1
|
Vergnes JB, Roger B, Iggo R, Wodrich H. Advanced viral genome in vitro Cas9 editing (AdVICE): an overnight method for traceless and limitless manipulation of adenoviral and vector genomes with large transgenes. J Virol 2025:e0226524. [PMID: 40396759 DOI: 10.1128/jvi.02265-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025] Open
Abstract
The size and complexity of large viral genomes limit the technical possibilities for genome manipulations in fundamental research and medical or technological applications. State-of-the-art recombineering in bacteria has partially overcome this limit but remains a time-consuming and complex procedure requiring specialist expertise. Here, we describe a simplified and highly efficient in vitro protocol for unlimited and traceless manipulation applicable to large viral genomes from DNA viruses using a combination of CRISPR/Cas9 cleavage and in vitro DNA assembly. We successfully used the protocol to manipulate adenovirus genomes, showing that genome rescue from viruses, insertions, deletions, and mutagenesis can be performed in a simple overnight procedure in a standard laboratory setting without the need for advanced knowledge of molecular biology. Finally, we use our approach to demonstrate the de novo, multi-step construction of an adenovirus vector suitable for delivering very large transgenes for gene editing.IMPORTANCEThe 36 kb size of the adenoviral genome has long been a deterrent to the construction of adenoviral mutants by scientists wishing to study the virus itself or to construct adenoviral vectors for cell biology and gene therapy. Most previous techniques, such as recombineering and yeast gap repair, impress more by their elegance than by their ease. In this paper, we use Cas9 ribonucleoprotein particles (RNPs) to target cleavage to specific sites in an adenoviral plasmid, then repair the break by Gibson assembly. Gibson assembly with synthetic DNA fragments has transformed basic cloning. Combining it with Cas9 RNPs, which act like highly specific restriction enzymes, makes adenoviral mutagenesis as easy as traditional plasmid cloning. We have used the approach to modify multiple sites in the adenoviral genome, but it could be applied to any large DNA virus for which the genome can be cloned in a plasmid.
Collapse
Affiliation(s)
- Jean-Baptiste Vergnes
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR5234, University of Bordeaux, Bordeaux, France
| | - Benoit Roger
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR5234, University of Bordeaux, Bordeaux, France
| | - Richard Iggo
- INSERM U1312, University of Bordeaux, Bordeaux, France
| | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR5234, University of Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Hildenbrand A, Cramer P, Bertolotti M, Kaiser NS, Kläsener K, Nickel CM, Reth M, Heim A, Hengel H, Burgert HG, Ruzsics Z. Inhibition of B cell receptor signaling induced by the human adenovirus species D E3/49K protein. Front Immunol 2024; 15:1432226. [PMID: 39139562 PMCID: PMC11321000 DOI: 10.3389/fimmu.2024.1432226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.
Collapse
Affiliation(s)
- Andreas Hildenbrand
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Precious Cramer
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Milena Bertolotti
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Nathalie Sophia Kaiser
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Kläsener
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clara Muriel Nickel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reth
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Gerhard Burgert
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Fischer J, Fedotova A, Jaki L, Sallard E, Erhardt A, Fuchs J, Ruzsics Z. Combining CRISPR-Cas-mediated terminal resolution with a novel genetic workflow to achieve high-diversity adenoviral libraries. Mol Ther Methods Clin Dev 2024; 32:101241. [PMID: 38585687 PMCID: PMC10995876 DOI: 10.1016/j.omtm.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.
Collapse
Affiliation(s)
- Julian Fischer
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Ariana Fedotova
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Jaki
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Erwan Sallard
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Anja Erhardt
- Virology and Microbiology, Centre for Biomedical Education & Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jonas Fuchs
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Fischer J, Fedotova A, Bühler C, Darriba L, Schreiner S, Ruzsics Z. Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue. Viruses 2024; 16:658. [PMID: 38793540 PMCID: PMC11125593 DOI: 10.3390/v16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (J.F.); (A.F.); (S.S.)
| |
Collapse
|
5
|
Lan W, Quan L, Li Y, Ou J, Duan B, Mei T, Tan X, Chen W, Feng L, Wan C, Zhao W, Chodosh J, Seto D, Zhang Q. Isolation of novel simian adenoviruses from macaques for development of a vector for human gene therapy and vaccines. J Virol 2023; 97:e0101423. [PMID: 37712705 PMCID: PMC10617444 DOI: 10.1128/jvi.01014-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.
Collapse
Affiliation(s)
- Wendong Lan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lulu Quan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqiang Li
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Junxian Ou
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Biyan Duan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Ting Mei
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Xiao Tan
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
| | - Weiwei Chen
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Qiwei Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, Guangdong, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Statkute E, Wang ECY, Stanton RJ. An Optimized CRISPR/Cas9 Adenovirus Vector (AdZ-CRISPR) for High-Throughput Cloning of sgRNA, Using Enhanced sgRNA and Cas9 Variants. Hum Gene Ther 2022; 33:990-1001. [PMID: 35196879 DOI: 10.1089/hum.2021.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant adenovirus vectors enable highly efficient gene delivery in vitro and in vivo. As a result, they are widely used in gene therapy, vaccination, and anticancer applications. We have previously developed the AdZ vector system, which uses recombineering to permit high-throughput cloning of transgenes into Adenovirus vectors, simplifies alteration of the vector backbone, and enables rapid recovery of infectious virus, even if a transgene is incompatible with vector replication. In this study, we adapt this vector system to enable high-throughput cloning of sequences for CRISPR/Cas9 editing. Vectors were optimized to ensure efficient cloning, and high editing efficiency using spCas9 and single guide RNA (sgRNA) sequences in a single vector. Using a multiplicity of infection of 50, knockout efficiencies of up to 80% could be achieved with a single sgRNA. Vectors were further enhanced by altering the spCas9 sequence to match that of SniperCas9, which has reduced off-target activity, but maintains on-target efficiency, and by applying modifications to the sgRNA sequence that significantly enhance editing efficiency. Thus, the AdZ-CRISPR vectors offer highly efficient knockout, even in hard to transfect cells, and enables large-scale CRISPR/Cas9 projects to be undertaken easily and quickly.
Collapse
Affiliation(s)
- Evelina Statkute
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C Y Wang
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J Stanton
- Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
7
|
Riedl A, Fischer J, Burgert HG, Ruzsics Z. Rescue of Recombinant Adenoviruses by CRISPR/Cas-Mediated in vivo Terminal Resolution. Front Microbiol 2022; 13:854690. [PMID: 35369433 PMCID: PMC8975557 DOI: 10.3389/fmicb.2022.854690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 12/01/2022] Open
Abstract
Recombinant adenovirus (rAd) vectors represent one of the most frequently used vehicles for gene transfer applications in vitro and in vivo. rAd genomes are constructed in Escherichia coli where their genomes can be maintained, propagated, and modified in form of circular plasmids or bacterial artificial chromosomes. Although the rescue of rAds from their circular plasmid or bacmid forms is well established, it works with relatively low primary efficiency, preventing this technology for library applications. To overcome this barrier, we tested a novel strategy for the reconstitution of rAds that utilizes the CRISPR/Cas-machinery to cleave the circular rAd genomes in close proximity to their inverted terminal repeats (ITRs) within the producer cells upon transfection. This CRISPR/Cas-mediated in vivo terminal resolution allowed efficient rescue of vectors derived from different human adenovirus (HAdV) species. By this means, it was not only possible to increase the efficiency of virus rescue by about 50-fold, but the presented methodology appeared also remarkably simpler and faster than traditional rAd reconstitution methods.
Collapse
|
8
|
Gao J, Mese K, Bunz O, Ehrhardt A. State‐of‐the‐art human adenovirus vectorology for therapeutic approaches. FEBS Lett 2019; 593:3609-3622. [DOI: 10.1002/1873-3468.13691] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Gao
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Kemal Mese
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Oskar Bunz
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| | - Anja Ehrhardt
- Faculty of Health Centre for Biomedical Education and Research (ZBAF) School of Human Medicine Institute of Virology and Microbiology Witten/Herdecke University Germany
| |
Collapse
|
9
|
Heiniö C, Sorsa S, Siurala M, Grönberg-Vähä-Koskela S, Havunen R, Haavisto E, Koski A, Hemminki O, Zafar S, Cervera-Carrascon V, Munaro E, Kanerva A, Hemminki A. Effect of Genetic Modifications on Physical and Functional Titers of Adenoviral Cancer Gene Therapy Constructs. Hum Gene Ther 2019; 30:740-752. [PMID: 30672366 DOI: 10.1089/hum.2018.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.
Collapse
Affiliation(s)
- Camilla Heiniö
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Mikko Siurala
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Riikka Havunen
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Anniina Koski
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Otto Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,3 Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Sadia Zafar
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Víctor Cervera-Carrascon
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Eleonora Munaro
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,4 Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- 1 Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,2 TILT Biotherapeutics Ltd., Helsinki, Finland.,5 Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Replication deficient human adenovirus vector serotype 19a/64: Immunogenicity in mice and female cynomolgus macaques. Vaccine 2018; 36:6212-6222. [PMID: 30190120 DOI: 10.1016/j.vaccine.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023]
Abstract
The human adenovirus type 19a/64 (hAd19a) is a rare serotype in the human population that transduces human dendritic cells (DCs) and human muscle cells more efficiently than the well-characterized human adenovirus type 5 (hAd5). To further characterize the potential of this vector as a vaccine we designed replication deficient hAd19a, hAd5 and MVA vectors expressing a papillomavirus (PV) antigen fused to the human MHC class II associated invariant chain T cell adjuvant (hIi) and investigated their immunogenicity in vivo in mice and cynomolgus macaques. We initially showed that the hIi encoded in the hAd5 enhanced PV specific CD8+ T cell responses in mice. The T cell responses induced after hAd19a vaccination was similar to those induced by hAd5 vaccination. The hAd19a induced responses were not reduced in presence of preexisting Ad5 immunity in mice. In macaques both vaccines were equally potent at inducing CD8+ T cells after MVA boost, while the level of CD4+ T cell responses were found to be broader in hAd19a primed animals. These data demonstrate the potential of hAd19a as an alternative vector to hAd5 to elicit potent T cell responses to PV.
Collapse
|
11
|
Evaluation of adenovirus 19a as a novel vector for mucosal vaccination against influenza A viruses. Vaccine 2018; 36:2712-2720. [PMID: 29628150 DOI: 10.1016/j.vaccine.2018.02.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/19/2023]
Abstract
Since preexisting immunity and enhanced infection rates in a clinical trial of an HIV vaccine have raised some concerns on adenovirus (Ad) serotype 5-based vaccines, we evaluated the subgroup D adenovirus serotype Ad19a for its suitability as novel viral vector vaccine against mucosal infections. In BALB/c mice, we compared the immunogenicity and efficacy of E1/E3-deleted Ad19a vectors encoding the influenza A virus (IAV)-derived antigens hemagglutinin (HA) and nucleoprotein (NP) to the most commonly used Ad5 vectors. The adenoviral vectors were applied intranasally and induced detectable antigen-specific T cell responses in the lung and in the spleen as well as robust antibody responses. A prior DNA immunization significantly improved the immunogenicity of both vectors and resulted in full protection against a lethal infection with a heterologous H3N2 virus. Nevertheless, the Ad5-based vectors were slightly superior in reducing viral replication in the lung which corresponded to higher NP-specific T cell responses measured in the lungs.
Collapse
|
12
|
Zhang W, Fu J, Liu J, Wang H, Schiwon M, Janz S, Schaffarczyk L, von der Goltz L, Ehrke-Schulz E, Dörner J, Solanki M, Boehme P, Bergmann T, Lieber A, Lauber C, Dahl A, Petzold A, Zhang Y, Stewart AF, Ehrhardt A. An Engineered Virus Library as a Resource for the Spectrum-wide Exploration of Virus and Vector Diversity. Cell Rep 2018; 19:1698-1709. [PMID: 28538186 DOI: 10.1016/j.celrep.2017.05.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Adenoviruses (Ads) are large human-pathogenic double-stranded DNA (dsDNA) viruses presenting an enormous natural diversity associated with a broad variety of diseases. However, only a small fraction of adenoviruses has been explored in basic virology and biomedical research, highlighting the need to develop robust and adaptable methodologies and resources. We developed a method for high-throughput direct cloning and engineering of adenoviral genomes from different sources utilizing advanced linear-linear homologous recombination (LLHR) and linear-circular homologous recombination (LCHR). We describe 34 cloned adenoviral genomes originating from clinical samples, which were characterized by next-generation sequencing (NGS). We anticipate that this recombineering strategy and the engineered adenovirus library will provide an approach to study basic and clinical virology. High-throughput screening (HTS) of the reporter-tagged Ad library in a panel of cell lines including osteosarcoma disease-specific cell lines revealed alternative virus types with enhanced transduction and oncolysis efficiencies. This highlights the usefulness of this resource.
Collapse
Affiliation(s)
- Wenli Zhang
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jing Liu
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Hailong Wang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China; Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Maren Schiwon
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Sebastian Janz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas Schaffarczyk
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Lukas von der Goltz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Johannes Dörner
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Manish Solanki
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Philip Boehme
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Thorsten Bergmann
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Andre Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195-7720, USA
| | - Chris Lauber
- Institute for Medical Informatics and Biometry, Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Dahl
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Petzold
- Deep Sequencing, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, People's Republic of China.
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Anja Ehrhardt
- Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany.
| |
Collapse
|
13
|
Kiener R, Fleischmann M, Schwegler C, Ruzsics Z, Thirion C, Schrödel S, Asbach B, Wagner R. Vaccine vectors based on Adenovirus 19a/64 exhibit broad cellular tropism and potently restimulate HCMV-specific T cell responses ex vivo. Sci Rep 2018; 8:1474. [PMID: 29367743 PMCID: PMC5784015 DOI: 10.1038/s41598-018-19874-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 11/09/2022] Open
Abstract
Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes. We found that unlike Ad5, Ad19a/64 vectors readily transduce a broad panel of immune cells, including monocytes, T cells, NK cells and monocyte-derived dendritic cells (moDCs). Both Ad19a/64- and MVA-transduced moDCs efficiently restimulated IE-1 or pp65-specific T cells but MVA induced a higher amount of cytotoxicity in this cell type. Ad5 and Ad19 induced upregulation of CD86 and HLA-DR in moDCs whereas expression of CD80 and CD83 was largely unaltered. By contrast, MVA transduction led to downregulation of all markers. Taken together, our data demonstrate that Ad19a/64 is a promising vector for the delivery of HCMV immunogens since it transduces dendritic cells with an efficiency that is comparable to MVA, but cytotoxicity and interference with dendritic cell maturation are less pronounced.
Collapse
Affiliation(s)
- Richard Kiener
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Markus Fleischmann
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christiane Schwegler
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center - University of Freiburg, Medical Faculty, University of Freiburg, Hermann-Herder Str 11, 79104, Freiburg, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Universität Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef- Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
14
|
Duffy MR, Alonso-Padilla J, John L, Chandra N, Khan S, Ballmann MZ, Lipiec A, Heemskerk E, Custers J, Arnberg N, Havenga M, Baker AH, Lemckert A. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56. J Gen Virol 2017; 99:135-147. [PMID: 29154744 DOI: 10.1099/jgv.0.000978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.
Collapse
Affiliation(s)
- Margaret R Duffy
- Batavia Biosciences BV, Leiden, The Netherlands.,Present address: Department of Oncology, University of Oxford, Oxford, UK
| | - Julio Alonso-Padilla
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Barcelona Institute for Global Health (ISGlobal), Centre for Research in International Health (CRESIB), Hospital Clinic de Barcelona -University of Barcelona, Barcelona, Spain
| | - Lijo John
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Naresh Chandra
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Selina Khan
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | | | | | | | - Jerome Custers
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | - Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | | | - Andrew H Baker
- Present address: Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
15
|
Zhang W, Ehrhardt A. Getting genetic access to natural adenovirus genomes to explore vector diversity. Virus Genes 2017; 53:675-683. [PMID: 28711987 DOI: 10.1007/s11262-017-1487-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023]
Abstract
Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany.
| |
Collapse
|
16
|
Havunen R, Siurala M, Sorsa S, Grönberg-Vähä-Koskela S, Behr M, Tähtinen S, Santos JM, Karell P, Rusanen J, Nettelbeck DM, Ehrhardt A, Kanerva A, Hemminki A. Oncolytic Adenoviruses Armed with Tumor Necrosis Factor Alpha and Interleukin-2 Enable Successful Adoptive Cell Therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 4:77-86. [PMID: 28345026 PMCID: PMC5363700 DOI: 10.1016/j.omto.2016.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 01/18/2023]
Abstract
Adoptive cell therapy holds much promise in the treatment of cancer but results in solid tumors have been modest. The notable exception is tumor-infiltrating lymphocyte (TIL) therapy of melanoma, but this approach only works with high-dose preconditioning chemotherapy and systemic interleukin (IL)-2 postconditioning, both of which are associated with toxicities. To improve and broaden the applicability of adoptive cell transfer, we constructed oncolytic adenoviruses coding for human IL-2 (hIL2), tumor necrosis factor alpha (TNF-α), or both. The viruses showed potent antitumor efficacy against human tumors in immunocompromised severe combined immunodeficiency (SCID) mice. In immunocompetent Syrian hamsters, we combined the viruses with TIL transfer and were able to cure 100% of the animals. Cured animals were protected against tumor re-challenge, indicating a memory response. Arming with IL-2 and TNF-α increased the frequency of both CD4+ and CD8+ TILs in vivo and augmented splenocyte proliferation ex vivo, suggesting that the cytokines were important for T cell persistence and proliferation. Cytokine expression was limited to tumors and treatment-related signs of systemic toxicity were absent, suggesting safety. To conclude, cytokine-armed oncolytic adenoviruses enhanced adoptive cell therapy by favorable alteration of the tumor microenvironment. A clinical trial is in progress to study the utility of Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123) in human patients with cancer.
Collapse
Affiliation(s)
- Riikka Havunen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; TILT Biotherapeutics, Ltd., 00290 Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; TILT Biotherapeutics, Ltd., 00290 Helsinki, Finland
| | | | - Michael Behr
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; TILT Biotherapeutics, Ltd., 00290 Helsinki, Finland
| | - Pauliina Karell
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Juuso Rusanen
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | | | - Anja Ehrhardt
- Faculty of Health, Institute for Virology and Microbiology, University Witten/Herdecke, 58448 Witten, Germany
| | - Anna Kanerva
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, 00610 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; TILT Biotherapeutics, Ltd., 00290 Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Hospital, 00290 Helsinki, Finland
| |
Collapse
|
17
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
18
|
Behr M, Kaufmann JK, Ketzer P, Engelhardt S, Mück-Häusl M, Okun PM, Petersen G, Neipel F, Hassel JC, Ehrhardt A, Enk AH, Nettelbeck DM. Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds. PLoS One 2014; 9:e95723. [PMID: 24760010 PMCID: PMC3997477 DOI: 10.1371/journal.pone.0095723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/30/2014] [Indexed: 11/18/2022] Open
Abstract
Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK). This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis.
Collapse
Affiliation(s)
- Michael Behr
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanna K. Kaufmann
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Ketzer
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sarah Engelhardt
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Mück-Häusl
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pamela M. Okun
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Gabriele Petersen
- COS, CellNetworks Deep Sequencing Core Facility, University Heidelberg, Heidelberg, Germany
| | - Frank Neipel
- Institute for Clinical and Molecular Virology, Erlangen University Hospital, Erlangen, Germany
| | - Jessica C. Hassel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anja Ehrhardt
- Max von Pettenkofer-Institute, Department of Virology, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Virology and Microbiology, Center for Biomedical Education and Research, Department of Human Medicine, Faculty of Health, University Witten/Herdecke, Witten, Germany
| | - Alexander H. Enk
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk M. Nettelbeck
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Pogoda M, Bosse JB, Conzelmann KK, Koszinowski UH, Ruzsics Z. A modified screening system for loss-of-function and dominant negative alleles of essential MCMV genes. PLoS One 2014; 9:e94918. [PMID: 24733555 PMCID: PMC3986410 DOI: 10.1371/journal.pone.0094918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Abstract
Inactivation of gene products by dominant negative mutants is a valuable tool to assign functions to yet uncharacterized proteins, to map protein-protein interactions or to dissect physiological pathways. Detailed functional and structural knowledge about the target protein would allow the construction of inhibitory mutants by targeted mutagenesis. Yet, such data are limited for the majority of viral proteins, so that the target gene needs to be subjected to random mutagenesis to identify suitable mutants. However, for cytomegaloviruses this requires a two-step screening approach, which is time-consuming and labor-intensive. Here, we report the establishment of a high-throughput suitable screening system for the identification of inhibitory alleles of essential genes of the murine cytomegalovirus (MCMV). In this screen, the site-specific recombination of a specifically modified MCMV genome was transferred from the bacterial background to permissive host cells, thereby combining the genetic engineering and the rescue test in one step. Using a reference set of characterized pM53 mutants it was shown that the novel system is applicable to identify non-complementing as well as inhibitory mutants in a high-throughput suitable setup. The new cis-complementation assay was also applied to a basic genetic characterization of pM99, which was identified as essential for MCMV growth. We believe that the here described novel genetic screening approach can be adapted for the genetic characterization of essential genes of any large DNA viruses.
Collapse
Affiliation(s)
- Madlen Pogoda
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| | - Jens B. Bosse
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | - Zsolt Ruzsics
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| |
Collapse
|
20
|
Abstract
Bacterial artificial chromosomes (BACs) are recombinant DNA molecules designed for propagation of large and instable foreign DNA fragment in Escherichia coli. BACs are used in genetics of large DNA viruses such as herpes and baculoviruses for propagation and manipulation of complex genomic regions or even entire viral genomes in one piece. Viral genomes in BACs are ready for the advanced tools of E. coli genetics. These techniques based on homologous or site-specific recombination allow engineering of virtually any kind of genetic changes. In the recent years, BAC technology was also adapted to manipulation of adenovirus genomes and became an effective alternative to traditional genetic engineering of recombinant adenoviruses.
Collapse
|
21
|
A unique secreted adenovirus E3 protein binds to the leukocyte common antigen CD45 and modulates leukocyte functions. Proc Natl Acad Sci U S A 2013; 110:E4884-93. [PMID: 24218549 DOI: 10.1073/pnas.1312420110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The E3 transcription unit of human adenoviruses (Ads) encodes immunomodulatory proteins. Interestingly, the size and composition of the E3 region differs considerably among Ad species, suggesting that distinct sets of immunomodulatory E3 proteins may influence their interaction with the human host and the disease pattern. However, to date, only common immune evasion functions of species C E3 proteins have been described. Here we report on the immunomodulatory activity of a species D-specific E3 protein, E3/49K. Unlike all other E3 proteins that act on infected cells, E3/49K seems to target uninfected cells. Initially synthesized as an 80- to 100-kDa type I transmembrane protein, E3/49K is subsequently cleaved, with the large ectodomain (sec49K) secreted. We found that purified sec49K exhibits specific binding to lymphoid cell lines and all primary leukocytes, but not to fibroblasts or epithelial cells. Consistent with this binding profile and the molecular mass, the sec49K receptor was identified as the cell surface protein tyrosine phosphatase CD45. Antibody-blocking studies suggested that sec49K binds to the membrane proximal domains present in all CD45 isoforms. Functional studies showed that sec49K can suppress the activation and cytotoxicity of natural killer cells as well as the activation, signaling, and cytokine production of T cells. Thus, we have discovered an adenovirus protein that is actively secreted and describe immunomodulatory activities of an E3 protein uniquely expressed by a single Ad species.
Collapse
|
22
|
Abstract
Genes within the E3 transcription unit of human adenoviruses modulate host immune responses to infection. A comprehensive genomics and bioinformatics analysis of the E3 transcription unit for 38 viruses within human adenovirus species D (HAdV-D) revealed distinct and surprising patterns of homologous recombination. Homologous recombination was identified in open reading frames for E3 CR1α, CR1β, and CR1γ, similar to that previously observed with genes encoding the three major structural capsid proteins, the penton base, hexon, and fiber.
Collapse
|
23
|
The transmembrane domain of the adenovirus E3/19K protein acts as an endoplasmic reticulum retention signal and contributes to intracellular sequestration of major histocompatibility complex class I molecules. J Virol 2013; 87:6104-17. [PMID: 23514889 DOI: 10.1128/jvi.03391-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus E3/19K protein is a type I transmembrane glycoprotein of the endoplasmic reticulum (ER) that abrogates cell surface transport of major histocompatibility complex class I (MHC-I) and MHC-I-related chain A and B (MICA/B) molecules. Previous data suggested that E3/19K comprises two functional modules: a luminal domain for interaction with MHC-I and MICA/B molecules and a dilysine motif in the cytoplasmic tail that confers retrieval from the Golgi apparatus back to the ER. This study was prompted by the unexpected phenotype of an E3/19K molecule that was largely retained intracellularly despite having a mutated ER retrieval motif. To identify additional structural determinants responsible for ER localization, chimeric molecules were generated containing the luminal E3/19K domain and the cytoplasmic and/or transmembrane domain (TMD) of the cell surface protein MHC-I K(d). These chimeras were analyzed for transport, cell surface expression, and impact on MHC-I and MICA/B downregulation. As with the retrieval mutant, replacement of the cytoplasmic tail of E3/19K allowed only limited transport of the chimera to the cell surface. Efficient cell surface expression was achieved only by additionally replacing the TMD of E3/19K with that of MHC-I, suggesting that the E3/19K TMD may confer static ER retention. This was verified by ER retention of an MHC-I K(d) molecule with the TMD replaced by that of E3/19K. Thus, we have identified the E3/19K TMD as a novel functional element that mediates static ER retention, thereby increasing the concentration of E3/19K in the ER. Remarkably, the ER retrieval signal alone, without the E3/19K TMD, did not mediate efficient HLA downregulation, even in the context of infection. This suggests that the TMD is required together with the ER retrieval function to ensure efficient ER localization and transport inhibition of MHC-I and MICA/B molecules.
Collapse
|
24
|
Robinson CM, Seto D, Jones MS, Dyer DW, Chodosh J. Molecular evolution of human species D adenoviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2011; 11:1208-17. [PMID: 21570490 PMCID: PMC3139803 DOI: 10.1016/j.meegid.2011.04.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 12/15/2022]
Abstract
Adenoviruses are medium-sized double stranded DNA viruses that infect vertebrates. Human adenoviruses cause an array of diseases. Currently there are 56 human adenovirus types recognized and characterized within seven species (A-G). Of those types, a majority belongs to species D. In this review, the genomic conservation and diversity are examined among human adenoviruses within species D, particularly in contrast to other human adenovirus species. Specifically, homologous recombination is presented as a driving force for the molecular evolution of human adenoviruses and the emergence of new adenovirus pathogens.
Collapse
Affiliation(s)
- Christopher M. Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, Massachusetts, 02114, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 N.E. 10, Oklahoma City, Oklahoma, 73104, USA
| | - Donald Seto
- Department of Bioinformatics and Computational Biology, School of Systems Biology, George Mason University. 10900 University Blvd., MSN 5B3, Manassas, VA, 20110, USA
| | - Morris S. Jones
- Viral and Rickettsial Disease Laboratory, California Department of Public Health. Richmond, California, 94804 USA
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 975 N.E. 10, Oklahoma City, Oklahoma, 73104, USA
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles Street, Boston, Massachusetts, 02114, USA
| |
Collapse
|
25
|
Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol 2010; 85:481-96. [PMID: 21047958 DOI: 10.1128/jvi.01571-10] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human adenoviruses (Ads) replicate and assemble particles in the nucleus. They organize a linear double-strand DNA genome into a condensed core with about 180 nucleosomes, by the viral proteins VII (pVII), pX, and pV attaching the DNA to the capsid. Using reverse genetics, we generated a novel, nonconditionally replicating Ad reporter by inserting green fluorescent protein (GFP) at the amino terminus of pV. Purified Ad2-GFP-pV virions had an oversized complete genome and incorporated about 38 GFP-pV molecules per virion, which is about 25% of the pV levels in Ad2. GFP-pV cofractionated with the DNA core, like pV, and newly synthesized GFP-pV had a subcellular localization indistinguishable from that of pV, indicating that GFP-pV is a valid reporter for pV. Ad2-GFP-pV completed the replication cycle, although at lower yields than Ad2. Incoming GFP-pV (or pV) was not imported into the nucleus. Virions lost GFP-pV at two points during the infection process: at entry into the cytosol and at the nuclear pore complex, where capsids disassemble. Disassembled capsids, positive for the conformation-specific antihexon antibody R70, were devoid of GFP-pV. The loss of GFP-pV was reduced by the macrolide antibiotic leptomycin B (LMB), which blocks nuclear export and adenovirus attachment to the nuclear pore complex. LMB inhibited the appearance of R70 epitopes on Ad2 and Ad2-GFP-pV, indicating that the loss of GFP-pV from Ad2-GFP-pV is an authentic step in the adenovirus uncoating program. Ad2-GFP-pV is genetically complete and hence enables detailed analyses of infection and spreading dynamics in cells and model organisms or assessment of oncolytic adenoviral potential.
Collapse
|
26
|
Abstract
Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.
Collapse
|
27
|
Wodrich H, Henaff D, Jammart B, Segura-Morales C, Seelmeir S, Coux O, Ruzsics Z, Wiethoff CM, Kremer EJ. A capsid-encoded PPxY-motif facilitates adenovirus entry. PLoS Pathog 2010; 6:e1000808. [PMID: 20333243 PMCID: PMC2841620 DOI: 10.1371/journal.ppat.1000808] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/05/2010] [Indexed: 02/07/2023] Open
Abstract
Viruses use cellular machinery to enter and infect cells. In this study we address the cell entry mechanisms of nonenveloped adenoviruses (Ads). We show that protein VI, an internal capsid protein, is rapidly exposed after cell surface attachment and internalization and remains partially associated with the capsid during intracellular transport. We found that a PPxY motif within protein VI recruits Nedd4 E3 ubiquitin ligases to bind and ubiquitylate protein VI. We further show that this PPxY motif is involved in rapid, microtubule-dependent intracellular movement of protein VI. Ads with a mutated PPxY motif can efficiently escape endosomes but are defective in microtubule-dependent trafficking toward the nucleus. Likewise, depletion of Nedd4 ligases attenuates nuclear accumulation of incoming Ad particles and infection. Our data provide the first evidence that virus-encoded PPxY motifs are required during virus entry, which may be of significance for several other pathogens.
Collapse
Affiliation(s)
- Harald Wodrich
- Institut Génétique Moléculaire de Montpellier, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mühlbach H, Mohr CA, Ruzsics Z, Koszinowski UH. Dominant-negative proteins in herpesviruses - from assigning gene function to intracellular immunization. Viruses 2009; 1:420-40. [PMID: 21994555 PMCID: PMC3185506 DOI: 10.3390/v1030420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 11/17/2022] Open
Abstract
Investigating and assigning gene functions of herpesviruses is a process, which profits from consistent technical innovation. Cloning of bacterial artificial chromosomes encoding herpesvirus genomes permits nearly unlimited possibilities in the construction of genetically modified viruses. Targeted or randomized screening approaches allow rapid identification of essential viral proteins. Nevertheless, mapping of essential genes reveals only limited insight into function. The usage of dominant-negative (DN) proteins has been the tool of choice to dissect functions of proteins during the viral life cycle. DN proteins also facilitate the analysis of host-virus interactions. Finally, DNs serve as starting-point for design of new antiviral strategies.
Collapse
Affiliation(s)
| | | | - Zsolt Ruzsics
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| | - Ulrich H. Koszinowski
- Max-von-Pettenkofer Institut, LMU, Feodor-Lynenstr. 25, 81377 Munich, Germany; E-Mails: (H.M.); (C.A.M.); (Z.R.)
| |
Collapse
|
29
|
Imelli N, Ruzsics Z, Puntener D, Gastaldelli M, Greber UF. Genetic reconstitution of the human adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape. Virol J 2009; 6:174. [PMID: 19860872 PMCID: PMC2771014 DOI: 10.1186/1743-422x-6-174] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 10/27/2009] [Indexed: 12/05/2022] Open
Abstract
Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5) cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L) in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC) gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein), which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for genetic analyses of distinct host requirements for Ad endocytosis and escape from endosomes.
Collapse
Affiliation(s)
- Nicola Imelli
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Jager L, Hausl MA, Rauschhuber C, Wolf NM, Kay MA, Ehrhardt A. A rapid protocol for construction and production of high-capacity adenoviral vectors. Nat Protoc 2009; 4:547-64. [PMID: 19373227 DOI: 10.1038/nprot.2009.4] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-capacity adenoviral vectors (HC-AdVs) lacking all viral coding sequences were shown to result in long-term transgene expression and phenotypic correction in small and large animal models. It has been established that HC-AdVs show significantly reduced toxicity profiles compared with early-generation adenoviral vectors. Furthermore, with capsid-modified HC-AdV becoming available, we are just starting to understand the full potential of this vector system. However, for many researchers, the wide-scale use of HC-AdV is hampered by labor-intensive and complex production procedures. Herein, we provide a feasible and detailed protocol for efficient generation of HC-AdV. We introduce an efficient cloning strategy for the generation of recombinant HC-AdV vector genomes. Infection and amplification of the HC-AdV are performed in a spinner culture system. For purification, we routinely apply cesium chloride gradients. Finally, we describe various methods for establishing vector titers. Generation of high-titer HC-AdV can be achieved in 3 weeks.
Collapse
Affiliation(s)
- Lorenz Jager
- Department of Virology, Max von Pettenkofer-Institute, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 2009; 19:165-78. [PMID: 19367611 DOI: 10.1002/rmv.612] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenoviruses (Ads) are the most frequently used viral vectors in gene therapy and cancer therapy. Obstacles to successful clinical application include accumulation of vector and transduction in liver cells, coupled with poor transduction of target cells and tissues such as tumours. Many host molecules, including coagulation factor X, have been identified and suggested to serve as mediators of Ad liver tropism. This review summarises current knowledge concerning these molecules and the mechanisms used by Ads to bind to target cells, and considers the prospects of designing vectors that have been detargeted from the liver and retargeted to cells and tissues of interest in the context of gene therapy and cancer therapy.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, SE-901 85, Sweden.
| |
Collapse
|
32
|
Abstract
Bacterial artificial chromosomes (BACs) are DNA molecules assembled in vitro from defined constituents and are stably maintained as one large DNA fragment in Escherichia coli. Artificial chromosomes are useful for genome sequencing programs, for transduction of DNA segments into eukaryotic cells, and for functional characterization of genomic regions and entire viral genomes such as cytomegalovirus (CMV) genomes. CMV genomes in BACs are ready for the advanced tools of E. coli genetics. Homologous and site-specific recombination, or transposon-based approaches allow for the engineering of virtually any kind of genetic change.
Collapse
Affiliation(s)
- Z Ruzsics
- Max von Pettenkofer Institute, Dept. of Virology, Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | |
Collapse
|
33
|
Mohr CA, Cîcîn-Saîn L, Wagner M, Sacher T, Schnee M, Ruzsics Z, Koszinowski UH. Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines. Int J Med Microbiol 2008; 298:115-25. [PMID: 17702650 DOI: 10.1016/j.ijmm.2007.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The advances of sequence knowledge and genetic engineering hold a great promise for a rational approach to vaccine development. Herpesviruses are important pathogens of all vertebrates. They cause acute and chronic infections and persist in their hosts for life. In man there are eight herpesviruses known and most of them can be linked to diseases. To date only one licensed vaccine against a human herpesvirus exists and there is no proven successful concept on rational design for herpesvirus vaccines available. Here, we use new reverse genetic systems, based on the 230-kb mouse cytomegalovirus genome to explore new methods of vaccine delivery and of virus attenuation. With regard to virus delivery, we show that the bacterial transfer of the infectious DNA in vivo is theoretically possible but not yet a practical option. With regard to a rational approach of virus attenuation, we consider a selective deletion of viral genes that modulate the immune response of the host.
Collapse
Affiliation(s)
- Christian A Mohr
- Max von Pettenkofer-Institut, Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Madisch I, Hofmayer S, Moritz C, Grintzalis A, Hainmueller J, Pring-Akerblom P, Heim A. Phylogenetic analysis and structural predictions of human adenovirus penton proteins as a basis for tissue-specific adenovirus vector design. J Virol 2007; 81:8270-81. [PMID: 17522221 PMCID: PMC1951325 DOI: 10.1128/jvi.00048-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The penton base is a major capsid protein of human adenoviruses (HAdV) which forms the vertices of the capsid and interacts with hexon and fiber protein. Two hypervariable loops of the penton are exposed on the capsid surface. Sequences of these and 300 adjacent amino acid residues of all 51 HAdV and closely related simian adenoviruses were studied. Adjacent sequences and predicted overall secondary structure were conserved. Phylogenetic analysis revealed clustering corresponding to the HAdV species and recombination events in the origin of HAdV prototypes. All HAdV except serotypes 40 and 41 of species F exhibited an integrin binding RGD motif in the second loop. The lengths of the loops (HVR1 and RGD loops) varied significantly between HAdV species with the longest RGD loop observed in species C and the longest HVR1 in species B. Long loops may permit the insertion of motifs that modify tissue tropism. Genetic analysis of HAdV prime strain p17'H30, a neutralization variant of HAdV-D17, indicated the significance of nonhexon neutralization epitopes for HAdV immune escape. Fourteen highly conserved motifs of the penton base were analyzed by site-directed mutagenesis of HAdV-D8 and tested for sustained induction of early cytopathic effects. Thus, three new motifs essential for penton base function were identified additionally to the RGD site, which interacts with a secondary cellular receptor responsible for internalization. Therefore, our penton primary structure data and secondary structure modeling in combination with the recently published fiber knob sequences may permit the rational design of tissue-specific adenoviral vectors.
Collapse
Affiliation(s)
- Ijad Madisch
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|