1
|
Gaba A, Yousefi M, Bhattacharjee S, Chelico L. Variability in HIV-1 transmitted/founder virus susceptibility to combined APOBEC3F and APOBEC3G host restriction. J Virol 2025; 99:e0160624. [PMID: 39714157 PMCID: PMC11784016 DOI: 10.1128/jvi.01606-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1. The relative contributions of multiple APOBEC3s in HIV-1 restriction are not fully understood. Here, we investigated the activity of co-expressed APOBEC3F and APOBEC3G against HIV-1 Subtype B and Subtype C transmitted/founder viruses. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain. We provide evidence that this results in protection of APOBEC3F from Vif-mediated degradation because the APOBEC3F N-terminal domain contains residues required for recognition by Vif. We also found that HIV-1 Subtype C Vifs, but not Subtype B Vifs, were less active against APOBEC3G when APOBEC3F and APOBEC3G were co-expressed. Consequently, when APOBEC3F and APOBEC3G were expressed together in a single cycle of HIV-1 replication, only HIV-1 Subtype C viruses showed a decrease in relative infectivity compared to when APOBEC3G was expressed alone. Inspection of Vif amino acid sequences revealed that differences in amino acids adjacent to conserved sequences influenced the Vif-mediated APOBEC3 degradation ability. Altogether, the data provide a possible mechanism for how combined expression of APOBEC3F and APOBEC3G could contribute to mutagenesis of HIV-1 proviral genomes despite the presence of Vif and provide evidence for variability in the Vif-mediated APOBEC3 degradation ability of transmitted/founder viruses.IMPORTANCEAPOBEC3 enzymes suppress HIV-1 infection by inducing cytosine deamination in proviral DNA but are hindered by HIV-1 Vif, which leads to APOBEC3 proteasomal degradation. Moving away from traditional studies that used lab-adapted HIV-1 Subtype B viruses and singular APOBEC3 enzymes, we examined how transmitted/founder isolates of HIV-1 replicated in the presence of APOBEC3F and APOBEC3G. We determined that APOBEC3F interacts with APOBEC3G through its N-terminal domain and that APOBEC3F, like APOBEC3G, has Vif-mediated degradation determinants in the N-terminal domain. This enabled APOBEC3F to be partially resistant to Vif-mediated degradation. We also demonstrated that Subtype C is more susceptible than Subtype B HIV-1 to combined APOBEC3F/APOBEC3G restriction and identified Vif variations influencing APOBEC3 degradation ability. Importantly, Vif amino acid variation outside of previously identified conserved regions mediated APOBEC3 degradation and HIV-1 Vif subtype-specific differences. Altogether, we identified factors that affect susceptibility to APOBEC3F/APOBEC3G restriction.
Collapse
Affiliation(s)
- Amit Gaba
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maria Yousefi
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shreoshri Bhattacharjee
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Konno Y, Uriu K, Chikata T, Takada T, Kurita JI, Ueda MT, Islam S, Yang Tan BJ, Ito J, Aso H, Kumata R, Williamson C, Iwami S, Takiguchi M, Nishimura Y, Morita E, Satou Y, Nakagawa S, Koyanagi Y, Sato K. Two-step evolution of HIV-1 budding system leading to pandemic in the human population. Cell Rep 2024; 43:113697. [PMID: 38294901 DOI: 10.1016/j.celrep.2024.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
The pandemic HIV-1, HIV-1 group M, emerged from a single spillover event of its ancestral lentivirus from a chimpanzee. During human-to-human spread worldwide, HIV-1 diversified into multiple subtypes. Here, our interdisciplinary investigation mainly sheds light on the evolutionary scenario of the viral budding system of HIV-1 subtype C (HIV-1C), a most successfully spread subtype. Of the two amino acid motifs for HIV-1 budding, the P(T/S)AP and YPxL motifs, HIV-1C loses the YPxL motif. Our data imply that HIV-1C might lose this motif to evade immune pressure. Additionally, the P(T/S)AP motif is duplicated dependently of the level of HIV-1 spread in the human population, and >20% of HIV-1C harbored the duplicated P(T/S)AP motif. We further show that the duplication of the P(T/S)AP motif is caused by the expansion of the CTG triplet repeat. Altogether, our results suggest that HIV-1 has experienced a two-step evolution of the viral budding process during human-to-human spread worldwide.
Collapse
Affiliation(s)
- Yoriyuki Konno
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Toru Takada
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Saiful Islam
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Benjy Jek Yang Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Hirofumi Aso
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Ryuichi Kumata
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan; MIRAI, Japan Science and Technology Agency, Kawaguchi 3320012, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa 2300045, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori 0368561, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8608556, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
| | - Yoshio Koyanagi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, the University of Tokyo, Tokyo 1130033, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2778561, Japan; CREST, Japan Science and Technology Agency, Kawaguchi 3320012, Japan.
| |
Collapse
|
3
|
Kumata R, Iwanami S, Mar KB, Kakizoe Y, Misawa N, Nakaoka S, Koyanagi Y, Perelson AS, Schoggins JW, Iwami S, Sato K. Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection. PLoS Comput Biol 2022; 18:e1010053. [PMID: 35468127 PMCID: PMC9037950 DOI: 10.1371/journal.pcbi.1010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Science, Kyoto University, Kyoto, Japan
| | - Shoya Iwanami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Katrina B. Mar
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yusuke Kakizoe
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Science Groove Inc., Fukuoka, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
4
|
A Conserved uORF Regulates APOBEC3G Translation and Is Targeted by HIV-1 Vif Protein to Repress the Antiviral Factor. Biomedicines 2021; 10:biomedicines10010013. [PMID: 35052693 PMCID: PMC8773096 DOI: 10.3390/biomedicines10010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.
Collapse
|
5
|
Gao H, Ozantürk AN, Wang Q, Harlan GH, Schmitz AJ, Presti RM, Deng K, Shan L. Evaluation of HIV-1 latency reversal and antibody-dependent viral clearance by quantification of singly spliced HIV-1 vpu/ env mRNA. J Virol 2021; 95:JVI.02124-20. [PMID: 33762408 PMCID: PMC8139706 DOI: 10.1128/jvi.02124-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
The latent reservoir of HIV-1 is a major barrier for viral eradication. Potent HIV-1 broadly neutralizing antibodies (bNabs) have been used to prevent and treat HIV-1 infections in animal models and clinical trials. Combination of bNabs and latency-reversing agents (LRAs) is considered a promising approach for HIV-1 eradication. PCR-based assays that can rapidly and specifically measure singly spliced HIV-1 vpu/env mRNA are needed to evaluate the induction of the viral envelope production at the transcription level and bNab-mediated reservoir clearance. Here we reported a PCR-based method to accurately quantify the production of intracellular HIV-1 vpu/env mRNA. With the vpu/env assay, we determined the LRA combinations that could effectively induce vpu/env mRNA production in CD4+ T cells from ART-treated individuals. None of the tested LRAs were effective alone. A comparison between the quantitative viral outgrowth assay (Q-VOA) and the vpu/env assay showed that vpu/env mRNA production was closely associated with the reactivation of replication-competent HIV-1, suggesting that vpu/env mRNA was mainly produced by intact viruses. Finally, antibody-mediated in vitro killing in HIV-1-infected humanized mice demonstrated that the vpu/env assay could be used to measure the reduction of infected cells in tissues and was more accurate than the commonly used gag-based PCR assay which measured unspliced viral genomic RNA. In conclusion, the vpu/env assay allows convenient and accurate assessment of HIV-1 latency reversal and bNab-mediated therapeutic strategies.ImportanceHIV-1 persists in individuals on antiretroviral therapy (ART) due to the long-lived cellular reservoirs that contain dormant viruses. Recent discoveries of HIV-1-specific broadly neutralizing antibodies (bNabs) targeting HIV-1 Env protein rekindled the interest in antibody-mediated elimination of latent HIV-1. Latency-reversing agents (LRAs) together with HIV-1 bNabs is a possible strategy to clear residual viral reservoirs, which makes the evaluation of HIV-1 Env expression upon LRA treatment critical. We developed a PCR-based assay to quantify the production of intracellular HIV-1 vpu/env mRNA. Using patient CD4+ T cells, we found that induction of HIV-1 vpu/env mRNA required a combination of different LRAs. Using in vitro, ex vivo and humanized mouse models, we showed that the vpu/env assay could be used to measure antibody efficacy in clearing HIV-1 infection. These results suggest that the vpu/env assay can accurately evaluate HIV-1 reactivation and bNab-based therapeutic interventions.
Collapse
Affiliation(s)
- Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ayşe N Ozantürk
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
7
|
Soper A, Koyanagi Y, Sato K. HIV-1 tracing method of systemic viremia in vivo using an artificially mutated virus pool. Microbiol Immunol 2021; 65:17-27. [PMID: 33230872 DOI: 10.1111/1348-0421.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 11/28/2022]
Abstract
The appearance of human immunodeficiency virus type 1 (HIV-1) plasma viremia is associated with progression to symptomatic disease and CD4+ T cell depletion. To locate the source of systemic viremia, this study employed a novel method to trace HIV-1 infection in vivo. We created JRCSFξnef, a pool of infectious HIV-1 (strain JR-CSF) with highly mutated nef gene regions by random mutagenesis PCR and infected this mutated virus pool into both Jurkat-CCR5 cells and hematopoietic stem cell-transplanted humanized mice. Infection resulted in systemic plasma viremia in humanized mice and viral RNA sequencing helped us to identify multiple lymphoid organs such as spleen, lymph nodes, and bone marrow but not peripheral blood cells as the source of systemic viremia. Our data suggest that this method could be useful for the tracing of viral trafficking in vivo.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Department of Infectious Disease Control, Division of Systems Virology, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
The Role of APOBECs in Viral Replication. Microorganisms 2020; 8:microorganisms8121899. [PMID: 33266042 PMCID: PMC7760323 DOI: 10.3390/microorganisms8121899] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) proteins are a diverse and evolutionarily conserved family of cytidine deaminases that provide a variety of functions from tissue-specific gene expression and immunoglobulin diversity to control of viruses and retrotransposons. APOBEC family expansion has been documented among mammalian species, suggesting a powerful selection for their activity. Enzymes with a duplicated zinc-binding domain often have catalytically active and inactive domains, yet both have antiviral function. Although APOBEC antiviral function was discovered through hypermutation of HIV-1 genomes lacking an active Vif protein, much evidence indicates that APOBECs also inhibit virus replication through mechanisms other than mutagenesis. Multiple steps of the viral replication cycle may be affected, although nucleic acid replication is a primary target. Packaging of APOBECs into virions was first noted with HIV-1, yet is not a prerequisite for viral inhibition. APOBEC antagonism may occur in viral producer and recipient cells. Signatures of APOBEC activity include G-to-A and C-to-T mutations in a particular sequence context. The importance of APOBEC activity for viral inhibition is reflected in the identification of numerous viral factors, including HIV-1 Vif, which are dedicated to antagonism of these deaminases. Such viral antagonists often are only partially successful, leading to APOBEC selection for viral variants that enhance replication or avoid immune elimination.
Collapse
|
9
|
Villanova F, Barreiros M, Leal É. Is the tryptophan codon of gene vif the Achilles' heel of HIV-1? PLoS One 2020; 15:e0225563. [PMID: 32570272 PMCID: PMC7308096 DOI: 10.1371/journal.pone.0225563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/05/2020] [Indexed: 12/04/2022] Open
Abstract
To evaluate the impact of hypermutation on the HIV-1 dissemination at the population level we studied 7072 sequences HIV-1 gene vif retrieved from the public databank. From this dataset 854 sequences were selected because they had associated values of CD4+ T lymphocytes counts and viral loads and they were used to assess the correlation between clinical parameters and hypermutation. We found that the frequency of stop codons at sites 5, 11 and 79 ranged from 2.8x10-4 to 4.2x10-4. On the other hand, at codons 21, 38, 70, 89 and 174 the frequency of stop codons ranged from 1.4x10-3 to 2.5x10-3. We also found a correlation between clinical parameters and hypermutation where patients harboring proviruses with one or more stop codons at the tryptophan sites of the gene vif had higher CD4+ T lymphocytes counts and lower viral loads compared to the population. Our findings indicate that A3 activity potentially restrains HIV-1 replication because individuals with hypermutated proviruses tend to have lower numbers of RNA copies. However, owing to the low frequency of hypermutated sequences observed in the databank (44 out of 7072), it is unlikely that A3 has a significant impact to curb HIV-1 dissemination at the population level.
Collapse
Affiliation(s)
- Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Marta Barreiros
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
10
|
Kurusu T, Kim KS, Koizumi Y, Nakaoka S, Ejima K, Misawa N, Koyanagi Y, Sato K, Iwami S. Quantifying the antiviral effect of APOBEC3 on HIV-1 infection in humanized mouse model. J Theor Biol 2020; 498:110295. [PMID: 32335137 DOI: 10.1016/j.jtbi.2020.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
APOBEC3 proteins inhibit human immunodeficiency virus (HIV)-1 infection by independently impairing viral reverse transcription and inducing G-to-A mutations in viral DNA. An HIV-1-encoded protein, viral infectivity factor (Vif), can counteract these antiviral activities of APOBEC3 proteins. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the antiviral action of APOBEC3 proteins and their antagonism by Vif, it remains unclear how APOBEC3 proteins affect the kinetics of HIV-1 replication in vivo. Here we quantified the time-series of viral load datasets from humanized mice infected with HIV-1 variants in the presence of APOBEC3F, APOBEC3G, or both APOBEC3F/G using a simple mathematical model that accounted for inter-individual variability. Through experimental and mathematical investigation, we formulated and calculated the total antiviral activity of APOBEC3F and APOBEC3G based on the estimated initial growth rates of viral loads in vivo. Interestingly, we quantitatively demonstrated that compared with APOBEC3G, the antiviral activity of APOBEC3F was widely distributed but skewed toward lower activity, although their mean values were similar. We concluded that APOBEC3G markedly and robustly restricted the initial stages of viral growth in vivo. This is the first report to quantitatively elucidate how APOBEC3F and APOBEC3G differ in their anti-HIV-1 modes in vivo.
Collapse
Affiliation(s)
- Tatsuya Kurusu
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kwang Su Kim
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| | - Yoshiki Koizumi
- National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; PRESTO, JST, Saitama 332-0012, Japan; MIRAI, JST, Saitama 332-0012, Japan
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University -Bloomington, IN, United States; Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Naoko Misawa
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshio Koyanagi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | - Kei Sato
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; MIRAI, JST, Saitama 332-0012, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo 135-8550, Japan; Science Groove Inc., Fukuoka 810-0041, Japan.
| |
Collapse
|
11
|
Impact of Suboptimal APOBEC3G Neutralization on the Emergence of HIV Drug Resistance in Humanized Mice. J Virol 2020; 94:JVI.01543-19. [PMID: 31801862 DOI: 10.1128/jvi.01543-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 01/05/2023] Open
Abstract
HIV diversification facilitates immune escape and complicates antiretroviral therapy. In this study, we take advantage of a humanized-mouse model to probe the contribution of APOBEC3 mutagenesis to viral evolution. Humanized mice were infected with isogenic HIV molecular clones (HIV-WT, HIV-45G, and HIV-ΔSLQ) that differ in their abilities to counteract APOBEC3G (A3G). Infected mice remained naive or were treated with the reverse transcriptase (RT) inhibitor lamivudine (3TC). Viremia, emergence of drug-resistant variants, and quasispecies diversification in the plasma compartment were determined throughout infection. While both HIV-WT and HIV-45G achieved robust infection, over time, HIV-45G replication was significantly reduced compared to that of HIV-WT in the absence of 3TC treatment. In contrast, treatment responses differed significantly between HIV-45G- and HIV-WT-infected mice. Antiretroviral treatment failed in 91% of HIV-45G-infected mice, while only 36% of HIV-WT-infected mice displayed a similar negative outcome. Emergence of 3TC-resistant variants and nucleotide diversity were determined by analyzing 155,462 single HIV reverse transcriptase gene (RT) and 6,985 vif sequences from 33 mice. Prior to treatment, variants with genotypic 3TC resistance (RT-M184I/V) were detected at low levels in over a third of all the animals. Upon treatment, the composition of the plasma quasispecies rapidly changed, leading to a majority of circulating viral variants encoding RT-184I. Interestingly, increased viral diversity prior to treatment initiation correlated with higher plasma viremia in HIV-45G-infected animals, but not in HIV-WT-infected animals. Taken together, HIV variants with suboptimal anti-A3G activity were attenuated in the absence of selection but displayed a fitness advantage in the presence of antiretroviral treatment.IMPORTANCE Both viral (e.g., RT) and host (e.g., A3G) factors can contribute to HIV sequence diversity. This study shows that suboptimal anti-A3G activity shapes viral fitness and drives viral evolution in the plasma compartment in humanized mice.
Collapse
|
12
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance. Heliyon 2019; 5:e01498. [PMID: 31025011 PMCID: PMC6475876 DOI: 10.1016/j.heliyon.2019.e01498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 01/04/2023] Open
Abstract
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
Collapse
|
13
|
Salter JD, Polevoda B, Bennett RP, Smith HC. Regulation of Antiviral Innate Immunity Through APOBEC Ribonucleoprotein Complexes. Subcell Biochem 2019; 93:193-219. [PMID: 31939152 DOI: 10.1007/978-3-030-28151-9_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process. Once inside infected cells, A3G must bind to nascent ssDNA reverse transcripts for dC to dU base modification gene editing. In this chapter we will discuss data indicating that ssDNA deaminase activity of A3G is regulated by RNA binding to A3G and ribonucleoprotein complex formation along with evidence suggesting that RNA-selective interactions with A3G are temporally and mechanistically important in this process.
Collapse
Affiliation(s)
- Jason D Salter
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Bogdan Polevoda
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Ryan P Bennett
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA
| | - Harold C Smith
- OyaGen, Inc, 77 Ridgeland Road, Rochester, NY, 14623, USA. .,Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Yamada E, Nakaoka S, Klein L, Reith E, Langer S, Hopfensperger K, Iwami S, Schreiber G, Kirchhoff F, Koyanagi Y, Sauter D, Sato K. Human-Specific Adaptations in Vpu Conferring Anti-tetherin Activity Are Critical for Efficient Early HIV-1 Replication In Vivo. Cell Host Microbe 2018; 23:110-120.e7. [PMID: 29324226 DOI: 10.1016/j.chom.2017.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
Abstract
The HIV-1-encoded accessory protein Vpu exerts several immunomodulatory functions, including counteraction of the host restriction factor tetherin, downmodulation of CD4, and inhibition of NF-κB activity to facilitate HIV-1 infection. However, the relative contribution of individual Vpu functions to HIV-1 infection in vivo remained unclear. Here, we used a humanized mouse model and HIV-1 strains with selective mutations in vpu to demonstrate that the anti-tetherin activity of Vpu is a prerequisite for efficient viral spread during the early phase of infection. Mathematical modeling and gain-of-function mutations in SIVcpz, the simian precursor of pandemic HIV-1, corroborate this finding. Blockage of interferon signaling combined with transcriptome analyses revealed that basal tetherin levels are sufficient to control viral replication. These results establish tetherin as a key effector of the intrinsic immune defense against HIV-1, and they demonstrate that Vpu-mediated tetherin antagonism is critical for efficient viral spread during the initial phase of HIV-1 replication.
Collapse
Affiliation(s)
- Eri Yamada
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Shinji Nakaoka
- Institute of Industrial Sciences, The University of Tokyo, Tokyo 1538505, Japan; PRESTO, Japan Science and Technology Agency, Saitama 3320012, Japan
| | - Lukas Klein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Elisabeth Reith
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Shingo Iwami
- PRESTO, Japan Science and Technology Agency, Saitama 3320012, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan; Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
15
|
Hossain D, Ferreira Barbosa JA, Cohen ÉA, Tsang WY. HIV-1 Vpr hijacks EDD-DYRK2-DDB1 DCAF1 to disrupt centrosome homeostasis. J Biol Chem 2018; 293:9448-9460. [PMID: 29724823 PMCID: PMC6005440 DOI: 10.1074/jbc.ra117.001444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Indexed: 11/06/2022] Open
Abstract
Viruses exploit the host cell machinery for their own profit. To evade innate immune sensing and promote viral replication, HIV type 1 (HIV-1) subverts DNA repair regulatory proteins and induces G2/M arrest. The preintegration complex of HIV-1 is known to traffic along microtubules and accumulate near the microtubule-organizing center. The centrosome is the major microtubule-organizing center in most eukaryotic cells, but precisely how HIV-1 impinges on centrosome biology remains poorly understood. We report here that the HIV-1 accessory protein viral protein R (Vpr) localized to the centrosome through binding to DCAF1, forming a complex with the ubiquitin ligase EDD-DYRK2-DDB1DCAF1 and Cep78, a resident centrosomal protein previously shown to inhibit EDD-DYRK2-DDB1DCAF1 Vpr did not affect ubiquitination of Cep78. Rather, it enhanced ubiquitination of an EDD-DYRK2-DDB1DCAF1 substrate, CP110, leading to its degradation, an effect that could be overcome by Cep78 expression. The down-regulation of CP110 and elongation of centrioles provoked by Vpr were independent of G2/M arrest. Infection of T lymphocytes with HIV-1, but not with HIV-1 lacking Vpr, promoted CP110 degradation and centriole elongation. Elongated centrioles recruited more γ-tubulin to the centrosome, resulting in increased microtubule nucleation. Our results suggest that Vpr is targeted to the centrosome where it hijacks a ubiquitin ligase, disrupting organelle homeostasis, which may contribute to HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Delowar Hossain
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | | | - Éric A Cohen
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Microbiology, Infectiology, and Immunology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada, and
| | - William Y Tsang
- From the Institut de recherches cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada,
- the Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- the Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
16
|
Ledesma-Feliciano C, Hagen S, Troyer R, Zheng X, Musselman E, Slavkovic Lukic D, Franke AM, Maeda D, Zielonka J, Münk C, Wei G, VandeWoude S, Löchelt M. Replacement of feline foamy virus bet by feline immunodeficiency virus vif yields replicative virus with novel vaccine candidate potential. Retrovirology 2018; 15:38. [PMID: 29769087 PMCID: PMC5956581 DOI: 10.1186/s12977-018-0419-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/03/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Hosts are able to restrict viral replication to contain virus spread before adaptive immunity is fully initiated. Many viruses have acquired genes directly counteracting intrinsic restriction mechanisms. This phenomenon has led to a co-evolutionary signature for both the virus and host which often provides a barrier against interspecies transmission events. Through different mechanisms of action, but with similar consequences, spumaviral feline foamy virus (FFV) Bet and lentiviral feline immunodeficiency virus (FIV) Vif counteract feline APOBEC3 (feA3) restriction factors that lead to hypermutation and degradation of retroviral DNA genomes. Here we examine the capacity of vif to substitute for bet function in a chimeric FFV to assess the transferability of anti-feA3 factors to allow viral replication. RESULTS We show that vif can replace bet to yield replication-competent chimeric foamy viruses. An in vitro selection screen revealed that an engineered Bet-Vif fusion protein yields suboptimal protection against feA3. After multiple passages through feA3-expressing cells, however, variants with optimized replication competence emerged. In these variants, Vif was expressed independently from an N-terminal Bet moiety and was stably maintained. Experimental infection of immunocompetent domestic cats with one of the functional chimeras resulted in seroconversion against the FFV backbone and the heterologous FIV Vif protein, but virus could not be detected unambiguously by PCR. Inoculation with chimeric virus followed by wild-type FFV revealed that repeated administration of FVs allowed superinfections with enhanced antiviral antibody production and detection of low level viral genomes, indicating that chimeric virus did not induce protective immunity against wild-type FFV. CONCLUSIONS Unrelated viral antagonists of feA3 cellular restriction factors can be exchanged in FFV, resulting in replication competence in vitro that was attenuated in vivo. Bet therefore may have additional functions other than A3 antagonism that are essential for successful in vivo replication. Immune reactivity was mounted against the heterologous Vif protein. We conclude that Vif-expressing FV vaccine vectors may be an attractive tool to prevent or modulate lentivirus infections with the potential option to induce immunity against additional lentivirus antigens.
Collapse
Affiliation(s)
- Carmen Ledesma-Feliciano
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Hagen
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Ryan Troyer
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Xin Zheng
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Esther Musselman
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Dragana Slavkovic Lukic
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Internal Medicine II, Division of Hematology, University Hospital of Würzburg, Würzburg, Germany
| | - Ann-Mareen Franke
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Roche Pharma AG, Grenzach-Wyhlen, Germany
| | - Daniel Maeda
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jörg Zielonka
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Roche Glycart AG, Schlieren, 8952, Switzerland
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Division of Infectious Disease, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, (Deutsches Krebsforschungszentrum Heidelberg, DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Bennett RP, Salter JD, Smith HC. A New Class of Antiretroviral Enabling Innate Immunity by Protecting APOBEC3 from HIV Vif-Dependent Degradation. Trends Mol Med 2018; 24:507-520. [PMID: 29609878 PMCID: PMC7362305 DOI: 10.1016/j.molmed.2018.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022]
Abstract
The infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery. This Review will examine the current state of development of Vif inhibitors that we believe to have therapeutic and functional cure potential.
Collapse
Affiliation(s)
- Ryan P Bennett
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA.
| | - Jason D Salter
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA
| | - Harold C Smith
- OyaGen, Inc., 77 Ridgeland Road, Rochester, NY 14623, USA; University of Rochester, School of Medicine and Dentistry, Department of Biochemistry and Biophysics, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
18
|
Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. J Virol 2018; 92:JVI.01905-17. [PMID: 29212937 DOI: 10.1128/jvi.01905-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of AIDS, originated from simian immunodeficiency virus from chimpanzees (SIVcpz), the precursor of the human virus, approximately 100 years ago. This indicates that HIV-1 has emerged through the cross-species transmission of SIVcpz from chimpanzees to humans. However, it remains unclear how SIVcpz has evolved into pandemic HIV-1 in humans. To address this question, we inoculated three SIVcpz strains (MB897, EK505, and MT145), four pandemic HIV-1 strains (NL4-3, NLCSFV3, JRCSF, and AD8), and two nonpandemic HIV-1 strains (YBF30 and DJO0131). Humanized mice infected with SIVcpz strain MB897, a virus phylogenetically similar to pandemic HIV-1, exhibited a peak viral load comparable to that of mice infected with pandemic HIV-1, while peak viral loads of mice infected with SIVcpz strain EK505 or MT145 as well as nonpandemic HIV-1 strains were significantly lower. These results suggest that SIVcpz strain MB897 is preadapted to humans, unlike the other SIVcpz strains. Moreover, viral RNA sequencing of MB897-infected humanized mice identified a nonsynonymous mutation in env, a G413R substitution in gp120. The infectivity of the gp120 G413R mutant of MB897 was significantly higher than that of parental MB897. Furthermore, we demonstrated that the gp120 G413R mutant of MB897 augments the capacity for viral replication in both in vitro cell cultures and humanized mice. Taken together, this is the first experimental investigation to use an animal model to demonstrate a gain-of-function evolution of SIVcpz into pandemic HIV-1.IMPORTANCE From the mid-20th century, humans have been exposed to the menace of infectious viral diseases, such as severe acute respiratory syndrome coronavirus, Ebola virus, and Zika virus. These outbreaks of emerging/reemerging viruses can be triggered by cross-species viral transmission from wild animals to humans, or zoonoses. HIV-1, the causative agent of AIDS, emerged by the cross-species transmission of SIVcpz, the HIV-1 precursor in chimpanzees, around 100 years ago. However, the process by which SIVcpz evolved to become HIV-1 in humans remains unclear. Here, by using a hematopoietic stem cell-transplanted humanized-mouse model, we experimentally recapitulate the evolutionary process of SIVcpz to become HIV-1. We provide evidence suggesting that a strain of SIVcpz, MB897, preadapted to infect humans over other SIVcpz strains. We further demonstrate a gain-of-function evolution of SIVcpz in infected humanized mice. Our study reveals that pandemic HIV-1 has emerged through at least two steps: preadaptation and subsequent gain-of-function mutations.
Collapse
|
19
|
Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 2018; 8:1823. [PMID: 29379496 PMCID: PMC5775519 DOI: 10.3389/fimmu.2017.01823] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4+ T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Collapse
Affiliation(s)
- Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Izumi Kimura
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shumpei Nagaoka
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoriyuki Konno
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Keisuke Yamamoto
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
20
|
Dynamics and mechanisms of clonal expansion of HIV-1-infected cells in a humanized mouse model. Sci Rep 2017; 7:6913. [PMID: 28761140 PMCID: PMC5537293 DOI: 10.1038/s41598-017-07307-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
Combination anti-retroviral therapy (cART) has drastically improved the clinical outcome of HIV-1 infection. Nonetheless, despite effective cART, HIV-1 persists indefinitely in infected individuals. Clonal expansion of HIV-1-infected cells in peripheral blood has been reported recently. cART is effective in stopping the retroviral replication cycle, but not in inhibiting clonal expansion of the infected host cells. Thus, the proliferation of HIV-1-infected cells may play a role in viral persistence, but little is known about the kinetics of the generation, the tissue distribution or the underlying mechanism of clonal expansion in vivo. Here we analyzed the clonality of HIV-1-infected cells using high-throughput integration site analysis in a hematopoietic stem cell-transplanted humanized mouse model. Clonally expanded, HIV-1-infected cells were detectable at two weeks post infection, their abundance increased with time, and certain clones were present in multiple organs. Expansion of HIV-1-infected clones was significantly more frequent when the provirus was integrated near host genes in specific gene ontological classes, including cell activation and chromatin regulation. These results identify potential drivers of clonal expansion of HIV-1-infected cells in vivo.
Collapse
|
21
|
Nakano Y, Aso H, Soper A, Yamada E, Moriwaki M, Juarez-Fernandez G, Koyanagi Y, Sato K. A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif. Retrovirology 2017; 14:31. [PMID: 28482907 PMCID: PMC5422959 DOI: 10.1186/s12977-017-0355-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/27/2017] [Indexed: 01/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins are mammalian-specific cellular deaminases and have a robust ability to restrain lentivirus replication. To antagonize APOBEC3-mediated antiviral action, lentiviruses have acquired viral infectivity factor (Vif) as an accessory gene. Mammalian APOBEC3 proteins inhibit lentiviral replication by enzymatically inserting G-to-A hypermutations in the viral genome, whereas lentiviral Vif proteins degrade host APOBEC3 via the ubiquitin/proteasome-dependent pathway. Recent investigations provide evidence that lentiviral vif genes evolved to combat mammalian APOBEC3 proteins. In corollary, mammalian APOBEC3 genes are under Darwinian selective pressure to escape from antagonism by Vif. Based on these observations, it is widely accepted that lentiviral Vif and mammalian APOBEC3 have co-evolved and this concept is called an "evolutionary arms race." This review provides a comprehensive summary of current knowledge with respect to the evolutionary dynamics occurring at this pivotal host-virus interface.
Collapse
Affiliation(s)
- Yusuke Nakano
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Hirofumi Aso
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Eri Yamada
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Miyu Moriwaki
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Guillermo Juarez-Fernandez
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, 6068507 Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
22
|
Nakano Y, Misawa N, Juarez-Fernandez G, Moriwaki M, Nakaoka S, Funo T, Yamada E, Soper A, Yoshikawa R, Ebrahimi D, Tachiki Y, Iwami S, Harris RS, Koyanagi Y, Sato K. HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation. PLoS Pathog 2017; 13:e1006348. [PMID: 28475648 PMCID: PMC5435363 DOI: 10.1371/journal.ppat.1006348] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/17/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023] Open
Abstract
APOBEC3 (A3) family proteins are DNA cytosine deaminases recognized for contributing to HIV-1 restriction and mutation. Prior studies have demonstrated that A3D, A3F, and A3G enzymes elicit a robust anti-HIV-1 effect in cell cultures and in humanized mouse models. Human A3H is polymorphic and can be categorized into three phenotypes: stable, intermediate, and unstable. However, the anti-viral effect of endogenous A3H in vivo has yet to be examined. Here we utilize a hematopoietic stem cell-transplanted humanized mouse model and demonstrate that stable A3H robustly affects HIV-1 fitness in vivo. In contrast, the selection pressure mediated by intermediate A3H is relaxed. Intriguingly, viral genomic RNA sequencing reveled that HIV-1 frequently adapts to better counteract stable A3H during replication in humanized mice. Molecular phylogenetic analyses and mathematical modeling suggest that stable A3H may be a critical factor in human-to-human viral transmission. Taken together, this study provides evidence that stable variants of A3H impose selective pressure on HIV-1.
Collapse
Affiliation(s)
- Yusuke Nakano
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoko Misawa
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guillermo Juarez-Fernandez
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Miyu Moriwaki
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Institute of Industrial Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Takaaki Funo
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Eri Yamada
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Andrew Soper
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Rokusuke Yoshikawa
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Diako Ebrahimi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yuuya Tachiki
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shingo Iwami
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| |
Collapse
|
23
|
Ara A, Love RP, Follack TB, Ahmed KA, Adolph MB, Chelico L. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G. J Virol 2017; 91:e02230-16. [PMID: 27881650 PMCID: PMC5244329 DOI: 10.1128/jvi.02230-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4+ T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. IMPORTANCE The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif.
Collapse
Affiliation(s)
- Anjuman Ara
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Robin P Love
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Tyson B Follack
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Khawaja A Ahmed
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Madison B Adolph
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Linda Chelico
- University of Saskatchewan, Microbiology and Immunology, College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Translational regulation of APOBEC3G mRNA by Vif requires its 5'UTR and contributes to restoring HIV-1 infectivity. Sci Rep 2016; 6:39507. [PMID: 27996044 PMCID: PMC5171582 DOI: 10.1038/srep39507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
The essential HIV-1 viral infectivity factor (Vif) allows productive infection of non-permissive cells expressing cytidine deaminases APOBEC3G (A3G) and A3F by decreasing their cellular level, and preventing their incorporation into virions. Unlike the Vif-induced degradation of A3G, the functional role of the inhibition of A3G translation by Vif remained unclear. Here, we show that two stem-loop structures within the 5′-untranslated region of A3G mRNA are crucial for translation inhibition by Vif in cells, and most Vif alleles neutralize A3G translation efficiently. Interestingly, K26R mutation in Vif abolishes degradation of A3G by the proteasome but has no effect at the translational level, indicating these two pathways are independent. These two mechanisms, proteasomal degradation and translational inhibition, similarly contribute to decrease the cellular level of A3G by Vif and to prevent its incorporation into virions. Importantly, inhibition of A3G translation is sufficient to partially restore viral infectivity in the absence of proteosomal degradation. These findings demonstrate that HIV-1 has evolved redundant mechanisms to specifically inhibit the potent antiviral activity of A3G.
Collapse
|
25
|
Ibeh BO, Furuta Y, Habu JB, Ogbadu L. Humanized mouse as an appropriate model for accelerated global HIV research and vaccine development: current trend. Immunopharmacol Immunotoxicol 2016; 38:395-407. [PMID: 27604679 DOI: 10.1080/08923973.2016.1233980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humanized mouse models currently have seen improved development and have received wide applications. Its usefulness is observed in cell and tissue transplant involving basic and applied human disease research. In this article, the development of a new generation of humanized mice was discussed as well as their relevant application in HIV disease. Furthermore, current techniques employed to overcome the initial limitations of mouse model were reviewed. Highly immunodeficient mice which support cell and tissue differentiation and do not reject xenografts are indispensable for generating additional appropriate models useful in disease study, this phenomenom deserves emphases, scientific highlight and a definitive research focus. Since the early 2000s, a series of immunodeficient mice appropriate for generating humanized mice has been successively developed by introducing the IL-2Rγnull gene (e.g. NOD/SCID/γcnull and Rag2nullγcnull mice) through various genomic approaches. These mice were generated by genetically introducing human cytokine genes into NOD/SCID/γcnull and Rag2nullγcnull mouse backgrounds. The application of these techniques serves as a quick and appropriate mechanistic model for basic and therapeutic investigations of known and emerging infections.
Collapse
Affiliation(s)
- Bartholomew Okechukwu Ibeh
- a Immunovirology and Vaccine Development Laboratory, Medical Biotechnology Department , National Biotechnology Development Agency , Abuja , Nigeria
| | - Yasuhide Furuta
- b RIKEN CDB CLST (Center for Life Science Technologies) , Kobe , Japan
| | - Josiah Bitrus Habu
- c Bioresources Development Center Odi, Bayelsa , National Biotechnology Development Agency , Abuja , Nigeria
| | - Lucy Ogbadu
- d National Biotechnology Development Agency , Abuja , Nigeria
| |
Collapse
|
26
|
Abstract
Transcription activator-like effector nucleases (TALENs) are one of several types of programmable, engineered nucleases that bind and cleave specific DNA sequences. Cellular machinery repairs the cleaved DNA by introducing indels. In this review, we emphasize the potential, explore progress, and identify challenges in using TALENs as a therapeutic tool to treat HIV infection. TALENs have less off-target editing and can be more effective at tolerating HIV escape mutations than CRISPR/Cas-9. Scientists have explored TALEN-mediated editing of host genes such as viral entry receptors (CCR5 and CXCR4) and a protein involved in proviral integration (LEDGF/p75). Viral targets include the proviral DNA, particularly focused on the long terminal repeats. Major challenges with translating gene therapy from bench to bedside are improving cleavage efficiency and delivery, while minimizing off-target editing, cytotoxicity, and immunogenicity. However, rapid improvements in TALEN technology are enhancing cleavage efficiency and specificity. Therapeutic testing in animal models of HIV infection will help determine whether TALENs are a viable HIV treatment therapy. TALENs or other engineered nucleases could shift the therapeutic paradigm from life-long antiretroviral therapy toward eradication of HIV infection.
Collapse
|
27
|
Ikeda H, Nakaoka S, de Boer RJ, Morita S, Misawa N, Koyanagi Y, Aihara K, Sato K, Iwami S. Quantifying the effect of Vpu on the promotion of HIV-1 replication in the humanized mouse model. Retrovirology 2016; 13:23. [PMID: 27086687 PMCID: PMC4834825 DOI: 10.1186/s12977-016-0252-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetherin is an intrinsic anti-viral factor impairing the release of nascent HIV-1 particles from infected cells. Vpu, an HIV-1 accessory protein, antagonizes the anti-viral action of tetherin. Although previous studies using in vitro cell culture systems have revealed the molecular mechanisms of the anti-viral action of tetherin and the antagonizing action of Vpu against tetherin, it still remains unclear how Vpu affects the kinetics of HIV-1 replication in vivo. RESULTS To quantitatively assess the role of Vpu in viral replication in vivo, we analyzed time courses of experimental data with viral load and target cell levels in the peripheral blood of humanized mice infected with wild-type and vpu-deficient HIV-1. Our recently developed mathematical model describes the acute phase of this infection reasonably, and allowed us to estimate several parameters characterizing HIV-1 infection in mice. Using a technique of Bayesian parameter estimation, we estimate distributions of the basic reproduction number of wild-type and vpu-deficient HIV-1. This reveals that Vpu markedly increases the rate of viral replication in vivo. CONCLUSIONS Combining experiments with mathematical modeling, we provide an estimate for the contribution of Vpu to viral replication in humanized mice.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan
| | - Shinji Nakaoka
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Rob J de Boer
- Theoretical Biology, Utrecht University, Utrecht, The Netherlands
| | - Satoru Morita
- Department of Mathematical and Systems Engineering, Shizuoka University, Shizuoka, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan. .,CREST, JST, Saitama, Japan.
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka, 812-8581, Japan. .,CREST, JST, Saitama, Japan. .,PRESTO, JST, Saitama, Japan.
| |
Collapse
|
28
|
APOBEC3G and APOBEC3F Act in Concert To Extinguish HIV-1 Replication. J Virol 2016; 90:4681-4695. [PMID: 26912618 DOI: 10.1128/jvi.03275-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The multifunctional HIV-1 accessory protein Vif counters the antiviral activities of APOBEC3G (A3G) and APOBEC3F (A3F), and some Vifs counter stable alleles of APOBEC3H (A3H). Studies in humanized mice have shown that HIV-1 lacking Vif expression is not viable. Here, we look at the relative contributions of the three APOBEC3s to viral extinction. Inoculation of bone marrow/liver/thymus (BLT) mice with CCR5-tropic HIV-1JRCSF(JRCSF) expressing a vif gene inactive for A3G but not A3F degradation activity (JRCSFvifH42/43D) displayed either no or delayed replication. JRCSF expressing a vif gene mutated to inactivate A3F degradation but not A3G degradation (JRCSFvifW79S) always replicated to high viral loads with variable delays. JRCSF with vif mutated to lack both A3G and A3F degradation activities (JRCSFvifH42/43DW79S) failed to replicate, mimicking JRCSF without Vif expression (JRCSFΔvif). JRCSF and JRCSFvifH42/43D, but not JRCSFvifW79S or JRCSFvifH42/43DW79S, degraded APOBEC3D. With one exception, JRCSFs expressing mutant Vifs that replicated acquired enforced vif mutations. These mutations partially restored A3G or A3F degradation activity and fully replaced JRCSFvifH42/43D or JRCSFvifW79S by 10 weeks. Surprisingly, induced mutations temporally lagged behind high levels of virus in blood. In the exceptional case, JRCSFvifH42/43D replicated after a prolonged delay with no mutations in vif but instead a V27I mutation in the RNase H coding sequence. JRCSFvifH42/43D infections exhibited massive GG/AG mutations in pol viral DNA, but in viral RNA, there were no fixed mutations in the Gag or reverse transcriptase coding sequence. A3H did not contribute to viral extinction but, in combination with A3F, could delay JRCSF replication. A3H was also found to hypermutate viral DNA. IMPORTANCE Vif degradation of A3G and A3F enhances viral fitness, as virus with even a partially restored capacity for degradation outgrows JRCSFvifH42/43D and JRCSFvifW79S. Unexpectedly, fixation of mutations that replaced H42/43D or W79S in viral RNA lagged behind the appearance of high viral loads. In one exceptional JRCSFvifH42/43D infection, vif was unchanged but replication proceeded after a long delay. These results suggest that Vif binds and inhibits the non-cytosine deaminase activities of intact A3G and intact A3F, allowing JRCSFvifH42/43D and JRCSFvifW79S to replicate with reduced fitness. Subsequently, enhanced Vif function is acquired by enforced mutations. In infected cells, JRCSFΔvif and JRCSFvifH42/43DW79S are exposed to active A3F and A3G and fail to replicate. JRCSFvifH42/43D Vif degrades A3F and, in some cases, overcomes A3G mutagenic activity to replicate. Vif may have evolved to inhibit A3F and A3G by stoichiometric binding and subsequently acquired the ability to target these proteins to proteasomes.
Collapse
|
29
|
Yoshikawa R, Nakano Y, Yamada E, Izumi T, Misawa N, Koyanagi Y, Sato K. Species-specific differences in the ability of feline lentiviral Vif to degrade feline APOBEC3 proteins. Microbiol Immunol 2016; 60:272-9. [PMID: 26935128 PMCID: PMC5074269 DOI: 10.1111/1348-0421.12371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/21/2016] [Accepted: 02/29/2016] [Indexed: 01/24/2023]
Abstract
How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In this study, the focus was on the interplay between feline APOBEC3 proteins and two feline immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity mediated via APOBEC3 protein.
Collapse
Affiliation(s)
- Rokusuke Yoshikawa
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
| | - Yusuke Nakano
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
| | - Eri Yamada
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
| | - Taisuke Izumi
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
- CRESTJapan Science and Technology AgencySaitama3220012Japan
| | - Naoko Misawa
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
| | - Yoshio Koyanagi
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
| | - Kei Sato
- Laboratory of Viral PathogenesisInstitute for Virus ResearchKyoto UniversityKyoto6068507
- CRESTJapan Science and Technology AgencySaitama3220012Japan
| |
Collapse
|
30
|
Iwami S, Takeuchi JS, Nakaoka S, Mammano F, Clavel F, Inaba H, Kobayashi T, Misawa N, Aihara K, Koyanagi Y, Sato K. Cell-to-cell infection by HIV contributes over half of virus infection. eLife 2015; 4. [PMID: 26441404 PMCID: PMC4592948 DOI: 10.7554/elife.08150] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Cell-to-cell viral infection, in which viruses spread through contact of infected cell with surrounding uninfected cells, has been considered as a critical mode of virus infection. However, since it is technically difficult to experimentally discriminate the two modes of viral infection, namely cell-free infection and cell-to-cell infection, the quantitative information that underlies cell-to-cell infection has yet to be elucidated, and its impact on virus spread remains unclear. To address this fundamental question in virology, we quantitatively analyzed the dynamics of cell-to-cell and cell-free human immunodeficiency virus type 1 (HIV-1) infections through experimental-mathematical investigation. Our analyses demonstrated that the cell-to-cell infection mode accounts for approximately 60% of viral infection, and this infection mode shortens the generation time of viruses by 0.9 times and increases the viral fitness by 3.9 times. Our results suggest that even a complete block of the cell-free infection would provide only a limited impact on HIV-1 spread. DOI:http://dx.doi.org/10.7554/eLife.08150.001 Viruses such as HIV-1 replicate by invading and hijacking cells, forcing the cells to make new copies of the virus. These copies then leave the cell and continue the infection by invading and hijacking new cells. There are two ways that viruses may move between cells, which are known as ‘cell-free’ and ‘cell-to-cell’ infection. In cell-free infection, the virus is released into the fluid that surrounds cells and moves from there into the next cell. In cell-to-cell infection the virus instead moves directly between cells across regions where the two cells make contact. Previous research has suggested that cell-to-cell infection is important for the spread of HIV-1. However, it is not known how much the virus relies on this process, as it is technically challenging to perform experiments that prevent cell-free infection without also stopping cell-to-cell infection. Iwami, Takeuchi et al. have overcome this problem by combining experiments on laboratory-grown cells with a mathematical model that describes how the different infection methods affect the spread of HIV-1. This revealed that the viruses spread using cell-to-cell infection about 60% of the time, which agrees with results previously found by another group of researchers. Iwami, Takeuchi et al. also found that cell-to-cell infection increases how quickly viruses can infect new cells and replicate inside them, and improves the fitness of the viruses. The environment around cells in humans and other animals is different to that found around laboratory-grown cells, and so more research will be needed to check whether this difference affects which method of infection the virus uses. If the virus does spread in a similar way in the body, then blocking the cell-free method of infection would not greatly affect how well HIV-1 is able to infect new cells. It may instead be more effective to develop HIV treatments that prevent cell-to-cell infection by the virus. DOI:http://dx.doi.org/10.7554/eLife.08150.002
Collapse
Affiliation(s)
- Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Junko S Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shinji Nakaoka
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Fabrizio Mammano
- INSERM-Genetics and Ecology of viruses, Hospital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - François Clavel
- INSERM-Genetics and Ecology of viruses, Hospital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hisashi Inaba
- Graduate School of Mathematical Sciences, University of Tokyo, Tokyo, Japan
| | - Tomoko Kobayashi
- Laboratory for Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan.,Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kei Sato
- CREST, Japan Science and Technology Agency, Saitama, Japan.,Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Sato K, Kobayashi T, Misawa N, Yoshikawa R, Takeuchi JS, Miura T, Okamoto M, Yasunaga JI, Matsuoka M, Ito M, Miyazawa T, Koyanagi Y. Experimental evaluation of the zoonotic infection potency of simian retrovirus type 4 using humanized mouse model. Sci Rep 2015; 5:14040. [PMID: 26364986 PMCID: PMC4568461 DOI: 10.1038/srep14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
During 2001-2002 and 2008-2011, two epidemic outbreaks of infectious hemorrhagic disease have been found in Japanese macaques (Macaca fuscata) in Kyoto University Primate Research Institute, Japan. Following investigations revealed that the causative agent was simian retrovirus type 4 (SRV-4). SRV-4 was isolated by using human cell lines, which indicates that human cells are potently susceptible to SRV-4 infection. These raise a possibility of zoonotic infection of pathogenic SRV-4 from Japanese macaques into humans. To explore the possibility of zoonotic infection of SRV-4 to humans, here we use a human hematopoietic stem cell-transplanted humanized mouse model. Eight out of the twelve SRV-4-inoculated humanized mice were infected with SRV-4. Importantly, 3 out of the 8 infected mice exhibited anemia and hemophagocytosis, and an infected mouse died. To address the possibility that SRV-4 adapts humanized mouse and acquires higher pathogenicity, the virus was isolated from an infected mice exhibited severe anemia was further inoculated into another 6 humanized mice. However, no infected mice exhibited any illness. Taken together, our findings demonstrate that the zoonotic SRV-4 infection from Japanese macaques to humans is technically possible under experimental condition. However, such zoonotic infection may not occur in the real society.
Collapse
Affiliation(s)
- Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Tomoko Kobayashi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Signal Transduction, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Virolution, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Junko S. Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Munehiro Okamoto
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Institute for Virus Research, Kyoto University, Kyoto, Japan
- Laboratory of Virolution, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
32
|
Anderson BD, Harris RS. Transcriptional regulation of APOBEC3 antiviral immunity through the CBF-β/RUNX axis. SCIENCE ADVANCES 2015; 1:e1500296. [PMID: 26601257 PMCID: PMC4643775 DOI: 10.1126/sciadv.1500296] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 06/05/2023]
Abstract
A diverse set of innate immune mechanisms protects cells from viral infections. The APOBEC3 family of DNA cytosine deaminases is an integral part of these defenses. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H would have the potential to destroy HIV-1 complementary DNA replication intermediates if not for neutralization by a proteasomal degradation mechanism directed by the viral protein Vif. At the core of this complex, Vif heterodimerizes with the transcription cofactor CBF-β, which results in fewer transcription complexes between CBF-β and its normal RUNX partners. Recent studies have shown that the Vif/CBF-β interaction is specific to the primate lentiviruses HIV-1 and SIV (simian immunodeficiency virus), although related nonprimate lentiviruses still require a Vif-dependent mechanism for protection from host species' APOBEC3 enzymes. We provide a molecular explanation for this evolutionary conundrum by showing that CBF-β is required for expression of the aforementioned HIV-1-restrictive APOBEC3 gene repertoire. Knockdown and knockout studies demonstrate that CBF-β is required for APOBEC3 mRNA expression in the nonpermissive T cell line H9 and in primary CD4(+) T lymphocytes. Complementation experiments using CBF-β separation-of-function alleles show that the interaction with RUNX transcription factors is required for APOBEC3 transcriptional regulation. Accordingly, the infectivity of Vif-deficient HIV-1 increases in cells lacking CBF-β, demonstrating the importance of CBF-β/RUNX-mediated transcription in establishing the APOBEC3 antiviral state. These findings demonstrate a major layer of APOBEC3 gene regulation in lymphocytes and suggest that primate lentiviruses evolved to hijack CBF-β in order to simultaneously suppress this potent antiviral defense system at both transcriptional and posttranslational levels.
Collapse
|
33
|
ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nat Commun 2015; 6:6945. [PMID: 25901786 PMCID: PMC4423214 DOI: 10.1038/ncomms7945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin–proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif–ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment. The human protein APOBEC3G (A3G) inhibits HIV-1 replication, but the viral protein Vif counteracts by inducing A3G degradation. Here Miyakawa et al. show that the antiretroviral drug AZT restores A3G function in vitro by stimulating expression of a host protein, ASK1, which interferes with the action of Vif.
Collapse
|
34
|
Yamada E, Yoshikawa R, Nakano Y, Misawa N, Koyanagi Y, Sato K. Impacts of humanized mouse models on the investigation of HIV-1 infection: illuminating the roles of viral accessory proteins in vivo. Viruses 2015; 7:1373-90. [PMID: 25807049 PMCID: PMC4379576 DOI: 10.3390/v7031373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models.
Collapse
Affiliation(s)
- Eri Yamada
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Rokusuke Yoshikawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yusuke Nakano
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 6068507, Japan.
- CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
35
|
Sato K, Takeuchi JS, Misawa N, Izumi T, Kobayashi T, Kimura Y, Iwami S, Takaori-Kondo A, Hu WS, Aihara K, Ito M, An DS, Pathak VK, Koyanagi Y. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog 2014; 10:e1004453. [PMID: 25330146 PMCID: PMC4199767 DOI: 10.1371/journal.ppat.1004453] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/05/2014] [Indexed: 12/02/2022] Open
Abstract
Several APOBEC3 proteins, particularly APOBEC3D, APOBEC3F, and APOBEC3G, induce G-to-A hypermutations in HIV-1 genome, and abrogate viral replication in experimental systems, but their relative contributions to controlling viral replication and viral genetic variation in vivo have not been elucidated. On the other hand, an HIV-1-encoded protein, Vif, can degrade these APOBEC3 proteins via a ubiquitin/proteasome pathway. Although APOBEC3 proteins have been widely considered as potent restriction factors against HIV-1, it remains unclear which endogenous APOBEC3 protein(s) affect HIV-1 propagation in vivo. Here we use a humanized mouse model and HIV-1 with mutations in Vif motifs that are responsible for specific APOBEC3 interactions, DRMR/AAAA (4A) or YRHHY/AAAAA (5A), and demonstrate that endogenous APOBEC3D/F and APOBEC3G exert strong anti-HIV-1 activity in vivo. We also show that the growth kinetics of 4A HIV-1 negatively correlated with the expression level of APOBEC3F. Moreover, single genome sequencing analyses of viral RNA in plasma of infected mice reveal that 4A HIV-1 is specifically and significantly diversified. Furthermore, a mutated virus that is capable of using both CCR5 and CXCR4 as entry coreceptor is specifically detected in 4A HIV-1-infected mice. Taken together, our results demonstrate that APOBEC3D/F and APOBEC3G fundamentally work as restriction factors against HIV-1 in vivo, but at the same time, that APOBEC3D and APOBEC3F are capable of promoting viral diversification and evolution in vivo. Mutation can produce three outcomes in viruses: detrimental, neutral, or beneficial. The first one leads to abrogation of virus replication because of error catastrophe, while the last one lets the virus escape from anti-viral immune system or adapt to the host. Human APOBEC3D, APOBEC3F, and APOBEC3G are cellular cytidine deaminases which cause G-to-A mutations in HIV-1 genome. Here we use a humanized mouse model and demonstrate that endogenous APOBEC3F and APOBEC3G induce G-to-A hypermutation in viral genomes and exert strong anti-HIV-1 activity in vivo. We also reveal that endogenous APOBEC3D and/or APOBEC3F induce viral diversification, which can lead to the emergence of a mutated virus that converts its coreceptor usage. Our results suggest that APOBEC3D and APOBEC3F are capable of promoting viral diversification and functional evolution in vivo.
Collapse
Affiliation(s)
- Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
- * E-mail:
| | - Junko S. Takeuchi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Tomoko Kobayashi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuichi Kimura
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| | - Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Dong Sung An
- Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, California, United States of America
- School of Nursing, University of California, Los Angeles, Los Angeles, California, United States of America
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
36
|
Improving the estimation of the death rate of infected cells from time course data during the acute phase of virus infections: application to acute HIV-1 infection in a humanized mouse model. Theor Biol Med Model 2014; 11:22. [PMID: 24885827 PMCID: PMC4035760 DOI: 10.1186/1742-4682-11-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/13/2014] [Indexed: 01/19/2023] Open
Abstract
Background Mathematical modeling of virus dynamics has provided quantitative insights into viral infections such as influenza, the simian immunodeficiency virus/human immunodeficiency virus, hepatitis B, and hepatitis C. Through modeling, we can estimate the half-life of infected cells, the exponential growth rate, and the basic reproduction number (R0). To calculate R0 from virus load data, the death rate of productively infected cells is required. This can be readily estimated from treatment data collected during the chronic phase, but is difficult to determine from acute infection data. Here, we propose two new models that can reliably estimate the average life span of infected cells from acute-phase data, and apply both methods to experimental data from humanized mice infected with HIV-1. Methods Both new models, called as the reduced quasi-steady state (RQS) model and the piece-wise regression (PWR) model, are derived by simplification of a standard model for the acute-phase dynamics of target cells, viruses and infected cells. By having only a limited number of parameters, both models allow us to reliably estimate the death rate of productively infected cells. Simulated datasets with plausible parameter values are generated with the standard model to compare the performance of the new models with that of the major previous model (i.e., the simple exponential model). Finally, we fit models to time course data from HIV-1 infected humanized mice to estimate the several important parameters characterizing their acute infection. Results and conclusions The new models provided much better estimates than the previous model because they more precisely capture the de novo infection process. Both models describe the acute phase of HIV-1 infected humanized mice reasonably well, and we estimated an average death rate of infected cells of 0.61 and 0.61, an average exponential growth rate of 0.69 and 0.76, and an average basic reproduction number of 2.30 and 2.38 in the RQS model and the PWR model, respectively. These estimates are fairly close to those obtained in humans.
Collapse
|
37
|
Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one Vif to rule them all. J Mol Biol 2014; 426:1220-45. [PMID: 24189052 PMCID: PMC3943811 DOI: 10.1016/j.jmb.2013.10.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Several members of the APOBEC3 family of cellular restriction factors provide intrinsic immunity to the host against viral infection. Specifically, APOBEC3DE, APOBEC3F, APOBEC3G, and APOBEC3H haplotypes II, V, and VII provide protection against HIV-1Δvif through hypermutation of the viral genome, inhibition of reverse transcription, and inhibition of viral DNA integration into the host genome. HIV-1 counteracts APOBEC3 proteins by encoding the viral protein Vif, which contains distinct domains that specifically interact with these APOBEC3 proteins to ensure their proteasomal degradation, allowing virus replication to proceed. Here, we review our current understanding of APOBEC3 structure, editing and non-editing mechanisms of APOBEC3-mediated restriction, Vif-APOBEC3 interactions that trigger APOBEC3 degradation, and the contribution of APOBEC3 proteins to restriction and control of HIV-1 replication in infected patients.
Collapse
Affiliation(s)
- Belete A Desimmie
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | - Ryan C Burdick
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - DongFei Qi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Taisuke Izumi
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Vinay K Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
38
|
Quantification of deaminase activity-dependent and -independent restriction of HIV-1 replication mediated by APOBEC3F and APOBEC3G through experimental-mathematical investigation. J Virol 2014; 88:5881-7. [PMID: 24623435 DOI: 10.1128/jvi.00062-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
APOBEC3F and APOBEC3G cytidine deaminases potently inhibit human immunodeficiency virus type 1 (HIV-1) replication by enzymatically inserting G-to-A mutations in viral DNA and/or impairing viral reverse transcription independently of their deaminase activity. Through experimental and mathematical investigation, here we quantitatively demonstrate that 99.3% of the antiviral effect of APOBEC3G is dependent on its deaminase activity, whereas 30.2% of the antiviral effect of APOBEC3F is attributed to deaminase-independent ability. This is the first report quantitatively elucidating how APOBEC3F and APOBEC3G differ in their anti-HIV-1 modes.
Collapse
|
39
|
HIV-1 Vpr accelerates viral replication during acute infection by exploitation of proliferating CD4+ T cells in vivo. PLoS Pathog 2013; 9:e1003812. [PMID: 24339781 PMCID: PMC3855622 DOI: 10.1371/journal.ppat.1003812] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/22/2013] [Indexed: 11/28/2022] Open
Abstract
The precise role of viral protein R (Vpr), an HIV-1-encoded protein, during HIV-1 infection and its contribution to the development of AIDS remain unclear. Previous reports have shown that Vpr has the ability to cause G2 cell cycle arrest and apoptosis in HIV-1-infected cells in vitro. In addition, vpr is highly conserved in transmitted/founder HIV-1s and in all primate lentiviruses, which are evolutionarily related to HIV-1. Although these findings suggest an important role of Vpr in HIV-1 pathogenesis, its direct evidence in vivo has not been shown. Here, by using a human hematopoietic stem cell-transplanted humanized mouse model, we demonstrated that Vpr causes G2 cell cycle arrest and apoptosis predominantly in proliferating CCR5+ CD4+ T cells, which mainly consist of regulatory CD4+ T cells (Tregs), resulting in Treg depletion and enhanced virus production during acute infection. The Vpr-dependent enhancement of virus replication and Treg depletion is observed in CCR5-tropic but not CXCR4-tropic HIV-1-infected mice, suggesting that these effects are dependent on the coreceptor usage by HIV-1. Immune activation was observed in CCR5-tropic wild-type but not in vpr-deficient HIV-1-infected humanized mice. When humanized mice were treated with denileukin diftitox (DD), to deplete Tregs, DD-treated humanized mice showed massive activation/proliferation of memory T cells compared to the untreated group. This activation/proliferation enhanced CCR5 expression in memory CD4+ T cells and rendered them more susceptible to CCR5-tropic wild-type HIV-1 infection than to vpr-deficient virus. Taken together, these results suggest that Vpr takes advantage of proliferating CCR5+ CD4+ T cells for enhancing viremia of CCR5-tropic HIV-1. Because Tregs exist in a higher cycling state than other T cell subsets, Tregs appear to be more vulnerable to exploitation by Vpr during acute HIV-1 infection. HIV-1 encodes nine genes, five of which (gag, pol, env, tat, and rev) are essential for viral replication, and four, termed accessory genes (vif, vpu, nef, and vpr), appear to aid virus infection. Of the four accessory proteins, Vpr is the most enigmatic. It is well known that Vpr has the potential to cause G2 cell cycle arrest and apoptosis in vitro. Moreover, it has been reported that Vpr-mediated G2 arrest increases HIV-1 production in vitro. However, the role of Vpr in HIV-1 propagation in vivo remains unclear. Here, by using a humanized mouse model, we demonstrate that Vpr enhances CCR5-tropic but not CXCR4-tropic HIV-1 replication in vivo by exploiting Tregs during acute infection. In CCR5-tropic HIV-1-infected humanized mice, Vpr-dependent G2 cell cycle arrest and apoptosis are predominantly observed in infected Tregs, and wild-type but not vpr-deficient HIV-1-infected mice displayed acute Treg depletion. This Vpr-dependent Treg depletion may lead to immune activation and provide a pool of activated/proliferating CD4+ T cells, which supports subsequent HIV-1 expansion in vivo. This is the first report demonstrating the role of Vpr in HIV-1 infection in vivo.
Collapse
|
40
|
Complex codon usage pattern and compositional features of retroviruses. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:848123. [PMID: 24288576 PMCID: PMC3833384 DOI: 10.1155/2013/848123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/05/2013] [Accepted: 09/07/2013] [Indexed: 11/26/2022]
Abstract
Retroviruses infect a wide range of organisms including humans. Among them, HIV-1, which causes AIDS, has now become a major threat for world health. Some of these viruses are also potential gene transfer vectors. In this study, the patterns of synonymous codon usage in retroviruses have been studied through multivariate statistical methods on ORFs sequences from the available 56 retroviruses. The principal determinant for evolution of the codon usage pattern in retroviruses seemed to be the compositional constraints, while selection for translation of the viral genes plays a secondary role. This was further supported by multivariate analysis on relative synonymous codon usage. Thus, it seems that mutational bias might have dominated role over translational selection in shaping the codon usage of retroviruses. Codon adaptation index was used to identify translationally optimal codons among genes from retroviruses. The comparative analysis of the preferred and optimal codons among different retroviral groups revealed that four codons GAA, AAA, AGA, and GGA were significantly more frequent in most of the retroviral genes inspite of some differences. Cluster analysis also revealed that phylogenetically related groups of retroviruses have probably evolved their codon usage in a concerted manner under the influence of their nucleotide composition.
Collapse
|
41
|
Iwami S, Koizumi Y, Ikeda H, Kakizoe Y. Quantification of viral infection dynamics in animal experiments. Front Microbiol 2013; 4:264. [PMID: 24058361 PMCID: PMC3767920 DOI: 10.3389/fmicb.2013.00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Analyzing the time-course of several viral infections using mathematical models based on experimental data can provide important quantitative insights regarding infection dynamics. Over the past decade, the importance and significance of mathematical modeling has been gaining recognition among virologists. In the near future, many animal models of human-specific infections and experimental data from high-throughput techniques will become available. This will provide us with the opportunity to develop new quantitative approaches, combining experimental and mathematical analyses. In this paper, we review the various quantitative analyses of viral infections and discuss their possible applications.
Collapse
Affiliation(s)
- Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University Fukuoka, Japan
| | | | | | | |
Collapse
|
42
|
Leung C, Chijioke O, Gujer C, Chatterjee B, Antsiferova O, Landtwing V, McHugh D, Raykova A, Münz C. Infectious diseases in humanized mice. Eur J Immunol 2013; 43:2246-54. [PMID: 23913412 DOI: 10.1002/eji.201343815] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/23/2013] [Accepted: 07/31/2013] [Indexed: 12/15/2022]
Abstract
Despite many theoretical incompatibilities between mouse and human cells, mice with reconstituted human immune system components contain nearly all human leukocyte populations. Accordingly, several human-tropic pathogens have been investigated in these in vivo models of the human immune system, including viruses such as human immunodeficiency virus (HIV) and Epstein-Barr virus (EBV), as well as bacteria such as Mycobacterium tuberculosis and Salmonella enterica Typhi. While these studies initially aimed to establish similarities in the pathogenesis of infections between these models and the pathobiology in patients, recent investigations have provided new and interesting functional insights into the protective value of certain immune compartments and altered pathology upon mutant pathogen infections. As more tools and methodologies are developed to make these models more versatile to study human immune responses in vivo, such improvements build toward small animal models with human immune components, which could predict immune responses to therapies and vaccination in human patients.
Collapse
Affiliation(s)
- Carol Leung
- Department of Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, Ogura T, Ida-Tanaka M, Suemizu H, Nunomura S, Ra C, Mori A, Aiso S, Ito M. Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:2890-9. [PMID: 23956433 DOI: 10.4049/jimmunol.1203543] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of animal models that mimic human allergic responses is crucial to study the pathophysiology of disease and to generate new therapeutic methodologies. Humanized mice reconstituted with human immune systems are essential to study human immune reactions in vivo and are expected to be useful for studying human allergies. However, application of this technology to the study of human allergies has been limited, largely because of the poor development of human myeloid cells, especially granulocytes and mast cells, which are responsible for mediating allergic diseases, in conventional humanized mice. In this study, we developed a novel transgenic (Tg) strain, NOD/Shi-scid-IL2rγ(null) (NOG), bearing human IL-3 and GM-CSF genes (NOG IL-3/GM-Tg). In this strain, a large number of human myeloid cells of various lineages developed after transplantation of human CD34⁺ hematopoietic stem cells. Notably, mature basophils and mast cells expressing FcεRI were markedly increased. These humanized NOG IL-3/GM-Tg mice developed passive cutaneous anaphylaxis reactions when administered anti-4-hydroxy-3-nitrophenylacetyl IgE Abs and 4-hydroxy-3-nitrophenylacetyl. More importantly, a combination of serum from Japanese cedar pollinosis patients and cedar pollen extract also elicited strong passive cutaneous anaphylaxis responses in mice. Thus, to our knowledge, our NOG IL-3/GM-Tg mice are the first humanized mouse model to enable the study of human allergic responses in vivo and are excellent tools for preclinical studies of allergic diseases.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Accessory genes confer a high replication rate to virulent feline immunodeficiency virus. J Virol 2013; 87:7940-51. [PMID: 23658451 DOI: 10.1128/jvi.00752-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.
Collapse
|
45
|
Krisko JF, Martinez-Torres F, Foster JL, Garcia JV. HIV restriction by APOBEC3 in humanized mice. PLoS Pathog 2013; 9:e1003242. [PMID: 23555255 PMCID: PMC3610649 DOI: 10.1371/journal.ppat.1003242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/24/2013] [Indexed: 12/31/2022] Open
Abstract
Innate immune restriction factors represent important specialized barriers to zoonotic transmission of viruses. Significant consideration has been given to their possible use for therapeutic benefit. The apolipoprotein B mRNA editing enzyme catalytic polypeptide 3 (APOBEC3) family of cytidine deaminases are potent immune defense molecules capable of efficiently restricting endogenous retroelements as well as a broad range of viruses including Human Immunodeficiency virus (HIV), Hepatitis B virus (HBV), Human Papilloma virus (HPV), and Human T Cell Leukemia virus (HTLV). The best characterized members of this family are APOBEC3G (A3G) and APOBEC3F (A3F) and their restriction of HIV. HIV has evolved to counteract these powerful restriction factors by encoding an accessory gene designated viral infectivity factor (vif). Here we demonstrate that APOBEC3 efficiently restricts CCR5-tropic HIV in the absence of Vif. However, our results also show that CXCR4-tropic HIV can escape from APOBEC3 restriction and replicate in vivo independent of Vif. Molecular analysis identified thymocytes as cells with reduced A3G and A3F expression. Direct injection of vif-defective HIV into the thymus resulted in viral replication and dissemination detected by plasma viral load analysis; however, vif-defective viruses remained sensitive to APOBEC3 restriction as extensive G to A mutation was observed in proviral DNA recovered from other organs. Remarkably, HIV replication persisted despite the inability of HIV to develop resistance to APOBEC3 in the absence of Vif. Our results provide novel insight into a highly specific subset of cells that potentially circumvent the action of APOBEC3; however our results also demonstrate the massive inactivation of CCR5-tropic HIV in the absence of Vif.
Collapse
Affiliation(s)
- John F. Krisko
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Francisco Martinez-Torres
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John L. Foster
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Internal Medicine, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
46
|
Akkina R. New generation humanized mice for virus research: comparative aspects and future prospects. Virology 2013; 435:14-28. [PMID: 23217612 DOI: 10.1016/j.virol.2012.10.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 12/27/2022]
Abstract
Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
47
|
APOBEC3G restricts HIV-1 to a greater extent than APOBEC3F and APOBEC3DE in human primary CD4+ T cells and macrophages. J Virol 2012; 87:444-53. [PMID: 23097438 DOI: 10.1128/jvi.00676-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 proteins inhibit HIV-1 replication in experimental systems and induce hypermutation in infected patients; however, the relative contributions of several APOBEC3 proteins to restriction of HIV-1 replication in the absence of the viral Vif protein in human primary CD4(+) T cells and macrophages are unknown. We observed significant inhibition of HIV-1Δvif produced in 293T cells in the presence of APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G), and APOBEC3H haplotype II (A3H HapII) but not APOBEC3B (A3B), APOBEC3C (A3C), or APOBEC3H haplotype I (A3H HapI). Our previous studies showed that Vif amino acids Y(40)RHHY(44) are important for inducing proteasomal degradation of A3G, whereas amino acids (14)DRMR(17) are important for degradation of A3F and A3DE. Here, we introduced substitution mutations of (40)YRHHY(44) and (14)DRMR(17) in replication-competent HIV-1 to generate vif mutants NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 to compare the antiviral activity of A3G to the combined antiviral activity of A3F and A3DE in activated CD4(+) T cells and macrophages. During the first 15 days (round 1), in which multiple cycles of viral replication occurred, both the NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutants replicated in activated CD4(+) T cells and macrophages, and only the NL4-3 YRHHY>A5 mutant showed a 2- to 4-day delay in replication compared to the wild type. During the subsequent 27 days (round 2) of cultures initiated with peak virus obtained from round 1, the NL4-3 YRHHY>A5 mutant exhibited a longer, 8- to 10-day delay and the NL4-3 DRMR>A4 mutant exhibited a 2- to 6-day delay in replication compared to the wild type. The NL4-3 YRHHY>A5 and NL4-3 DRMR>A4 mutant proviruses displayed G-to-A hypermutations primarily in GG and GA dinucleotides as expected of A3G- and A3F- or A3DE-mediated deamination, respectively. We conclude that A3G exerts a greater restriction effect on HIV-1 than A3F and A3DE.
Collapse
|
48
|
Sato Y, Nagata S, Takiguchi M. Effective elicitation of human effector CD8+ T Cells in HLA-B*51:01 transgenic humanized mice after infection with HIV-1. PLoS One 2012; 7:e42776. [PMID: 22880104 PMCID: PMC3412802 DOI: 10.1371/journal.pone.0042776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
Humanized mice are expected to be useful as small animal models for in vivo studies on the pathogenesis of infectious diseases. However, it is well known that human CD8+ T cells cannot differentiate into effector cells in immunodeficient mice transplanted with only human CD34+ hematopoietic stem cells (HSCs), because human T cells are not educated by HLA in the mouse thymus. We here established HLA-B*51:01 transgenic humanized mice by transplanting human CD34+ HSCs into HLA-B*51:01 transgenic NOD/SCID/Jak3−/− mice (hNOK/B51Tg mice) and investigated whether human effector CD8+ T cells would be elicited in the mice or in those infected with HIV-1 NL4-3. There were no differences in the frequency of late effector memory and effector subsets (CD27lowCD28−CD45RA+/−CCR7− and CD27−CD28−CD45RA+/−CCR7−, respectively) among human CD8+ T cells and in that of human CD8+ T cells expressing CX3CR1 and/or CXCR1 between hNOK/B51Tg and hNOK mice. In contrast, the frequency of late effector memory and effector CD8+ T cell subsets and of those expressing CX3CR1 and/or CXCR1 was significantly higher in HIV-1-infected hNOK/B51Tg mice than in uninfected ones, whereas there was no difference in that of these subsets between HIV-1-infected and uninfected hNOK mice. These results suggest that hNOK/B51Tg mice had CD8+ T cells that were capable of differentiating into effector T cells after viral antigen stimulation and had a greater ability to elicit effector CD8+ T cells than hNOK ones.
Collapse
Affiliation(s)
- Yoshinori Sato
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
| | - Sayaka Nagata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
49
|
Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, Boutwell CL, Power KA, Gladden AD, Battis L, Mellors EF, Tivey TR, Gao X, Altfeld M, Luster AD, Tager AM, Allen TM. Rapid evolution of HIV-1 to functional CD8⁺ T cell responses in humanized BLT mice. Sci Transl Med 2012; 4:143ra98. [PMID: 22814851 PMCID: PMC3685142 DOI: 10.1126/scitranslmed.3003984] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of mouse/human chimeras through the engraftment of human immune cells and tissues into immunodeficient mice, including the recently described humanized BLT (bone marrow, liver, thymus) mouse model, holds great promise to facilitate the in vivo study of human immune responses. However, little data exist regarding the extent to which cellular immune responses in humanized mice accurately reflect those seen in humans. We infected humanized BLT mice with HIV-1 as a model pathogen and characterized HIV-1-specific immune responses and viral evolution during the acute phase of infection. HIV-1-specific CD8(+) T cell responses in these mice were found to closely resemble those in humans in terms of their specificity, kinetics, and immunodominance. Viral sequence evolution also revealed rapid and highly reproducible escape from these responses, mirroring the adaptations to host immune pressures observed during natural HIV-1 infection. Moreover, mice expressing the protective HLA-B*57 allele exhibited enhanced control of viral replication and restricted the same CD8(+) T cell responses to conserved regions of HIV-1 Gag that are critical to its control of HIV-1 in humans. These data reveal that the humanized BLT mouse model appears to accurately recapitulate human pathogen-specific cellular immunity and the fundamental immunological mechanisms required to control a model human pathogen, aspects critical to the use of a small-animal model for human pathogens.
Collapse
Affiliation(s)
| | - Daniel C. No
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| | - Edward Seung
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vladimir D. Vrbanac
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Lena Fadda
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| | | | | | - Karen A. Power
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| | | | - Laura Battis
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| | | | - Trevor R. Tivey
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xiaojiang Gao
- Cancer and Immunology Program, Laboratory of Experimental Immunology, SAIC Frederick, NCI Frederick, Frederick, MD, USA
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Todd M. Allen
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, MA, USA
| |
Collapse
|
50
|
Legrand N, van der Velden GJ, Fang RHT, Douaisi M, Weijer K, Das AT, Blom B, Uittenbogaart CH, Berkhout B, Centlivre M. A doxycycline-dependent human immunodeficiency virus type 1 replicates in vivo without inducing CD4+ T-cell depletion. J Gen Virol 2012; 93:2017-2027. [PMID: 22647372 DOI: 10.1099/vir.0.042796-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A novel genetic approach for the control of virus replication was used for the design of a conditionally replicating human immunodeficiency virus (HIV) variant, HIV-rtTA. HIV-rtTA gene expression and virus replication are strictly dependent on the presence of a non-toxic effector molecule, doxycycline (dox), and thus can be turned on and off at will in a graded and reversible manner. The in vivo replication capacity, pathogenicity and genetic stability of this HIV-rtTA variant were evaluated in a humanized mouse model of haematopoiesis that harbours lymphoid and myeloid components of the human immune system (HIS). Infection of dox-fed BALB Rag/γc HIS (BRG-HIS) mice with HIV-rtTA led to the establishment of a productive infection without CD4(+) T-cell depletion. The virus did not show any sign of escape from dox control for up to 10 weeks after the onset of infection. No reversion towards a functional Tat-transactivating responsive (TAR) RNA element axis was observed, confirming the genetic stability of the HIV-rtTA variant in vivo. These results demonstrate the proof of concept that HIV-rtTA replicates efficiently in vivo. HIV-rtTA is a promising tool for fundamental research to study virus-host interactions in vivo in a controlled fashion.
Collapse
Affiliation(s)
- Nicolas Legrand
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Gisela J van der Velden
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Raphaël Ho Tsong Fang
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Marc Douaisi
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Kees Weijer
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Bianca Blom
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Christel H Uittenbogaart
- Microbiology, Immunology and Molecular Genetics, and Pediatrics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Ben Berkhout
- Department of Cell Biology and Histology, Center for Immunology of Amsterdam (CIA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Mireille Centlivre
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|