1
|
Li S, Bian X, Wang J, Wang D, Zhou J, Song J, Wang W, Han N, Zhou J, Li Y, Tao R, Zhu X, Fan B, Dong H, Zhang X, Li B. VP4-Specific IgA level as a correlate of neutralizing antibody and fecal shedding of porcine rotavirus infection. Vet Microbiol 2025; 304:110501. [PMID: 40179488 DOI: 10.1016/j.vetmic.2025.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Rotavirus (RV) causes diarrhea in children, infants, and young animals globally, with public health implications. Porcine rotavirus (PoRV) leads to economic losses in swine farming. Neutralizing antibodies (NAb) are vital for protecting piglets from intestinal infections. However, which serum and mucosal markers correlate with NAbs against PoRV and relate to post-infection fecal shedding remains unclear, crucial for pathogen-specific detection. We used indirect ELISA to measure IgG/IgA in sera, sIgA in colostrum from recovered pigs, and feces from diarrheal piglets against VP4*, VP7*, VP6, and NSP4*. Analyses showed specific IgA/sIgA levels correlated better with NAb titers than IgG. Among them, VP4*-specific IgA/sIgA had the highest positive correlation with NAb titers in sera (R = 0.848, P < 0.0001) and colostrum (R = 0.865, P < 0.0001). Also, VP4*-specific IgA/sIgA in sera (R= -0.446, P < 0.001) and feces (R= -0.497, P < 0.0001) had the strongest inverse relationship with viral RNA load. Piglet passive protection tests confirmed VP4*-specific IgA's high neutralizing capacity, highly correlated with NAb titers (R = 0.858, P < 0.0001), reducing viral shedding. In conclusion, mucosal IgA/sIgA responses to VP4 are important for PoRV diagnosis assays and vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jiapeng Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| |
Collapse
|
2
|
Yoshizato R, Miura M, Shitaoka K, Matsuoka Y, Higashiura A, Yamamoto A, Guo Y, Azuma H, Kawano Y, Ohga S, Yasuda T. Comprehensive method for producing high-affinity mouse monoclonal antibodies of various isotypes against (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten. Heliyon 2024; 10:e40837. [PMID: 39698082 PMCID: PMC11652855 DOI: 10.1016/j.heliyon.2024.e40837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Monoclonal antibody (mAb) technology has significantly contributed to basic research and clinical settings for various purposes, including protective and therapeutic drugs. However, a rapid and convenient method to generate high-affinity antigen-specific mAbs has not yet been reported. Here, we developed a rapid, easy, and low-cost protocol for antigen-specific mAb production from single memory B cells. Using this method, high-affinity IgG1 mAbs specific to the hapten 4-hydroxy-3-nitrophenylacetyl (NP) were established from NP-CGG immunized C57BL/6 mice within 6 days. Our mAb production system allows flexible switching of IgG1 to any other isotype with the same paratope, enabling the absolute quantification of antigen-specific serum antibody titers and affinity maturation. Additionally, we established a protocol for the production of IgM and IgA, retaining their functional pentamer and dimer structures. This method is also effective against human antigens and pathogens, making it a powerful tool for mAb development in both research and clinical settings.
Collapse
Affiliation(s)
- Rin Yoshizato
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Miura
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kiyomi Shitaoka
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuri Matsuoka
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yun Guo
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Azuma
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Uprety T, Soni S, Sreenivasan C, Hause BM, Naveed A, Ni S, Graves AJ, Morrow JK, Meade N, Mellits KH, Adam E, Kennedy MA, Wang D, Li F. Genetic and antigenic characterization of two diarrhoeicdominant rotavirus A genotypes G3P[12] and G14P[12] circulating in the global equine population. J Gen Virol 2024; 105:002016. [PMID: 39163114 PMCID: PMC11335307 DOI: 10.1099/jgv.0.002016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Equine rotavirus species A (ERVA) G3P[12] and G14P[12] are two dominant genotypes that cause foal diarrhoea with a significant economic impact on the global equine industry. ERVA can also serve as a source of novel (equine-like) rotavirus species A (RVA) reassortants with zoonotic potential as those identified previously in 2013-2019 when equine G3-like RVA was responsible for worldwide outbreaks of severe gastroenteritis and hospitalizations in children. One hurdle to ERVA research is that the standard cell culture system optimized for human rotavirus replication is not efficient for isolating ERVA. Here, using an engineered cell line defective in antiviral innate immunity, we showed that both equine G3P[12] and G14P[12] strains can be rapidly isolated from diarrhoeic foals. The genome sequence analysis revealed that both G3P[12] and G14P[12] strains share the identical genotypic constellation except for VP7 and VP6 segments in which G3P[12] possessed VP7 of genotype G3 and VP6 of genotype I6 and G14P[12] had the combination of VP7 of genotype G14 and VP6 of genotype I2. Further characterization demonstrated that two ERVA genotypes have a limited cross-neutralization. The lack of an in vitro broad cross-protection between both genotypes supported the increased recent diarrhoea outbreaks due to equine G14P[12] in foals born to dams immunized with the inactivated monovalent equine G3P[12] vaccine. Finally, using the structural modelling approach, we provided the genetic basis of the antigenic divergence between ERVA G3P[12] and G14P[12] strains. The results of this study will provide a framework for further investigation of infection biology, pathogenesis and cross-protection of equine rotaviruses.
Collapse
Affiliation(s)
- Tirth Uprety
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shalini Soni
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Chithra Sreenivasan
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Ben M. Hause
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Ahsan Naveed
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Amy J. Graves
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Jennifer K. Morrow
- Equine Diagnostic Solutions, LLC, 1501 Bull Lea Rd, Suite 104, Lexington, Kentucky 40511, USA
| | - Nathan Meade
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H. Mellits
- Division of Microbiology, Brewing, and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Emma Adam
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Michael A. Kennedy
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, South Dakota, 57007, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
4
|
De Greve H, Fioravanti A. Single domain antibodies from camelids in the treatment of microbial infections. Front Immunol 2024; 15:1334829. [PMID: 38827746 PMCID: PMC11140111 DOI: 10.3389/fimmu.2024.1334829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Infectious diseases continue to pose significant global health challenges. In addition to the enduring burdens of ailments like malaria and HIV, the emergence of nosocomial outbreaks driven by antibiotic-resistant pathogens underscores the ongoing threats. Furthermore, recent infectious disease crises, exemplified by the Ebola and SARS-CoV-2 outbreaks, have intensified the pursuit of more effective and efficient diagnostic and therapeutic solutions. Among the promising options, antibodies have garnered significant attention due to their favorable structural characteristics and versatile applications. Notably, nanobodies (Nbs), the smallest functional single-domain antibodies of heavy-chain only antibodies produced by camelids, exhibit remarkable capabilities in stable antigen binding. They offer unique advantages such as ease of expression and modification and enhanced stability, as well as improved hydrophilicity compared to conventional antibody fragments (antigen-binding fragments (Fab) or single-chain variable fragments (scFv)) that can aggregate due to their low solubility. Nanobodies directly target antigen epitopes or can be engineered into multivalent Nbs and Nb-fusion proteins, expanding their therapeutic potential. This review is dedicated to charting the progress in Nb research, particularly those derived from camelids, and highlighting their diverse applications in treating infectious diseases, spanning both human and animal contexts.
Collapse
Affiliation(s)
- Henri De Greve
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Antonella Fioravanti
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
- Fondazione ParSeC – Parco delle Scienze e della Cultura, Prato, Italy
| |
Collapse
|
5
|
Hensley C, Roier S, Zhou P, Schnur S, Nyblade C, Parreno V, Frazier A, Frazier M, Kiley K, O’Brien S, Liang Y, Mayer BT, Wu R, Mahoney C, McNeal MM, Petsch B, Rauch S, Yuan L. mRNA-Based Vaccines Are Highly Immunogenic and Confer Protection in the Gnotobiotic Pig Model of Human Rotavirus Diarrhea. Vaccines (Basel) 2024; 12:260. [PMID: 38543894 PMCID: PMC10974625 DOI: 10.3390/vaccines12030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/01/2024] Open
Abstract
Human rotavirus (HRV) is still a leading cause of severe dehydrating gastroenteritis globally, particularly in infants and children. Previously, we demonstrated the immunogenicity of mRNA-based HRV vaccine candidates expressing the viral spike protein VP8* in rodent models. In the present study, we assessed the immunogenicity and protective efficacy of two mRNA-based HRV trivalent vaccine candidates, encoding VP8* of the genotypes P[8], P[6], or P[4], in the gnotobiotic (Gn) pig model of Wa (G1P[8]) HRV infection and diarrhea. Vaccines either encoded VP8* alone fused to the universal T-cell epitope P2 (P2-VP8*) or expressed P2-VP8* as a fusion protein with lumazine synthase (LS-P2-VP8*) to allow the formation and secretion of protein particles that present VP8* on their surface. Gn pigs were randomly assigned into groups and immunized three times with either P2-VP8* (30 µg) or LS-P2-VP8* (30 µg or 12 µg). A trivalent alum-adjuvanted P2-VP8* protein vaccine or an LNP-formulated irrelevant mRNA vaccine served as the positive and negative control, respectively. Upon challenge with virulent Wa HRV, a significantly shortened duration and decreased severity of diarrhea and significant protection from virus shedding was induced by both mRNA vaccine candidates compared to the negative control. Both LS-P2-VP8* doses induced significantly higher VP8*-specific IgG antibody titers in the serum after immunizations than the negative as well as the protein control. The P[8] VP8*-specific IgG antibody-secreting cells in the ileum, spleen, and blood seven days post-challenge, as well as VP8*-specific IFN-γ-producing T-cell numbers increased in all three mRNA-vaccinated pig groups compared to the negative control. Overall, there was a clear tendency towards improved responses in LS-P2-VP8* compared to the P2-VP8*mRNA vaccine. The demonstrated strong humoral immune responses, priming for effector T cells, and the significant reduction of viral shedding and duration of diarrhea in Gn pigs provide a promising proof of concept and may provide guidance for the further development of mRNA-based rotavirus vaccines.
Collapse
Affiliation(s)
- Casey Hensley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sandro Roier
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Peng Zhou
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Sofia Schnur
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Charlotte Nyblade
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Viviana Parreno
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Annie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Maggie Frazier
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Kelsey Kiley
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Samantha O’Brien
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Yu Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| | - Bryan T. Mayer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Ruizhe Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Celia Mahoney
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; (B.T.M.); (R.W.); (C.M.)
| | - Monica M. McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | | | - Susanne Rauch
- CureVac SE, 72076 Tübingen, Germany; (S.R.); (B.P.); (S.R.)
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; (C.H.); (P.Z.); (S.S.); (C.N.); (V.P.); (A.F.); (M.F.); (K.K.); (S.O.); (Y.L.)
| |
Collapse
|
6
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
7
|
Rostoll Cangiano L, Villot C, Amorin-Hegedus R, Malmuthuge N, Gruninger R, Guan LL, Steele M. Saccharomyces cerevisiae boulardii accelerates intestinal microbiota maturation and is correlated with increased secretory IgA production in neonatal dairy calves. Front Microbiol 2023; 14:1129250. [PMID: 37795296 PMCID: PMC10546063 DOI: 10.3389/fmicb.2023.1129250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Neonatal calves have a limited capacity to initiate immune responses due to a relatively immature adaptive immune system, which renders them susceptible to many on-farm diseases. At birth, the mucosal surfaces of the intestine are rapidly colonized by microbes in a process that promotes mucosal immunity and primes the development of the adaptive immune system. In a companion study, our group demonstrated that supplementation of a live yeast probiotic, Saccharomyces cerevisiae boulardii (SCB) CNCM I-1079, to calves from birth to 1 week of age stimulates secretory IgA (sIgA) production in the intestine. The objective of the study was to evaluate how SCB supplementation impacts the intestinal microbiota of one-week-old male calves, and how changes in the bacterial community in the intestine relate to the increase in secretory IgA. A total of 20 calves were randomly allocated to one of two treatments at birth: Control (CON, n = 10) fed at 5 g/d of carrier with no live yeast; and SCB (n = 10) fed at 5 g of live SCB per day (10 × 109 CFU/d). Our study revealed that supplementing calves with SCB from birth to 1 week of age had its most marked effects in the ileum, increasing species richness and phylogenetic diversity in addition to expediting the transition to a more interconnected bacterial community. Furthermore, LEfSe analysis revealed that there were several differentially abundant taxa between treatments and that SCB increased the relative abundance the family Eubacteriaceae, Corynebacteriaceae, Eggerthellaceae, Bacillaceae, and Ruminococcaceae. Furthermore, network analysis suggests that SCB promoted a more stable bacterial community and appears to reduce colonization with Shigella. Lastly, we observed that the probiotic-driven increase in microbial diversity was highly correlated with the enhanced secretory IgA capacity of the ileum, suggesting that the calf's gut mucosal immune system relies on the development of a stable and highly diverse microbial community to provide the necessary cues to train and promote its proper function. In summary, this data shows that supplementation of SCB promoted establishment of a diverse and interconnected microbiota, prevented colonization of Escherichia Shigella and indicates a possible role in stimulating humoral mucosal immunity.
Collapse
Affiliation(s)
| | - Clothilde Villot
- Lallemand Animal Nutrition, Blagnac, France
- Lallemand Animal Nutrition, Milwaukee, WI, United States
| | | | - Nilusha Malmuthuge
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Kok TW, Izzo AA, Costabile M. Intracellular immunoglobulin A (icIgA) in protective immunity and vaccines. Scand J Immunol 2023; 97:e13253. [PMID: 36597220 DOI: 10.1111/sji.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/20/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Virus neutralization at respiratory mucosal surfaces is important in the prevention of infection. Mucosal immunity is mediated mainly by extracellular secretory immunoglobulin A (sIgA) and its role has been well studied. However, the protective role of intracellular specific IgA (icIgA) is less well defined. Initially, in vitro studies using epithelial cell lines with surface expressed polymeric immunoglobulin receptor (pIgR) in transwell culture chambers have shown that icIgA can neutralize influenza, parainfluenza, HIV, rotavirus and measles viruses. This effect appears to involve an interaction between polymeric immunoglobulin A (pIgA) and viral particles within an intracellular compartment, since IgA is transported across the polarized cell. Co-localization of specific icIgA with influenza virus in patients' (virus culture positive) respiratory epithelial cells using well-characterized antisera was initially reported in 2018. This review provides a summary of in vitro studies with icIgA on colocalization and neutralization of the above five viruses. Two other highly significant respiratory infectious agents with severe global impacts viz. SARS-2 virus (CoViD pandemic) and the intracellular bacterium-Mycobacterium tuberculosis-are discussed. Further studies will provide more detailed understanding of the mechanisms and kinetics of icIgA neutralization in relation to viral entry and early replication steps with a specific focus on mucosal infections. This will inform the design of more effective vaccines against infectious agents transmitted via the mucosal route.
Collapse
Affiliation(s)
- Tuck-Weng Kok
- University of Adelaide, Faculty of Health & Medical Sciences and School of Biological Sciences, Adelaide, South Australia, Australia
| | - Angelo A Izzo
- University of Sydney, Tuberculosis Research Program, Centenary Institute, Camperdown, New South Wales, Australia
| | - Maurizio Costabile
- University of South Australia, Clinical and Health Sciences and Centre for Cancer Biology, Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Chen J, Grow S, Iturriza-Gómara M, Hausdorff WP, Fix A, Kirkwood CD. The Challenges and Opportunities of Next-Generation Rotavirus Vaccines: Summary of an Expert Meeting with Vaccine Developers. Viruses 2022; 14:v14112565. [PMID: 36423174 PMCID: PMC9699535 DOI: 10.3390/v14112565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022] Open
Abstract
The 2nd Next Generation Rotavirus Vaccine Developers Meeting, sponsored by PATH and the Bill and Melinda Gates Foundation, was held in London, UK (7-8 June 2022), and attended by vaccine developers and researchers to discuss advancements in the development of next-generation rotavirus vaccines and to consider issues surrounding vaccine acceptability, introduction, and uptake. Presentations included updates on rotavirus disease burden, the impact of currently licensed oral vaccines, various platforms and approaches for next generation rotavirus vaccines, strategies for combination pediatric vaccines, and the value proposition for novel parenteral rotavirus vaccines. This report summarizes the information shared at the convening and poses various topics worthy of further exploration.
Collapse
Affiliation(s)
- Jessie Chen
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
- Correspondence:
| | - Stephanie Grow
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| | | | - William P. Hausdorff
- Faculty of Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium
- PATH, Washington, DC 20001, USA
| | | | - Carl D. Kirkwood
- Enteric & Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Towards Development of a Non-Toxigenic Clostridioides difficile Oral Spore Vaccine against Toxigenic C. difficile. Pharmaceutics 2022; 14:pharmaceutics14051086. [PMID: 35631671 PMCID: PMC9146386 DOI: 10.3390/pharmaceutics14051086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridioides difficile is an opportunistic gut pathogen which causes severe colitis, leading to significant morbidity and mortality due to its toxins, TcdA and TcdB. Two intra-muscular toxoid vaccines entered Phase III trials and strongly induced toxin-neutralising antibodies systemically but failed to provide local protection in the colon from primary C. difficile infection (CDI). Alternatively, by immunising orally, the ileum (main immune inductive site) can be directly targeted to confer protection in the large intestine. The gut commensal, non-toxigenic C. difficile (NTCD) was previously tested in animal models as an oral vaccine for natural delivery of an engineered toxin chimera to the small intestine and successfully induced toxin-neutralising antibodies. We investigated whether NTCD could be further exploited to induce antibodies that block the adherence of C. difficile to epithelial cells to target the first stage of pathogenesis. In NTCD strain T7, the colonisation factor, CD0873, and a domain of TcdB were overexpressed. Following oral immunisation of hamsters with spores of recombinant strain, T7-0873 or T7-TcdB, intestinal and systemic responses were investigated. Vaccination with T7-0873 successfully induced intestinal antibodies that significantly reduced adhesion of toxigenic C. difficile to Caco-2 cells, and these responses were mirrored in sera. Additional engineering of NTCD is now warranted to further develop this vaccine.
Collapse
|
11
|
Ling WL, Su CTT, Lua WH, Yeo JY, Poh JJ, Ng YL, Wipat A, Gan SKE. Variable-heavy (VH) families influencing IgA1&2 engagement to the antigen, FcαRI and superantigen proteins G, A, and L. Sci Rep 2022; 12:6510. [PMID: 35444201 PMCID: PMC9020155 DOI: 10.1038/s41598-022-10388-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/07/2022] [Indexed: 12/18/2022] Open
Abstract
Interest in IgA as an alternative antibody format has increased over the years with much remaining to be investigated in relation to interactions with immune cells. Considering the recent whole antibody investigations showing significant distal effects between the variable (V) and constant (C)- regions that can be mitigated by the hinge regions of both human IgA subtypes A1 and A2, we performed an in-depth mechanistic investigation using a panel of 28 IgA1s and A2s of both Trastuzumab and Pertuzumab models. FcαRI binding were found to be mitigated by the differing glycosylation patterns in IgA1 and 2 with contributions from the CDRs. On their interactions with antigen-Her2 and superantigens PpL, SpG and SpA, PpL was found to sterically hinder Her2 antigen binding with unexpected findings of IgAs binding SpG at the CH2-3 region alongside SpA interacting with IgAs at the CH1. Although the VH3 framework (FWR) is commonly used in CDR grafting, we found the VH1 framework (FWR) to be a possible alternative when grafting IgA1 and 2 owing to its stronger binding to antigen Her2 and weaker interactions to superantigen Protein L and A. These findings lay the foundation to understanding the interactions between IgAs and microbial superantigens, and also guide the engineering of IgAs for future antibody applications and targeting of superantigen-producing microbes.
Collapse
Affiliation(s)
- Wei-Li Ling
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Newcastle University Singapore, Singapore, Singapore
| | - Chinh Tran-To Su
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wai-Heng Lua
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jun-Jie Poh
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuen-Ling Ng
- Newcastle University Singapore, Singapore, Singapore
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, Experimental Drug Development Centre, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,James Cook University, Singapore, Singapore. .,Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China. .,Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
12
|
Immunoglobulin A Mucosal Immunity and Altered Respiratory Epithelium in Cystic Fibrosis. Cells 2021; 10:cells10123603. [PMID: 34944110 PMCID: PMC8700636 DOI: 10.3390/cells10123603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
The respiratory epithelium represents the first chemical, immune, and physical barrier against inhaled noxious materials, particularly pathogens in cystic fibrosis. Local mucus thickening, altered mucociliary clearance, and reduced pH due to CFTR protein dysfunction favor bacterial overgrowth and excessive inflammation. We aimed in this review to summarize respiratory mucosal alterations within the epithelium and current knowledge on local immunity linked to immunoglobulin A in patients with cystic fibrosis.
Collapse
|
13
|
Oemcke LA, Anderson RC, Altermann E, Roy NC, McNabb WC. The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Front Nutr 2021; 8:759137. [PMID: 34869529 PMCID: PMC8637878 DOI: 10.3389/fnut.2021.759137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
The microbiological, physical, chemical, and immunological barriers of the gastrointestinal tract (GIT) begin developing in utero and finish maturing postnatally. Maturation of these barriers is essential for the proper functioning of the GIT. Maturation, particularly of the immunological barrier, involves stimulation by bacteria. Segmented filamentous bacteria (SFB) which are anaerobic, spore-forming commensals have been linked to immune activation. The presence and changes in SFB abundance have been positively correlated to immune markers (cytokines and immunoglobulins) in the rat ileum and stool samples, pre- and post-weaning. The abundance of SFB in infant stool increases from 6 months, peaks around 12 months and plateaus 25 months post-weaning. Changes in SFB abundance at these times correlate positively and negatively with the production of interleukin 17 (IL 17) and immunoglobulin A (IgA), respectively, indicating involvement in immune function and maturation. Additionally, the peak in SFB abundance when a human milk diet was complemented by solid foods hints at a diet effect. SFB genome analysis revealed enzymes involved in metabolic pathways for survival, growth and development, host mucosal attachment and substrate acquisition. This narrative review discusses the current knowledge of SFB and their suggested effects on the small intestine immune system. Referencing the published genomes of rat and mouse SFB, the use of food substrates to modulate SFB abundance is proposed while considering their effects on other microbes. Changes in the immune response caused by the interaction of food substrate with SFB may provide insight into their role in infant immunological barrier maturation.
Collapse
Affiliation(s)
- Linda A Oemcke
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Rachel C Anderson
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Smart Foods Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand
| | - Eric Altermann
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Consumer Interface Innovation Centre of Excellence, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Warren C McNabb
- Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
14
|
Virus neutralisation by intracellular antibodies. Semin Cell Dev Biol 2021; 126:108-116. [PMID: 34782185 DOI: 10.1016/j.semcdb.2021.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022]
Abstract
For decades antibodies were largely thought to provide protection in extracellular spaces alone, mediating their effector functions by mechanisms such as entry-blocking, complement activation and phagocyte recruitment. However, a wealth of research has shown that antibodies are also capable of neutralising numerous viruses inside cells. Efficacy has now been demonstrated at virtually all intracellular stages of the viral life cycle. Antibodies can neutralise viruses in endosomes by blocking uncoating, fusion mechanisms, or new particle egress. Neutralisation can also occur in the cytosol via recruitment of the intracellular antibody receptor TRIM21. In addition to these direct neutralisation effects, recent research has shown that antibodies can mediate virus control indirectly by promoting MHC class I presentation and thereby increasing the CD8 T cell response. This provides valuable new insight into how non-neutralising antibodies can mediate potent protection in vivo. Overall, the importance of understanding the mechanisms of intracellular neutralisation by antibodies is highlighted by the ongoing need to develop new methods to control viruses. Using or inducing antibodies to block virus replication inside cells is now an innovative approach used by several vaccination and therapeutic strategies.
Collapse
|
15
|
Gut Microbiota and Immune System Interactions. Microorganisms 2020; 8:microorganisms8101587. [PMID: 33076307 PMCID: PMC7602490 DOI: 10.3390/microorganisms8101587] [Citation(s) in RCA: 456] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dynamic interactions between gut microbiota and a host’s innate and adaptive immune systems play key roles in maintaining intestinal homeostasis and inhibiting inflammation. The gut microbiota metabolizes proteins and complex carbohydrates, synthesize vitamins, and produce an enormous number of metabolic products that can mediate cross-talk between gut epithelial and immune cells. As a defense mechanism, gut epithelial cells produce a mucosal barrier to segregate microbiota from host immune cells and reduce intestinal permeability. An impaired interaction between gut microbiota and the mucosal immune system can lead to an increased abundance of potentially pathogenic gram-negative bacteria and their associated metabolic changes, disrupting the epithelial barrier and increasing susceptibility to infections. Gut dysbiosis, or negative alterations in gut microbial composition, can also dysregulate immune responses, causing inflammation, oxidative stress, and insulin resistance. Over time, chronic dysbiosis and the translocation of bacteria and their metabolic products across the mucosal barrier may increase prevalence of type 2 diabetes, cardiovascular disease, inflammatory bowel disease, autoimmune disease, and a variety of cancers. In this paper, we highlight the pivotal role gut microbiota and their metabolites (short-chain fatty acids (SCFAs)) play in mucosal immunity.
Collapse
|
16
|
Intracellular neutralisation of rotavirus by VP6-specific IgG. PLoS Pathog 2020; 16:e1008732. [PMID: 32750093 PMCID: PMC7428215 DOI: 10.1371/journal.ppat.1008732] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/14/2020] [Accepted: 06/22/2020] [Indexed: 02/02/2023] Open
Abstract
Rotavirus is a major cause of gastroenteritis in children, with infection typically inducing high levels of protective antibodies. Antibodies targeting the middle capsid protein VP6 are particularly abundant, and as VP6 is only exposed inside cells, neutralisation must be post-entry. However, while a system of poly immune globulin receptor (pIgR) transcytosis has been proposed for anti-VP6 IgAs, the mechanism by which VP6-specific IgG mediates protection remains less clear. We have developed an intracellular neutralisation assay to examine how antibodies neutralise rotavirus inside cells, enabling comparison between IgG and IgA isotypes. Unexpectedly we found that neutralisation by VP6-specific IgG was much more efficient than by VP6-specific IgA. This observation was highly dependent on the activity of the cytosolic antibody receptor TRIM21 and was confirmed using an in vivo model of murine rotavirus infection. Furthermore, mice deficient in only IgG and not other antibody isotypes had a serious deficit in intracellular antibody-mediated protection. The finding that VP6-specific IgG protect mice against rotavirus infection has important implications for rotavirus vaccination. Current assays determine protection in humans predominantly by measuring rotavirus-specific IgA titres. Measurements of VP6-specific IgG may add to existing mechanistic correlates of protection.
Collapse
|
17
|
Comparative Analyses of the Antiviral Activities of IgG and IgA Antibodies to Influenza A Virus M2 Protein. Viruses 2020; 12:v12070780. [PMID: 32698456 PMCID: PMC7411592 DOI: 10.3390/v12070780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 01/22/2023] Open
Abstract
The influenza A virus (IAV) matrix-2 (M2) protein is an antigenically conserved viral envelope protein that plays an important role in virus budding together with another envelope protein, hemagglutinin (HA). An M2-specific mouse monoclonal IgG antibody, rM2ss23, which binds to the ectodomain of the M2 protein, has been shown to be a non-neutralizing antibody, but inhibits plaque formation of IAV strains. In this study, we generated chimeric rM2ss23 (ch-rM2ss23) IgG and IgA antibodies with the same variable region and compared their antiviral activities. Using gel chromatography, ch-rM2ss23 IgA were divided into three antibody subsets: monomeric IgA (m-IgA), dimeric IgA (d-IgA), and trimeric and tetrameric IgA (t/q-IgA). We found that t/q-IgA had a significantly higher capacity to reduce the plaque size of IAVs than IgG and m-IgA, most likely due to the decreased number of progeny virus particles produced from infected cells. Interestingly, HA-M2 colocalization was remarkably reduced on the infected cell surface in the presence of ch-rM2ss23 antibodies. These results indicate that anti-M2 polymeric IgA restricts IAV budding more efficiently than IgG and suggest a role of anti-M2 IgA in cross-protective immunity to IAVs.
Collapse
|
18
|
Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes. J Virol 2020; 94:JVI.00408-20. [PMID: 32269119 DOI: 10.1128/jvi.00408-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/28/2020] [Indexed: 11/20/2022] Open
Abstract
IgA antibodies on mucosal surfaces are known to play an important role in protection from influenza A virus (IAV) infection and are believed to be more potent than IgG for cross-protective immunity against IAVs of multiple hemagglutinin (HA) subtypes. However, in general, neutralizing antibodies specific to HA are principally HA subtype specific. Here, we focus on nonneutralizing but broadly cross-reactive HA-specific IgA antibodies. Recombinant IgG, monomeric IgA (mIgA), and polymeric secretory IgA (pSIgA) antibodies were generated based on the sequence of a mouse anti-HA monoclonal antibody (MAb) 5A5 that had no neutralizing activity but showed broad binding capacity to multiple HA subtypes. While confirming that there was no neutralizing activity of the recombinant MAbs against IAV strains A/Puerto Rico/8/1934 (H1N1), A/Adachi/2/1957 (H2N2), A/Hong Kong/483/1997 (H5N1), A/shearwater/South Australia/1/1972 (H6N5), A/duck/England/1/1956 (H11N6), and A/duck/Alberta/60/1976 (H12N5), we found that pSIgA, but not mIgA and IgG, significantly reduced budding and release of most of the viruses from infected cells. Electron microscopy demonstrated that pSIgA deposited newly produced virus particles on the surfaces of infected cells, most likely due to tethering of virus particles. Furthermore, we found that pSIgA showed significantly higher activity to reduce plaque sizes of the viruses than IgG and mIgA. These results suggest that nonneutralizing pSIgA reactive to multiple HA subtypes may play a role in intersubtype cross-protective immunity against IAVs.IMPORTANCE Mucosal immunity represented by pSIgA plays important roles in protection from IAV infection. Furthermore, IAV HA-specific pSIgA antibodies are thought to contribute to cross-protective immunity against multiple IAV subtypes. However, the mechanisms by which pSIgA exerts such versatile antiviral activity are not fully understood. In this study, we generated broadly cross-reactive recombinant IgG and pSIgA having the same antigen-recognition site and compared their antiviral activities in vitro These recombinant antibodies did not show "classical" neutralizing activity, whereas pSIgA, but not IgG, significantly inhibited the production of progeny virus particles from infected cells. Plaque formation was also significantly reduced by pSIgA, but not IgG. These effects were seen in infection with IAVs of several different HA subtypes. Based on our findings, we propose an antibody-mediated host defense mechanism by which mucosal immunity may contribute to broad cross-protection from IAVs of multiple HA subtypes, including viruses with pandemic potential.
Collapse
|
19
|
de Sousa-Pereira P, Woof JM. IgA: Structure, Function, and Developability. Antibodies (Basel) 2019; 8:antib8040057. [PMID: 31817406 PMCID: PMC6963396 DOI: 10.3390/antib8040057] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A (IgA) plays a key role in defending mucosal surfaces against attack by infectious microorganisms. Such sites present a major site of susceptibility due to their vast surface area and their constant exposure to ingested and inhaled material. The importance of IgA to effective immune defence is signalled by the fact that more IgA is produced than all the other immunoglobulin classes combined. Indeed, IgA is not just the most prevalent antibody class at mucosal sites, but is also present at significant concentrations in serum. The unique structural features of the IgA heavy chain allow IgA to polymerise, resulting in mainly dimeric forms, along with some higher polymers, in secretions. Both serum IgA, which is principally monomeric, and secretory forms of IgA are capable of neutralising and removing pathogens through a range of mechanisms, including triggering the IgA Fc receptor known as FcαRI or CD89 on phagocytes. The effectiveness of these elimination processes is highlighted by the fact that various pathogens have evolved mechanisms to thwart such IgA-mediated clearance. As the structure–function relationships governing the varied capabilities of this immunoglobulin class come into increasingly clear focus, and means to circumvent any inherent limitations are developed, IgA-based monoclonal antibodies are set to emerge as new and potent options in the therapeutic arena.
Collapse
Affiliation(s)
- Patrícia de Sousa-Pereira
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- CIBIO-InBIO, Campus Agrário de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Jenny M. Woof
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Correspondence: ; Tel.: +44-1382-383389
| |
Collapse
|
20
|
Shi Z, Zou J, Zhang Z, Zhao X, Noriega J, Zhang B, Zhao C, Ingle H, Bittinger K, Mattei LM, Pruijssers AJ, Plemper RK, Nice TJ, Baldridge MT, Dermody TS, Chassaing B, Gewirtz AT. Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell 2019; 179:644-658.e13. [PMID: 31607511 PMCID: PMC7525827 DOI: 10.1016/j.cell.2019.09.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/23/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
Rotavirus (RV) encounters intestinal epithelial cells amidst diverse microbiota, opening possibilities of microbes influencing RV infection. Although RV clearance typically requires adaptive immunity, we unintentionally generated RV-resistant immunodeficient mice, which, we hypothesized, reflected select microbes protecting against RV. Accordingly, such RV resistance was transferred by co-housing and fecal transplant. RV-protecting microbiota were interrogated by heat, filtration, and antimicrobial agents, followed by limiting dilution transplant to germ-free mice and microbiome analysis. This approach revealed that segmented filamentous bacteria (SFB) were sufficient to protect mice against RV infection and associated diarrhea. Such protection was independent of previously defined RV-impeding factors, including interferon, IL-17, and IL-22. Colonization of the ileum by SFB induced changes in host gene expression and accelerated epithelial cell turnover. Incubation of RV with SFB-containing feces reduced infectivity in vitro, suggesting direct neutralization of RV. Thus, independent of immune cells, SFB confer protection against certain enteric viral infections and associated diarrheal disease.
Collapse
Affiliation(s)
- Zhenda Shi
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jun Zou
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Zhan Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Juan Noriega
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Benyue Zhang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Chunyu Zhao
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Harshad Ingle
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle Bittinger
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Mattei
- Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrea J Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy J Nice
- Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, GSU, Atlanta, GA, USA
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Li Z, Cui K, Wang H, Liu F, Huang K, Duan Z, Wang F, Shi D, Liu Q. A milk-based self-assemble rotavirus VP6-ferritin nanoparticle vaccine elicited protection against the viral infection. J Nanobiotechnology 2019; 17:13. [PMID: 30670042 PMCID: PMC6341625 DOI: 10.1186/s12951-019-0446-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rotavirus is the leading cause of severe dehydrating diarrhea in young children and the inner capsid protein VP6 is a potential vaccine candidate that can induce cross-protective immune responses against different Rotavirus strains. The use of ferritin nanoparticles as the scaffold of the antigen can improve the immunogenicity of the subunit vaccines and provide broader protection. We here present a non-live and self-assemble recombinant rotavirus VP6-ferritin (rVP6-ferritin) nanoparticle vaccine. RESULTS The rVP6-ferritin nanoparticles were expressed in E. coli and self-assembled to uniform spherical structure which similar to ferritin, and oral administration of them induced efficient humoral and mucosal immunogenicity in mice. The nanoparticles were further transgenically expressed in the milk of mice, and pup mice breastfed by transgenic rVP6-ferritin mothers had strongly induced immunogenicity and-compared to pups breastfed by wild type mothers-the proportion of rotavirus challenged pups with diarrhea symptoms, the duration and intensity of the diarrhea, and the deleterious effects on overall growth resulting from the diarrhea were all significantly reduced. CONCLUSIONS These results suggest that this recombinant VP6-ferritin nanoparticle vaccine can efficiently prevent the death and malnutrition induced by the rotavirus infection in infants and is a promising candidate vaccine for rotavirus.
Collapse
Affiliation(s)
- Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hong Wang
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 102206, China
| | - Fuhang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhaojun Duan
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
22
|
Afchangi A, Jalilvand S, Mohajel N, Marashi SM, Shoja Z. Rotavirus VP6 as a potential vaccine candidate. Rev Med Virol 2019; 29:e2027. [DOI: 10.1002/rmv.2027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Atefeh Afchangi
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Somayeh Jalilvand
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | - Nasir Mohajel
- Virology Department; Pasteur Institute of Iran; Tehran Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health; Tehran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
23
|
IgA targeting on the α-molecular recognition element (α-MoRE) of viral phosphoprotein inhibits measles virus replication by interrupting formation and function of P-N complex intracellularly. Antiviral Res 2019; 161:144-153. [DOI: 10.1016/j.antiviral.2018.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
|
24
|
Natural Secretory Immunoglobulins Promote Enteric Viral Infections. J Virol 2018; 92:JVI.00826-18. [PMID: 30232191 DOI: 10.1128/jvi.00826-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/05/2018] [Indexed: 12/27/2022] Open
Abstract
Noroviruses are enteric pathogens causing significant morbidity, mortality, and economic losses worldwide. Secretory immunoglobulins (sIg) are a first line of mucosal defense against enteric pathogens. They are secreted into the intestinal lumen via the polymeric immunoglobulin receptor (pIgR), where they bind to antigens. However, whether natural sIg protect against norovirus infection remains unknown. To determine if natural sIg alter murine norovirus (MNV) pathogenesis, we infected pIgR knockout (KO) mice, which lack sIg in mucosal secretions. Acute MNV infection was significantly reduced in pIgR KO mice compared to controls, despite increased MNV target cells in the Peyer's patch. Natural sIg did not alter MNV binding to the follicle-associated epithelium (FAE) or crossing of the FAE into the lymphoid follicle. Instead, naive pIgR KO mice had enhanced levels of the antiviral inflammatory molecules interferon gamma (IFN-γ) and inducible nitric oxide synthase (iNOS) in the ileum compared to controls. Strikingly, depletion of the intestinal microbiota in pIgR KO and control mice resulted in comparable IFN-γ and iNOS levels, as well as MNV infectious titers. IFN-γ treatment of wild-type (WT) mice and neutralization of IFN-γ in pIgR KO mice modulated MNV titers, implicating the antiviral cytokine in the phenotype. Reduced gastrointestinal infection in pIgR KO mice was also observed with another enteric virus, reovirus. Collectively, our findings suggest that natural sIg are not protective during enteric virus infection, but rather, that sIg promote enteric viral infection through alterations in microbial immune responses.IMPORTANCE Enteric virus, such as norovirus, infections cause significant morbidity and mortality worldwide. However, direct antiviral infection prevention strategies are limited. Blocking host entry and initiation of infection provides an established avenue for intervention. Here, we investigated the role of the polymeric immunoglobulin receptor (pIgR)-secretory immunoglobulin (sIg) cycle during enteric virus infections. The innate immune functions of sIg (agglutination, immune exclusion, neutralization, and expulsion) were not required during control of acute murine norovirus (MNV) infection. Instead, lack of pIgR resulted in increased IFN-γ levels, which contributed to reduced MNV titers. Another enteric virus, reovirus, also showed decreased infection in pIgR KO mice. Collectively, our data point to a model in which sIg-mediated microbial sensing promotes norovirus and reovirus infection. These data provide the first evidence of the proviral role of natural sIg during enteric virus infections and provide another example of how intestinal bacterial communities indirectly influence MNV pathogenesis.
Collapse
|
25
|
Heinimäki S, Malm M, Vesikari T, Blazevic V. Intradermal and intranasal immunizations with oligomeric middle layer rotavirus VP6 induce Th1, Th2 and Th17 T cell subsets and CD4 + T lymphocytes with cytotoxic potential. Antiviral Res 2018; 157:1-8. [DOI: 10.1016/j.antiviral.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/26/2022]
|
26
|
Bányai K, Estes MK, Martella V, Parashar UD. Viral gastroenteritis. Lancet 2018; 392:175-186. [PMID: 30025810 PMCID: PMC8883799 DOI: 10.1016/s0140-6736(18)31128-0] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022]
Abstract
Enteric viruses, particularly rotaviruses and noroviruses, are a leading cause of gastroenteritis worldwide. Rotaviruses primarily affect young children, accounting for almost 40% of hospital admissions for diarrhoea and 200 000 deaths worldwide, with the majority of deaths occurring in developing countries. Two vaccines against rotavirus were licensed in 2006 and have been implemented in 95 countries as of April, 2018. Data from eight high-income and middle-income countries showed a 49-89% decline in rotavirus-associated hospital admissions and a 17-55% decline in all-cause gastroenteritis-associated hospital admissions among children younger than 5 years, within 2 years of vaccine introduction. Noroviruses affect people of all ages, and are a leading cause of foodborne disease and outbreaks of gastroenteritis worldwide. Prevention of norovirus infection relies on frequent hand hygiene, limiting contact with people who are infected with the virus, and disinfection of contaminated environmental surfaces. Norovirus vaccine candidates are in clinical trials; whether vaccines will provide durable protection against the range of genetically and antigenically diverse norovirus strains remains unknown. Treatment of viral gastroenteritis is based primarily on replacement of fluid and electrolytes.
Collapse
Affiliation(s)
- Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Provincial Road to Casamassima, Valenzano, Italy
| | - Umesh D Parashar
- Viral Gastroenteritis Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
27
|
Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses 2018; 10:E237. [PMID: 29751532 PMCID: PMC5977230 DOI: 10.3390/v10050237] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Collapse
Affiliation(s)
- Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Afchangi A, Arashkia A, Shahosseini Z, Jalilvand S, Marashi SM, Roohvand F, Mohajel N, Shoja Z. Immunization of Mice by Rotavirus NSP4-VP6 Fusion Protein Elicited Stronger Responses Compared to VP6 Alone. Viral Immunol 2017; 31:233-241. [PMID: 29185875 DOI: 10.1089/vim.2017.0075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Due to the limitations and safety issues of the two currently approved live attenuated rotavirus (RV) vaccines "RotaTeq and Rotarix," studies on nonreplicating sources of RV vaccines and search for proper RV antigens are actively carried out. The adjuvant activity of NSP4 and highly immunogenic properties of RV VP6 protein prompted us to consider the construction of a NSP4112-175-VP6 fusion protein and to assess the anti-VP6 IgG, IgA, and IgG subclass responses induced by Escherichia coli-derived NSP4-VP6 fusion protein compared to that of VP6 protein with/without formulation in Montanide ISA 50V2 (M50) in BALB/c mice. Results indicated to the proper expression of the fused NSP4-VP6 and VP6 proteins in E. coli. Intraperitoneal immunization by M50 formulated NSP4-VP6 fusion protein (M5+NSP4-VP6) induced the highest titration of VP6-specific IgG and IgA responses compared to the other groups. Indeed, the presence of NSP4 resulted to the induction of stronger humoral immune responses against the fused protein compared to that elicited by administration of VP6 protein alone (with/without M50 formulation), implying the adjuvant properties of NSP4 for the fused protein. Moreover, the "M50+NSP4-VP6" formulation induced higher serum IgG2a titers than IgG1 and increased Interferon-γ levels, despite unchanged interleukin-4 amounts compared to other groups, indicating Th1-oriented responses with a possible role of NSP4. In conclusion, this study further highlights the potentiality of NSP4-VP6 fusion protein as an efficient and cost-effective immunogen in the field of RV vaccine development.
Collapse
Affiliation(s)
- Atefeh Afchangi
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran .,2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | - Arash Arashkia
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | | | - Somayeh Jalilvand
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran
| | - Sayed Mahdi Marashi
- 1 Virology Department, School of Public Health (SPH), Tehran University of Medical Sciences (TUMS) , Tehran, Iran
| | - Farzin Roohvand
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | - Nasir Mohajel
- 2 Virology Department, Pasteur Institute of Iran , Tehran, Iran
| | | |
Collapse
|
29
|
Kok TW, Costabile M, Tannock GA, Li P. Colocalization of intracellular specific IgA (icIgA) with influenza virus in patients' nasopharyngeal aspirate cells. J Virol Methods 2017; 252:8-14. [PMID: 29102516 DOI: 10.1016/j.jviromet.2017.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022]
Abstract
Inhibition of viral replication by icIgA antibodies has only been observed with in vitro studies using epithelial cell lines in transwell cultures. This effect appears to involve an interaction between polymeric immunoglobulin A (pIgA) and viral particles within an intracellular compartment, since IgA is transported across polarized cells. Polyclonal guinea pig antisera against purified influenza A virus and mouse antisera prepared against Influenza A/H3N2 hemagglutinin (HA0) cleavage loop peptides, were used in confocal fluorescence microscopy to show specific staining of wild-type influenza H1N1 and H3N2 viruses in clinical specimens. The HA0 cleavage loop peptides used for intranasal immunization of mice were designed and synthesized from specific conserved regions of influenza A/H1N1 & A/H3N2 viruses. Anti-human secretory IgA antibodies were used to show co-localisation of influenza A virus and icIgA. The results showed specific immunofluorescent staining of influenza A/H3N2 (X31) (HA0 uncleaved)-infected MDCK cells and the presence of icIgA in respiratory exudate cells of infected patients. Both results confirm specific co-localisation and suggest interaction between influenza A virus and icIgA in patients' respiratory exudate cells. Importantly, antisera to the mouse anti-HA0 cleavage site were specific for wild-type virus in clinical specimens, indicating that the conserved region of HA0 was present in the uncleaved form. Similar staining and colocalization patterns between icIgA and virus were observed with polyclonal guinea pig antisera against influenza A virus. These are the first observations of co-localization of influenza A virus and intracellular IgA in clinical specimens. Role of icIgA: This report shows the co-localization of influenza A virus HA0 and icIgA antibodies in respiratory exudate cells of patients who were culture and viral RNA positive, suggesting that icIgA directed against the conserved HA0 site may have a privileged and unique opportunity to act on immature virus and thus prevent HA0 cleavage, maturation and subsequent cycles of viral replication. The precise mechanism by which icIgA mediates intracellular viral neutralization remains to be fully elucidated. SIGNIFICANCE The above findings in clinical specimens would contribute strongly to our understanding of the mechanisms and kinetics of icIgA neutralization in relation to viral entry and early replication steps of mucosal viral infections. A rapid, objective and sensitive assay - by ex vivo enumeration of respiratory epithelial cells that have co-localized influenza virus and icIgA - would contribute to further mucosal immunity studies and inform the design of more effective vaccines against influenza and other viral infections transmitted via the mucosal route e.g. respiratory syncytial virus, rotavirus.
Collapse
Affiliation(s)
- Tuck-Weng Kok
- School of Medicine & School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| | - Maurizio Costabile
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Peng Li
- School of Medicine & School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Blazevic V, Malm M, Arinobu D, Lappalainen S, Vesikari T. Rotavirus capsid VP6 protein acts as an adjuvant in vivo for norovirus virus-like particles in a combination vaccine. Hum Vaccin Immunother 2017; 12:740-8. [PMID: 26467630 PMCID: PMC4964741 DOI: 10.1080/21645515.2015.1099772] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the 2 leading causes of acute viral gastroenteritis worldwide. We have developed a non-live NoV and RV vaccine candidate consisting of NoV virus-like particles (VLPs) and recombinant polymeric RV VP6 protein produced in baculovirus-insect cell expression system. Both components have been shown to induce strong potentially protective immune responses. As VP6 nanotubes are highly immunogenic, we investigated here a possible adjuvant effect of these structures on NoV-specific immune responses in vivo. BALB/c mice were immunized intramuscularly with a suboptimal dose (0.3 μg) of GII.4 or GI.3 VLPs either alone or in a combination with 10 μg dose of VP6 and induction of NoV-specific antibodies in sera of experimental animals were measured. Blocking assay using human saliva or synthetic histo-blood group antigens was employed to test NoV blocking antibodies. Suboptimal doses of the VLPs alone did not induce substantial anti-NoV antibodies. When co-administered with the VP6, considerable titers of not only type-specific but also cross-reactive IgG antibodies against NoV VLP genotypes not included in the vaccine composition were induced. Most importantly, NoV-specific blocking antibodies, a surrogate for neutralizing antibodies, were generated. Our results show that RV VP6 protein has an in vivo adjuvant effect on NoV-specific antibody responses and support the use of VP6 protein as a part of the NoV-RV combination vaccine, especially when addition of external adjuvants is not desirable.
Collapse
Affiliation(s)
- Vesna Blazevic
- a Vaccine Research Center, University of Tampere Medical School , Tampere , Finland
| | - Maria Malm
- a Vaccine Research Center, University of Tampere Medical School , Tampere , Finland
| | - Daisuke Arinobu
- b R&D Project Office, UMN Pharma Inc. , Yokohama , Kanagawa , Japan
| | - Suvi Lappalainen
- a Vaccine Research Center, University of Tampere Medical School , Tampere , Finland
| | - Timo Vesikari
- a Vaccine Research Center, University of Tampere Medical School , Tampere , Finland
| |
Collapse
|
31
|
Rahe MC, Murtaugh MP. Mechanisms of Adaptive Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Viruses 2017; 9:v9060148. [PMID: 28608816 PMCID: PMC5490824 DOI: 10.3390/v9060148] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023] Open
Abstract
The adaptive immune response is necessary for the development of protective immunity against infectious diseases. Porcine reproductive and respiratory syndrome virus (PRRSV), a genetically heterogeneous and rapidly evolving RNA virus, is the most burdensome pathogen of swine health and wellbeing worldwide. Viral infection induces antigen-specific immunity that ultimately clears the infection. However, the resulting immune memory, induced by virulent or attenuated vaccine viruses, is inconsistently protective against diverse viral strains. The immunological mechanisms by which primary and memory protection are generated and used are not well understood. Here, we summarize current knowledge regarding cellular and humoral components of the adaptive immune response to PRRSV infection that mediate primary and memory immune protection against viruses.
Collapse
Affiliation(s)
- Michael C Rahe
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA.
| |
Collapse
|
32
|
Feng H, Li X, Song W, Duan M, Chen H, Wang T, Dong J. Oral Administration of a Seed-based Bivalent Rotavirus Vaccine Containing VP6 and NSP4 Induces Specific Immune Responses in Mice. FRONTIERS IN PLANT SCIENCE 2017; 8:910. [PMID: 28620404 PMCID: PMC5449476 DOI: 10.3389/fpls.2017.00910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Rotavirus is the leading cause of severe diarrheal disease among newborns. Plant-based rotavirus vaccines have been developed in recent years and have been proven to be effective in animal models. In the present study, we report a bivalent vaccine candidate expressing rotavirus subunits VP6 and NSP4 fused with the adjuvant subunit B of E. coli heat-labile enterotoxin (LTB) in maize seeds. The RT-PCR and Western blot results showed that VP6 and LTB-NSP4 antigens were expressed and accumulated in maize seeds. The expression levels were as high as 0.35 and 0.20% of the total soluble protein for VP6 and LTB-NSP4, respectively. Oral administration of transgenic maize seeds successfully stimulated systemic and mucosal responses, with high titers of serum IgG and mucosal IgA antibodies, even after long-term storage. This study is the first to use maize seeds as efficient generators for the development of a bivalent vaccine against rotavirus.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, Department of Plant Genetics and Breeding, China Agricultural UniversityBeijing, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
33
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
34
|
Pan XX, Zhao BX, Teng YM, Xia WY, Wang J, Li XF, Liao GY, Yang C, Chen YD. Immunoreactivity of chimeric proteins carrying poliovirus epitopes on the VP6 of rotavirus as a vector. Mol Biol 2016. [DOI: 10.1134/s0026893316030092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Tian G, Liang X, Chen D, Mao X, Yu J, Zheng P, He J, Huang Z, Yu B. Vitamin D3 supplementation alleviates rotavirus infection in pigs and IPEC-J2 cells via regulating the autophagy signaling pathway. J Steroid Biochem Mol Biol 2016; 163:157-63. [PMID: 27174720 DOI: 10.1016/j.jsbmb.2016.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 04/06/2016] [Accepted: 05/03/2016] [Indexed: 11/23/2022]
Abstract
Vitamin D had an anti-infection effect and benefited to the intestinal health. Autophagy signaling pathway was regulated by vitamin D3 to inhibit the infection of human immunodeficiency virus type-1. Rotavirus (RV) was a major cause of the severe diarrheal disease in young children and young animals. Although evidence suggested that vitamin D3 attenuates the negative effects of RV infection via the retinoic acid-inducible gene I signaling pathway, little is known of its antiviral effect whether through the regulation of autophagy. The present study was performed to investigate whether vitamin D3 alleviates RV infection in pig and porcine small intestinal epithelial cell line (IPEC-J2) models via regulating the autophagy signaling pathway. RV administration increased the Beclin 1 mRNA abundance in porcine jejunum and ileum. 5000 IU/kg dietary vitamin D3 supplementation greatly up-regulated LC3-II/LC3-I ratios and PR-39 mRNA expression under the condition of RV challenged. The viability of IPEC-J2 was significantly inhibited by RV infection. Incubation with 25-hydroxyvitamin D3 significantly decreased the concentrations of RV antigen and non-structural protein 4 (NSP4), and up-regulated the mRNA expression of Beclin 1 and PR-39 in the RV-infected IPEC-J2 cells. And then, based on the 25-hydroxyvitamin D3 treatment and RV infection, LC3-II mRNA expression in cells was inhibited by an autophagy inhibitor 3-methyladenine (3-MA). Bafilomycin A1 (Baf A1, a class of inhibitors of membrane ATPases, inhibits maturation of autophagic vacuoles) treatment numerically enhanced the LC3-II mRNA abundance, but had no effect on NSP4 concentration. Furthermore, 25-hydroxyvitamin D3 decreased the p62 mRNA expression and increased porcine cathelicidins (PMAP23, PG1-5 and PR-39) mRNA expression in the RV-infected cells. Taken together, these results indicated that vitamin D3 attenuates RV infection through regulating autophagic maturation and porcine cathelicidin genes expression.
Collapse
Affiliation(s)
- Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiaofang Liang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
36
|
Maffey L, Vega CG, Miño S, Garaicoechea L, Parreño V. Anti-VP6 VHH: An Experimental Treatment for Rotavirus A-Associated Disease. PLoS One 2016; 11:e0162351. [PMID: 27603013 PMCID: PMC5014449 DOI: 10.1371/journal.pone.0162351] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/22/2016] [Indexed: 01/10/2023] Open
Abstract
Species A Rotaviruses (RVA) remain a leading cause of mortality in children under 5 years of age. Current treatment options are limited. We assessed the efficacy of two VP6-specific llama-derived heavy chain antibody fragments (VHH) -2KD1 and 3B2- as an oral prophylactic and therapeutic treatment against RVA-induced diarrhea in a neonatal mouse model inoculated with virulent murine RVA (ECw, G16P[16]I7). Joint therapeutic administration of 2KD1+3B2 (200 μg/dose) successfully reduced diarrhea duration, RVA infection severity and virus shedding in feces. While the same dose of 2KD1 or 3B2 (200 μg) significantly reduced duration of RVA-induced diarrhea, 2KD1 was more effective in diminishing the severity of intestinal infection and RVA shedding in feces, perhaps because 2KD1 presented higher binding affinity for RVA particles than 3B2. Neither prophylactic nor therapeutic administration of the VHH interfered with the host's humoral immune response against RVA. When 2KD1 (200 μg) was administered after diarrhea development, it also significantly reduced RVA intestinal infection and fecal shedding. Host antibody responses against the oral VHH treatment were not detected, nor did viral escape mutants. Our findings show that oral administration of anti-VP6 VHH constitute, not only an effective prophylactic treatment against RVA-associated diarrhea, but also a safe therapeutic tool against RVA infection, even once diarrhea is present. Anti-VP6 VHH could be used complementary to ongoing vaccination, especially in populations that have shown lower immunization efficacy. These VHH could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea.
Collapse
Affiliation(s)
- Lucía Maffey
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Samuel Miño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Lorena Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
37
|
Rotavirus Recombinant VP6 Nanotubes Act as an Immunomodulator and Delivery Vehicle for Norovirus Virus-Like Particles. J Immunol Res 2016; 2016:9171632. [PMID: 27689099 PMCID: PMC5027051 DOI: 10.1155/2016/9171632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/05/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
We have recently shown that tubular form of rotavirus (RV) recombinant VP6 protein has an in vivo adjuvant effect on the immunogenicity of norovirus (NoV) virus-like particle (VLP) vaccine candidate. In here, we investigated in vitro effect of VP6 on antigen presenting cell (APC) activation and maturation and whether VP6 facilitates NoV VLP uptake by these APCs. Mouse macrophage cell line RAW 264.7 and dendritic cell line JAWSII were used as model APCs. Internalization of VP6, cell surface expression of CD40, CD80, CD86, and major histocompatibility class II molecules, and cytokine and chemokine production were analyzed. VP6 nanotubes were efficiently internalized by APCs. VP6 upregulated the expression of cell surface activation and maturation molecules and induced secretion of several proinflammatory cytokines and chemokines. The mechanism of VP6 action was shown to be partially dependent on lipid raft-mediated endocytic pathway as shown by methyl-β-cyclodextrin inhibition on tumor necrosis factor α secretion. These findings add to the understanding of mechanism by which VP6 exerts its immunostimulatory and immunomodulatory actions and further support its use as a part of nonlive RV-NoV combination vaccine.
Collapse
|
38
|
Lappalainen S, Blazevic V, Malm M, Vesikari T. Rotavirus vaccination and infection induce VP6-specific IgA responses. J Med Virol 2016; 89:239-245. [PMID: 27431308 DOI: 10.1002/jmv.24636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Rotavirus (RV) is the leading cause of severe gastroenteritis (GE) in young children, but RVGE has drastically been reduced with the introduction of live oral RV vaccines into childhood immunization program in many countries. Serum IgA antibody is a marker of clinical protection against severe RVGE after RV infection and vaccination. This study investigated VP6-specificity of anti-RV IgA antibody levels in Finnish children aged 6-23 months before and after introduction of RotaTeq® into national immunization program. Although RV inner capsid protein VP6 is considered as antigenic target in clinical and seroepidemiological studies, at present VP6 protein is not commonly employed as a primary ELISA-antigen. Thus, sera from 20 unvaccinated and 19 vaccinated children were examined in ELISA with recombinant VP6 (rVP6) protein, and the VP6-specific responses were compared to responses observed with human RV Wa and bovine RV WC3 cell culture antigens. Moreover, fecal antibodies were tested with rVP6 and Wa cell culture antigen. Equal levels of serum anti-RV IgA antibodies were detected by the three antigens. Fecal IgA titers against rVP6 and Wa antigen showed a correlation with the corresponding serum levels. The results suggest that the IgA response measured by virus-capture ELISA is mainly directed to VP6 protein, supporting the usage of rVP6 in detection of anti-RV IgA antibodies. Natural RV infections and vaccinations induced similar levels of serum VP6-specific IgA antibodies. Serum IgA antibodies after RotaTeq® vaccination showed sustained levels up to two years of age in line with long term protection. J. Med. Virol. 89:239-245, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Suvi Lappalainen
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Maria Malm
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| |
Collapse
|
39
|
Fusion of the mouse IgG1 Fc domain to the VHH fragment (ARP1) enhances protection in a mouse model of rotavirus. Sci Rep 2016; 6:30171. [PMID: 27439689 PMCID: PMC4954977 DOI: 10.1038/srep30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/28/2016] [Indexed: 11/15/2022] Open
Abstract
A variable fragment of a heavy chain antibody (VHH) directed against rotavirus, also referred to as anti-rotavirus protein 1 (ARP1), was shown to confer protection against rotavirus induced diarrhea in infant mouse model of rotavirus induced diarrhea. In this study, we have fused the mouse IgG1 Fc to ARP1 to improve the protective capacity of ARP1 by inducing an Fc-mediated effector function. We have shown that the Fc-ARP1 fusion protein confers significantly increased protection against rotavirus in a neonatal mouse model of rotavirus-induced diarrhea by reducing the prevalence, duration and severity of diarrhea and the viral load in the small intestines, suggesting that the Fc part of immunoglobulins may be engaged in Fc-mediated neutralization of rotavirus. Engineered conventional-like antibodies, by fusion of the Fc part of immunoglobulins to antigen-specific heavy-chain only VHH fragments, might be applied to novel antibody-based therapeutic approaches to enhance elimination of pathogens by activation of distinct effector signaling pathways.
Collapse
|
40
|
Medici MC, Tummolo F, Martella V, Arcangeletti MC, De Conto F, Chezzi C, Magrì A, Fehér E, Marton S, Calderaro A, Bányai K. Whole genome sequencing reveals genetic heterogeneity of G3P[8] rotaviruses circulating in Italy. INFECTION GENETICS AND EVOLUTION 2016; 40:253-261. [DOI: 10.1016/j.meegid.2016.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/29/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
|
41
|
Pabst O, Cerovic V, Hornef M. Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol 2016; 37:287-296. [PMID: 27066758 DOI: 10.1016/j.it.2016.03.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Starting at birth, the intestinal microbiota changes dramatically from a highly individual collection of microorganisms, dominated by comparably few species, to a mature, competitive, and diverse microbial community. Microbial colonization triggers and accompanies the maturation of the mucosal immune system and ultimately results in a mutually beneficial host-microbe interrelation in the healthy host. Here, we discuss the role of secretory immunoglobulin A (SIgA) during the establishment of the infant microbiota and life-long host-microbial homeostasis. We critically review the published literature on how SIgA affects the enteric microbiota and highlight the accessibility of the infant microbiota to therapeutic intervention.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany.
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University, 52074 Aachen, Germany
| |
Collapse
|
42
|
Franco MA, Angel J, Greenberg HB. Rotaviruses. CLINICAL VIROLOGY 2016:853-872. [DOI: 10.1128/9781555819439.ch36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
43
|
Lappalainen S, Pastor AR, Tamminen K, López-Guerrero V, Esquivel-Guadarrama F, Palomares LA, Vesikari T, Blazevic V. Immune responses elicited against rotavirus middle layer protein VP6 inhibit viral replication in vitro and in vivo. Hum Vaccin Immunother 2016; 10:2039-47. [PMID: 25424814 PMCID: PMC4186038 DOI: 10.4161/hv.28858] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rotavirus (RV) is a common cause of severe gastroenteritis (GE) in children worldwide. Live oral RV vaccines protect against severe RVGE, but the immune correlates of protection are not yet clearly defined. Inner capsid VP6 protein is a highly conserved, abundant, and immunogenic RV protein, and VP6-specific mucosal antibodies, especially IgA, have been implicated to protect against viral challenge in mice. In the present study systemic and mucosal IgG and IgA responses were induced by immunizing BALB/c mice intranasally with a combination of recombinant RV VP6 protein (subgroup II [SGII]) and norovirus (NoV) virus-like particles (VLPs) used in a candidate vaccine. Following immunization mice were challenged orally with murine RV strain EDIMwt (SG non-I-non-II, G3P10[16]). In order to determine neutralizing activity of fecal samples, sera, and vaginal washes (VW) against human Wa RV (SGII, G1P1A[8]) and rhesus RV (SGI, G3P5B[3]), the RV antigen production was measured with an ELISA-based antigen reduction neutralization assay. Only VWs of immunized mice inhibited replication of both RVs, indicating heterotypic protection of induced antibodies. IgA antibody depletion and blocking experiments using recombinant VP6 confirmed that neutralization was mediated by anti-VP6 IgA antibodies. Most importantly, after the RV challenge significant reduction in viral shedding was observed in feces of immunized mice. These results suggest a significant role for mucosal RV VP6-specific IgA for the inhibition of RV replication in vitro and in vivo. In addition, these results underline the importance of non-serotype-specific immunity induced by the conserved subgroup-specific RV antigen VP6 in clearance of RV infection.
Collapse
Affiliation(s)
- Suvi Lappalainen
- a Vaccine Research Center; School of Medicine; University of Tampere; Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bredell H, Smith JJ, Prins WA, Görgens JF, van Zyl WH. Expression of rotavirus VP6 protein: a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Res 2016; 16:fow001. [PMID: 26772798 DOI: 10.1093/femsyr/fow001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
During this study. we successfully expressed a codon-optimized gene for rotavirus VP6 protein intracellularly in two methylotrophic yeasts, Pichia pastoris and Hansenula polymorpha, during methanol induction. Expressions were performed in shake flasks and subsequently scaled-up to 1.3 L bioreactors. The yields obtained in the yeasts were compared with that observed in Escherichia coli. Despite producing the lowest biomass levels of all the expression systems in shake flasks, the highest VP6 concentration was obtained with E. coli. In shake flasks, P. pastoris yielded higher volumetric levels of VP6 than H. polymorpha, but specific production of VP6 was approximately similar in both yeasts. In the controlled environment of bioreactors, yeast strains attained typical high cell densities, but also increased VP6 production compared to all shake flask cultures. Unlike in shake flask expressions, H. polymorpha outperformed both P. pastoris as well as E. coli during bioreactor cultivation. VP6 production was in all three expression systems growth-associated. In contrast to yeast expressions, bacterial expressed VP6 protein was found to be insoluble upon analysis. This is the first report of VP6 expressed in methylotrophic yeast and holds the promise for the inexpensive production of VP6 as a possible vaccine candidate or drug delivery mechanism.
Collapse
Affiliation(s)
- Helba Bredell
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Jacques J Smith
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Willem A Prins
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Johann F Görgens
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Aleyd E, Heineke MH, van Egmond M. The era of the immunoglobulin A Fc receptor FcαRI; its function and potential as target in disease. Immunol Rev 2015; 268:123-38. [DOI: 10.1111/imr.12337] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Esil Aleyd
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
| | - Marieke H. Heineke
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam The Netherlands
- Department of Surgery; VU University Medical Center; Amsterdam The Netherlands
| |
Collapse
|
46
|
Abstract
Rotaviruses (RV) are ubiquitous, highly infectious, segmented double-stranded RNA genome viruses of importance in public health because of the severe acute gastroenteritis they cause in young children and many animal species. They are very well adapted to their host, with symptomatic and asymptomatic reinfections being virtually universal during the first 3 years of life. Antibodies are the major arm of the immune system responsible for protecting infants from RV reinfection. The relationship between the virus and the B cells (Bc) that produce these antibodies is complex and incompletely understood: most blood-circulating Bc that express RV-specific immunoglobulin (Ig) on their surface (RV-Ig) are naive Bc and recognize the intermediate capsid viral protein VP6 with low affinity. When compared to non-antigen-specific Bc, RV-Bc are enriched in CD27+ memory Bc (mBc) that express IgM. The Ig genes used by naive RV-Bc are different than those expressed by RV-mBc, suggesting that the latter do not primarily develop from the former. Although RV predominantly infects mature villus enterocytes, an acute systemic viremia also occurs and RV-Bc can be thought of as belonging to either the intestinal or systemic immune compartments. Serotype-specific or heterotypic RV antibodies appear to mediate protection by multiple mechanisms, including intracellular and extracellular homotypic and heterotypic neutralization. Passive administration of RV-Ig can be used either prophylactically or therapeutically. A better understanding of the Bc response generated against RV will improve our capacity to identify improved correlates of protection for RV vaccines.
Collapse
|
47
|
Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact 2015; 14:111. [PMID: 26242406 PMCID: PMC4524015 DOI: 10.1186/s12934-015-0287-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. RESULTS To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or adjuvanted with CTB as controls. Mice that received L. lactis/pNZ8008-NP adjuvanted with CTB were completely protected from homologous H1N1 virus and showed 80% protection against heterologous H3N2 or H5N1 virus, respectively. By contrast, L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB also conferred 100% protection against H5N1 virus infection, but indicated no cross-protection against H1N1 or H5N1 virus challenge. As controls, mice vaccinated orally with L. lactis/pNZ8008-NP alone or L. lactis/pNZ8110-pgsA-HA1 alone could not survive. CONCLUSION This study is the first to report the construction of recombinant L. lactis/pNZ8008-NP and investigate its immunogenicity with the use of CTB. Compared with L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB, our data support 5 × 10(11) CFU of L. lactis/pNZ8008-NP adjuvanted with 1 µg of CTB is a better combination for universal influenza vaccines development that would provide cross-protective immunity against divergent influenza A viruses.
Collapse
|
48
|
Kato-Nagaoka N, Shimada SI, Yamakawa Y, Tsujibe S, Naito T, Setoyama H, Watanabe Y, Shida K, Matsumoto S, Nanno M. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice. Immunology 2015; 146:59-69. [PMID: 25967857 DOI: 10.1111/imm.12480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 04/24/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022] Open
Abstract
To clarify the effect of secretory IgA (sIgA) deficiency on gut homeostasis, we examined intraepithelial lymphocytes (IELs) in the small intestine (SI) of polymeric immunoglobulin receptor-deficient (pIgR(-/-) ) mice. The pIgR(-/-) mice exhibited the accumulation of CD8αβ(+) T-cell receptor (TCR)-αβ(+) IELs (CD8αβ(+) αβ-IELs) after weaning, but no increase of CD8αβ(+) γδ-IELs was detected in pIgR(-/-) TCR-β(-/-) mice compared with pIgR(+/+) TCR-β(-/-) mice. When 5-bromo-2'-deoxyuridine (BrdU) was given for 14 days, the proportion of BrdU-labelled cells in SI-IELs was not different between pIgR(+/+) mice and pIgR(-/-) mice. However, the proportion of BrdU-labelled CD8αβ(+) -IELs became higher in pIgR(-/-) mice than pIgR(+/+) mice 10 days after discontinuing BrdU-labelling. Intravenously transferred splenic T cells migrated into the intraepithelial compartments of pIgR(+/+) TCR-β(-/-) mice and pIgR(-/-) TCR-β(-/-) mice to a similar extent. In contrast, in the case of injection of immature bone marrow cells, CD8αβ(+) αβ-IELs increased much more in the SI of pIgR(-/-) TCR-β(-/-) mice than pIgR(+/+) TCR-β(-/-) mice 8 weeks after the transfer. αβ-IELs from pIgR(-/-) mice could produce more interferon-γ and interleukin-17 than those of pIgR(+/+) mice, and intestinal permeability tended to increase in the SI of pIgR(-/-) mice with aging. Taken together, these results indicate that activated CD8αβ(+) αβ-IELs preferentially accumulate in pIgR(-/-) mice through the enhanced differentiation of immature haematopoietic precursor cells, which may subsequently result in the disruption of epithelial integrity.
Collapse
Affiliation(s)
| | | | - Yoko Yamakawa
- Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | - Kan Shida
- Yakult Central Institute, Tokyo, Japan
| | | | | |
Collapse
|
49
|
Bucardo F, Nordgren J. Impact of vaccination on the molecular epidemiology and evolution of group A rotaviruses in Latin America and factors affecting vaccine efficacy. INFECTION GENETICS AND EVOLUTION 2015; 34:106-13. [PMID: 26079278 DOI: 10.1016/j.meegid.2015.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Despite high rotavirus (RV) vaccine coverage (∼83%) and good effectiveness (∼77%) against RV-diarrhea hospitalization, RV is still contributing to the burden of diarrhea that persists in hospital settings in several Latin American countries, where RV vaccination is being implemented. Due to the extensive genomic and antigenic diversity, among co-circulating human RV, a major concern has been that the introduction of RV vaccination could exert selection pressure leading to higher prevalence of strains not included in the vaccines and/or emergence of new strains, thus, reducing the efficacy of vaccination. Here we review the molecular epidemiology of RV in Latin America and explore issues of RV evolution and selection in light of vaccination. We further explore etiologies behind the large burden of diarrhea remaining after vaccination in some countries and discuss plausible reasons for vaccine failures.
Collapse
Affiliation(s)
- Filemón Bucardo
- Department of Microbiology, National Autonomous University of León, Nicaragua (UNAN-León), Nicaragua.
| | - Johan Nordgren
- Division of Molecular Virology, Clinical and Experimental Medicine, Medical Faculty University of Linköping, 581 85 Linköping, Sweden
| |
Collapse
|
50
|
Jalilvand S, Marashi SM, Shoja Z. Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 2015; 33:3281-7. [PMID: 26021725 DOI: 10.1016/j.vaccine.2015.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Rotavirus (RV) structural proteins VP4 and VP7, located on the surface of viral particles, elicit neutralizing antibodies (Abs) and are therefore considered to be important components of RV vaccines. However, despite inducing neutralizing Abs, limits of cross-neutralizing activity and lack of full correlation with protection limit the usefulness of these proteins as protective agents against RV disease. VP6 protein, which forms the middle layer of RV particles, is discussed as an alternative vaccine candidate since it can induce cross-protective immune responses against different RV strains although the Ab raised is not neutralizing. This report reviews different functions of VP6 that can lead to considering it as an alternative vaccine against RV disease.
Collapse
Affiliation(s)
- Somayeh Jalilvand
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|