1
|
Shivshankar P, Mueller-Ortiz SL, Domozhirov AY, Bi W, Collum SD, Doursout MF, Patel M, LeFebvre IN, Akkanti B, Yau S, Huang HJ, Hussain R, Karmouty-Quintana H. Complement activity and autophagy are dysregulated in the lungs of patients with nonresolvable COVID-19 requiring lung transplantation. Respir Res 2025; 26:68. [PMID: 40016722 PMCID: PMC11866606 DOI: 10.1186/s12931-025-03152-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced coronavirus disease 2019 (COVID-19) pandemic has challenged the current understanding of the complement cascade mechanisms of host immune responses during infection-induced nonresolvable lung disease. While the complement system is involved in opsonization and phagocytosis of the invading pathogens, uncontrolled complement activation also leads to aberrant autophagic response and tissue damage. Our recent study revealed unique pathologic and fibrotic signature genes associated with epithelial bronchiolization in the lung tissues of patients with nonresolvable COVID-19 (NR-COVID-19) requiring lung transplantation. However, there is a knowledge gap if complement components are modulated to contribute to tissue damage and the fibrotic phenotype during NR-COVID-19. We, therefore, aimed to study the role of the complement factors and their corresponding regulatory proteins in the pathogenesis of NR-COVID-19. We further examined the association of complement components with mediators of the host autophagic response. We observed significant upregulation of the expression of the classical pathway factor C1qrs and alternative complement factors C3 and C5a, as well as the anaphylatoxin receptor C5aR1, in NR-COVID-19 lung tissues. Of note, complement regulatory protein, decay accelerating factor (DAF; CD55) was significantly downregulated at both transcript and protein levels in the NR-COVID-19 lungs, indicating a dampened host protective response. Furthermore, we observed significantly decreased levels of the autophagy mediators PPARγ and LC3a/b, which was corroborated by decreased expression of factor P and the C3b receptor CR1, indicating impaired clearance of damaged cells that may contribute to the fibrotic phenotype in NR-COVID-19 patients. Thus, our study revealed previously unrecognized complement dysregulation associated with impaired cell death and clearance of damaged cells, which may promote NR-COVID-19 in patients, ultimately necessitating lung transplantation. The identified network of dysregulated complement cascade activity indicates the interplay of regulatory factors and the receptor-mediated modulation of host immune and autophagic responses as potential therapeutic targets for treating NR-COVID-19.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA.
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, 1825 Pressler Street, #407-07, Houston, TX, 77030, USA.
| | - Stacey L Mueller-Ortiz
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA
| | - Aleksey Y Domozhirov
- Hans J. Müller-Eberhard and Irma Gigli Center for Immunology and Autoimmune Diseases, Institute of Molecular Medicine, UTHealth-McGovern Medical School, Houston, TX, USA
| | - Weizhen Bi
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Manish Patel
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Isabella N LeFebvre
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Bindu Akkanti
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite 6.214, Houston, TX, 77030, USA
| | - Simon Yau
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Howard J Huang
- Houston Methodist DeBakey Transplant Center, Houston Methodist Hospital, Houston, TX, USA
| | - Rahat Hussain
- Center for Advanced Cardiopulmonary Therapies and Transplantation at UTHealth/McGovern Medical School, Houston, TX, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Suite 6.214, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Yin J, Verschoor A, Yue X, Goldmann T, Heidecke H, Riemekasten G, Petersen F, Yu X. C3 deficiency promotes pulmonary inflammation in AT1R-induced mouse model for systemic sclerosis. Front Immunol 2024; 15:1491324. [PMID: 39737181 PMCID: PMC11683138 DOI: 10.3389/fimmu.2024.1491324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Autoantibody-mediated complement activation plays an essential role in a variety of autoimmune disorders. However, the role of complement in systemic sclerosis (SSc) remains largely unknown. In this study, we aimed to determine the role of complement C3 in the development of a recently described SSc mouse model based on autoimmunity to angiotensin II receptor type 1 (AT1R). Methods Mice were immunized with cell membrane extract isolated from Chinese hamster ovary (CHO) cells overexpressing AT1R or non-transfected CHO cells as a control. Peripheral blood, dorsal skin and the lung were then collected to evlauate disease characteristics. Apoptotic cells in the lung of mice were detected using the DeadEnd™ Fluorometric TUNEL System. Results Our results showed that experimental SSc in this model was featured by the deposition of IgG, but not of complement C3, in the lung. After immunization with AT1R, C3-deficient mice developed more severe pulmonary inflammations than wild type controls, whereas skin inflammation and fibrosis were not different as well as the anti-AT1R ab levels. Further, C3-deficient mice showed an increased rate of pulmonary cell apoptosis as compared to controls. The apoptosis rate correlated with the corresponding degree of lung inflammation. Discussion Taken together, our findings suggest an anti-apoptotic and anti-inflammatory role of complement C3 in pulmonary autoimmune inflammation.
Collapse
Affiliation(s)
- Junping Yin
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Admar Verschoor
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
- Department of Dermatology, University Clinic of Schleswig Holstein, University of Lübeck, Lübeck, Germany
| | - Xiaoyang Yue
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
- College of Basic Medical Science, Key Laboratory of Basic Research on Regional Diseases, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Medical University, Nanning, China
| | - Torsten Goldmann
- Histology, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| | | | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University Clinic of Schleswig Holstein, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Members of the German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
3
|
Earhart AP, Alburquerque RA, Starick M, Nallapu A, Garnica L, Ozanturk AN, Maurya RK, Wu X, Haspel JA, Kulkarni HS. The C3-C3aR axis modulates trained immunity in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621042. [PMID: 39554000 PMCID: PMC11565986 DOI: 10.1101/2024.11.01.621042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Complement protein C3 is crucial for immune responses in mucosal sites such as the lung, where it aids in microbe elimination and enhances inflammation. While trained immunity - enhanced secondary responses of innate immune cells after prior exposure - is well-studied, the role of the complement system in trained immune responses remains unclear. We investigated the role of C3 in trained immunity and found that in vivo , trained wild-type mice showed significantly elevated pro-inflammatory cytokines and increased C3a levels upon a second stimulus, whereas C3-deficient mice exhibited a blunted cytokine response and heightened evidence of lung injury. Ex vivo , C3-deficient alveolar macrophages (AMs) displayed reduced chemokine and cytokine output after training, which was restored by exogenous C3 but not by C3a. Inhibiting C3aR, both pharmacologically and with a genetic C3aR knockout, prevented this restoration, indicating the necessity of C3aR engagement. Mechanistically, trained WT AMs demonstrated enhanced glycolytic activity compared to C3-deficient AMs - a defect corrected by exogenous C3 in a C3aR-dependent manner. These findings reveal that C3 modulates trained immunity in AMs through C3aR signaling, affecting cytokine production and metabolic reprogramming, and highlight a novel role for C3 in trained immunity.
Collapse
|
4
|
Li P, Chen M, Wang D, Zhang X, Sun R, Jia W, Fu S, Cui J, Song C. Clinical characteristics of severe influenza as a risk factor for febrile seizures in children: a retrospective analysis. Front Pediatr 2024; 12:1418499. [PMID: 39507495 PMCID: PMC11537893 DOI: 10.3389/fped.2024.1418499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Objective To retrospectively analyze the clinical characteristics and independent risk factors of severe influenza combined with febrile seizures, and to provide more basis for early clinical intervention. Methods A total of 161 children with severe influenza were collected as study subjects and divided into convulsive (FC) group (40 cases) and non-convulsive (NFC) group (121 cases) according to whether they had febrile seizures. The demographic characteristics and clinical data of the two groups were analyzed. Multivariate logistic regression was used to analyze the risk factors of severe influenza combined with febrile seizures. The predictive efficacy was evaluated by receiver operating characteristic (ROC) curve analysis. Results (1) Multiple logistic regression analysis revealed that C-reactive protein (CRP) levels, Serum interleukin 6 (IL-6) levels, Days from onset of Flu symptoms to hospitalization, cerebrospinal fluid protein (CSF-TP) levels and the influenza virus type A (FluA) infection rate were found to be independent risk factors for severe influenza combined with febrile seizures in children. (2) ROC curve analysis showed that the cut-off value of CRP, Serum IL-6, Days from onset of Flu symptoms to hospitalization and CSF-TP were 7.57 mg/L, 9.84 pg/ml, 4.5 days and 194.8 mg/L, respectively. Conclusion Children with severe influenza with CRP ≥ 7.57 mg/L, Serum IL-6 ≥ 9.84 pg/ml, Days from onset of Flu symptoms to hospitalization ≤4.5 days, CSF-TP ≥ 194.8 mg/L and FluA had a significantly increased risk of febrile seizures. It is useful for clinicians to determine the risk of severe influenza combined with febrile seizures, to adjust the early treatment plan, and to reduce the incidence of critically ill patients.
Collapse
Affiliation(s)
- Peng Li
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
- Pediatric Emergency Department, Henan Provincial Engineering Research Center for Diagnosis and Treatment of Pediatric Infections and Critical Illnesses, Zhengzhou, Henan Province, China
| | - Mei Chen
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
- Pediatric Emergency Department, Henan Provincial Engineering Research Center for Diagnosis and Treatment of Pediatric Infections and Critical Illnesses, Zhengzhou, Henan Province, China
| | - Daobin Wang
- Pediatric Department, Zhecheng County People's Hospital, Shangqiu, Henan Province, China
| | - Xue Zhang
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruiyang Sun
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wanyu Jia
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuqin Fu
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junhao Cui
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunlan Song
- Pediatric Emergency Department, Henan Children's Hospital Zhengzhou Children's Hospital, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan Province, China
- Pediatric Emergency Department, Henan Provincial Engineering Research Center for Diagnosis and Treatment of Pediatric Infections and Critical Illnesses, Zhengzhou, Henan Province, China
| |
Collapse
|
5
|
Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba NMA, Kirkpatrick Roubidoux E, Strohmeier S, Mudd PA, Schmitz A, Ellebedy A, McMahon M, Krammer F. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. J Virol 2023; 97:e0164622. [PMID: 37916834 PMCID: PMC10688359 DOI: 10.1128/jvi.01646-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nisreen M. A. Okba
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ericka Kirkpatrick Roubidoux
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip A. Mudd
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaron Schmitz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Ellebedy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Lampinen V, Gröhn S, Soppela S, Blazevic V, Hytönen VP, Hankaniemi MM. SpyTag/SpyCatcher display of influenza M2e peptide on norovirus-like particle provides stronger immunization than direct genetic fusion. Front Cell Infect Microbiol 2023; 13:1216364. [PMID: 37424789 PMCID: PMC10323135 DOI: 10.3389/fcimb.2023.1216364] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Virus-like particles (VLPs) are similar in size and shape to their respective viruses, but free of viral genetic material. This makes VLP-based vaccines incapable of causing infection, but still effective in mounting immune responses. Noro-VLPs consist of 180 copies of the VP1 capsid protein. The particle tolerates C-terminal fusion partners, and VP1 fused with a C-terminal SpyTag self-assembles into a VLP with SpyTag protruding from its surface, enabling conjugation of antigens via SpyCatcher. Methods To compare SpyCatcher-mediated coupling and direct peptide fusion in experimental vaccination, we genetically fused the ectodomain of influenza matrix-2 protein (M2e) directly on the C-terminus of norovirus VP1 capsid protein. VLPs decorated with SpyCatcher-M2e and VLPs with direct M2 efusion were used to immunize mice. Results and discussion We found that direct genetic fusion of M2e on noro-VLP raised few M2e antibodies in the mouse model, presumably because the short linker positions the peptide between the protruding domains of noro-VLP, limiting its accessibility. On the other hand, adding aluminum hydroxide adjuvant to the previously described SpyCatcher-M2e-decorated noro-VLP vaccine gave a strong response against M2e. Surprisingly, simple SpyCatcher-fused M2e without VLP display also functioned as a potent immunogen, which suggests that the commonly used protein linker SpyCatcher-SpyTag may serve a second role as an activator of the immune system in vaccine preparations. Based on the measured anti-M2e antibodies and cellular responses, both SpyCatcher-M2e as well as M2e presented on the noro-VLP via SpyTag/Catcher show potential for the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Vili Lampinen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stina Gröhn
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Saana Soppela
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Development and Immunology/Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P. Hytönen
- Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Minna M. Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Wang J, Chen HS, Li HH, Wang HJ, Zou RS, Lu XJ, Wang J, Nie BB, Wu JF, Li S, Shan BC, Wu PF, Long LH, Hu ZL, Chen JG, Wang F. Microglia-dependent excessive synaptic pruning leads to cortical underconnectivity and behavioral abnormality following chronic social defeat stress in mice. Brain Behav Immun 2023; 109:23-36. [PMID: 36581303 DOI: 10.1016/j.bbi.2022.12.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/17/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Synapse loss in medial prefrontal cortex (mPFC) has been implicated in stress-related mood disorders, such as depression. However, the exact effect of synapse elimination in the depression and how it is triggered are largely unknown. Through repeated longitudinal imaging of mPFC in the living brain, we found both presynaptic and postsynaptic components were declined, together with the impairment of synapse remodeling and cross-synaptic signal transmission in the mPFC during chronic stress. Meanwhile, chronic stress also induced excessive microglia phagocytosis, leading to engulfment of excitatory synapses. Further investigation revealed that the elevated complement C3 during the stress acted as the tag of synapses to be eliminated by microglia. Besides, chronic stress induced a reduction of the connectivity between the mPFC and neighbor regions. C3 knockout mice displayed significant reduction of synaptic pruning and alleviation of disrupted functional connectivity in mPFC, resulting in more resilience to chronic stress. These results indicate that complement-mediated excessive microglia phagocytosis in adulthood induces synaptic dysfunction and cortical hypo-connectivity, leading to stress-related behavioral abnormality.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hong-Sheng Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hou-Hong Li
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Hua-Jie Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Ruo-Si Zou
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Xiao-Jia Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin-Bin Nie
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Feng Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Ci Shan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Wu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Li-Hong Long
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Fang Wang
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, Wuhan City, Hubei 430030, China; Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
8
|
Scott MA, Woolums AR, Karisch BB, Harvey KM, Capik SF. Impact of preweaning vaccination on host gene expression and antibody titers in healthy beef calves. Front Vet Sci 2022; 9:1010039. [PMID: 36225796 PMCID: PMC9549141 DOI: 10.3389/fvets.2022.1010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of preweaning vaccination for bovine respiratory viruses on cattle health and subsequent bovine respiratory disease morbidity has been widely studied yet questions remain regarding the impact of these vaccines on host response and gene expression. Six randomly selected calves were vaccinated twice preweaning (T1 and T3) with a modified live vaccine for respiratory pathogens and 6 randomly selected calves were left unvaccinated. Whole blood samples were taken at first vaccination (T1), seven days later (T2), at revaccination and castration (T3), and at weaning (T4), and utilized for RNA isolation and sequencing. Serum from T3 and T4 was analyzed for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48 samples was bioinformatically processed with a HISAT2/StringTie pipeline, utilizing reference guided assembly with the ARS-UCD1.2 bovine genome. Differentially expressed genes were identified through analyzing the impact of time across all calves, influence of vaccination across treatment groups at each timepoint, and the interaction of time and vaccination. Calves, regardless of vaccine administration, demonstrated an increase in gene expression over time related to specialized proresolving mediator production, lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination was associated with gene expression related to natural killer cell activity and helper T-cell differentiation, enriching for an upregulation in Th17-related gene expression, and downregulated genes involved in complement system activity and coagulation mechanisms. Type-1 interferon production was unaffected by the influence of vaccination nor time. To our knowledge, this is the first study to evaluate mechanisms of vaccination and development in healthy calves through RNA sequencing analysis.
Collapse
Affiliation(s)
- Matthew A. Scott
- Veterinary Education, Research, and Outreach Center, Texas A&M University and West Texas A&M University, Canyon, TX, United States
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Brandi B. Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, United States
| | - Kelsey M. Harvey
- Prairie Research Unit, Mississippi State University, Prairie, MS, United States
| | - Sarah F. Capik
- Texas A&M AgriLife Research, Texas A&M University System, Amarillo, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Qin R, Meng G, Pushalkar S, Carlock MA, Ross TM, Vogel C, Mahal LK. Prevaccination Glycan Markers of Response to an Influenza Vaccine Implicate the Complement Pathway. J Proteome Res 2022; 21:1974-1985. [PMID: 35757850 PMCID: PMC9361353 DOI: 10.1021/acs.jproteome.2c00251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A key to improving vaccine design and vaccination strategy is to understand the mechanism behind the variation of vaccine response with host factors. Glycosylation, a critical modulator of immunity, has no clear role in determining vaccine responses. To gain insight into the association between glycosylation and vaccine-induced antibody levels, we profiled the pre- and postvaccination serum protein glycomes of 160 Caucasian adults receiving the FLUZONE influenza vaccine during the 2019-2020 influenza season using lectin microarray technology. We found that prevaccination levels of Lewis A antigen (Lea) are significantly higher in nonresponders than responders. Glycoproteomic analysis showed that Lea-bearing proteins are enriched in complement activation pathways, suggesting a potential role of glycosylation in tuning the activities of complement proteins, which may be implicated in mounting vaccine responses. In addition, we observed a postvaccination increase in sialyl Lewis X antigen (sLex) and a decrease in high mannose glycans among high responders, which were not observed in nonresponders. These data suggest that the immune system may actively modulate glycosylation as part of its effort to establish effective protection postvaccination.
Collapse
Affiliation(s)
- Rui Qin
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Guanmin Meng
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Smruti Pushalkar
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Michael A. Carlock
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Ted M. Ross
- Center
for Vaccines and Immunology, University
of Georgia, Athens, Georgia 30602, United States
| | - Christine Vogel
- Center
for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, United States
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Novak A, Pennings JLA, van der Maas L, Meiring HD, Ludwig I, Verkoeijen S, Rutten V, Broere F, Sloots A. Transcriptome and proteome analysis of innate immune responses to inactivated Leptospira and bivalent Leptospira vaccines in canine 030-D cells. Sci Rep 2022; 12:13418. [PMID: 35927283 PMCID: PMC9352656 DOI: 10.1038/s41598-022-16457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Mandatory potency testing of Leptospira vaccine batches relies partially on in vivo procedures, requiring large numbers of laboratory animals. Cell-based assays could replace in vivo tests for vaccine quality control if biomarkers indicative of Leptospira vaccine potency are identified. We investigated innate immune responsiveness induced by inactivated L. interrogans serogroups Canicola and Icterohaemorrhagiae, and two bivalent, non-adjuvanted canine Leptospira vaccines containing the same serogroups. First, the transcriptome and proteome analysis of a canine monocyte/macrophage 030-D cell line stimulated with Leptospira strains, and vaccine B revealed more than 900 DEGs and 23 DEPs in common to these three stimuli. Second, comparison of responses induced by vaccine B and vaccine D revealed a large overlap in DEGs and DEPs as well, suggesting potential to identify biomarkers indicative of Leptospira vaccine quality. Because not many common DEPs were identified, we selected seven molecules from the identified DEGs, associated with pathways related to innate immunity, of which CXCL-10, IL-1β, SAA, and complement C3 showed increased secretion upon stimulation with both Leptospira vaccines. These molecules could be interesting targets for development of biomarker-based assays for Leptospira vaccine quality control in the future. Additionally, this study contributes to the understanding of the mechanisms by which Leptospira vaccines induce innate immune responses in the dog.
Collapse
Affiliation(s)
- Andreja Novak
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Intravacc, Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | | - Irene Ludwig
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saertje Verkoeijen
- Research Centre Healthy and Sustainable Living, Innovative Testing in Life Sciences and Chemistry, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Victor Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Internal Medicine of Companion Animals, Department of Clinical Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Szilágyi Á, Csuka D, Geier CB, Prohászka Z. Complement Genetics for the Practicing Allergist Immunologist: Focus on Complement Deficiencies. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1703-1711. [PMID: 35272074 DOI: 10.1016/j.jaip.2022.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Complement deficiencies have been considered to be rare for many decades, but this assumption is changing year by year. Recognition of these conditions significantly increases thanks to the availability of different testing approaches and due to clinical awareness. Furthermore, sequencing technologies (including Sanger sequencing, targeted gene panels, and whole exome/genome sequencing) may facilitate the identification of the underlying disease-causing genetic background. On the other hand, functional characterization of the identified possibly pathogenic variations and performing family studies, as illustrated by some of our cases, remain similarly important to establish a precise clinical diagnosis facilitating the most appropriate management. Here, we present 4 illustrative cases with complement deficiencies of diverse etiologies and also provide an educative, step-by-step description on how to identify the underlying cause of complement deficiency based on the results of complement laboratory testing.
Collapse
Affiliation(s)
- Ágnes Szilágyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Christoph B Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary; Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary.
| |
Collapse
|
12
|
Universal influenza vaccine technologies and recombinant virosome production. METHODS IN MICROBIOLOGY 2022. [DOI: 10.1016/bs.mim.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
14
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
15
|
La-Beck NM, Islam MR, Markiewski MM. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front Immunol 2021; 11:603039. [PMID: 33488603 PMCID: PMC7819852 DOI: 10.3389/fimmu.2020.603039] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Nanoparticle-based anticancer medications were first approved for cancer treatment almost 2 decades ago. Patients benefit from these approaches because of the targeted-drug delivery and reduced toxicity, however, like other therapies, adverse reactions often limit their use. These reactions are linked to the interactions of nanoparticles with the immune system, including the activation of complement. This activation can cause well-characterized acute inflammatory reactions mediated by complement effectors. However, the long-term implications of chronic complement activation on the efficacy of drugs carried by nanoparticles remain obscured. The recent discovery of protumor roles of complement raises the possibility that nanoparticle-induced complement activation may actually reduce antitumor efficacy of drugs carried by nanoparticles. We discuss here the initial evidence supporting this notion. Better understanding of the complex interactions between nanoparticles, complement, and the tumor microenvironment appears to be critical for development of nanoparticle-based anticancer therapies that are safer and more efficacious.
Collapse
Affiliation(s)
- Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States.,Department of Pharmacy Practice, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Md Rakibul Islam
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
| |
Collapse
|
16
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
17
|
Jang YH, Seong BL. Call for a paradigm shift in the design of universal influenza vaccines by harnessing multiple correlates of protection. Expert Opin Drug Discov 2020; 15:1441-1455. [PMID: 32783765 DOI: 10.1080/17460441.2020.1801629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The genetic variability and diversity of influenza viruses, and the expansion of their hosts, present a significant threat to human health. The development of a universal influenza vaccine is urgently needed to tackle seasonal epidemics, pandemics, vaccine mismatch, and zoonotic transmissions to humans. AREAS COVERED Despite the identification of broadly neutralizing antibodies against influenza viruses, designing a universal influenza vaccine that induces such broadly neutralizing antibodies at protective levels in humans has remained challenging. Besides neutralizing antibodies, multiple correlates of protection have recently emerged as crucially important for eliciting broad protection against diverse influenza viruses. This review discusses the immune responses required for broad protection against influenza viruses, and suggests a paradigm shift from an HA stalk-based approach to other approaches that can induce multiple immunological correlates of protection for the development of a universal influenza vaccine. EXPERT OPINION To develop a truly universal influenza vaccine, multiple correlates of protection should be considered, including antibody responses and T cell immunity. Balanced induction of neutralizing antibodies, antibody effector functions, and T cell immunity will contribute to the most effective vaccination strategy. Live-attenuated influenza vaccines provide an attractive platform to improve the breadth and potency of vaccines for broader protection.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University , Andong, South Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University , Seoul, South Korea.,Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University , Seoul, South Korea
| |
Collapse
|
18
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
19
|
Redweik GAJ, Stromberg ZR, Van Goor A, Mellata M. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poult Sci 2019; 99:752-762. [PMID: 32029160 PMCID: PMC7587825 DOI: 10.1016/j.psj.2019.10.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Commercial poultry farms are increasingly threatened by bacterial infections from avian pathogenic Escherichia coli (APEC) and broad-host Salmonella serovars. Recombinant attenuated Salmonella vaccines (RASV) elicit cross-reactive immune responses against APEC in chickens; however, assessment of broad protection is lacking. Probiotics boost chicken immunity and improve vaccination responses. The objective of this study was to determine whether the RASV, the probiotics, or their combination had protection against APEC and Salmonella. White Leghorn chicks were randomly placed into 4 groups: no treatment (CON), probiotics (PRO), RASV (VAX), or both prophylactics (P + V). Chicks in the PRO and P + V groups were fed probiotics daily, beginning at the age of 1-day-old. Chicks in the P + V and VAX groups were orally inoculated with RASV at the age of 4 D and boosted 2 wks later. Total and antigen-specific IgY responses to Salmonella (lipolysaccharide [LPS]) and E. coli (IroN and IutA) were measured in serum samples via ELISA. Bactericidal potential of both serum and blood against 42 APEC isolates comprising 25 serotypes was assessed in vitro. In vivo protection against APEC was evaluated by air sac challenge with APEC χ7122 (O78:K80), gross pathological lesions were scored, and bacterial loads were enumerated. In a second similar study, birds were orally challenged with S. Kentucky (CVM29188), and feces were enumerated for Salmonella at multiple time points. Vaccination elicited significant LPS-specific antibodies regardless of probiotics (P < 0.0001). Chicks in the P + V group demonstrated increased blood and serum bactericidal abilities against multiple APEC strains in vitro compared with the CON group. Following χ7122 challenge, P+V birds had less APEC in their blood (P < 0.001) and lower signs of airsacculitis (P < 0.01) and pericarditis/perihepatitis (P < 0.05) than CON birds. Finally, only P + V birds were negative for fecal Salmonella at all time points. This study shows this combination treatment may be a feasible method to reduce infection by APEC and Salmonella in chickens.
Collapse
Affiliation(s)
- Graham A J Redweik
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Zachary R Stromberg
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Angelica Van Goor
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
20
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
21
|
Sedova ES, Scherbinin DN, Lysenko AA, Alekseeva SV, Artemova EA, Shmarov MM. Non-neutralizing Antibodies Directed at Conservative Influenza Antigens. Acta Naturae 2019; 11:22-32. [PMID: 31993232 PMCID: PMC6977952 DOI: 10.32607/20758251-2019-11-4-22-32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/21/2019] [Indexed: 11/20/2022] Open
Abstract
At the moment, developing new broad-spectrum influenza vaccines which would help avoid annual changes in a vaccine's strain set is urgency. In addition, developing new vaccines based on highly conserved influenza virus proteins could allow us to better prepare for potential pandemics and significantly reduce the damage they cause. Evaluation of the humoral response to vaccine administration is a key aspect of the characterization of the effectiveness of influenza vaccines. In the development of new broad-spectrum influenza vaccines, it is important to study the mechanisms of action of various antibodies, including non-neutralizing ones, as well as to be in the possession of methods for quantifying these antibodies after immunization with new vaccines against influenza. In this review, we focused on the mechanisms of anti-influenza action of non-neutralizing antibodies, such as antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and antibody-mediated complement-dependent cytotoxicity (CDC). The influenza virus antigens that trigger these reactions are hemagglutinin (HA) and neuraminidase (NA), as well as highly conserved antigens, such as M2 (ion channel), M1 (matrix protein), and NP (nucleoprotein). In addition, the mechanisms of action and methods for detecting antibodies to neuraminidase (NA) and to the stem domain of hemagglutinin (HA) of the influenza virus are considered.
Collapse
Affiliation(s)
- E. S. Sedova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - D. N. Scherbinin
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - A. A. Lysenko
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - S. V. Alekseeva
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - E. A. Artemova
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| | - M. M. Shmarov
- Federal Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, 123098 Russia
| |
Collapse
|