1
|
Kofler M, Venugopal S, Gill G, Di Ciano-Oliveira C, Kapus A. M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import. iScience 2025; 28:112105. [PMID: 40224012 PMCID: PMC11986988 DOI: 10.1016/j.isci.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple mechanisms were proposed to mediate the nuclear import of TAZ/YAP, transcriptional co-activators regulating organ growth and regeneration. Our earlier observations showed that TAZ/YAP harbor a C-terminal, unconventional nuclear localization signal (NLS). Here, we show that this sequence, necessary and sufficient for basal, ATP-independent nuclear import, contains an indispensable central methionine flanked by negatively charged residues. Based on these features, we define the M-motif and propose that it is a new class of NLS, also present and import-competent in other cellular (STAT1 and cyclin B1) and viral (ORF6 of SARS-CoV2, VSV-M) proteins. Accordingly, ORF6 SARS-Cov2 competitively inhibits TAZ/YAP uptake, while TAZ abrogates STAT1 import. Similar to viral M-motif proteins, TAZ binds RAE1 and inhibits classic nuclear protein import, including that of antiviral factors (IRF3 and NF-κB). However, RAE1 is dispensable for TAZ import itself. Thus, the TAZ/YAP NLS has a dual function: it mediates unconventional nuclear import and inhibits classic import, contributing to the suppression of antiviral responses.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Gary Gill
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | | | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Department Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
2
|
Mizuno K, Sugahara M, Kutomi O, Kato R, Itoh T, Fujita S, Yamada M. Direct observation of importin α family member KPNA1 in axonal transport with or without a schizophrenia-related mutation. J Biol Chem 2025; 301:108343. [PMID: 40010609 PMCID: PMC11982482 DOI: 10.1016/j.jbc.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/03/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
Karyopherin α1 (KPNA1)/(human importin α5; mouse importin α1) facilitates cargo transport into the nucleus by forming a complex with a nuclear localization sequence containing cargo and importin β1 (IPOB1). The elevated KPNA1 expression in neurons and the correlation between mutations and psychiatric disorders suggest its broader significance beyond nucleocytoplasmic transport. Although KPNA1 is localized in the neurites of neurons, its role in axonal transport mechanisms remains unclear, and data on the connection between psychiatric disorders and signaling at the periphery of neurons remain limited. To address this knowledge gap, we investigated the dynamics of KPNA1 and related factors within axons. Our results showed that many of the axonal KPNA1 did not form a complex with IPOB1 in noninjured steady-state neurons. Axonal KPNA1 exhibited relatively stationary mobility and some showed bidirectional motility with fluctuating motion. KPNA1 partly comigrated with endosome/lysosome-associated factors, suggesting the presence of novel mechanisms underlie axonal transport and nucleocytoplasmic shuttling involving KPNA1 and IPOB1. Mutated KPNA1, which has been shown to be associated with psychiatric disorders (KPNA1E448X), was predominantly localized to the nucleus and lost from the axon. Incorporating a nuclear export signal (KPNA1E448X-NES) enhanced its subcellular localization and dynamics in the axon. Our findings demonstrate that KPNA1 functions not only as a shuttle between the cytoplasm and nucleus but also as a transporter in neuronal axons, relying on the endosomes for movement away from the nucleus with relatively slow net motions. Furthermore, a mutation in the Kpna1 gene can affect the dynamics of axonal transport. The insights from these mutations provide valuable knowledge for expanding our understanding of psychiatric disorders and facilitate the development of novel treatment strategies.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masaki Sugahara
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Osamu Kutomi
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Ryota Kato
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Yoshida-gun, Fukui Prefecture, Japan
| | - Satoshi Fujita
- Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan; Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui City, Fukui Prefecture, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui Prefecture, Japan; Life Science Innovation Center, University of Fukui, Fukui City, Fukui Prefecture, Japan.
| |
Collapse
|
3
|
Tanneti NS, Stillwell HA, Weiss SR. Human coronaviruses: activation and antagonism of innate immune responses. Microbiol Mol Biol Rev 2025; 89:e0001623. [PMID: 39699237 PMCID: PMC11948496 DOI: 10.1128/mmbr.00016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
SUMMARYHuman coronaviruses cause a range of respiratory diseases, from the common cold (HCoV-229E, HCoV-NL63, HCoV-OC43, and SARS-CoV-2) to lethal pneumonia (SARS-CoV, SARS-CoV-2, and MERS-CoV). Coronavirus interactions with host innate immune antiviral responses are an important determinant of disease outcome. This review compares the host's innate response to different human coronaviruses. Host antiviral defenses discussed in this review include frontline defenses against respiratory viruses in the nasal epithelium, early sensing of viral infection by innate immune effectors, double-stranded RNA and stress-induced antiviral pathways, and viral antagonism of innate immune responses conferred by conserved coronavirus nonstructural proteins and genus-specific accessory proteins. The common cold coronaviruses HCoV-229E and -NL63 induce robust interferon signaling and related innate immune pathways, SARS-CoV and SARS-CoV-2 induce intermediate levels of activation, and MERS-CoV shuts down these pathways almost completely.
Collapse
Affiliation(s)
- Nikhila S. Tanneti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Helen A. Stillwell
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Khatun O, Kaur S, Tripathi S. Anti-interferon armamentarium of human coronaviruses. Cell Mol Life Sci 2025; 82:116. [PMID: 40074984 PMCID: PMC11904029 DOI: 10.1007/s00018-025-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/15/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025]
Abstract
Cellular innate immune pathways are formidable barriers against viral invasion, creating an environment unfavorable for virus replication. Interferons (IFNs) play a crucial role in driving and regulating these cell-intrinsic innate antiviral mechanisms through the action of interferon-stimulated genes (ISGs). The host IFN response obstructs viral replication at every stage, prompting viruses to evolve various strategies to counteract or evade this response. Understanding the interplay between viral proteins and cell-intrinsic IFN-mediated immune mechanisms is essential for developing antiviral and anti-inflammatory strategies. Human coronaviruses (HCoVs), including SARS-CoV-2, MERS-CoV, SARS-CoV, and seasonal coronaviruses, encode a range of proteins that, through shared and distinct mechanisms, inhibit IFN-mediated innate immune responses. Compounding the issue, a dysregulated early IFN response can lead to a hyper-inflammatory immune reaction later in the infection, resulting in severe disease. This review provides a brief overview of HCoV replication and a detailed account of its interaction with host cellular innate immune pathways regulated by IFN.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Sumandeep Kaur
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
5
|
Gunawardene CD, Wong LYR. Betacoronavirus internal protein: role in immune evasion and viral pathogenesis. J Virol 2025; 99:e0135324. [PMID: 39760492 PMCID: PMC11852921 DOI: 10.1128/jvi.01353-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Betacoronaviruses express a small internal (I) protein that is encoded by the same subgenomic RNA (sgRNA) as the nucleocapsid (N) protein. Translation of the +1 reading frame of the N sgRNA through leaky ribosomal scanning leads to expression of the I protein. The I protein is an accessory protein reported to evade host innate immune responses during coronavirus infection. Previous studies have shown that the I proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus suppress type I interferon production by distinct mechanisms. In this review, we summarize the current knowledge on the I proteins of betacoronaviruses from different subgenera, with emphasis on its function and role in pathogenesis.
Collapse
Affiliation(s)
- Chaminda D. Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Lok-Yin Roy Wong
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
6
|
Bannazadeh Baghi H, Bayat M, Mehrasa P, Alavi SMA, Lotfalizadeh MH, Memar MY, Taghavi SP, Zarepour F, Hamblin MR, Sadri Nahand J, Hashemian SMR, Mirzaei H. Regulatory role of microRNAs in virus-mediated inflammation. J Inflamm (Lond) 2024; 21:43. [PMID: 39497125 PMCID: PMC11536602 DOI: 10.1186/s12950-024-00417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Viral infections in humans often cause excessive inflammation. In some viral infections, inflammation can be serious and even fatal, while in other infections it can promote viral clearance. Viruses can escape from the host immune system via regulating inflammatory pathways, thus worsening the illness. MicroRNAs (miRNAs) are tiny non-coding RNA molecules expressed within diverse tissues as well as cells and are engaged in different normal pathological and physiological pathways. Emerging proof suggests that miRNAs can impact innate and adaptive immunity, inflammatory responses, cell invasion, and the progression of viral infections. We discuss some intriguing new findings in the current work, focusing on the impacts of different miRNAs on host inflammatory responses and virus-mediated inflammation. A better understanding of dysregulated miRNAs in viral infections could improve the identification, prevention, and treatment of several serious diseases.
Collapse
Affiliation(s)
- Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Xue W, Chu H, Wang J, Sun Y, Qiu X, Song C, Tan L, Ding C, Liao Y. Coronavirus nucleocapsid protein enhances the binding of p-PKCα to RACK1: Implications for inhibition of nucleocytoplasmic trafficking and suppression of the innate immune response. PLoS Pathog 2024; 20:e1012097. [PMID: 39602452 PMCID: PMC11633972 DOI: 10.1371/journal.ppat.1012097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
The hallmark of coronavirus infection lies in its ability to evade host immune defenses, a process intricately linked to the nuclear entry of transcription factors crucial for initiating the expression of antiviral genes. Central to this evasion strategy is the manipulation of the nucleocytoplasmic trafficking system, which serves as an effective target for the virus to modulate the expression of immune response-related genes. In this investigation, we discovered that infection with the infectious bronchitis virus (IBV) dynamically impedes the nuclear translocation of several transcription factors such as IRF3, STAT1, STAT2, NF-κB p65, and the p38 MAPK, leading to compromised transcriptional induction of key antiviral genes such as IFNβ, IFITM3, and IL-8. Further examination revealed that during the infection process, components of the nuclear pore complex (NPC), particularly FG-Nups (such as NUP62, NUP153, NUP42, and TPR), undergo cytosolic dispersion from the nuclear envelope; NUP62 undergoes phosphorylation, and NUP42 exhibits a mobility shift in size. These observations suggest a disruption in nucleocytoplasmic trafficking. Screening efforts identified the IBV nucleocapsid (N) protein as the agent responsible for the cytoplasmic distribution of FG-Nups, subsequently hindering the nuclear entry of transcription factors and suppressing the expression of antiviral genes. Interactome analysis further revealed that the IBV N protein interacts with the scaffold protein RACK1, facilitating the recruitment of activated protein kinase C alpha (p-PKCα) to RACK1 and relocating the p-PKCα-RACK1 complex to the cytoplasm. These observations are conserved across diverse coronaviruses N proteins. Concurrently, the presence of both RACK1 and PKCα/β proved essential for the phosphorylation and cytoplasmic dispersion of NUP62, the suppression of antiviral cytokine expression, and efficient virus replication. These findings unveil a novel, highly effective, and evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Wenxiang Xue
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Hongyan Chu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Jiehuang Wang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Xusheng Qiu
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Cuiping Song
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Lei Tan
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, P. R. China
| | - Ying Liao
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, P. R. China
| |
Collapse
|
8
|
Liu D, Leung KY, Zhang R, Lam HY, Fan Y, Xie X, Chan KH, Hung IFN. Efficacy of molnupiravir and interferon for the treatment of SARS-CoV-2 in golden Syrian hamster. J Med Virol 2024; 96:e29901. [PMID: 39210614 DOI: 10.1002/jmv.29901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The mortality and hospitalization rate by COVID-19 dropped significantly currently, but its seasonal outbreaks make antiviral treatment still vital. The mortality and hospitazation rate by COVID-19 dropped significantly currently, but its seasonal ourbreaks make antiviral treatment still vital. In our study, syrian golden hamsters were treated with molnupiravir and interferons (IFNs) after SARS-CoV-2 infection. Their weight changes, pathological changes, virus replication and inflammation levels were evaluated. In the IFNs single treatment, only IFN-α group reduced viral load (p < 0.05) and virus titer in hamster lungs. The TNF-α expression decreased significantly in both IFNs treatment at 2dpi. Histological and immunofluorescence results showed lung damage in the IFNs groups were milder at 4dpi. In the molnupiravir/IFN-α combination treatment, weight loss and virus replication in lung were significantly decreased in the mono-molnupiravir group and combination group (p < 0.05), the expression of IL-6, TNF-α, IL-1β and MIP-1α also decreased significantly (p < 0.05), but the combination treatment was not more effective than the mono-molnupiravir treatment. Histological and immunofluorescence results showed the lung damage and inflammation in mono-molnupiravir and combination groups were milder. In summary, IFNs treatment had anti-inflammatory effect against SARS-CoV-2, only IFN-α showed a weak antiviral effect. Molnupiravir/IFN-α combination treatment was effective against SARS-CoV-2 but was not superior to mono-molnupiravir treatment. IFN-α could be considered for immunocompromised patients to stimulate and activate early immune responses.
Collapse
Affiliation(s)
- Danlei Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ka-Yi Leung
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Hoi-Yan Lam
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yujing Fan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xiaochun Xie
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4 + and CD8 + T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. SCIENCE ADVANCES 2024; 10:eadp2636. [PMID: 39178263 PMCID: PMC11343035 DOI: 10.1126/sciadv.adp2636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
SARS-CoV-2 infection induces the generation of virus-specific CD4+ and CD8+ effector and memory T cells. However, the contribution of T cells in controlling SARS-CoV-2 during infection is not well understood. Following infection of C57BL/6 mice, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract, and a vast proportion secrete the cytotoxic molecule granzyme B. Using depleting antibodies, we found that T cells within the lungs play a minimal role in viral control, and viral clearance occurs in the absence of both CD4+ and CD8+ T cells through 28 days postinfection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent, culturable virus replicating in the nasal epithelial layer through 28 days postinfection. Viral sequencing analysis revealed adapted mutations across the SARS-CoV-2 genome, including a large deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Meenakshi Kar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Katherine E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Abigail Vanderheiden
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth J. Elrod
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Katharine Floyd
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - E. Taylor Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Eduardo Salinas
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Stephanie Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Wei Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Shruti Sathish
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Swathi Shrihari
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Meredith E. Davis-Gardner
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Jacob Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Amelia Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Robyn Klein
- Schulich School of Medicine and Dentistry, Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Schulich School of Medicine and Dentistry, Western Institute of Neuroscience, Western University, London, Ontario, Canada
| | - Arash Grakoui
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, MD, USA
| | - Mehul S. Suthar
- Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
10
|
Kozłowski P, Leszczyńska A, Ciepiela O. Long COVID Definition, Symptoms, Risk Factors, Epidemiology and Autoimmunity: A Narrative Review. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 11:100068. [PMID: 39034937 PMCID: PMC11256271 DOI: 10.1016/j.ajmo.2024.100068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 07/23/2024]
Abstract
The virus called SARS-CoV-2 emerged in 2019 and quickly spread worldwide, causing COVID-19. It has greatly impacted on everyday life, healthcare systems, and the global economy. In order to save as many lives as possible, precautions such as social distancing, quarantine, and testing policies were implemented, and effective vaccines were developed. A growing amount of data collected worldwide allowed the characterization of this new disease, which turned out to be more complex than other common respiratory tract infections. An increasing number of convalescents presented with a variety of nonspecific symptoms emerging after the acute infection. This possible new global health problem was identified and labelled as long COVID. Since then, a great effort has been made by clinicians and the scientific community to understand the underlying mechanisms and to develop preventive measures and effective treatment. The role of autoimmunity induced by SARS-CoV-2 infection in the development of long COVID is discussed in this review. We aim to deliver a description of several conditions with an autoimmune background observed in COVID-19 convalescents, including Guillain-Barré syndrome, antiphospholipid syndrome and related thrombosis, and Kawasaki disease highlighting a relationship between SARS-CoV-2 infection and the development of autoimmunity. However, further studies are required to determine its true clinical significance.
Collapse
Affiliation(s)
- Paweł Kozłowski
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Leszczyńska
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
| | - Olga Ciepiela
- Central Laboratory, University Clinical Centre of the Medical University of Warsaw, Warsaw, Poland
- Department of Laboratory Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Hoenigsperger H, Sivarajan R, Sparrer KM. Differences and similarities between innate immune evasion strategies of human coronaviruses. Curr Opin Microbiol 2024; 79:102466. [PMID: 38555743 DOI: 10.1016/j.mib.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
So far, seven coronaviruses have emerged in humans. Four recurring endemic coronaviruses cause mild respiratory symptoms. Infections with epidemic Middle East respiratory syndrome-related coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-1 are associated with high mortality rates. SARS-CoV-2 is the causative agent of the coronavirus disease 2019 pandemic. To establish an infection, coronaviruses evade restriction by human innate immune defenses, such as the interferon system, autophagy and the inflammasome. Here, we review similar and distinct innate immune manipulation strategies employed by the seven human coronaviruses. We further discuss the impact on pathogenesis, zoonotic emergence and adaptation. Understanding the nature of the interplay between endemic/epidemic/pandemic coronaviruses and host defenses may help to better assess the pandemic potential of emerging coronaviruses.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
12
|
Dias TL, Mamede I, de Toledo NE, Queiroz LR, Castro Í, Polidoro R, Del-Bem LE, Nakaya H, Franco GR. SARS-CoV-2 Selectively Induces the Expression of Unproductive Splicing Isoforms of Interferon, Class I MHC, and Splicing Machinery Genes. Int J Mol Sci 2024; 25:5671. [PMID: 38891862 PMCID: PMC11172111 DOI: 10.3390/ijms25115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
RNA processing is a highly conserved mechanism that serves as a pivotal regulator of gene expression. Alternative processing generates transcripts that can still be translated but lead to potentially nonfunctional proteins. A plethora of respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strategically manipulate the host's RNA processing machinery to circumvent antiviral responses. We integrated publicly available omics datasets to systematically analyze isoform-level expression and delineate the nascent peptide landscape of SARS-CoV-2-infected human cells. Our findings explore a suggested but uncharacterized mechanism, whereby SARS-CoV-2 infection induces the predominant expression of unproductive splicing isoforms in key IFN signaling, interferon-stimulated (ISGs), class I MHC, and splicing machinery genes, including IRF7, HLA-B, and HNRNPH1. In stark contrast, cytokine and chemokine genes, such as IL6 and TNF, predominantly express productive (protein-coding) splicing isoforms in response to SARS-CoV-2 infection. We postulate that SARS-CoV-2 employs an unreported tactic of exploiting the host splicing machinery to bolster viral replication and subvert the immune response by selectively upregulating unproductive splicing isoforms from antigen presentation and antiviral response genes. Our study sheds new light on the molecular interplay between SARS-CoV-2 and the host immune system, offering a foundation for the development of novel therapeutic strategies to combat COVID-19.
Collapse
Affiliation(s)
- Thomaz Lüscher Dias
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
| | - Izabela Mamede
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Nayara Evelin de Toledo
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Lúcio Rezende Queiroz
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| | - Ícaro Castro
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
| | - Rafael Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Luiz Eduardo Del-Bem
- Department of Botanics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Helder Nakaya
- Departament of Clinical Analysis, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-220, SP, Brazil;
- Scientific Platform Pasteur-USP, University of São Paulo, São Paulo 05508-020, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-900, SP, Brazil
| | - Glória Regina Franco
- Departament of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (T.L.D.); (I.M.); (N.E.d.T.); (L.R.Q.)
| |
Collapse
|
13
|
Makio T, Zhang K, Love N, Mast FD, Liu X, Elaish M, Hobman T, Aitchison JD, Fontoura BMA, Wozniak RW. SARS-CoV-2 Orf6 is positioned in the nuclear pore complex by Rae1 to inhibit nucleocytoplasmic transport. Mol Biol Cell 2024; 35:ar62. [PMID: 38507240 PMCID: PMC11151100 DOI: 10.1091/mbc.e23-10-0386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) accessory protein Orf6 works as an interferon antagonist, in part, by inhibiting the nuclear import activated p-STAT1, an activator of interferon-stimulated genes, and the export of the poly(A) RNA. Insight into the transport regulatory function of Orf6 has come from the observation that Orf6 binds to the nuclear pore complex (NPC) components: Rae1 and Nup98. To gain further insight into the mechanism of Orf6-mediated transport inhibition, we examined the role of Rae1 and Nup98. We show that Rae1 alone is not necessary to support p-STAT1 import or nuclear export of poly(A) RNA. Moreover, the loss of Rae1 suppresses the transport inhibitory activity of Orf6. We propose that the Rae1/Nup98 complex strategically positions Orf6 within the NPC where it alters FG-Nup interactions and their ability to support nuclear transport. In addition, we show that Rae1 is required for normal viral protein production during SARS-CoV-2 infection presumably through its role in supporting Orf6 function.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nicole Love
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Fred D. Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101
| | - Xue Liu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mohamed Elaish
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Tom Hobman
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - John D. Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98101
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Beatriz M. A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Richard W. Wozniak
- Department of Cell Biology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
14
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
15
|
Todorović S, Vojinović S, Savić D, Aleksić D, Danilović M. Potential beneficial effect of IFN-β1a and ocrelizumab in people with MS during the COVID-19 pandemic. Acta Neurol Belg 2024; 124:447-455. [PMID: 37962785 DOI: 10.1007/s13760-023-02421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND/AIM Disease-modifying therapy (DMT) has led to added challenges in the management of people with multiple sclerosis (pwMS) during the COVID-19 era. It can reduce relapse in MS or slow down disease progression, but some DMTs can increased risk of infection. The aim of study was to evaluate risk and severity of COVID-19 in pwMS. METHODS The examined group of pwMS were divided in group treated with IFN-β1a, group treated with ocrelizumab and untreated group. The examination included impact of age, gender, duration of MS, type of MS, vaccination status and Expanded Disability Status Scale (EDSS) on the risk and severity of COVID-19 infection. A diagnosis of COVID-19 in pwMS was confirmed by positive polymerase-chain-reaction (PCR) or antigen test. RESULTS Out of 207 pwMS, 82 patients were treated with ocrelizumab, 63 with IFN-β1a, while 62 patients were untreated pwMS. The average duration of the MS was longer in the group of patients treated with ocrelizumab than in the group treated with IFN-β1a (p < 0.05). EDSS was higher in the ocrelizumab group compared to the other two groups (p < 0.001). Untreated (more often unvaccinated) had the same COVID frequency as ocrelizumab-treated (more vaccinated, but higher EDSS). The multivariate logistic regression model indicated that administration of IFN-β1a reduces the risk of COVID-19 infection (p = 0.001, OR = 0.381, 95% CI 0.602-0.160). The use of both DMTs, driven mainly by the IFN-β1a effect, reduces the risk of moderate and severe COVID-19 (p < 0.05, OR = 0.105, 95% CI 0.011-0.968). CONCLUSION This study provides evidence that IFN-β1a can reduce the frequency of COVID-19 infection and that two DMTs, driven mainly by the IFN-β1a effect, do not increase the risk of moderate/severe COVID-19.
Collapse
Affiliation(s)
- Stefan Todorović
- Department of Neurology, University Clinical Center Niš, Blvd Dr Zoran Dindjic 48, 18000, Nis, Serbia.
| | - Slobodan Vojinović
- Department of Neurology, University Clinical Center Niš, Blvd Dr Zoran Dindjic 48, 18000, Nis, Serbia
- Faculty of Medicine, University of Niš, Nis, Serbia
| | - Dejan Savić
- Department of Neurology, University Clinical Center Niš, Blvd Dr Zoran Dindjic 48, 18000, Nis, Serbia
- Faculty of Medicine, University of Niš, Nis, Serbia
| | - Dejan Aleksić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miloš Danilović
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia
| |
Collapse
|
16
|
Aljabali AAA, El-Tanani M, Barh D, Tambuwala MM. COVID-19: Perspectives on innate immune evasion. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 213:171-214. [PMID: 40246344 DOI: 10.1016/bs.pmbts.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
The ongoing global health challenges posed by the SARS-CoV-2, the virus responsible for the COVID-19 pandemic, necessitate a deep understanding of its intricate strategies to evade the innate immune system. This chapter aims to provide insights into the sophisticated mechanisms employed by SARS-CoV-2 in its interaction with pattern recognition receptors (PRRs), with particular emphasis on Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs). By skillfully circumventing these pivotal components, the virus manages to elude detection and impairs the initiation of crucial antiviral immune responses. A notable aspect of SARS-CoV-2's immune evasion tactics lies in its strategic manipulation of cytokine production. This orchestrated modulation disrupts the delicate balance of inflammation, potentially leading to severe complications, including the notorious cytokine storm. In this regard, key viral proteins, such as the spike protein and nucleocapsid protein, emerge as pivotal players in the immune evasion process, further highlighting their significance in the context of COVID-19 pathogenesis. Acquiring a comprehensive understanding of these intricate immune evasion mechanisms holds immense promise for the development of effective treatments against COVID-19. Moreover, it is imperative for vaccine development to consider these evasion strategies to maximize vaccine efficacy. Future therapeutic interventions may involve targeting alternative pathways or augmenting the antiviral immune responses, thereby mitigating the impact of immune evasion, and fostering successful outcomes. By unraveling the underlying mechanisms of innate immune evasion, we advance our comprehension of COVID-19 pathogenesis and pave the way for the development of innovative therapeutic strategies. This comprehensive understanding catalyzes progress, enabling researchers and clinicians to devise novel approaches that combat the challenges posed by SARS-CoV-2 and ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics & Applied Biotechnology, Purba Medinipur, West Bengal, India; Department of Genetics, Ecology & Evolution, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom.
| |
Collapse
|
17
|
Knodel MM, Wittum G, Vollmer J. Efficient Estimates of Surface Diffusion Parameters for Spatio-Temporally Resolved Virus Replication Dynamics. Int J Mol Sci 2024; 25:2993. [PMID: 38474240 PMCID: PMC10932359 DOI: 10.3390/ijms25052993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Advanced methods of treatment are needed to fight the threats of virus-transmitted diseases and pandemics. Often, they are based on an improved biophysical understanding of virus replication strategies and processes in their host cells. For instance, an essential component of the replication of the hepatitis C virus (HCV) proceeds under the influence of nonstructural HCV proteins (NSPs) that are anchored to the endoplasmatic reticulum (ER), such as the NS5A protein. The diffusion of NSPs has been studied by in vitro fluorescence recovery after photobleaching (FRAP) experiments. The diffusive evolution of the concentration field of NSPs on the ER can be described by means of surface partial differential equations (sufPDEs). Previous work estimated the diffusion coefficient of the NS5A protein by minimizing the discrepancy between an extended set of sufPDE simulations and experimental FRAP time-series data. Here, we provide a scaling analysis of the sufPDEs that describe the diffusive evolution of the concentration field of NSPs on the ER. This analysis provides an estimate of the diffusion coefficient that is based only on the ratio of the membrane surface area in the FRAP region to its contour length. The quality of this estimate is explored by a comparison to numerical solutions of the sufPDE for a flat geometry and for ten different 3D embedded 2D ER grids that are derived from fluorescence z-stack data of the ER. Finally, we apply the new data analysis to the experimental FRAP time-series data analyzed in our previous paper, and we discuss the opportunities of the new approach.
Collapse
Affiliation(s)
| | - Gabriel Wittum
- Modelling and Simulation (MaS), Computer, Electrical and Mathematical Science and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Jürgen Vollmer
- Institute for Theoretical Physics, Leipzig University, 04081 Leipzig, Germany;
| |
Collapse
|
18
|
Xiang Y, Mou C, Zhu L, Wang Z, Shi K, Bao W, Li J, Chen X, Chen Z. SADS-CoV nsp1 inhibits the STAT1 phosphorylation by promoting K11/K48-linked polyubiquitination of JAK1 and blocks the STAT1 acetylation by degrading CBP. J Biol Chem 2024; 300:105779. [PMID: 38395305 PMCID: PMC10944115 DOI: 10.1016/j.jbc.2024.105779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The newly discovered zoonotic coronavirus swine acute diarrhea syndrome coronavirus (SADS-CoV) causes acute diarrhea, vomiting, dehydration, and high mortality rates in newborn piglets. Although SADS-CoV uses different strategies to evade the host's innate immune system, the specific mechanism(s) by which it blocks the interferon (IFN) response remains unidentified. In this study, the potential of SADS-CoV nonstructural proteins (nsp) to inhibit the IFN response was detected. The results determined that nsp1 was a potent antagonist of IFN response. SADS-CoV nsp1 efficiently inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation by inducing Janus kinase 1 (JAK1) degradation. Subsequent research revealed that nsp1 induced JAK1 polyubiquitination through K11 and K48 linkages, leading to JAK1 degradation via the ubiquitin-proteasome pathway. Furthermore, SADS-CoV nsp1 induced CREB-binding protein degradation to inhibit IFN-stimulated gene production and STAT1 acetylation, thereby inhibiting STAT1 dephosphorylation and blocking STAT1 transport out of the nucleus to receive antiviral signaling. In summary, the results revealed the novel mechanisms by which SADS-CoV nsp1 blocks the JAK-STAT signaling pathway via the ubiquitin-proteasome pathway. This study yielded valuable findings on the specific mechanism of coronavirus nsp1 in inhibiting the JAK-STAT signaling pathway and the strategies of SADS-CoV in evading the host's innate immune system.
Collapse
Affiliation(s)
- Yingjie Xiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ziyan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, Guangxi, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jiarui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
19
|
Zhang L, Hao P, Chen X, Lv S, Gao W, Li C, Li Z, Zhang W. CRL4B E3 ligase recruited by PRPF19 inhibits SARS-CoV-2 infection by targeting ORF6 for ubiquitin-dependent degradation. mBio 2024; 15:e0307123. [PMID: 38265236 PMCID: PMC10865787 DOI: 10.1128/mbio.03071-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
The accessory protein ORF6 of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key interferon (IFN) antagonist that strongly suppresses the production of primary IFN as well as the expression of IFN-stimulated genes. However, how host cells respond to ORF6 remains largely unknown. Our research of ORF6-binding proteins by pulldown revealed that E3 ligase components such as Cullin 4B (CUL4B), DDB1, and RBX1 are potential ORF6-interacting proteins. Further study found that the substrate recognition receptor PRPF19 interacts with CUL4B, DDB1, and RBX1 to form a CRL4B-based E3 ligase, which catalyzes ORF6 ubiquitination and subsequent degradation. Overexpression of PRPF19 promotes ORF6 degradation, releasing ORF6-mediated IFN inhibition, which inhibits SARS-CoV-2 replication. Moreover, we found that activation of CUL4B by the neddylation inducer etoposide alleviates lung lesions in a SARS-CoV-2 mouse infection model. Therefore, targeting ORF6 for degradation may be an effective therapeutic strategy against SARS-CoV-2 infection.IMPORTANCEThe cellular biological function of the ubiquitin-proteasome pathway as an important modulator for the regulation of many fundamental cellular processes has been greatly appreciated. The critical role of the ubiquitin-proteasome pathway in viral pathogenesis has become increasingly apparent. It is a powerful tool that host cells use to defend against viral infection. Some cellular proteins can function as restriction factors to limit viral infection by ubiquitin-dependent degradation. In this research, we identificated of CUL4B-DDB1-PRPF19 E3 Ubiquitin Ligase Complex can mediate proteasomal degradation of ORF6, leading to inhibition of viral replication. Moreover, the CUL4B activator etoposide alleviates disease development in a mouse infection model, suggesting that this agent or its derivatives may be used to treat infections caused by SARS-CoV-2. We believe that these results will be extremely useful for the scientific and clinic communities in their search for cues and preventive measures to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Linran Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Pengfei Hao
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiang Chen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuai Lv
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenying Gao
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Zhaolong Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Infectious Diseases, Infectious Diseases and Pathogen Biology Center, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Krachmarova E, Petkov P, Lilkova E, Stoynova D, Malinova K, Hristova R, Gospodinov A, Ilieva N, Nacheva G, Litov L. Interferon- γ as a Potential Inhibitor of SARS-CoV-2 ORF6 Accessory Protein. Int J Mol Sci 2024; 25:2155. [PMID: 38396843 PMCID: PMC10889309 DOI: 10.3390/ijms25042155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The ORF6 protein of the SARS-CoV-2 virus plays a crucial role in blocking the innate immune response of the infected cells by inhibiting interferon pathways. Additionally, it binds to and immobilises the RAE1 protein on the cytoplasmic membranes, thereby blocking mRNA transport from the nucleus to the cytoplasm. In all these cases, the host cell proteins are tethered by the flexible C-terminus of ORF6. A possible strategy to inhibit the biological activity of ORF6 is to bind its C-terminus with suitable ligands. Our in silico experiments suggest that hIFNγ binds the ORF6 protein with high affinity, thus impairing its interactions with RAE1 and, consequently, its activity in viral invasion. The in vitro studies reported here reveal a shift of the localisation of RAE1 in ORF6 overexpressing cells upon treatment with hIFNγ from predominantly cytoplasmic to mainly nuclear, resulting in the restoration of the export of mRNA from the nucleus. We also explored the expression of GFP in transfected-with-ORF6 cells by means of fluorescence microscopy and qRT-PCR, finding that treatment with hIFNγ unblocks the mRNA trafficking and reinstates the GFP expression level. The ability of the cytokine to block ORF6 is also reflected in minimising its negative effects on DNA replication by reducing accumulated RNA-DNA hybrids. Our results, therefore, suggest hIFNγ as a promising inhibitor of the most toxic SARS-CoV-2 protein.
Collapse
Affiliation(s)
- Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (R.H.); (A.G.); (G.N.)
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria (L.L.)
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Dayana Stoynova
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria (L.L.)
| | - Kristina Malinova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (R.H.); (A.G.); (G.N.)
| | - Rossitsa Hristova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (R.H.); (A.G.); (G.N.)
| | - Anastas Gospodinov
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (R.H.); (A.G.); (G.N.)
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Genoveva Nacheva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.M.); (R.H.); (A.G.); (G.N.)
| | - Leandar Litov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria (L.L.)
| |
Collapse
|
21
|
Kar M, Johnson KEE, Vanderheiden A, Elrod EJ, Floyd K, Geerling E, Stone ET, Salinas E, Banakis S, Wang W, Sathish S, Shrihari S, Davis-Gardner ME, Kohlmeier J, Pinto A, Klein R, Grakoui A, Ghedin E, Suthar MS. CD4+ and CD8+ T cells are required to prevent SARS-CoV-2 persistence in the nasal compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576505. [PMID: 38410446 PMCID: PMC10896337 DOI: 10.1101/2024.01.23.576505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
SARS-CoV-2 is the causative agent of COVID-19 and continues to pose a significant public health threat throughout the world. Following SARS-CoV-2 infection, virus-specific CD4+ and CD8+ T cells are rapidly generated to form effector and memory cells and persist in the blood for several months. However, the contribution of T cells in controlling SARS-CoV-2 infection within the respiratory tract are not well understood. Using C57BL/6 mice infected with a naturally occurring SARS-CoV-2 variant (B.1.351), we evaluated the role of T cells in the upper and lower respiratory tract. Following infection, SARS-CoV-2-specific CD4+ and CD8+ T cells are recruited to the respiratory tract and a vast proportion secrete the cytotoxic molecule Granzyme B. Using antibodies to deplete T cells prior to infection, we found that CD4+ and CD8+ T cells play distinct roles in the upper and lower respiratory tract. In the lungs, T cells play a minimal role in viral control with viral clearance occurring in the absence of both CD4+ and CD8+ T cells through 28 days post-infection. In the nasal compartment, depletion of both CD4+ and CD8+ T cells, but not individually, results in persistent and culturable virus replicating in the nasal compartment through 28 days post-infection. Using in situ hybridization, we found that SARS-CoV-2 infection persisted in the nasal epithelial layer of tandem CD4+ and CD8+ T cell-depleted mice. Sequence analysis of virus isolates from persistently infected mice revealed mutations spanning across the genome, including a deletion in ORF6. Overall, our findings highlight the importance of T cells in controlling virus replication within the respiratory tract during SARS-CoV-2 infection.
Collapse
|
22
|
Gao W, Wang L, Cui W, Wang H, Huang G, Li Z, Li G, Zhang W. Deubiquitinase USP1 regulates sarbecovirus ORF6 protein function. J Virol 2024; 98:e0143723. [PMID: 38084957 PMCID: PMC10804995 DOI: 10.1128/jvi.01437-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
SARS-CoV-2 belongs to the subgenus Sarbecovirus, which universally encodes the accessory protein ORF6. SARS-CoV-2 ORF6 is an antagonist of the interferon (IFN)-mediated antiviral response and plays an important role in viral infections. However, the mechanism by which the host counteracts the function of ORF6 to restrict viral replication remains unclear. In this study, we found that most ORF6 proteins encoded by sarbecoviruses could be ubiquitinated and subsequently degraded via the proteasome pathway. Through extensive screening, we identified that the deubiquitinase USP1, which effectively and broadly deubiquitinates sarbecovirus ORF6 proteins, stabilizes ORF6 proteins, resulting in enhanced viral replication. Therefore, ubiquitination and deubiquitination of ORF6 are important for antagonizing IFN-mediated antiviral signaling and influencing the virulence of SARS-CoV-2. These findings highlight an essential molecular mechanism and may provide a novel target for therapeutic interventions against viral infections.IMPORTANCEThe ORF6 proteins encoded by sarbecoviruses are essential for effective viral replication and infection and are important targets for developing effective intervention strategies. In this study, we confirmed that sarbecovirus ORF6 proteins are important antagonists of the host immune response and identified the regulatory mechanisms of ubiquitination and deubiquitination of most sarbecovirus ORF6 proteins. Moreover, we revealed that DUB USP1 prevents the proteasomal degradation of all ORF6 proteins, thereby promoting the virulence of SARS-CoV-2. Thus, impeding ORF6 function is helpful for attenuating the virulence of sarbecoviruses. Therefore, our findings provide a deeper understanding of the molecular mechanisms underlying sarbecovirus infections and offer potential new therapeutic targets for the prevention and treatment of these infections.
Collapse
Affiliation(s)
- Wenying Gao
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Liuli Wang
- College of Medicine, Jilin University, Changchun, China
| | - Wenzhe Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Hongfei Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Guofeng Huang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center for Pathogen Biology and Infectious Diseases, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Yoo TY, Mitchison TJ. Quantitative comparison of nuclear transport inhibition by SARS coronavirus ORF6 reveals the importance of oligomerization. Proc Natl Acad Sci U S A 2024; 121:e2307997121. [PMID: 38236733 PMCID: PMC10823255 DOI: 10.1073/pnas.2307997121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/02/2023] [Indexed: 01/23/2024] Open
Abstract
Open Reading Frame 6 (ORF6) proteins, which are unique to severe acute respiratory syndrome-related (SARS) coronavirus, inhibit the classical nuclear import pathway to antagonize host antiviral responses. Several alternative models were proposed to explain the inhibitory function of ORF6 [H. Xia et al., Cell Rep. 33, 108234 (2020); L. Miorin et al., Proc. Natl. Acad. Sci. U.S.A. 117, 28344-28354 (2020); and M. Frieman et al., J. Virol. 81, 9812-9824 (2007)]. To distinguish these models and build quantitative understanding of ORF6 function, we developed a method for scoring both ORF6 concentration and functional effect in single living cells. We combined quantification of untagged ORF6 expression level in single cells with optogenetics-based measurement of nuclear transport kinetics, using methods that could be adapted to measure concentration-dependent effects of any untagged protein. We found that SARS-CoV-2 ORF6 is ~15 times more potent than SARS-CoV-1 ORF6 in inhibiting nuclear import and export, due to differences in the C-terminal region that is required for the NUP98-RAE1 binding. The N-terminal region was required for transport inhibition. This region binds membranes but could be replaced by synthetic constructs which forced oligomerization in solution, suggesting its primary function is oligomerization. We propose that the hydrophobic N-terminal region drives oligomerization of ORF6 to multivalently cross-link the NUP98-RAE1 complexes at the nuclear pore complex, and this multivalent binding inhibits bidirectional transport.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Timothy J. Mitchison
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| |
Collapse
|
24
|
Suleman M, Said A, Khan H, Rehman SU, Alshammari A, Crovella S, Yassine HM. Mutational analysis of SARS-CoV-2 ORF6-KPNA2 binding interface and identification of potent small molecule inhibitors to recuse the host immune system. Front Immunol 2024; 14:1266776. [PMID: 38283360 PMCID: PMC10811244 DOI: 10.3389/fimmu.2023.1266776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced on 31 December, 2019, and was identified as the causative agent of the global COVID-19 pandemic, leading to a pneumonia-like disease. One of its accessory proteins, ORF6, has been found to play a critical role in immune evasion by interacting with KPNA2 to antagonize IFN signaling and production pathways, resulting in the inhibition of IRF3 and STAT1 nuclear translocation. Since various mutations have been observed in ORF6, therefore, a comparative binding, biophysical, and structural analysis was used to reveal how these mutations affect the virus's ability to evade the human immune system. Among the identified mutations, the V9F, V24A, W27L, and I33T, were found to have a highly destabilizing effect on the protein structure of ORF6. Additionally, the molecular docking analysis of wildtype and mutant ORF6 and KPNA2 revealed the docking score of - 53.72 kcal/mol for wildtype while, -267.90 kcal/mol, -258.41kcal/mol, -254.51 kcal/mol and -268.79 kcal/mol for V9F, V24A, W27L, and I33T respectively. As compared to the wildtype the V9F showed a stronger binding affinity with KPNA2 which is further verified by the binding free energy (-42.28 kcal/mol) calculation. Furthermore, to halt the binding interface of the ORF6-KPNA2 complex, we used a computational molecular search of potential natural products. A multi-step virtual screening of the African natural database identified the top 5 compounds with best docking scores of -6.40 kcal/mol, -6.10 kcal/mol, -6.09 kcal/mol, -6.06 kcal/mol, and -6.03 kcal/mol for tophit1-5 respectively. Subsequent all-atoms simulations of these top hits revealed consistent dynamics, indicating their stability and their potential to interact effectively with the interface residues. In conclusion, our study represents the first attempt to establish a foundation for understanding the heightened infectivity of new SARS-CoV-2 variants and provides a strong impetus for the development of novel drugs against them.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Afsheen Said
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Shoaib Ur Rehman
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
- Wilhelm Johansen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, The PANUM Institute, University of Copenhagen, Copenhagen, Denmark
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences-Qatar University (QU) Health, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Vogel OA, Forwood JK, Leung DW, Amarasinghe GK, Basler CF. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2023; 13:71. [PMID: 38201275 PMCID: PMC10778312 DOI: 10.3390/cells13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
26
|
Liu W, Mu G, Jia Y, Yu M, Zhang S, Wang Z, Fang S. The role of IBV PL1pro in virus replication and suppression of host innate immune responses. BMC Vet Res 2023; 19:270. [PMID: 38087313 PMCID: PMC10717896 DOI: 10.1186/s12917-023-03839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Coronavirus papain-like proteases (PLpros) play a crucial role in virus replication and the evasion of the host immune response. Infectious bronchitis virus (IBV) encodes a proteolytically defective remnant of PL1pro and an active PL2pro. However, the function of PL1pro in IBV remains largely unknown. This study aims to explore the effect of PL1pro on virus replication and underlying mechanisms. RESULTS The recombinant viruses rIBV-ΔPL1pro and rIBV-ΔPL1pro-N were obtained using reverse genetic techniques through the deletion of the IBV PL1pro domain and the N-terminal conserved sequence of PL1pro (PL1pro-N). We observed significantly lower replication of rIBV-ΔPL1pro and rIBV-ΔPL1pro-N than wild-type IBV. Further investigation revealed that the lack of PL1pro-N in IBV decreased virus resistance to interferon (IFN) while also inducing host immune response by enhancing the production of IFN-β and activating the downstream STAT1 signaling pathway of IFNs. In addition, the overexpression of PL1pro-N significantly suppressed type I IFN response by down-regulating the expressions of genes in the IFN pathway. CONCLUSIONS Our data demonstrated that IBV PL1pro plays a crucial role in IBV replication and the suppression of host innate immune responses, suggesting that IBV PL1pro could serve as a promising molecular target for antiviral therapy.
Collapse
Affiliation(s)
- Weirong Liu
- Yangtze University Health Science Center, Jingzhou, Hubei Province, China
| | - Ge Mu
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Yiquan Jia
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Mengting Yu
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, Hubei Province, China
| | - Zhen Wang
- Yangtze University Health Science Center, Jingzhou, Hubei Province, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, No.88, Jingmi Road, Jingzhou, Hubei Province, 434025, China.
| |
Collapse
|
27
|
Liu X, Xiong W, Ye M, Lu T, Yuan K, Chang S, Han Y, Wang Y, Lu L, Bao Y. Non-coding RNAs expression in SARS-CoV-2 infection: pathogenesis, clinical significance, and therapeutic targets. Signal Transduct Target Ther 2023; 8:441. [PMID: 38057315 PMCID: PMC10700414 DOI: 10.1038/s41392-023-01669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Wandi Xiong
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228, Haikou, China
| | - Maosen Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, 650204, Kunming, Yunnan, China
| | - Tangsheng Lu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Yongxiang Wang
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, Shandong, China.
- School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
28
|
Khatun O, Sharma M, Narayan R, Tripathi S. SARS-CoV-2 ORF6 protein targets TRIM25 for proteasomal degradation to diminish K63-linked RIG-I ubiquitination and type-I interferon induction. Cell Mol Life Sci 2023; 80:364. [PMID: 37982908 PMCID: PMC11073288 DOI: 10.1007/s00018-023-05011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023]
Abstract
Evasion and antagonism of host cellular immunity upon SARS-CoV-2 infection provide replication advantage to the virus and contribute to COVID-19 pathogenesis. We explored the ability of different SARS-CoV-2 proteins to antagonize the host's innate immune system and found that the ORF6 protein mitigated type-I Interferon (IFN) induction and downstream IFN signaling. Our findings also corroborated previous reports that ORF6 blocks the nuclear import of IRF3 and STAT1 to inhibit IFN induction and signaling. Here we show that ORF6 directly interacts with RIG-I and blocks downstream type-I IFN induction and signaling by reducing the levels of K63-linked ubiquitinated RIG-I. This involves ORF6-mediated targeting of E3 ligase TRIM25 for proteasomal degradation, which was also observed during SARS-CoV-2 infection. The type-I IFN antagonistic activity of ORF6 was mapped to its C-terminal cytoplasmic tail, specifically to amino acid residues 52-61. Overall, we provide new insights into how SARS-CoV-2 inhibits type-I IFN induction and signaling through distinct actions of the viral ORF6 protein.
Collapse
Affiliation(s)
- Oyahida Khatun
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Mansi Sharma
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Rohan Narayan
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India.
- Microbiology and Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
29
|
Stewart H, Lu Y, O’Keefe S, Valpadashi A, Cruz-Zaragoza LD, Michel HA, Nguyen SK, Carnell GW, Lukhovitskaya N, Milligan R, Adewusi Y, Jungreis I, Lulla V, Matthews DA, High S, Rehling P, Emmott E, Heeney JL, Davidson AD, Edgar JR, Smith GL, Firth AE. The SARS-CoV-2 protein ORF3c is a mitochondrial modulator of innate immunity. iScience 2023; 26:108080. [PMID: 37860693 PMCID: PMC10583119 DOI: 10.1016/j.isci.2023.108080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-β production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.
Collapse
Affiliation(s)
- Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Sarah O’Keefe
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Anusha Valpadashi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | - George W. Carnell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Yasmin Adewusi
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Irwin Jungreis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Valeria Lulla
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Stephen High
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Herbst A, Bexter F, Kouassi NM, Gabriel G, Rautenschlein S. Distribution of importin-α isoforms in poultry species and their tissue- and age-related differences. Res Vet Sci 2023; 164:104994. [PMID: 37696109 DOI: 10.1016/j.rvsc.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
While importin-α is well studied in mammals, the knowledge in avian species is still limited. In this study, we compared the mRNA expression patterns of five importin-α isoforms in the respiratory tract, liver, and spleen of chickens, turkeys, and pekin ducks in two different age-groups. In addition, we determined the distribution of importin-α in selected tissue of conchae, trachea, and lung of post-hatch chickens at all cellular levels by immunohistochemical staining. Our results indicate that importin-α3 is the most abundant isoform in the respiratory tract of chickens, turkeys, and pekin ducks. Moreover, importin-α is expressed as a gradient with lowest mRNA levels in the conchae and highest levels in the lung. The mRNA expression levels of most isoforms were higher in tissues from post-hatch chickens and turkeys in comparison to the corresponding embryos. In contrast to that, duck embryos mostly show higher mRNA expression levels of importin-α than post-hatch ducks.
Collapse
Affiliation(s)
- Alexandra Herbst
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | | | - Gülsah Gabriel
- Leibniz-Institute for Virology, Martinistraße 52, 20251 Hamburg, Germany; Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
31
|
Jones EAV. Mechanism of COVID-19-Induced Cardiac Damage from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep 2023; 20:451-460. [PMID: 37526812 PMCID: PMC10589152 DOI: 10.1007/s11897-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW Though patient studies have been important for understanding the disease, research done in animals and cell culture complement our knowledge from patient data and provide insight into the mechanism of the disease. Understanding how COVID causes damage to the heart is essential to understanding possible long-term consequences. RECENT FINDINGS COVID-19 is primarily a disease that attacks the lungs; however, it is known to have important consequences in many other tissues including the heart. Though myocarditis does occur in some patients, for most cases of cardiac damage, the injury arises from scarring either due to myocardial infarction or micro-infarction. The main focus is on how COVID affects blood flow through the coronaries. We review how endothelial activation leads to a hypercoagulative state in COVID-19. We also emphasize the effects that the cytokine storm can directly have on the regulation of coronary blood flow. Since the main two cell types that can be infected in the heart are pericytes and cardiomyocytes, we further describe the known effects on pericyte function and how that can further lead to microinfarcts within the heart. Though many of these effects are systemic, this review focuses on the consequences on cardiac tissue of this dysregulation and the role that it has in the formation of myocardial scarring.
Collapse
Affiliation(s)
- Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, 3000, KU, Leuven, Belgium.
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands.
| |
Collapse
|
32
|
Jahankhani K, Ahangari F, Adcock IM, Mortaz E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023; 213:130-138. [PMID: 37230238 PMCID: PMC10202899 DOI: 10.1016/j.biochi.2023.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown diverse life-threatening effects, most of which are considered short-term. In addition to its short-term effects, which has claimed many millions of lives since 2019, the long-term complications of this virus are still under investigation. Similar to many oncogenic viruses, it has been hypothesized that SARS-CoV-2 employs various strategies to cause cancer in different organs. These include leveraging the renin angiotensin system, altering tumor suppressing pathways by means of its nonstructural proteins, and triggering inflammatory cascades by enhancing cytokine production in the form of a "cytokine storm" paving the way for the emergence of cancer stem cells in target organs. Since infection with SARS-CoV-2 occurs in several organs either directly or indirectly, it is expected that cancer stem cells may develop in multiple organs. Thus, we have reviewed the impact of coronavirus disease 2019 (COVID-19) on the vulnerability and susceptibility of specific organs to cancer development. It is important to note that the cancer-related effects of SARS-CoV-2 proposed in this article are based on the ability of the virus and its proteins to cause cancer but that the long-term consequences of this infection will only be illustrated in the long run.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, Australia
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Nishide G, Lim K, Tamura M, Kobayashi A, Zhao Q, Hazawa M, Ando T, Nishida N, Wong RW. Nanoscopic Elucidation of Spontaneous Self-Assembly of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Open Reading Frame 6 (ORF6) Protein. J Phys Chem Lett 2023; 14:8385-8396. [PMID: 37707320 PMCID: PMC10544025 DOI: 10.1021/acs.jpclett.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
Open reading frame 6 (ORF6), the accessory protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that suppresses host type-I interferon signaling, possesses amyloidogenic sequences. ORF6 amyloidogenic peptides self-assemble to produce cytotoxic amyloid fibrils. Currently, the molecular properties of the ORF6 remain elusive. Here, we investigate the structural dynamics of the full-length ORF6 protein in a near-physiological environment using high-speed atomic force microscopy. ORF6 oligomers were ellipsoidal and readily assembled into ORF6 protofilaments in either a circular or a linear pattern. The formation of ORF6 protofilaments was enhanced at higher temperatures or on a lipid substrate. ORF6 filaments were sensitive to aliphatic alcohols, urea, and SDS, indicating that the filaments were predominantly maintained by hydrophobic interactions. In summary, ORF6 self-assembly could be necessary to sequester host factors and causes collateral damage to cells via amyloid aggregates. Nanoscopic imaging unveiled the innate molecular behavior of ORF6 and provides insight into drug repurposing to treat amyloid-related coronavirus disease 2019 complications.
Collapse
Affiliation(s)
- Goro Nishide
- Division
of Nano Life Science in the Graduate School of Frontier Science Initiative,
WISE Program for Nano-Precision Medicine, Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Maiki Tamura
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Kobayashi
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Qingci Zhao
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Masaharu Hazawa
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noritaka Nishida
- Graduate
School of Pharmaceutical Sciences, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Richard W. Wong
- WPI-Nano
Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Cell-Bionomics
Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
34
|
Schweizer L, Schaller T, Zwiebel M, Karayel Ö, Müller‐Reif JB, Zeng W, Dintner S, Nordmann TM, Hirschbühl K, Märkl B, Claus R, Mann M. Quantitative multiorgan proteomics of fatal COVID-19 uncovers tissue-specific effects beyond inflammation. EMBO Mol Med 2023; 15:e17459. [PMID: 37519267 PMCID: PMC10493576 DOI: 10.15252/emmm.202317459] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
SARS-CoV-2 may directly and indirectly damage lung tissue and other host organs, but there are few system-wide, untargeted studies of these effects on the human body. Here, we developed a parallelized mass spectrometry (MS) proteomics workflow enabling the rapid, quantitative analysis of hundreds of virus-infected FFPE tissues. The first layer of response to SARS-CoV-2 in all tissues was dominated by circulating inflammatory molecules. Beyond systemic inflammation, we differentiated between systemic and true tissue-specific effects to reflect distinct COVID-19-associated damage patterns. Proteomic changes in the lungs resembled those of diffuse alveolar damage (DAD) in non-COVID-19 patients. Extensive organ-specific changes were also evident in the kidneys, liver, and lymphatic and vascular systems. Secondary inflammatory effects in the brain were related to rearrangements in neurotransmitter receptors and myelin degradation. These MS-proteomics-derived results contribute substantially to our understanding of COVID-19 pathomechanisms and suggest strategies for organ-specific therapeutic interventions.
Collapse
Affiliation(s)
- Lisa Schweizer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Tina Schaller
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Maximilian Zwiebel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Department of Physiological ChemistryGenentechSouth San FranciscoUSA
| | | | - Wen‐Feng Zeng
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | - Thierry M Nordmann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Klaus Hirschbühl
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Bruno Märkl
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Rainer Claus
- Pathology, Medical FacultyUniversity of AugsburgAugsburgGermany
- Hematology and Oncology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
35
|
Li M, Ayyanathan K, Dittmar M, Miller J, Tapescu I, Lee JS, McGrath ME, Xue Y, Vashee S, Schultz DC, Frieman MB, Cherry S. SARS-CoV-2 ORF6 protein does not antagonize interferon signaling in respiratory epithelial Calu-3 cells during infection. mBio 2023; 14:e0119423. [PMID: 37377442 PMCID: PMC10470815 DOI: 10.1128/mbio.01194-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths, posing a substantial threat to global public health. Viruses evolve different strategies to antagonize or evade host immune responses. While ectopic expression of SARS-CoV-2 accessory protein ORF6 blocks interferon (IFN) production and downstream IFN signaling, the role of ORF6 in IFN signaling during bona fide viral infection of respiratory cells is unclear. By comparing wild-type (WT) and ORF6-deleted (ΔORF6) SARS-CoV-2 infection and IFN signaling in respiratory cells, we found that ΔORF6 SARS-CoV-2 replicates more efficiently than WT virus and, thus, stimulates more robust immune signaling. Loss of ORF6 does not alter innate signaling in infected cells: both WT and ΔORF6 virus induce delayed IFN responses only in bystander cells. Moreover, expression of ORF6 in the context of SARS-CoV-2 infection has no effect on Sendai virus-stimulated IFN induction: robust translocation of IRF3 is observed in both SARS-CoV-2 infected and bystander cells. Furthermore, IFN pretreatment potently blocks WT and ΔORF6 virus replication similarly, and both viruses fail to suppress the induction of interferon-stimulated genes (ISGs) upon IFN-β treatment. However, upon treatment with IFN-β, only bystander cells induce STAT1 translocation during infection with WT virus, whereas ΔORF6 virus-infected cells now show translocation. This suggests that under conditions of high IFN activation, ORF6 can attenuate STAT1 activation. These data provide evidence that ORF6 is not sufficient to antagonize IFN production or IFN signaling in SARS-CoV-2-infected respiratory cells but may impact the efficacy of therapeutics that stimulate innate immune pathways. IMPORTANCE Previous studies identified several SARS-CoV-2 proteins, including ORF6, that antagonize host innate immune responses in the context of overexpression of viral proteins in non-respiratory cells. We set out to determine the role of ORF6 in IFN responses during SARS-CoV-2 infection of respiratory cells. Using a deletion strain, we observed no reduction of infection and no difference in evasion of IFN signaling, with responses limited to bystander cells. Moreover, stimulation of Sendai virus-induced IFN production or IFN-β-stimulated ISG expression was comparable between SARS-CoV-2 virus and SARS-CoV-2 lacking ORF6 virus, suggesting that ORF6 is not sufficient to counteract IFN induction or IFN signaling during viral infection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kasirajan Ayyanathan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Dittmar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jesse Miller
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jae Seung Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa E. McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yong Xue
- J Craig Venter Institute, Rockville, Maryland, USA
| | | | - David C. Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B. Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Samuel CE. Interferon at the crossroads of SARS-CoV-2 infection and COVID-19 disease. J Biol Chem 2023; 299:104960. [PMID: 37364688 PMCID: PMC10290182 DOI: 10.1016/j.jbc.2023.104960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
A novel coronavirus now known as SARS-CoV-2 emerged in late 2019, possibly following a zoonotic crossover from a coronavirus present in bats. This virus was identified as the pathogen responsible for the severe respiratory disease, coronavirus disease-19 (COVID-19), which as of May 2023, has killed an estimated 6.9 million people globally according to the World Health Organization. The interferon (IFN) response, a cornerstone of antiviral innate immunity, plays a key role in determining the outcome of infection by SARS-CoV-2. This review considers evidence that SARS-CoV-2 infection leads to IFN production; that virus replication is sensitive to IFN antiviral action; molecular mechanisms by which the SARS-CoV-2 virus antagonizes IFN action; and how genetic variability of SARS-CoV-2 and the human host affects the IFN response at the level of IFN production or action or both. Taken together, the current understanding suggests that deficiency of an effective IFN response is an important determinant underlying some cases of critical COVID-19 disease and that IFNλ and IFNα/β have potential as therapeutics for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
37
|
Krachmarova E, Petkov P, Lilkova E, Ilieva N, Rangelov M, Todorova N, Malinova K, Hristova R, Nacheva G, Gospodinov A, Litov L. Insights into the SARS-CoV-2 ORF6 Mechanism of Action. Int J Mol Sci 2023; 24:11589. [PMID: 37511350 PMCID: PMC10380535 DOI: 10.3390/ijms241411589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
ORF6 is responsible for suppressing the immune response of cells infected by the SARS-CoV-2 virus. It is also the most toxic protein of SARS-CoV-2, and its actions are associated with the viral pathogenicity. Here, we study in silico and in vitro the structure of the protein, its interaction with RAE1 and the mechanism of action behind its high toxicity. We show both computationally and experimentally that SARS-CoV-2 ORF6, embedded in the cytoplasmic membranes, binds to RAE1 and sequesters it in the cytoplasm, thus depleting its availability in the nucleus and impairing nucleocytoplasmic mRNA transport. This negatively affects the cellular genome stability by compromising the cell cycle progression into the S-phase and by promoting the accumulation of RNA-DNA hybrids. Understanding the multiple ways in which ORF6 affects DNA replication may also have important implications for elucidating the pathogenicity of SARS-CoV-2 and developing therapeutic strategies to mitigate its deleterious effects on host cells.
Collapse
Affiliation(s)
- Elena Krachmarova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.L.); (N.I.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Kristina Malinova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Rossitsa Hristova
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Genoveva Nacheva
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Anastas Gospodinov
- Institute of Molecular Biology “Acad. Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.K.); (K.M.); (R.H.); (G.N.)
| | - Leandar Litov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| |
Collapse
|
38
|
Singh R, Malik P, Kumar M, Kumar R, Alam MS, Mukherjee TK. Secondary fungal infections in SARS-CoV-2 patients: pathological whereabouts, cautionary measures, and steadfast treatments. Pharmacol Rep 2023:10.1007/s43440-023-00506-z. [PMID: 37354313 DOI: 10.1007/s43440-023-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The earliest documented COVID-19 case caused by the SARS-CoV-2 coronavirus occurred in Wuhan, China, in December 2019. Since then, several SARS-CoV-2 mutants have rapidly disseminated as exemplified by the community spread of the recent omicron variant. The disease already attained a pandemic status with ever-dwindling mortality even after two and half years of identification and considerable vaccination. Aspergillosis, candidiasis, cryptococcosis and mucormycosis are the prominent fungal infections experienced by the majority of SARS-CoV-2 high-risk patients. In its entirety, COVID-19's nexus with these fungal infections may worsen the intricacies in the already beleaguered high-risk patients, making this a topic of substantial clinical concern. Thus, thorough knowledge of the subject is necessary. This article focuses on the concomitant fungal infection(s) in COVID-19 patients, taking into account their underlying causes, the screening methods, manifested drug resistance, and long-term effects. The information and knowledge shared herein could be crucial for the management of critically ill, aged, and immunocompromised SARS-CoV-2 patients who have had secondary fungal infections (SFIs).
Collapse
Affiliation(s)
- Raj Singh
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Mukesh Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Raman Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, Haryana, 133207, India
| | - Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, PO Box 620, 130, Bosher-Muscat, Sultanate of Oman
| | - Tapan Kumar Mukherjee
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, UP, India.
- Department of Biotechnology, Amity University, Major Arterial Road, Action Area II, Rajarhat, New Town, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
39
|
Su HC, Jing H, Zhang Y, Casanova JL. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu Rev Immunol 2023; 41:561-585. [PMID: 37126418 DOI: 10.1146/annurev-immunol-101921-050835] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.
Collapse
Affiliation(s)
- Helen C Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH; Bethesda, Maryland, USA;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
40
|
Sun Q, Li X, Kuang E. Subversion of autophagy machinery and organelle-specific autophagy by SARS-CoV-2 and coronaviruses. Autophagy 2023; 19:1055-1069. [PMID: 36005882 PMCID: PMC10012907 DOI: 10.1080/15548627.2022.2116677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/09/2022] Open
Abstract
As a new emerging severe coronavirus, the knowledge on the SARS-CoV-2 and COVID-19 remains very limited, whereas many concepts can be learned from the homologous coronaviruses. Macroautophagy/autophagy is finely regulated by SARS-CoV-2 infection and plays important roles in SARS-CoV-2 infection and pathogenesis. This review will explore the subversion and mechanism of the autophagy-related machinery, vacuoles and organelle-specific autophagy during infection of SARS-CoV-2 and coronaviruses to provide meaningful insights into the autophagy-related therapeutic strategies for infectious diseases of SARS-CoV-2 and coronaviruses.
Collapse
Affiliation(s)
- Qinqin Sun
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaojuan Li
- College of Clinic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Guangzhou, Guangdong, China
| |
Collapse
|
41
|
Prasada Kabekkodu S, Chakrabarty S, Jayaram P, Mallya S, Thangaraj K, Singh KK, Satyamoorthy K. Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications. Mitochondrion 2023; 69:43-56. [PMID: 36690315 PMCID: PMC9854144 DOI: 10.1016/j.mito.2023.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca2+ signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India
| | - Kumarasamy Thangaraj
- CSIR Centre for Cellular and Molecular Biology, Uppal Road, Telangana, 500 007, Hyderabad, India; Centre for DNA Fingerprinting and Diagnostics, Telangana, 500 039, Uppal, Hyderabad, India
| | - Keshav K Singh
- Department of Genetics, The University of Alabama at Birmingham, AL 35294, Birmingham, USA
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.
| |
Collapse
|
42
|
COVID-19 signalome: Potential therapeutic interventions. Cell Signal 2023; 103:110559. [PMID: 36521656 PMCID: PMC9744501 DOI: 10.1016/j.cellsig.2022.110559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic has triggered intensive research and development of drugs and vaccines against SARS-CoV-2 during the last two years. The major success was especially observed with development of vaccines based on viral vectors, nucleic acids and whole viral particles, which have received emergent authorization leading to global mass vaccinations. Although the vaccine programs have made a big impact on COVID-19 spread and severity, emerging novel variants have raised serious concerns about vaccine efficacy. Due to the urgent demand, drug development had originally to rely on repurposing of antiviral drugs developed against other infectious diseases. For both drug and vaccine development the focus has been mainly on SARS-CoV-2 surface proteins and host cell receptors involved in viral attachment and entry. In this review, we expand the spectrum of SARS-CoV-2 targets by investigating the COVID-19 signalome. In addition to the SARS-CoV-2 Spike protein, the envelope, membrane, and nucleoprotein targets have been subjected to research. Moreover, viral proteases have presented the possibility to develop different strategies for the inhibition of SARS-CoV-2 replication and spread. Several signaling pathways involving the renin-angiotensin system, angiotensin-converting enzymes, immune pathways, hypoxia, and calcium signaling have provided attractive alternative targets for more efficient drug development.
Collapse
|
43
|
Lacasse É, Gudimard L, Dubuc I, Gravel A, Allaeys I, Boilard É, Flamand L. SARS-CoV-2 Nsp2 Contributes to Inflammation by Activating NF-κB. Viruses 2023; 15:v15020334. [PMID: 36851549 PMCID: PMC9964531 DOI: 10.3390/v15020334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
COVID-19 is associated with robust inflammation and partially impaired antiviral responses. The modulation of inflammatory gene expression by SARS-CoV-2 is not completely understood. In this study, we characterized the inflammatory and antiviral responses mounted during SARS-CoV-2 infection. K18-hACE2 mice were infected with a Wuhan-like strain of SARS-CoV-2, and the transcriptional and translational expression interferons (IFNs), cytokines, and chemokines were analyzed in mouse lung homogenates. Our results show that the infection of mice with SARS-CoV-2 induces the expression of several pro-inflammatory CC and CXC chemokines activated through NF-κB but weakly IL1β and IL18 whose expression are more characteristic of inflammasome formation. We also observed the downregulation of several inflammasome effectors. The modulation of innate response, following expressions of non-structural protein 2 (Nsp2) and SARS-CoV-2 infection, was assessed by measuring IFNβ expression and NF-κB modulation in human pulmonary cells. A robust activation of the NF-κB p65 subunit was induced following the infection of human cells with the corresponding NF-κB-driven inflammatory signature. We identified that Nsp2 expression induced the activation of the IFNβ promoter through its NF-κB regulatory domain as well as activation of p65 subunit phosphorylation. The present studies suggest that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19 and for which Nsp2 should be considered an important contributor.
Collapse
Affiliation(s)
- Émile Lacasse
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Leslie Gudimard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
| | - Annie Gravel
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
| | - Éric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, QC G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| |
Collapse
|
44
|
Arai Y, Yamanaka I, Okamoto T, Isobe A, Nakai N, Kamimura N, Suzuki T, Daidoji T, Ono T, Nakaya T, Matsumoto K, Okuzaki D, Watanabe Y. Stimulation of interferon-β responses by aberrant SARS-CoV-2 small viral RNAs acting as retinoic acid-inducible gene-I agonists. iScience 2023; 26:105742. [PMID: 36507221 PMCID: PMC9726650 DOI: 10.1016/j.isci.2022.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/03/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Patients with severe COVID-19 exhibit a cytokine storm characterized by greatly elevated levels of cytokines. Despite this, the interferon (IFN) response is delayed, contributing to disease progression. Here, we report that SARS-CoV-2 excessively generates small viral RNAs (svRNAs) encoding exact 5' ends of positive-sense genes in human cells in vitro and ex vivo, whereas endemic human coronaviruses (OC43 and 229E) produce significantly fewer similar svRNAs. SARS-CoV-2 5' end svRNAs are RIG-I agonists and induce the IFN-β response in the later stages of infection. The first 60-nt ends bearing duplex structures and 5'-triphosphates are responsible for immune-stimulation. We propose that RIG-I activation by accumulated SARS-CoV-2 5' end svRNAs may contribute to later drive over-exuberant IFN production. Additionally, the differences in the amounts of svRNAs produced and the corresponding IFN response among CoV strains suggest that lower svRNA production during replication may correlate with the weaker immune response seen in less pathogenic CoVs.
Collapse
Affiliation(s)
- Yasuha Arai
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Itaru Yamanaka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Ayana Isobe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Naomi Nakai
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoko Kamimura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takao Ono
- SANKEN, Osaka University, Osaka 567-0047, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | | | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan,Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan,Corresponding author
| |
Collapse
|
45
|
Hurtado-Tamayo J, Requena-Platek R, Enjuanes L, Bello-Perez M, Sola I. Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Front Cell Infect Microbiol 2023; 13:1166839. [PMID: 37197199 PMCID: PMC10183600 DOI: 10.3389/fcimb.2023.1166839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sola
- *Correspondence: Melissa Bello-Perez, ; Isabel Sola,
| |
Collapse
|
46
|
Rana V, Chien E, Peng J, Milenkovic O. Small-Sample Estimation of the Mutational Support and Distribution of SARS-CoV-2. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:668-682. [PMID: 35385386 PMCID: PMC10009811 DOI: 10.1109/tcbb.2022.3165395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the problem of determining the mutational support and distribution of the SARS-CoV-2 viral genome in the small-sample regime. The mutational support refers to the unknown number of sites that may eventually mutate in the SARS-CoV-2 genome while mutational distribution refers to the distribution of point mutations in the viral genome across a population. The mutational support may be used to assess the virulence of the virus and guide primer selection for real-time RT-PCR testing. Estimating the distribution of mutations in the genome of different subpopulations while accounting for the unseen may also aid in discovering new variants. To estimate the mutational support in the small-sample regime, we use GISAID sequencing data and our state-of-the-art polynomial estimation techniques based on new weighted and regularized Chebyshev approximation methods. For distribution estimation, we adapt the well-known Good-Turing estimator. Our analysis reveals several findings: First, the mutational supports exhibit significant differences in the ORF6 and ORF7a regions (older versus younger patients), ORF1b and ORF10 regions (females versus males) and in almost all ORFs (Asia/Europe/North America). Second, even though the N region of SARS-CoV-2 has a predicted 10% mutational support, mutations fall outside of the primer regions recommended by the CDC.
Collapse
|
47
|
Ahmed JQ, Maulud SQ. Complete Genomic Characterisation and Mutation Patterns of Iraqi SARS-CoV-2 Isolates. Diagnostics (Basel) 2022; 13:8. [PMID: 36611300 PMCID: PMC9818665 DOI: 10.3390/diagnostics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This study was performed for molecular characterisation of the SARS-CoV-2 strains in Iraq and reveal their variants, lineages, clades, and mutation patterns. A total of 912 Iraqi sequences were retrieved from GISAID, which had been submitted from the beginning of the SARS-CoV-2 pandemic to 26 September 2022, along with 12 samples that were collected during the third and fifth waves of the SARS-CoV-2 pandemic. Next-generation sequencing was performed using an Illumina MiSeq system, and phylogenetic analysis was performed for all the Iraqi sequences retrieved from GISAID. Three established global platforms GISAID, Nextstrain, and PANGO were used for the classification of isolates into distinct clades, variants, and lineages. Analysis of the isolates of this study showed that all the sequences from the third wave were clustered in the GK clades and the 21J (Delta) clade according to the GISAID and Nextclade systems, while the PANGO system revealed that six sequences were B.1.617.2 and four sequences were of the AY.33 lineage. Furthermore, the latest e wave in the summer of 2022 was due to thpredominance of the BA.5.2 lineage of the 22B (Omicron) clade in Iraq. Our study revealed patterns of circulation and dominance of SARS-CoV-2 clades and their lineages in the subsequent pandemic waves in the country.
Collapse
Affiliation(s)
- Jivan Qasim Ahmed
- Department of Pathology and Microbiology, University of Duhok, Duhok 42001, Iraq
| | - Sazan Qadir Maulud
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq
| |
Collapse
|
48
|
Petrovic S, Mobbs GW, Bley CJ, Nie S, Patke A, Hoelz A. Structure and Function of the Nuclear Pore Complex. Cold Spring Harb Perspect Biol 2022; 14:a041264. [PMID: 36096637 PMCID: PMC9732903 DOI: 10.1101/cshperspect.a041264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleus, a genome-containing organelle eponymous of eukaryotes, is enclosed by a double membrane continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) is an ∼110-MDa, ∼1000-protein channel that selectively transports macromolecules across the nuclear envelope and thus plays a central role in the regulated flow of genetic information from transcription to translation. Its size, complexity, and flexibility have hindered determination of atomistic structures of intact NPCs. Recent studies have overcome these hurdles by combining biochemical reconstitution and docking of high-resolution structures of NPC subcomplexes into cryo-electron tomographic reconstructions with biochemical and physiological validation. Here, we provide an overview of the near-atomic composite structure of the human NPC, a milestone toward unlocking a molecular understanding of mRNA export, NPC-associated diseases, and viral host-pathogen interactions, serving as a paradigm for studying similarly large complexes.
Collapse
Affiliation(s)
- Stefan Petrovic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George W Mobbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher J Bley
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Si Nie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alina Patke
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
49
|
Lu Y, Michel HA, Wang PH, Smith GL. Manipulation of innate immune signaling pathways by SARS-CoV-2 non-structural proteins. Front Microbiol 2022; 13:1027015. [PMID: 36478862 PMCID: PMC9720297 DOI: 10.3389/fmicb.2022.1027015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic, induces an unbalanced immune response in the host. For instance, the production of type I interferon (IFN) and the response to it, which act as a front-line defense against virus invasion, are inhibited during SARS-CoV-2 infection. In addition, tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine, is upregulated in COVID-19 patients with severe symptoms. Studies on the closely related betacoronavirus, SARS-CoV, showed that viral proteins such as Nsp1, Orf6 and nucleocapsid protein inhibit IFN-β production and responses at multiple steps. Given the conservation of these proteins between SARS-CoV and SARS-CoV-2, it is not surprising that SARS-CoV-2 deploys similar immune evasion strategies. Here, we carried out a screen to examine the role of individual SARS-CoV-2 proteins in regulating innate immune signaling, such as the activation of transcription factors IRF3 and NF-κB and the response to type I and type II IFN. In addition to established roles of SARS-CoV-2 proteins, we report that SARS-CoV-2 proteins Nsp6 and Orf8 inhibit the type I IFN response but at different stages. Orf6 blocks the translocation of STAT1 and STAT2 into the nucleus, whereas ORF8 inhibits the pathway in the nucleus after STAT1/2 translocation. SARS-CoV-2 Orf6 also suppresses IRF3 activation and TNF-α-induced NF-κB activation.
Collapse
Affiliation(s)
- Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hendrik A. Michel
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Prasad V, Bartenschlager R. A snapshot of protein trafficking in SARS-CoV-2 infection. Biol Cell 2022; 115:e2200073. [PMID: 36314261 PMCID: PMC9874443 DOI: 10.1111/boc.202200073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is a human pathogenic virus responsible for the COVID-19 (coronavirus disease 2019) pandemic. The infection cycle of SARS-CoV-2 involves several related steps, including virus entry, gene expression, RNA replication, assembly of infectious virions and their egress. For all of these steps, the virus relies on and exploits host cell factors, cellular organelles, and processes such as endocytosis, nuclear transport, protein secretion, metabolite transport at membrane contact sites (MSC) and exocytotic pathways. To do this, SARS-CoV-2 has evolved multifunctional viral proteins that hijack cellular factors and modulate their function by unique strategies. In this Review, we highlight cellular trafficking factors, processes, and organelles of relevance to the SARS-CoV-2 infection cycle and how viral proteins make use of and perturb cellular transport during the viral infection cycle.
Collapse
Affiliation(s)
- Vibhu Prasad
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityHeidelbergGermany
| | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityHeidelbergGermany,Division Virus‐Associated CarcinogenesisGerman Cancer Research CenterHeidelbergGermany,German Center for Infection ResearchHeidelberg Partner SiteHeidelbergGermany
| |
Collapse
|