic RNA and a conventional vaccine improves immune responses and protection against foot-and-mouth disease virus in swine. Antiviral Res 2017; 142:30-36. [PMID: 28315707 DOI: 10.1016/j.antiviral.2017.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease and a major concern in animal health worldwide. We have previously reported the use of RNA transcripts mimicking structural domains in the non-coding regions of the FMDV RNA as potent type-I interferon (IFN) inducers showing antiviral effect in vivo, as well as their immunomodulatory properties in combination with an FMD vaccine in mice. Here, we describe the enhancing effect of RNA delivery on the immunogenicity and protection induced by a suboptimal dose of a conventional FMD vaccine in pigs. Animals receiving the RNA developed earlier and higher levels of neutralizing antibodies against homologous and heterologous isolates, compared to those immunized with the vaccine alone, and had higher anti-FMDV titers at late times post-vaccination. RNA delivery also induced higher specific T-cell response and protection levels against FMDV challenge. Peripheral blood mononuclear cells from pigs inoculated with RNA and the vaccine had a higher IFN-γ specific response than those from pigs receiving the vaccine alone. When challenged with FMDV, all three animals immunized with the conventional vaccine developed antibodies to the non-structural viral proteins 3ABC and two of them developed severe signs of disease. In the group receiving the vaccine together with the RNA, two pigs were fully protected while one showed delayed and mild signs of disease. Our results support the immunomodulatory effect of these RNA molecules in natural hosts and suggest their potential use for improvement of FMD vaccines strategies.
Collapse
Affiliation(s)
| | | | | | | | - Gema Lorenzo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049, Madrid, Spain.
| | - Sabrina Cardillo
- Biogénesis Bagó S.A., Garín, B1619 IEA, Buenos Aires, Argentina.
| | - Eliana Smitsaart
- Biogénesis Bagó S.A., Garín, B1619 IEA, Buenos Aires, Argentina.
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049, Madrid, Spain.
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Constitutively Active IRF7/IRF3 Fusion Protein Completely Protects Swine against Foot-and-Mouth Disease. J Virol 2016; 90:8809-21. [PMID: 27466421 DOI: 10.1128/jvi.00800-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype-specific vaccine formulations exist, but they require about 5 to 7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine interferon (IFN) regulatory factors (IRF) 7 and 3 [IRF7/3(5D)] strongly induced type I IFN and antiviral genes in vitro and prevented mortality in an FMD mouse model when delivered with a replication-defective adenoviral vector [Ad5-poIRF7/3(5D)]. Here, we demonstrate that pigs treated with 10(8), 10(9), or 10(10) PFU of Ad5-poIRF7/3(5D) 24 h before FMDV challenge were fully protected from FMD clinical signs and did not develop viremia, virus shedding or antibodies against FMDV nonstructural proteins. Pigs treated with Ad5-poIRF7/3(5D) had higher levels of IFN and antiviral activity in serum, and upregulated expression of several IFN-stimulated genes in peripheral blood mononuclear cells, compared to pigs treated with Ad5-Blue vector control. Importantly, treatment of porcine cultured cells with Ad5-poIRF7/3(5D) inhibited the replication of all 7 FMDV serotypes. In vitro experiments using cultured embryonic fibroblasts derived from IFN receptor knockout mice suggested that the antiviral response induced by Ad5-poIRF7/3(5D) was dependent on type I and III IFN pathways; however, experiments with mice demonstrated that a functional type I IFN pathway mediates Ad5-poIRF7/3(5D) protection conferred in vivo Our studies demonstrate that inoculation with Ad5-poIRF7/3(5D) completely protects swine against FMD by inducing a strong type I IFN response and highlights its potential application to rapidly and effectively prevent FMDV replication and dissemination. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a fast-spreading disease that affects farm animals, with economically and socially devastating consequences. Our study shows that inoculation with a constitutively active transcription factor, namely, a fusion protein of porcine interferon (IFN) regulatory factors (IRF) 7 and 3 delivered by an adenovirus vector [Ad5-poIRF7/3(5D)], is a new effective treatment to prevent FMD in swine. Animals pretreated with Ad5-poIRF7/3(5D) 1 day before being exposed to FMDV were completely protected from viral replication and clinical disease. It is noteworthy that the doses of Ad5-poIRF7/3(5D) required for protection are lower than those previously reported for similar approaches using Ad5 vectors delivering type I, II, or III IFN, suggesting that this novel strategy would be economically appealing to counteract FMD. Our results also indicate that a dynamic interplay among different components of pigs' innate immune defenses allows potent antiviral effects after Ad5-poIF7/3(5D) administration.
Collapse
|
21
|
Lozano G, Trapote A, Ramajo J, Elduque X, Grandas A, Robles J, Pedroso E, Martínez-Salas E. Local RNA flexibility perturbation of the IRES element induced by a novel ligand inhibits viral RNA translation. RNA Biol 2016; 12:555-68. [PMID: 25775053 PMCID: PMC4615676 DOI: 10.1080/15476286.2015.1025190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The internal ribosome entry site (IRES) element located at the 5'untranslated genomic region of various RNA viruses mediates cap-independent initiation of translation. Picornavirus IRES activity is highly dependent on both its structural organization and its interaction with host factors. Small molecules able to interfere with RNA function are valuable candidates for antiviral agents. Here we show that a small molecule based on benzimidazole (IRAB) inhibited foot-and-mouth disease virus (FMDV) IRES-dependent protein synthesis in cells transfected with infectious RNA leading to a decrease of the virus titer, which was higher than that induced by a structurally related benzimidazole derivative. Interestingly, IRAB preferentially inhibited IRES-dependent translation in cell free systems in a dose-dependent manner. RNA structural analysis by SHAPE demonstrated an increased local flexibility of the IRES structure upon incubation with IRAB, which affected 3 stem-loops (SL) of domain 3. Fluorescence binding assays conducted with individual aminopurine-labeled oligoribonucleotides indicated that the SL3A binds IRAB (EC50 18 μM). Taken together, the results derived from SHAPE reactivity and fluorescence binding assays suggested that the target site of IRAB within the FMDV IRES might be a folded RNA structure that involves the entire apical region of domain 3. Our data suggest that the conformational changes induced by this compound on a specific region of the IRES structure which is essential for its activity is, at least in part, responsible for the reduced IRES efficiency observed in cell free lysates and, particularly, in RNA-transfected cells.
Collapse
Affiliation(s)
- Gloria Lozano
- a Centro de Biología Molecular Severo Ochoa; CSIC-UAM; Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Singh N, Ramĩrez-Carvajal L, de Los Santos T, Golding MC, Long CR. Inhibition of EHMT2 Induces a Robust Antiviral Response Against Foot-and-Mouth Disease and Vesicular Stomatitis Virus Infections in Bovine Cells. J Interferon Cytokine Res 2015; 36:37-47. [PMID: 26418342 DOI: 10.1089/jir.2015.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic regulatory network controlling the innate immune system is well understood in many species. However, the role of the epigenetic mechanisms underlying the expression of immunoregulatory genes is less clear, especially in livestock species. Histone H3 lysine 9 dimethylation (H3K9me2) is an epigenetic modification associated with transcriptional silencing within the euchromatin regions. Euchromatic histone-lysine N-methyltransferase 2 (EHMT2; also known as G9a) is a crucial enzyme responsible for regulating the dynamics of this epigenetic modification. It has been shown that histone modifications play a role in regulating type I interferon (IFN) response. In the present study, we investigated the role of EHMT2 in the epigenetic regulation of bovine antiviral innate immunity and explored its therapeutic potential against viral infections. We evaluated the effects of pharmacological and RNAi-mediated inhibition of EHMT2 on the transcription of IFN-β and other IFN-inducible antiviral genes, as well as its effect on foot-and-mouth disease virus (FMDV) and vesicular stomatitis virus (VSV) replication in bovine cells. We show that treatment of primary bovine cells with the synthetic EHMT2 inhibitor (UNC0638) either before or shortly after virus infection resulted in a significant increase in transcript levels of bovine IFN-β (boIFN-β; 300-fold) and other IFN-inducible genes, including IFN-stimulated gene 15 (ISG-15), myxovirus resistance 1 (Mx-1), Mx-2, RIG-I, 2',5'-oligoadenylate synthetase 1 (OAS-1), and protein kinase R (PKR). Expression of these factors correlated with a significant decrease in VSV and FMDV viral titers. Our data confirm the involvement of EHMT2 in the epigenetic regulation of boIFN-β and demonstrate the activation of a general antiviral state after EHMT2 inhibition.
Collapse
Affiliation(s)
- Neetu Singh
- 1 Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| | - Lisbeth Ramĩrez-Carvajal
- 1 Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas.,2 Oak Ridge Institute for Science and Education (ORISE)-Plum Island Animal Disease Center (PIADC) Research Participation Program , Oak Ridge, Tennessee
| | | | - Michael C Golding
- 1 Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| | - Charles R Long
- 1 Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University , College Station, Texas
| |
Collapse
|
23
|
Borrego B, Rodríguez-Pulido M, Revilla C, Álvarez B, Sobrino F, Domínguez J, Sáiz M. Synthetic RNAs Mimicking Structural Domains in the Foot-and-Mouth Disease Virus Genome Elicit a Broad Innate Immune Response in Porcine Cells Triggered by RIG-I and TLR Activation. Viruses 2015; 7:3954-73. [PMID: 26193305 PMCID: PMC4517136 DOI: 10.3390/v7072807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 11/27/2022] Open
Abstract
The innate immune system is the first line of defense against viral infections. Exploiting innate responses for antiviral, therapeutic and vaccine adjuvation strategies is being extensively explored. We have previously described, the ability of small in vitro RNA transcripts, mimicking the sequence and structure of different domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs), to trigger a potent and rapid innate immune response. These synthetic non-infectious molecules have proved to have a broad-range antiviral activity and to enhance the immunogenicity of an FMD inactivated vaccine in mice. Here, we have studied the involvement of pattern-recognition receptors (PRRs) in the ncRNA-induced innate response and analyzed the antiviral and cytokine profiles elicited in swine cultured cells, as well as peripheral blood mononuclear cells (PBMCs).
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, Madrid 28130, Spain.
| | | | - Concepción Revilla
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| | - Belén Álvarez
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa (CISC-UAM), Cantoblanco, Madrid 28049, Spain.
| | - Javier Domínguez
- Dpto. de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de la Coruña Km 7.5, Madrid 28040, Spain.
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CISC-UAM), Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|
24
|
Yuan B, Fang H, Shen C, Zheng C. Expression of porcine Mx1 with FMDV IRES enhances the antiviral activity against foot-and-mouth disease virus in PK-15 cells. Arch Virol 2015; 160:1989-99. [DOI: 10.1007/s00705-015-2473-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
25
|
Habiela M, Seago J, Perez-Martin E, Waters R, Windsor M, Salguero FJ, Wood J, Charleston B, Juleff N. Laboratory animal models to study foot-and-mouth disease: a review with emphasis on natural and vaccine-induced immunity. J Gen Virol 2014; 95:2329-2345. [PMID: 25000962 PMCID: PMC4202264 DOI: 10.1099/vir.0.068270-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022] Open
Abstract
Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.
Collapse
Affiliation(s)
- Mohammed Habiela
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Julian Seago
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | | | - Ryan Waters
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Miriam Windsor
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Francisco J. Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7TE, UK
| | - James Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | - Nicholas Juleff
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
26
|
Expression of porcine fusion protein IRF7/3(5D) efficiently controls foot-and-mouth disease virus replication. J Virol 2014; 88:11140-53. [PMID: 25031341 DOI: 10.1128/jvi.00372-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Several studies have demonstrated that the delivery of type I, II, or III interferons (IFNs) by inoculation of a replication-defective human adenovirus 5 (Ad5) vector expressing IFNs can effectively control foot-and-mouth disease (FMD) in cattle and swine during experimental infections. However, relatively high doses are required to achieve protection. In this study, we identified the functional properties of a porcine fusion protein, poIRF7/3(5D), as a biotherapeutic and enhancer of IFN activity against FMD virus (FMDV). We showed that poIRF7/3(5D) is a potent inducer of type I IFNs, including alpha IFN (IFN-α), IFN-β, and IFN-ω but not type III IFN (interleukin-28B), without inducing cytotoxicity. Expression of poIRF7/3(5D) significantly and steadily reduced FMDV titers by up to 6 log10 units in swine and bovine cell lines. Treatment with an IFN receptor inhibitor (B18R) combined with an anti-IFN-α antibody neutralized the antiviral activity in the supernatants of cells transduced with an Ad5 vector expressing poIRF7/3(5D) [Ad5-poIRF7/3(5D)]. However, several transcripts with known antiviral function, including type I IFNs, were still highly upregulated (range of increase, 8-fold to over 500-fold) by poIRF7/3(5D) in the presence of B18R. Furthermore, the sera of mice treated with Ad5-poIRF7/3(5D) showed antiviral activity that was associated with the induction of high levels of IFN-α and resulted in complete protection against FMDV challenge at 6, 24, or 48 h posttreatment. This study highlights for the first time the antiviral potential of Ad5-poIRF7/3(5D) in vitro and in vivo against FMDV. IMPORTANCE FMD remains one of the most devastating diseases that affect livestock worldwide. Effective vaccine formulations are available but are serotype specific and require approximately 7 days before they are able to elicit protective immunity. We have shown that vector-delivered IFN is an option to protect animals against many FMDV serotypes as soon as 24 h and for about 4 days postadministration. Here we demonstrate that delivery of a constitutively active transcription factor that induces the production of endogenous IFNs and potentially other antiviral genes is a viable strategy to protect against FMD.
Collapse
|
27
|
Lorenzo G, Rodríguez-Pulido M, López-Gil E, Sobrino F, Borrego B, Sáiz M, Brun A. Protection against Rift Valley fever virus infection in mice upon administration of interferon-inducing RNA transcripts from the FMDV genome. Antiviral Res 2014; 109:64-7. [PMID: 24973761 DOI: 10.1016/j.antiviral.2014.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/08/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
In this work we have addressed the effect of synthetic, non-infectious, RNA transcripts, mimicking structural domains of the non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome on the infection of mice with Rift Valley fever virus (RVFV). Groups of 5 mice were inoculated intraperitoneally (i.p.) with 200 μg of synthetic RNA resembling the 5'-terminal S region, the internal ribosome entry site (IRES) or the 3'-NCR of the FMDV genome. RNA inoculation was performed 24h before (-24 h), 24 h after (+24 h) or simultaneously to the challenge with a lethal dose of RVFV. Administration of the IRES RNA afforded higher survival rates than administration of S or 3'NCR transcripts either at -24h or +24h after challenge. In contrast, when RNA inoculation and viral challenge were performed simultaneously, all mice survived in both IRES- and 3'NCR-inoculated groups, with an 80% survival in mice receiving the S RNA. Among survivors, a complete correlation between significant anti-RVFV circulating antibody titers and resistance to a second lethal challenge with the virus was observed, supporting a limited viral replication in the RNA-inoculated animals upon the first challenge. All three RNA transcripts were able to induce the production of systemic antiviral and pro-inflammatory cytokines. These data show that triggering of intracellular pathogen sensing pathways constitutes a promising approach towards development of novel RVF preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Gema Lorenzo
- Centro de Investigación en Sanidad Animal - INIA, Valdeolmos 28130, Madrid, Spain
| | | | - Elena López-Gil
- Centro de Investigación en Sanidad Animal - INIA, Valdeolmos 28130, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco 28049, Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal - INIA, Valdeolmos 28130, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Cantoblanco 28049, Madrid, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal - INIA, Valdeolmos 28130, Madrid, Spain.
| |
Collapse
|
28
|
Feng Q, Langereis MA, Olagnier D, Chiang C, van de Winkel R, van Essen P, Zoll J, Hiscott J, van Kuppeveld FJM. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation. PLoS One 2014; 9:e95927. [PMID: 24759703 PMCID: PMC3997492 DOI: 10.1371/journal.pone.0095927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/25/2022] Open
Abstract
Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp)-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3), a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL) RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.
Collapse
Affiliation(s)
- Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - David Olagnier
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Cindy Chiang
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Roel van de Winkel
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter van Essen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John Hiscott
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Borrego B, Rodríguez-Pulido M, Mateos F, de la Losa N, Sobrino F, Sáiz M. Delivery of synthetic RNA can enhance the immunogenicity of vaccines against foot-and-mouth disease virus (FMDV) in mice. Vaccine 2013; 31:4375-81. [PMID: 23859841 DOI: 10.1016/j.vaccine.2013.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 12/20/2022]
Abstract
We have recently described the antiviral effect in mice of in vitro-transcribed RNAs mimicking structural domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome RNA. These small, synthetic and non-infectious RNA molecules (ncRNAs) are potent type-I interferon (IFN) inducers in vivo. In this work, the immunomodulatory effect of the ncRNA corresponding to the internal ribosome entry site (IRES) on immunization with two different FMD vaccine formulations, both based on inactivated virus, including or not a commercial adjuvant, was analyzed in the mice model. The effect of the time interval between RNA inoculation and immunization was also studied. RNA delivery consistently increased the titers of specific anti-FMDV antibodies, including neutralizing antibodies, elicited after vaccination. Moreover, at day 2 after immunization, significant differences in mean antibody titers could be detected between the groups of mice receiving either vaccine co-administered with the RNA and the control group, unlike those immunized with the vaccine alone. When vaccinated mice were challenged with FMDV, the mean values of viral load were lower in the groups receiving the RNA together with the vaccine. Our results show the enhancing effect of the IRES RNA on the immune response elicited after vaccination and suggest the potential of this molecule as an adjuvant for new FMD vaccine design.
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA-INIA, Valdeolmos, 28130 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Kuo RL, Kao LT, Lin SJ, Wang RYL, Shih SR. MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS One 2013; 8:e63431. [PMID: 23650567 PMCID: PMC3641126 DOI: 10.1371/journal.pone.0063431] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/04/2013] [Indexed: 12/24/2022] Open
Abstract
Induction of type-I interferons (IFNs), IFN-α/β, is crucial to innate immunity against RNA virus infection. Cytoplasmic retinoic acid-inducible gene I (RIG-I)-like receptors, including RIG-I and melanoma differentiation-associated gene 5 (MDA5), are critical pathogen sensors for activation of type-I IFN expression in response to RNA virus infection. MDA5 is required for type-I IFN expression in mouse models in response to infection by picornaviruses, such as encephalomyocarditis virus (EMCV) and coxsackievirus B3. Enterovirus 71 (EV71) belongs to picornaviridae and contains positive-stranded RNA genome that is linked with VPg protein at the 5' end. Although a recent study showed that EV71 3C protease could suppress RIG-I-mediated IFN-β response, the cytoplasmic RIG-I-like receptor that is directly involved in the recognition of EV71 RNA remains unclear. Using EV71-derived RNA as an agonist, we demonstrate that MDA5 is involved in EV71 RNA-mediated IRF3 activation and IFN-β transcription. Our data also show that overexpression of the MDA5 protein reverses the suppression of IRF3 activation caused by EV71 infection. These results indicate that MDA5 is an important factor for EV71 RNA-activated type-I IFN expression. Furthermore, we also show that EV71 infection enhances MDA5 degradation and that the degradation could be inhibited by a broad spectrum caspase inhibitor.
Collapse
Affiliation(s)
- Rei-Lin Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Gueishan, Tao-Yuan, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Rodríguez-Pulido M, Martín-Acebes MA, Escribano-Romero E, Blázquez AB, Sobrino F, Borrego B, Sáiz M, Saiz JC. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One 2012; 7:e49494. [PMID: 23166685 PMCID: PMC3498145 DOI: 10.1371/journal.pone.0049494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) is a neurovirulent single stranded RNA mosquito-borne flavivirus, whose main natural hosts are birds, but it also infects humans and horses. Nowadays, no human vaccine is commercially available and clinical treatment is only supportive. Recently, it has been shown that RNA transcripts, mimicking structural domains in the non-coding regions (NCRs) of the foot-and mouth disease virus (FMDV) induce a potent IFN response and antiviral activity in transfected cultured cells, and also reduced mice susceptibility to FMDV. By using different transcripts combinations, administration schedules, and infecting routes and doses, we have demonstrated that these FMDV RNA transcripts protect suckling and adult mice against lethal challenge with WNV. The protective activity induced by the transcripts was systemic and dependent on the infection route and dose. These results confirm the antiviral potential of these synthetic RNAs for fighting viruses of different families relevant for human and animal health.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Fajardo T, Rosas MF, Sobrino F, Martinez-Salas E. Exploring IRES region accessibility by interference of foot-and-mouth disease virus infectivity. PLoS One 2012; 7:e41382. [PMID: 22815996 PMCID: PMC3399821 DOI: 10.1371/journal.pone.0041382] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Translation initiation of picornavirus RNA is driven by an internal ribosome entry site (IRES) element located upstream of the initiator codon. RNA structure organization as well as RNA-protein interaction plays a fundamental role in internal initiation. IRES activity has been mainly analyzed in the context of reporter genes, lacking regions of the viral genome potentially affecting translation efficiency. With the aim to understand the vulnerability of the IRES and translation start region to small molecules in the context of the viral genome, we designed a set of customized RNase-resistant 2'O-methyl antisense oligoribonucleotides (2'OMe AONs) based on RNA structure data. These AONs were then used to monitor their capacity to interfere viral RNA translation, and thus, to inhibit virus yield. Foot-and-mouth disease virus (FMDV) RNA translation can be initiated at two in-frame AUG codons. We show here that a 2'OMe AON complementary to AUG2 inhibited viral multiplication more efficiently than the one that targeted AUG1. Furthermore, the response of the viral RNA to AONs targeting the IRES region denoted important differences between tissue culture cells and cell-free systems, reinforcing the need to analyze viral RNA response in living cells. Importantly, we have identified four specific motifs within the IRES element that are targets for viral inhibitors both in tissue culture cells and in cell-free systems. The identified targets define accessible regions to small molecules, which disturb either the RNA structural organization or the RNA-protein interactions needed to initiate translation in FMDV RNA.
Collapse
Affiliation(s)
- Teodoro Fajardo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Flora Rosas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
| | - Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas-Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Res 2011; 92:500-4. [PMID: 22020303 DOI: 10.1016/j.antiviral.2011.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
We have recently described the ability of in vitro-transcribed RNAs, mimicking structural domains in the 5' and 3' non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome, to trigger the innate immune response in porcine cultured cells and mice. In this work, the antiviral effect exerted in vivo by these small synthetic non-infectious RNA molecules was analyzed extensively. The susceptibility of transfected newborn Swiss mice to FMDV challenge was tested using a wide range of viral doses. The level of protection depended on the specific RNA inoculated and was dose-dependent. The RNA giving the best protection was the internal ribosome entry site (IRES), followed by the transcripts corresponding to the S fragment. The time course of resistance to FMDV of the RNA-transfected mice was studied. Our results show the efficacy of these RNAs to prevent viral infection as well as to contain ongoing FMDV infection in certain time intervals. Protection proved to be independent of the serotype of FMDV used for challenge. These results support the potential use of the FMDV NCR transcripts as both prophylactic and therapeutic molecules for new FMDV control strategies.
Collapse
|