1
|
Marshak JO, Dong L, Koelle DM. The Murine Intravaginal HSV-2 Challenge Model for Investigation of DNA Vaccines. Methods Mol Biol 2020; 2060:429-454. [PMID: 31617196 DOI: 10.1007/978-1-4939-9814-2_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.
Collapse
Affiliation(s)
- Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA. .,Department of Global Health, University of Washington, Seattle, WA, USA. .,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Benaroya Research Institute, Seattle, WA, USA.
| |
Collapse
|
2
|
Gardner JK, Swaims-Kohlmeier A, Herbst-Kralovetz MM. IL-36γ Is a Key Regulator of Neutrophil Infiltration in the Vaginal Microenvironment and Limits Neuroinvasion in Genital HSV-2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2655-2664. [PMID: 31578266 PMCID: PMC9978960 DOI: 10.4049/jimmunol.1900280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023]
Abstract
HSV-2 is a neurotropic virus that causes a persistent, lifelong infection that increases risk for other sexually transmitted infections. The vaginal epithelium is the first line of defense against HSV-2 and coordinates the immune response through the secretion of immune mediators, including the proinflammatory cytokine IL-36γ. Previously, we showed that IL-36γ treatment promoted transient polymorphonuclear cell infiltration to the vaginal cavity and protected against lethal HSV-2 challenge. In this report, we reveal that IL-36γ specifically induces transient neutrophil infiltration but does not impact monocyte and macrophage recruitment. Using IL-36γ-/- mice in a lethal HSV-2 challenge model, we show that neutrophil counts are significantly reduced at 1 and 2 d postinfection and that KC-mediated mature neutrophil recruitment is impaired in IL-36γ-/- mice. Additionally, IL-36γ-/- mice develop genital disease more rapidly, have significantly reduced survival time, and exhibit an increased incidence of hind limb paralysis that is linked to productive HSV-2 infection in the brain stem. IL-36γ-/- mice also exhibit a significant delay in clearance of the virus from the vaginal epithelium and a more rapid spread of HSV-2 to the spinal cord, bladder, and colon. We further show that the decreased survival time and increased virus spread observed in IL-36γ-/- mice are not neutrophil-dependent, suggesting that IL-36γ may function to limit HSV-2 spread in the nervous system. Ultimately, we demonstrate that IL-36γ is a key regulator of neutrophil recruitment in the vaginal microenvironment and may function to limit HSV-2 neuroinvasion.
Collapse
Affiliation(s)
- Jameson K. Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Alison Swaims-Kohlmeier
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA,Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| |
Collapse
|
3
|
Voccola S, Polvere I, Madera JR, Paolucci M, Varricchio E, Telesio G, Porcaro P, Vito P, Stilo R, Zotti T. CARD14/CARMA2sh and TANK differentially regulate poly(I:C)-induced inflammatory reaction in keratinocytes. J Cell Physiol 2019; 235:1895-1902. [PMID: 31486084 DOI: 10.1002/jcp.29161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 12/31/2022]
Abstract
CARD14/CARMA2sh (CARMA2sh) is a scaffold protein whose mutations are associated with the onset of human genetic psoriasis and other inflammatory skin disorders. Here we show that the immunomodulatory adapter protein TRAF family member-associated NF-κB activator (TANK) forms a complex with CARMA2sh and MALT1 in a human keratinocytic cell line. We also show that CARMA2 and TANK are individually required to activate the nuclear factor κB (NF-κB) response following exposure to polyinosinic-polycytidylic (poly [I:C]), an agonist of toll-like receptor 3. Finally, we present data indicating that TANK is essential for activation of the TBK1/IRF3 pathway following poly (I:C) stimulation, whereas CARMA2sh functions as a repressor of it. More important, we report that two CARMA2sh mutants associated with psoriasis bind less efficiently to TANK and are therefore less effective in suppressing the TBK1/IRF3 pathway. Overall, our data indicate that TANK and CARMA2sh regulate TLR3 signaling in human keratinocytes, which could play a role in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- Serena Voccola
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Immacolata Polvere
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Jessica R Madera
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Marina Paolucci
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ettore Varricchio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Gianluca Telesio
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Piero Porcaro
- Genus Biotech, Università del Sannio, Benevento, Italy.,Consorzio Sannio Tech, Strada Statale Appia, Benevento, Benevento, Italy
| | - Pasquale Vito
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| | - Romania Stilo
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Tiziana Zotti
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy.,Genus Biotech, Università del Sannio, Benevento, Italy
| |
Collapse
|
4
|
Allan B, Wheler C, Köster W, Sarfraz M, Potter A, Gerdts V, Dar A. In Ovo Administration of Innate Immune Stimulants and Protection from Early Chick Mortalities due to Yolk Sac Infection. Avian Dis 2019; 62:316-321. [PMID: 30339510 DOI: 10.1637/11840-041218-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Omphalitis or yolk sac infection (YSI) and colibacillosis are the most common infectious diseases that lead to high rates of early chick mortalities (ECMs) in young chicks. Out of numerous microbial causes, avian pathogenic Escherichia coli (APEC) or extraintestinal pathogenic E. coli infections are considered the most common cause of these conditions. YSI causes deterioration and decomposition of yolk, leading to deficiency of necessary nutrients and maternal antibodies, retarded growth, poor carcass quality, and increased susceptibility to other infections, including omphalitis, colibacillosis, and respiratory tract infection. Presently, in ovo injection of antibiotics, heavy culling, or after hatch use of antibiotics is practiced to manage ECM. However, increased antibiotic resistance and emergence of "super bugs" associated with use or misuse of antibiotics in the animal industry have raised serious concerns. These concerns urgently require a focus on host-driven nonantibiotic approaches for stimulation of protective antimicrobial immunity. Using an experimental YSI model in newborn chicks, we evaluated the prophylactic potential of three in ovo-administered innate immune stimulants and immune adjuvants for protection from ECM due to YSI. Our data have shown >80%, 65%, and 60% survival with in ovo use of cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotides (ODN), polyinosinic:polycytidylic acid, and polyphosphazene, respectively. In conclusion, data from these studies suggest that in ovo administration of CpG ODN may serve as a potential candidate for replacement of antibiotics for the prevention and control of ECM due to YSI in young chicks.
Collapse
Affiliation(s)
- Brenda Allan
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Colette Wheler
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Wolfgang Köster
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Mishal Sarfraz
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Andy Potter
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Volker Gerdts
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | - Arshud Dar
- A Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| |
Collapse
|
5
|
Amerson-Brown MH, Miller AL, Maxwell CA, White MM, Vincent KL, Bourne N, Pyles RB. Cultivated Human Vaginal Microbiome Communities Impact Zika and Herpes Simplex Virus Replication in ex vivo Vaginal Mucosal Cultures. Front Microbiol 2019; 9:3340. [PMID: 30692980 PMCID: PMC6340164 DOI: 10.3389/fmicb.2018.03340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
The human vaginal microbiome (VMB) is a complex bacterial community that interacts closely with vaginal epithelial cells (VECs) impacting the mucosal phenotype and its responses to pathogenic insults. The VMB and VEC relationship includes nutrient exchange and regulation of signaling molecules that controls numerous host functions and defends against invading pathogens. To better understand infection and replication of sexually transmitted viral pathogens in the human vaginal mucosa we used our ex vivo VEC multilayer culture system. We tested the hypothesis that selected VMB communities could be identified that alter the replication of sexually transmitted viruses consistent with reported clinical associations. Sterile VEC multilayer cultures or those colonized with VMB dominated by specific Lactobacillus spp., or VMB lacking lactobacilli, were infected with Zika virus, (ZIKV) a single stranded RNA virus, or Herpes Simplex Virus type 2 (HSV-2), a double stranded DNA virus. The virus was added to the apical surface of the cultured VEC multilayer to model transmission during vaginal intercourse. Viral replication was measured 48 h later by qPCR. The results indicated that VEC cultures colonized by VMB containing Staphylococcus spp., previously reported as inflammatory, significantly reduced the quantity of viral genomes produced by ZIKV. HSV-2 titers were decreased by nearly every VMB tested relative to the sterile control, although Lactobacillus spp.-dominated VMBs caused the greatest reduction in HSV-2 titer consistent with clinical observations. To explore the mechanism for reduced ZIKV titers, we investigated inflammation created by ZIKV infection, VMB colonization or pre-exposure to selected TLR agonists. Finally, expression levels of human beta defensins 1–3 were quantified in cultures infected by ZIKV and those colonized by VMBs that impacted ZIKV titers. Human beta defensins 1–3 produced by the VEC showed no association with ZIKV titers. The data presented expands the utility of this ex vivo model system providing controlled and reproducible methods to study the VMB impact on STIs and indicated an association between viral replication and specific bacterial species within the VMB.
Collapse
Affiliation(s)
- Megan H Amerson-Brown
- Graduate School of Biomedical Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Aaron L Miller
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Carrie A Maxwell
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Mellodee M White
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Nigel Bourne
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Richard B Pyles
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, Galveston, TX, United States.,Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
6
|
Gardner JK, Herbst-Kralovetz MM. IL-36γ induces a transient HSV-2 resistant environment that protects against genital disease and pathogenesis. Cytokine 2018; 111:63-71. [PMID: 30118914 DOI: 10.1016/j.cyto.2018.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 01/03/2023]
Abstract
Herpes simplex virus 2 (HSV-2) causes a persistent, lifelong infection that increases risk for sexually transmitted infection acquisition. Both the lack of a vaccine and the need for chronic suppressive therapies to control infection presents the need to further understand immune mechanisms in response to acute HSV-2 infection. The IL-36 cytokines are recently identified members of the IL-1 family and function as inflammatory mediators at epithelial sites. Here, we first used a well-characterized three-dimensional (3-D) human vaginal epithelial cell (VEC) model to understand the role of IL-36γ in the context of HSV-2 infection. In 3-D VEC, IL-36γ is induced by HSV-2 infection, and pretreatment with exogenous IL-36γ significantly reduced HSV-2 replication. To assess the impact of IL-36γ treatment on HSV-2 disease pathogenesis, we employed a lethal genital infection model. We showed that IL-36γ treatment in mice prior to lethal intravaginal challenge significantly limited vaginal viral replication, delayed disease onset, decreased disease severity, and significantly increased survival. We demonstrated that IL-36γ treatment transiently induced pro-inflammatory cytokines, chemokines, and antimicrobial peptides in murine lower female reproductive tract (FRT) tissue and vaginal lavages. Induction of the chemokines CCL20 and KC in IL-36γ treated mice also corresponded with increased polymorphonuclear (PMN) leukocyte infiltration observed in vaginal smears. Altogether, these studies demonstrate that IL-36γ drives the transient production of immune mediators and promotes PMN recruitment in the vaginal microenvironment that increases resistance to HSV-2 infection and disease. Our data indicate that IL-36γ may participate as a key player in host defense mechanisms against invading pathogens in the FRT.
Collapse
Affiliation(s)
- Jameson K Gardner
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA; Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA; Department of Obstetrics and Gynecology, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
| |
Collapse
|
7
|
Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM. A minimal RNA ligand for potent RIG-I activation in living mice. SCIENCE ADVANCES 2018; 4:e1701854. [PMID: 29492454 PMCID: PMC5821489 DOI: 10.1126/sciadv.1701854] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/22/2018] [Indexed: 05/08/2023]
Abstract
We have developed highly potent synthetic activators of the vertebrate immune system that specifically target the RIG-I receptor. When introduced into mice, a family of short, triphosphorylated stem-loop RNAs (SLRs) induces a potent interferon response and the activation of specific genes essential for antiviral defense. Using RNA sequencing, we provide the first in vivo genome-wide view of the expression networks that are initiated upon RIG-I activation. We observe that SLRs specifically induce type I interferons, subsets of interferon-stimulated genes (ISGs), and cellular remodeling factors. By contrast, polyinosinic:polycytidylic acid [poly(I:C)], which binds and activates multiple RNA sensors, induces type III interferons and several unique ISGs. The short length (10 to 14 base pairs) and robust function of SLRs in mice demonstrate that RIG-I forms active signaling complexes without oligomerizing on RNA. These findings demonstrate that SLRs are potent therapeutic and investigative tools for targeted modulation of the innate immune system.
Collapse
Affiliation(s)
| | - Thayne H. Dickey
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Emanuela S. Molinari
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Megan E. Fitzgerald
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Anna M. Pyle
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C. Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 2017; 7:13143. [PMID: 29030632 PMCID: PMC5640609 DOI: 10.1038/s41598-017-13564-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
In the last decade, a paradigm shift has emerged in comparative immunology. Invertebrates can no longer be considered to be devoid of specific recognition and immune memory. However, we still lack a comprehensive view of these phenomena and their molecular mechanisms across phyla, especially in terms of duration, specificity, and efficiency in a natural context. In this study, we focused on a Lophotrochozoan/virus interaction, as antiviral priming is mostly overlooked in molluscs. Juvenile Crassostrea gigas oysters experience reoccurring mass mortalities events from Ostreid herpes virus 1 with no existing therapeutic treatment. Our results showed that various nucleic acid injections can prime oysters to trigger an antiviral state ultimately protecting them against a subsequent viral infection. Focusing on poly(I:C) as elicitor, we evidenced that it protected from an environmental infection, by mitigating viral replication. That protection seemed to induce a specific antiviral response as poly(I:C) fails to protect against a pathogenic bacteria. Finally, we showed that this phenomenon was long-lasting, persisting for at least 5 months thus suggesting for the first time the existence of innate immune memory in this invertebrate species. This study strengthens the emerging hypotheses about the broad conservation of innate immune priming and memory mechanisms in Lophotrochozoans.
Collapse
Affiliation(s)
- Maxime Lafont
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.,Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR6539, F-29840, Argenton-en-Landunvez, France
| | - Agnès Vergnes
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Amélie Segarra
- Univ. Brest Occidentale, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, F-29280, Plouzané, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.
| |
Collapse
|
9
|
Zou H, Su R, Ruan J, Shao H, Qian K, Ye J, Qin A. Toll-like receptor 3 pathway restricts Marek's disease virus infection. Oncotarget 2017; 8:70847-70853. [PMID: 29050325 PMCID: PMC5642600 DOI: 10.18632/oncotarget.20003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Marek's disease virus (MDV) is an α-herpesvirus that causes immune suppression and T lymphoma in chickens. Toll-like receptor 3 (TLR3) is critical for the host immune response against MDV infection. Previously, our team demonstrated that pre-treatment of TLR3 agonist poly (I:C) inhibited Marek's disease virus infection in chicken embryo fibroblasts (CEFs). However, whether TLR3 inhibits the aggravation of MDV infection is unknown. In the current study, we found that TLR3 activation in MDV-infected CEFs effectively inhibited virus spread. Using pharmacological approaches, we revealed that pro-inflammatory cytokines and interferon-β induced by TLR3 could restrict Marek's disease virus infection. This study contributes to elucidating the function and mechanism of the TLR3 pathway in host immune responses against MDV infection.
Collapse
Affiliation(s)
- Haitao Zou
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Ruixue Su
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Jing Ruan
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Zoonosis, Yangzhou, Jiangsu, 225009, P.R. China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Zoonosis, Yangzhou, Jiangsu, 225009, P.R. China
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Zoonosis, Yangzhou, Jiangsu, 225009, P.R. China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, P.R. China.,Jiangsu Key Lab of Zoonosis, Yangzhou, Jiangsu, 225009, P.R. China
| |
Collapse
|
10
|
Khan S, Woodruff EM, Trapecar M, Fontaine KA, Ezaki A, Borbet TC, Ott M, Sanjabi S. Dampened antiviral immunity to intravaginal exposure to RNA viral pathogens allows enhanced viral replication. J Exp Med 2016; 213:2913-2929. [PMID: 27852793 PMCID: PMC5154948 DOI: 10.1084/jem.20161289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 11/21/2022] Open
Abstract
Khan et al. demonstrate that the lower female reproductive tract is exceptionally vulnerable to infection by LCMV and Zika virus, as intravaginal exposure to these RNA viral pathogens elicits a dampened antiviral immune response. Understanding the host immune response to vaginal exposure to RNA viruses is required to combat sexual transmission of this class of pathogens. In this study, using lymphocytic choriomeningitis virus (LCMV) and Zika virus (ZIKV) in wild-type mice, we show that these viruses replicate in the vaginal mucosa with minimal induction of antiviral interferon and inflammatory response, causing dampened innate-mediated control of viral replication and a failure to mature local antigen-presenting cells (APCs). Enhancement of innate-mediated inflammation in the vaginal mucosa rescues this phenotype and completely inhibits ZIKV replication. To gain a better understanding of how this dampened innate immune activation in the lower female reproductive tract may also affect adaptive immunity, we modeled CD8 T cell responses using vaginal LCMV infection. We show that the lack of APC maturation in the vaginal mucosa leads to a delay in CD8 T cell activation in the draining lymph node and hinders the timely appearance of effector CD8 T cells in vaginal mucosa, thus further delaying viral control in this tissue. Our study demonstrates that vaginal tissue is exceptionally vulnerable to infection by RNA viruses and provides a conceptual framework for the male to female sexual transmission observed during ZIKV infection.
Collapse
Affiliation(s)
- Shahzada Khan
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158
| | - Erik M Woodruff
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158
| | - Martin Trapecar
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158
| | | | - Ashley Ezaki
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158
| | - Timothy C Borbet
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158
| | - Melanie Ott
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Shomyseh Sanjabi
- Virology and Immunology, Gladstone Institutes, San Francisco, CA 94158 .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
11
|
Winkle SM, Throop AL, Herbst-Kralovetz MM. IL-36γ Augments Host Defense and Immune Responses in Human Female Reproductive Tract Epithelial Cells. Front Microbiol 2016; 7:955. [PMID: 27379082 PMCID: PMC4911402 DOI: 10.3389/fmicb.2016.00955] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022] Open
Abstract
IL-36γ is a proinflamatory cytokine which belongs to the IL-1 family of cytokines. It is expressed in the skin and by epithelial cells (ECs) lining lung and gut tissue. We used human 3-D organotypic cells, that recapitulate either in vivo human vaginal or cervical tissue, to explore the possible role of IL-36γ in host defense against pathogens in the human female reproductive tract (FRT). EC were exposed to compounds derived from virus or bacterial sources and induction and regulation of IL-36γ and its receptor was determined. Polyinosinic-polycytidylic acid (poly I:C), flagellin, and synthetic lipoprotein (FSL-1) significantly induced expression of IL-36γ in a dose-dependent manner, and appeared to be TLR-dependent. Recombinant IL-36γ treatment resulted in self-amplification of IL-36γ and its receptor (IL-36R) via increased gene expression, and promoted other inflammatory signaling pathways. This is the first report to demonstrate that the IL-36 receptor and IL-36γ are present in the human FRT EC and that they are differentially induced by microbial products at this site. We conclude that IL-36γ is a driver for epithelial and immune activation following microbial insult and, as such, may play a critical role in host defense in the FRT.
Collapse
Affiliation(s)
- Sean M Winkle
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| | - Andrea L Throop
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| | - Melissa M Herbst-Kralovetz
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix AZ, USA
| |
Collapse
|
12
|
Slade J, Hall JV, Kintner J, Schoborg RV. Chlamydial Pre-Infection Protects from Subsequent Herpes Simplex Virus-2 Challenge in a Murine Vaginal Super-Infection Model. PLoS One 2016; 11:e0146186. [PMID: 26726882 PMCID: PMC4699815 DOI: 10.1371/journal.pone.0146186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis and Herpes Simplex Virus-2 (HSV-2) genital tract co-infections have been reported in humans and studied in vitro but the clinical consequences are unknown. Limited epidemiologic evidence suggests that these co-infections could be more severe than single infections of either pathogen, but the host-pathogen interactions during co-infection remain uncharacterized. To determine whether disease progression and/or pathogen shedding differs between singly-infected and super-infected animals, we developed an in vivo super-infection model in which female BALB/c mice were vaginally infected with Chlamydia muridarum (Cm) followed later by HSV-2. Pre-infection with Chlamydia 3 or 9 days prior to HSV-2 super-infection conferred significant protection from HSV-2-induced neurologic disease and significantly reduced viral recovery compared to HSV-2 singly-infected controls. Neither protection from mortality nor reduced viral recovery were observed when mice were i) super-infected with HSV-2 on day 27 post Cm; ii) infected with UV-irradiated Cm and super-infected with HSV-2; or iii) azithromycin-treated prior to HSV-2 super-infection. Therefore, protection from HSV-2-induced disease requires active infection with viable chlamydiae and is not observed after chlamydial shedding ceases, either naturally or due to antibiotic treatment. Thus, Chlamydia-induced protection is transient and requires the continued presence of chlamydiae or their components. These data demonstrate that chlamydial pre-infection can alter progression of subsequent HSV-2 infection, with implications for HSV-2 transmission from co-infected humans.
Collapse
Affiliation(s)
- Jessica Slade
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
13
|
Zhou L, Li JL, Zhou Y, Liu JB, Zhuang K, Gao JF, Liu S, Sang M, Wu JG, Ho WZ. Induction of interferon-λ contributes to TLR3 and RIG-I activation-mediated inhibition of herpes simplex virus type 2 replication in human cervical epithelial cells. Mol Hum Reprod 2015; 21:917-29. [PMID: 26502803 PMCID: PMC4664393 DOI: 10.1093/molehr/gav058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/27/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
STUDY HYPOTHESIS Is it possible to immunologically activate human cervical epithelial cells to produce antiviral factors that inhibit herpes simplex virus type 2 (HSV-2) replication? STUDY FINDING Our results indicate that human cervical epithelial cells possess a functional TLR3/RIG-I signaling system, the activation of which can mount an Interferon-λ (IFN-λ)-mediated anti-HSV-2 response. WHAT IS KNOWN ALREADY There is limited information about the role of cervical epithelial cells in genital innate immunity against HSV-2 infection. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We examined the expression of toll-like receptors (TLRs) and retinoic acid-inducible I (RIG-I) in End1/E6E7 cells by real-time PCR. The IFN-λ induced by TLR3 and RIG-I activation of End1/E6E7 cells was also examined by real-time PCR and ELISA. HSV-2 infection of End1/E6E7 cells was evaluated by the real-time PCR detection of HSV-2 gD expression. The antibody to IL-10Rβ was used to determine whether IFN-λ contributes to TLR3/RIG-I mediated HSV-2 inhibition. Expression of interferon regulatory factor 3 (IRF3), IRF7, IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA) were determined by the real-time PCR and western blot. End1/E6E7 cells were transfected with shRNA to knockdown the IRF3, IRF7 or RIG-I expression. Student's t-test and post Newman-Keuls test were used to analyze stabilized differences in the immunological parameters above between TLR3/RIG-I-activated cells and control cells. MAIN RESULTS AND THE ROLE OF CHANCE Human cervical epithelial cells expressed functional TLR3 and RIG-I, which could be activated by poly I:C and 5'ppp double-strand RNAs (5'ppp dsRNA), resulting in the induction of endogenous interferon lambda (IFN-λ). The induced IFN-λ contributed to TLR3/RIG-I-mediated inhibition of HSV-2 replication in human cervical epithelial cells, as an antibody to IL-10Rβ, an IFN-λ receptor subunit, could compromise TLR3/RIG-I-mediated inhibition of HSV-2. Further studies showed that TLR3/RIG-I signaling in the cervical epithelial cells by dsRNA induced the expression of the IFN-stimulated genes (ISGs), ISG56, 2'-5'-oligoadenylate synthetase I (OAS-1) and myxovirus resistance A (MxA), the key antiviral elements in the IFN signaling pathway. In addition, we observed that the topical treatment of genital mucosa with poly I:C could protect mice from genital HSV-2 infection. LIMITATIONS, REASONS FOR CAUTION Future prospective studies with primary cells and suitable animal models are needed in order to confirm these outcomes. WIDER IMPLICATIONS OF THE FINDINGS The findings provide direct and compelling evidence that there is intracellular expression and regulation of IFN-λ in human cervical epithelial cells, which may have a key role in the innate genital protection against viral infections. LARGE SCALE DATA Not applicable. STUDY FUNDING AND COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (81301428 to L.Z. and 81271334 to W.-Z.H.), the Fundamental Research Funds for the Central Universities (2042015kf0188 to L.Z.), the China Postdoctoral Science Foundation (2013M531745 to L.Z.), the Development Program of China ('973', 2012CB518900 to W.-Z.H.) from the Ministry of Science and Technology of the People's Republic of China, grants (DA12815 and DA022177 to W.-Z.H.) from the National Institute on Drug Abuse (NIDA) and the open project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research (WDCM005 to M.S.). The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jin-Biao Liu
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ke Zhuang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Jian-Feng Gao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Shi Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Ming Sang
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Present address: College of Basic Medical Sciences, Central Laboratory of the Fourth Affiliated Hospital in Xiangyang, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 44200, China
| | - Jian-Guo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430071, China
| | - Wen-Zhe Ho
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan 430071, China Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
|
15
|
Triantafilou K, Eryilmazlar D, Triantafilou M. Herpes simplex virus 2-induced activation in vaginal cells involves Toll-like receptors 2 and 9 and DNA sensors DAI and IFI16. Am J Obstet Gynecol 2014; 210:122.e1-122.e10. [PMID: 24080302 DOI: 10.1016/j.ajog.2013.09.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/14/2013] [Accepted: 09/24/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The pathway by which herpes simplex virus 2 (HSV2) triggers the innate immune system in the urogenital system has not as yet been fully elucidated. In this study, we aimed to determine which pattern recognition receptors (PRRs) recognize HSV2 in primary vaginal epithelial cells. Once we deciphered the receptors involved, we aimed to target them to immunomodulate innate responses as a prophylactic or therapeutic intervention for early HSV2 infection. STUDY DESIGN To determine which PRRs are involved, receptor silencing as well as confocal microscopy was utilized. For immunomodulation, PRR agonists were utilized to induce a strong, local response to limit the infection, and we used 2 quantitative methods, flow cytometry and plaque assays, to determine their effect on HSV2 replication. RESULTS Our results show that HSV2 is detected by a plethora of PRRs: Toll-like receptors (TLR) 2 as well as deoxyribonucleic acid (DNA) sensors TLR9, DNA-dependent activator of interferon regulatory factors, and to a lesser extent interferon-inducible 16, which trigger cytokine secretion to protect the host. Using PRR agonists, such as lipoproteins, CpG DNA, and cyclic dinucleotides, we could significantly limit HSV2 replication. CONCLUSION Different PRRs are strategically placed in different cell locations to detect virus invasion. Use of agonists that target and activate these PRRs appeared to be effective in preventing primary HSV2 infection in vaginal cells and could provide new insights in defense against HSV2 urogenital infections.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Institute of Infection and Immunity, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, Wales, UK
| | - Dilan Eryilmazlar
- Institute of Infection and Immunity, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, Wales, UK
| | - Martha Triantafilou
- Institute of Infection and Immunity, School of Medicine, Cardiff University, University Hospital of Wales, Cardiff, Wales, UK.
| |
Collapse
|
16
|
Meier A, Altfeld M. Toll-like receptor signaling in HIV-1 infection: a potential target for therapy? Expert Rev Anti Infect Ther 2014; 5:323-6. [PMID: 17547495 DOI: 10.1586/14787210.5.3.323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sathe A, Reddy KVR. TLR9 and RIG-I signaling in human endocervical epithelial cells modulates inflammatory responses of macrophages and dendritic cells in vitro. PLoS One 2014; 9:e83882. [PMID: 24409285 PMCID: PMC3883652 DOI: 10.1371/journal.pone.0083882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/17/2013] [Indexed: 11/24/2022] Open
Abstract
The innate immune system has evolved to recognize invading pathogens through pattern recognition receptors (PRRs).Among PRRs, Toll like receptors (TLRs 3, 7/8,9) and RIG-I like receptors (RLRs) have been shown to recognize viral components. Mucosal immune responses to viral infections require coordinated actions from epithelial as well as immune cells. In this respect, endocervical epithelial cells (EEC's) play an important role in initiating innate immune responses via PRRs. It is unknown whether EEC's can alter immune responses of macrophages and dendritic cells (DC's) like its counterparts in intestinal and respiratory systems. In this study, we show that endocervical epithelial cells (End1/E6E7) express two key receptors, TLR9 and RIG-I involved in anti-viral immunity. Stimulation of End1/E6E7 cells lead to the activation of NF-κB and increased secretion of pro-inflammatory cytokines, IL-6 and IL-8. Polarized End1/E6E7 cells responded to apical stimulation with ligands of TLR9 and RIG-I, CpG-ODN and Poly(I:C)LL respectively, without compromising End1/E6E7 cell integrity. At steady state, spent medium from End1/E6E7 cells significantly reduced secretion of pro-inflammatory cytokines from LPS treated human primary monocyte derived macrophages (MDMs) and DC:T cell co-cultures. Spent medium from End1/E6E7 cells stimulated with ligands of TLR9/RIG-I restored secretion of pro-inflammatory cytokines as well as enhanced phagocytosis and chemotaxis of monocytic U937 cells. Spent medium from CpG-ODN and Poly(I:C)LL stimulated End1/E6E7 cells showed significant increased secretion of IL-12p70 from DC:T cell co-cultures. The anti-inflammatory effect of spent media of End1/E6E7 cell was observed to be TGF-β dependent. In summary, the results of our study indicate that EEC's play an indispensable role in modulating anti-viral immune responses at the female lower genital tract.
Collapse
Affiliation(s)
- Ameya Sathe
- Division of Molecular Immunology and Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research, Mumbai, India
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology (MIM), National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
18
|
Marshak JO, Dong L, Koelle DM. The murine intravaginal HSV-2 challenge model for investigation of DNA vaccines. Methods Mol Biol 2014; 1144:305-27. [PMID: 24671693 DOI: 10.1007/978-1-4939-0428-0_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
DNA vaccines have been licensed in veterinary medicine and have promise for humans. This format is relatively immunogenic in mice and guinea pigs, the two principle HSV-2 animal models, permitting rapid assessment of vectors, antigens, adjuvants, and delivery systems. Limitations include the relatively poor immunogenicity of naked DNA in humans and the profound differences in HSV-2 pathogenesis between host species. Herein, we detail lessons learned over the last few years investigating candidate DNA vaccines in the progesterone-primed female mouse vaginal model of HSV-2 infection as a guide to investigators in the field.
Collapse
Affiliation(s)
- Joshua O Marshak
- Department of Medicine, University of Washington, 750 Republican Street, Room E651, Mail Stop 35806, Seattle, WA, 98195, USA
| | | | | |
Collapse
|
19
|
Domingos-Pereira S, Decrausaz L, Derré L, Bobst M, Romero P, Schiller JT, Jichlinski P, Nardelli-Haefliger D. Intravaginal TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol 2013; 6:393-404. [PMID: 22968420 PMCID: PMC3573262 DOI: 10.1038/mi.2012.83] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human papillomaviruses (HPV)-related cervical cancer is the second leading cause of cancer death in women worldwide. Despite active development, HPV E6/E7 oncogene-specific therapeutic vaccines have had limited clinical efficacy to date. Here, we report that intravaginal (IVAG) instillation of CpG-ODN (TLR9 agonist) or poly-(I:C) (TLR3 agonist) after subcutaneous E7 vaccination increased ~fivefold the number of vaccine-specific interferon-γ-secreting CD8 T cells in the genital mucosa (GM) of mice, without affecting the E7-specific systemic response. The IVAG treatment locally increased both E7-specific and total CD8 T cells, but not CD4 T cells. This previously unreported selective recruitment of CD8 T cells from the periphery by IVAG CpG-ODN or poly-(I:C) was mediated by TLR9 and TLR3/melanoma differentiation-associated gene 5 signaling pathways, respectively. For CpG, this recruitment was associated with a higher proportion of GM-localized CD8 T cells expressing both CCR5 and CXCR3 chemokine receptors and E-selectin ligands. Most interestingly, IVAG CpG-ODN following vaccination led to complete regression of large genital HPV tumors in 75% of mice, instead of 20% with vaccination alone. These findings suggest that mucosal application of immunostimulatory molecules might substantially increase the effectiveness of parenterally administered vaccines.
Collapse
Affiliation(s)
- Sonia Domingos-Pereira
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Loane Decrausaz
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Laurent Derré
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Martine Bobst
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Center for Cancer, Research of the University of Lausanne, CH-1011 Lausanne, Switzerland
| | - John T. Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, NIH Bethesda, MD, USA
| | - Patrice Jichlinski
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Denise Nardelli-Haefliger
- Dpt. Urology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
20
|
Yin S, Li Y, Xia H, Zhao J, Zhang Z, Tang S, Kou Z, Chen J, Yu J, Fan Z, Li T. An improved system for the evaluation of antiviral compounds against herpes simplex virus type 2. J Virol Methods 2013; 189:317-20. [PMID: 23454799 DOI: 10.1016/j.jviromet.2013.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 11/26/2022]
Abstract
Infection with herpes simplex virus type 2 (HSV-2) can result in lesions in reproductive organs, along with long-term latency. In this work, a non-lethal strain of HSV-2 which was isolated clinically was used to infect female mice intravaginally. Body weight, vulval lesions, histological examination of vaginal tissue, and viral load were monitored and used as indices for evaluating antiviral drugs against HSV-2 infection. The results indicated that mice infected with HSV-2 exhibited significant reduction in body weight, serious vulval lesions, massive lymphocyte invasion of vaginal tissue, and approximately 10⁴ copies/μl of HSV-2 were found in vaginal and uterine tissues. Aciclovir (ACV) treatment inhibited loss in body weight, genital pathology and virus replication (reduced to 10⁰·³ copies/μl) effectively. The study provides a simple, reproducible and feasible animal model for anti-HSV-2 drugs evaluation and HSV-2 vaccine research.
Collapse
Affiliation(s)
- Shiyu Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Learning from the messengers: innate sensing of viruses and cytokine regulation of immunity - clues for treatments and vaccines. Viruses 2013; 5:470-527. [PMID: 23435233 PMCID: PMC3640511 DOI: 10.3390/v5020470] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/14/2022] Open
Abstract
Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response.
Collapse
|
22
|
Boivin N, Menasria R, Piret J, Boivin G. Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis. Antiviral Res 2012; 96:414-21. [PMID: 23043942 DOI: 10.1016/j.antiviral.2012.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 01/20/2023]
Abstract
We evaluated the effects of agonists and antagonist of toll-like receptor (TLR) 9 in comparison with a TLR3 agonist in a mouse model of herpes simplex virus type 1 (HSV-1) encephalitis (HSE). BALB/c mice received a single intranasal dose of either a TLR3 agonist (polyinosinic:polycytidylic acid; PIC), TLR9 agonists (oligodeoxynucleotides (ODNs) 1585, 1826 or 2395) or a TLR9 antagonist (ODN 2088), 1 day before and, for selected groups, 3 days after infection with HSV-1. Mice that received the pre-treatment with vehicle, PIC, ODNs 1585, 1826, 2395 and 2088 before infection had survival rates of 25%, 65%, 55%, 40%, 55% and 30%, respectively (P<0.05 for PIC and ODNs 1585 and 2395 versus vehicle). Infected mice subsequently treated with vehicle, ODNs 2395 and 2088 had survival rates of 9%, 0% and 30%, respectively (P<0.05, ODN 2088 versus other groups). The pre-treatment of mice with ODN 2395 reduced both the viral load (P<0.05 at day 5) and the production of CCL2, IL-6 and CCL5 at days 3, 4 and 5 (P<0.05 for IL-6 at day 3 and P<0.05 for CCL2 and CCL5 at day 4). Treatment of infected mice with ODN 2088 reduced the production of the same cytokines (P=0.07 for CCL2 and P=0.09 for IL-6 at day 5). Pre-treatment of mice with TLR9 agonists before infection reduces brain viral load and cytokine levels resulting in increased HSE survival rates. On the other hand, TLR9 antagonists can be helpful to control the inflammatory response that could be detrimental after infection.
Collapse
Affiliation(s)
- Nicolas Boivin
- Research Center in Infectious Diseases, CHUQ-CHUL and Laval University, Quebec City, QC, Canada.
| | | | | | | |
Collapse
|
23
|
Zhou Y, Guo M, Wang X, Li J, Wang Y, Ye L, Dai M, Zhou L, Persidsky Y, Ho W. TLR3 activation efficiency by high or low molecular mass poly I:C. Innate Immun 2012; 19:184-92. [PMID: 23035017 PMCID: PMC3942089 DOI: 10.1177/1753425912459975] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Toll-like receptor 3 (TLR3) plays a critical role in initiating type I IFN-mediated innate immunity against viral infections. TLR3 recognizes various forms of double stranded (ds) RNA, including viral dsRNA and a synthetic mimic of dsRNA, poly I:C, which has been used extensively as a TLR3 ligand to induce antiviral immunity. The activation efficiency of TLR3 by poly I:C is influenced by various factors, including size of the ligands, delivery methods and cell types. In this study, we examined the stimulatory effect of two commercially-available poly I:Cs [high molecular mass (HMM) and low molecular mass (LMM)] on TLR3 activation in various human cell types by determining the induction of type I and type III IFNs, as well as the antiviral effect. We demonstrated that the direct addition of both HMM- and LMM-poly I:C to the cultures of primary macrophages or a neuroplastoma cell line could activate TLR3. However, the transfection of poly I:C was necessary to induce TLR3 activation in other cell types studied. In all the cell lines tested, the efficiency of TLR3 activation by HMM-poly I:C was significantly higher than that by LMM-poly I:C. These observations indicate the importance and necessity of developing effective TLR3 ligands for antiviral therapy.
Collapse
Affiliation(s)
- Yu Zhou
- Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ming Guo
- Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jielang Li
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yizhong Wang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Li Ye
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ming Dai
- Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Li Zhou
- Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenzhe Ho
- Center for Animal Experiment/Animal Biosafety Level III Laboratory and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, Hubei, People's Republic of China
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
24
|
Svensson A, Tunbäck P, Nordström I, Padyukov L, Eriksson K. Polymorphisms in Toll-like receptor 3 confer natural resistance to human herpes simplex virus type 2 infection. J Gen Virol 2012; 93:1717-1724. [PMID: 22552940 DOI: 10.1099/vir.0.042572-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lack of Toll-like receptor 3 (TLR3) functional activity predisposes children to human herpesvirus 1 (HSV-1) encephalitis. In this study, we have investigated whether there is any link between TLR3 and adult HSV-2 infection by studying genetic variations in TLR3. The frequency of four single-nucleotide polymorphisms (SNPs) in the TLR3 gene in 239 patients with genital HSV-2 infection and 162 healthy controls, as well as the impact of these variants on TLR3 gene-expression levels, were compared. Two SNPs in the TLR3 gene (rs13126816 and rs3775291) were associated with a reduced incidence of HSV-2 infection. The minor allelic variants at both rs13126816 and rs3775291 were more common among healthy HSV-2-seronegative subjects than among HSV-2-infected individuals. This was even more apparent in HSV-1-seronegative individuals. There was, however, no association between any of the four TLR3 SNPs and HSV-2 disease severity, as they were expressed at similar proportions in asymptomatic and symptomatic HSV-2-infected patients alike. Furthermore, when assessing TLR3 mRNA expression in a limited number of HSV-2-infected individuals, we found that individuals carrying the homozygous genotypes for the minor alleles had significantly higher levels of TLR3 mRNA expression in peripheral blood mononuclear cells in response to HSV-2 stimulation than individuals that were homozygous for the major allele variants. Taken together, these results suggest that genetic variations in TLR3 may affect the susceptibility to HSV-2 infection in humans.
Collapse
Affiliation(s)
- Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Petra Tunbäck
- Department of Dermatovenerology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inger Nordström
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
25
|
Abstract
The mucosal system is the first line of defense against many pathogens. It is continuously exposed to dietary and microbial antigens, and thus the host must maintain a homeostatic environment between commensal microbiota and pathogenic infections. Following infections and inflammatory events, a rapid innate immune response is evoked to dampen the inflammatory processes. Type I interferons, a family of pleiotropic cytokines and major products of the innate immune response, have a key role in these early immune events at the mucosa, as reviewed here. With the emergence of new discoveries of immune cell types in mucosal tissues and their reactions to commensal and pathogenic organisms, we also review the opportunities for exciting research in this field.
Collapse
|
26
|
Rose WA, McGowin CL, Spagnuolo RA, Eaves-Pyles TD, Popov VL, Pyles RB. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS One 2012; 7:e32728. [PMID: 22412914 PMCID: PMC3296736 DOI: 10.1371/journal.pone.0032728] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/01/2012] [Indexed: 12/29/2022] Open
Abstract
The human vaginal microbiome plays a critical but poorly defined role in reproductive health. Vaginal microbiome alterations are associated with increased susceptibility to sexually-transmitted infections (STI) possibly due to related changes in innate defense responses from epithelial cells. Study of the impact of commensal bacteria on the vaginal mucosal surface has been hindered by current vaginal epithelial cell (VEC) culture systems that lack an appropriate interface between the apical surface of stratified squamous epithelium and the air-filled vaginal lumen. Therefore we developed a reproducible multilayer VEC culture system with an apical (luminal) air-interface that supported colonization with selected commensal bacteria. Multilayer VEC developed tight-junctions and other hallmarks of the vaginal mucosa including predictable proinflammatory cytokine secretion following TLR stimulation. Colonization of multilayers by common vaginal commensals including Lactobacillus crispatus, L. jensenii, and L. rhamnosus led to intimate associations with the VEC exclusively on the apical surface. Vaginal commensals did not trigger cytokine secretion but Staphylococcus epidermidis, a skin commensal, was inflammatory. Lactobacilli reduced cytokine secretion in an isolate-specific fashion following TLR stimulation. This tempering of inflammation offers a potential explanation for increased susceptibility to STI in the absence of common commensals and has implications for testing of potential STI preventatives.
Collapse
Affiliation(s)
- William A. Rose
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Chris L. McGowin
- Department of Pathology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Rae Ann Spagnuolo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tonyia D. Eaves-Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Glaveston, Texas, United States of America
| | - Richard B. Pyles
- Department of Microbiology and Immunology, University of Texas Medical Branch, Glaveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Hou X, Yu F, Man S, Huang D, Zhang Y, Liu M, Ren C, Shen J. Polyinosinic-polycytidylic acid attenuates hepatic fibrosis in C57BL/6 mice with Schistosoma japonicum infection. Acta Trop 2012; 121:99-104. [PMID: 22023732 DOI: 10.1016/j.actatropica.2011.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/09/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023]
Abstract
The development of hepatic fibrosis is the principal cause of morbidity and mortality in human beings infected with schistosoma. In this study, we investigated the effect of polyinosinic-polycytidylic acid (poly I:C) on Schistosoma japonicum (S. japonicum) egg-induced liver fibrosis. S. japonicum cercariae infected mice were injected with poly I:C at the onset of egg granuloma formation (early phase poly I:C treatment) or after the formation of liver fibrosis (late phase poly I:C treatment). Our results showed that both early and late phase poly I:C treatment significantly reduced collagen deposition and hepatic stellate cell activation in the liver. Poly I:C is one of the most effective adjuvants for Th1 type responses, and its protective effect on liver fibrosis was accompanied by increased IFN-α, IFN-β, IFN-γ, IL-12, TNF-α, and IL-10 mRNA expression, and decreased IL-4 and IL-5 mRNA expression. Moreover, poly I:C injection also enhanced the mRNA expression of natural killer group 2 member D (NKG2D) and tumor necrosis factor related apoptosis-inducing ligand (TRAIL). Therefore, it is indicated that poly I:C can significantly attenuate S. japonicum egg-induced hepatic fibrosis, which may be partly dependent on the increased Th1 response and decreased Th2 response.
Collapse
Affiliation(s)
- Xin Hou
- Department of Microbiology & Parasitology, Anhui Provincial Laboratory of Microbiology & Parasitology, Anhui Medical University, Hefei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Matijević T, Kirinec G, Pavelić J. Antitumor activity from the combined application of poly(I:C) and chemotherapeutics in human metastatic pharyngeal cell lines. Chemotherapy 2011; 57:460-7. [PMID: 22188667 DOI: 10.1159/000334122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/13/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Toll-like receptor 3 (TLR3) activation in tumor cells induces apoptosis. We investigated the effect of TLR3 ligand (poly(I:C)) in combination with chemotherapeutics applied to human pharyngeal carcinoma cells as a possible antitumor therapy. METHODS Human pharyngeal cancer cell lines were studied (FaDu and Detroit 562). Cytotoxicity assays and apoptosis assays (annexin V staining and caspase 3/7 activity measurements) were used to investigate the cytotoxic effects. By using TLR3 siRNA we confirmed that the observed effect is TLR3-dependent. RESULTS We found that the combined application of poly(I:C) and chemotherapeutics (cisPt, HU, 5-FU and MTX) has a stronger inhibitory effect on cell growth in tumor cells expressing functional TLR3 as compared with a single treatment. This is a result of TLR3-dependent apoptosis. CONCLUSION Our study showed that a combined application of the two agents already being used in tumor therapy could lower the necessary dosage of chemotherapeutics, leading to fewer side effects.
Collapse
Affiliation(s)
- Tanja Matijević
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | | | | |
Collapse
|
29
|
Jin YH, Kaneyama T, Kang MH, Kang HS, Koh CS, Kim BS. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection. J Neuroinflammation 2011; 8:178. [PMID: 22189096 PMCID: PMC3293102 DOI: 10.1186/1742-2094-8-178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022] Open
Abstract
Background We have previously shown that toll-like receptor 3 (TLR3)-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler's murine encephalomyelitis virus (TMEV) infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods SJL/J and B6;129S-Tlr3tm1Flv/J (TLR3KO-B6) mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler's murine encephalomyelitis virus (2 × 105 PFU) with or without treatment with 50 μg of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4+ and CD8+ T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-γ-producing CD4+ and CD8+ T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and regulatory FoxP3+ CD4+ T cells in the CNS, while poly IC-post-treated mice expressed reduced levels of PDL-1 and FoxP3+ CD4+ T cells. Conclusions These results suggest that TLR3-mediated signaling during viral infection protects against demyelinating disease by reducing the viral load and modulating immune responses. In contrast, premature activation of TLR3 signal transduction prior to viral infection leads to pathogenesis via over-activation of the pathogenic immune response.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
31
|
Melchjorsen J. Sensing herpes: more than toll. Rev Med Virol 2011; 22:106-21. [PMID: 22020814 DOI: 10.1002/rmv.716] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 12/21/2022]
Abstract
To launch an effective antiviral immune response, cells must recognize the virus, activate a cytokine response, and initiate inflammatory processes. Herpes simplex virus 1 (HSV-1) and HSV-2 are nuclear-replicating viruses composed of a double-stranded DNA genome plus glycoproteins that are incorporated into a lipid bilayer envelope that surrounds an icosahedral capsid. Several novel receptors that mediate innate recognition of HSV and that activate the innate immune response have been identified in recent years. The host-virus interactions that lead to type I interferon (IFN), type III IFN, and cytokine production include cellular recognition of viral envelope and structural proteins, recognition of viral genomic DNA and recognition of virus-derived double-stranded RNAs. Such RNAs can interact with cellular pattern-recognition receptors, including Toll-like receptors and a number of cytoplasmic and nuclear receptors for virus DNA and virus-derived RNAs. In this review, I present a systematic overview of innate cellular recognition of HSV infection that leads to immune activation, and I discuss the implications of the known cell-host interactions. In addition, I discuss the use of innate stimulation to improve anti-HSV treatment and vaccine response and I discuss future research aims.
Collapse
Affiliation(s)
- Jesper Melchjorsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
32
|
Firoz Mian M, Ashkar AA. Induction of innate immune responses in the female genital tract: friend or foe of HIV-1 infection? Am J Reprod Immunol 2011; 65:344-51. [PMID: 21223417 DOI: 10.1111/j.1600-0897.2010.00945.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heterosexual transmission of HIV-1 and HSV-2 across the genital tract epithelial tissue is one of the primary routes for dissemination of these viral infections. Mucosal innate immunity is the first line of defense against invading pathogens. A vast majority of mucosal HIV-1 exposures do not result in productive infections which may indicate that the innate mucosal immune system is highly protective. It has been shown that Toll-like receptors (TLR)-induced innate antiviral immunity in the genital mucosa lead to induction of type I and III interferon and prevention of HSV-2 infection. The innate antiviral function of type I and III interferons and other innate factors at genital mucosa against HIV-1 is not well defined. In this review, we summarize our current understanding and advances of the innate mucosal response to genital viral infections, including HIV-1 and HSV-2, focusing on those factors that may prevent or accelerate initial infection. Understanding how each of these components contributes to mucosal innate antiviral immunity may lead to the development of novel and effective strategies to use microbicides or antiviral agents to control HIV-1 acquisition and/or transmission.
Collapse
Affiliation(s)
- M Firoz Mian
- Centre for Gene Therapeutics, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
33
|
Innate and adaptive immunity against herpes simplex virus type 2 in the genital mucosa. J Reprod Immunol 2011; 88:210-8. [DOI: 10.1016/j.jri.2011.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/21/2010] [Accepted: 01/16/2011] [Indexed: 11/22/2022]
|
34
|
Hedayat M, Takeda K, Rezaei N. Prophylactic and therapeutic implications of toll-like receptor ligands. Med Res Rev 2010; 32:294-325. [DOI: 10.1002/med.20214] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mona Hedayat
- Molecular Immunology Research Center; Department of Immunology; School of Medicine; Tehran University of Medical Sciences; Tehran; Iran
| | | | | |
Collapse
|
35
|
Gibbert K, Dietze KK, Zelinskyy G, Lang KS, Barchet W, Kirschning CJ, Dittmer U. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. THE JOURNAL OF IMMUNOLOGY 2010; 185:6179-89. [PMID: 20943997 DOI: 10.4049/jimmunol.1000858] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The induction of type I IFN is the most immediate host response to viral infections. Type I IFN has a direct antiviral activity mediated by antiviral enzymes, but it also modulates the function of cells of the adaptive immune system. Many viruses can suppress type I IFN production, and in retroviral infections, the initial type I IFN is weak. Thus, one strategy of immunotherapy in viral infection is the exogenous induction of type I IFN during acute viral infection by TLR ligands. Along these lines, the TLR3/MDA5 ligand polyinosinic-polycytidylic acid [poly(I:C)] has already been used to treat viral infections. However, the immunological mechanisms underlying this successful therapy have not been defined until now. In this study, the Friend retrovirus (FV) mouse model was used to investigate the mode of action of poly(I:C) in antiretroviral immunotherapy. Postexposure, poly(I:C) treatment of FV-infected mice resulted in a significant reduction in viral loads and protection from virus-induced leukemia. This effect was IFN dependent because type I IFN receptor-deficient mice could not be protected by poly(I:C). The poly(I:C)-induced IFN response resulted in the expression of antiviral enzymes, which suppressed FV replication. Also, the virus-specific T cell response was augmented. Interestingly, it did not enhance the number of virus-specific CD4(+) and CD8(+) T cells, but rather the functional properties of these cells, such as cytokine production and cytotoxic activity. The results demonstrate a direct antiviral and immunomodulatory effect of poly(I:C) and, therefore, suggests its potential for clinical treatment of retroviral infections.
Collapse
Affiliation(s)
- Kathrin Gibbert
- Institute for Virology, University Clinics in Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Our knowledge of the immune response to genital tract infection has progressed appreciably in recent years. This review focuses on the innate immune system, in particular the role of Toll-like receptors (TLRs), in controlling genital tract infection. Research into the role of TLRs in recognizing 'pathogen-associated molecular patterns' (PAMPS) has provided an important insight into the host's early immune response. TLRs are activated following binding of microbial components leading to cytokine production, which, in turn, stimulate phagocytic and natural killer cells and mobilize T and B lymphocytes of the antigen-specific acquired immune system. The therapeutic use of TLR agonists as topical agents or for improving CD4+ and CD8+ T-cell responses to microbial vaccines is an important area of ongoing research, particularly with respect to genital mucosal infection.
Collapse
Affiliation(s)
- C Sonnex
- Department of GU Medicine, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB22QQ, UK.
| |
Collapse
|
37
|
Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 2010; 82:617-27. [PMID: 20007410 PMCID: PMC6366157 DOI: 10.1095/biolreprod.109.080408] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 11/17/2009] [Indexed: 11/01/2022] Open
Abstract
We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates. Immunofluorescence and scanning and transmission electron microscopy confirmed differentiation and polarization of the 3-D EC aggregates among multiple cell layers and identified ultrastructural features important for nutrient absorption, cell-cell interactions, and pathogen defense. After treatment with a variety of toll-like receptor (TLR) agonists, cytokine production was quantified by cytometric bead array, confirming that TLRs 2, 3, 5, and 6 were expressed and functional. The 3-D vaginal aggregates were more resistant to nonoxynol-9 (N-9), a contraceptive and previous microbicide candidate, when compared to two-dimensional monolayers of the same cell line. A dose-dependent production of tumor necrosis factor-related apoptosis-inducing ligand and interleukin-1 receptor antagonist, biomarkers of cervicovaginal inflammation, correlated to microbicide toxicity in the 3-D model following N-9 treatment. These results indicate that this 3-D vaginal model could be used as a complementary tool for screening microbicide compounds for safety and efficacy, thus improving success in clinical trials.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
38
|
McGowin CL, Pyles RB. Mucosal treatments for herpes simplex virus: insights on targeted immunoprophylaxis and therapy. Future Microbiol 2010; 5:15-22. [PMID: 20020827 DOI: 10.2217/fmb.09.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herpes simplex virus (HSV) serotypes 1 and 2 establish lifelong infections that can produce reactivated pools of virus at mucosal sites where primary infections were initiated. No approved vaccines are available. To break the transmission cycle, interventions must either prevent infection or reduce infectivity at mucosal sites. This article discusses the recent experimental successes of immunoprophylactic and therapeutic compounds that enhance resistance and/or reduce viral loads at genital and ocular mucosa. Current data indicate Toll-like receptor agonists and selected immunomodulating compounds effectively increase the HSV infection threshold and hold promise for genital prophylaxis. Similarly, immunization at genital and extragenital mucosal sites is discussed. Finally, preclinical success with novel immunotherapies for ocular HSV that address herpetic keratitis and corneal blindness is reviewed.
Collapse
Affiliation(s)
- Chris L McGowin
- LSU Health Sciences Center, Department of Medicine, Section of Infectious Diseases, 533 Bolivar Street, CSRB 701 New Orleans, LA 70112-2822, USA.
| | | |
Collapse
|
39
|
Toll-like receptor 3 agonist protection against experimental Francisella tularensis respiratory tract infection. Infect Immun 2010; 78:1700-10. [PMID: 20123717 DOI: 10.1128/iai.00736-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We investigated whether Toll-like receptor 3 (TLR3) stimulation would protect the host from inhaled Francisella tularensis. TLR3 is expressed by respiratory epithelial cells and macrophages and can be activated by a synthetic double-stranded RNA ligand called polyinosine-polycytosine [poly(I:C)]. Thus, we evaluated poly(I:C) as a novel treatment against inhaled F. tularensis. In vivo, BALB/c mice intranasally (i.n.) treated with poly(I:C) (100 microg/mouse) 1 h before or after Schu 4 or LVS (100 CFU) i.n. challenge showed that poly(I:C) treatment significantly reduced bacterial load in the lungs (P < 0.05). Bronchoalveolar lavage from poly(I:C)-treated mice alone or combined with F. tularensis infection significantly increased cytokine secretion and enhanced neutrophil influx to lung tissues. Poly(I:C) responses were transient but significantly prolonged the survival of treated mice after i.n. F. tularensis challenge relative to mock treated animals. This prolonged survival providing a longer window for initiation of levofloxacin (LEVO) treatment (40 mg/kg). Animals treated with poly(I:C), challenged with F. tularensis, and then treated with LEVO 5 days later had 100% survival relative to 0% survival in animals receiving LEVO alone. Mechanistically, poly(I:C) given to human monocyte-derived macrophages before or after Schu 4 or LVS challenge (multiplicity of infection, 20:1) had significantly reduced intracellular bacterial replication (P < 0.05). These data suggest that poly(I:C) may represent a potential therapeutic agent against inhaled F. tularensis that prolongs survival and the opportunity to initiate standard antibiotic therapy (i.e., LEVO).
Collapse
|
40
|
Muller WJ, Jones CA, Koelle DM. Immunobiology of herpes simplex virus and cytomegalovirus infections of the fetus and newborn. ACTA ACUST UNITED AC 2010; 6:38-55. [PMID: 20467462 DOI: 10.2174/157339510790231833] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immunologic "immaturity" is often blamed for the increased susceptibility of newborn humans to infection, but the precise mechanisms and details of immunologic development remain somewhat obscure. Herpes simplex virus (HSV) and cytomegalovirus (CMV) are two of the more common severe infectious agents of the fetal and newborn periods. HSV infection in the newborn most commonly occurs after exposure to the virus during delivery, and can lead to a spectrum of clinical disease ranging from isolated skin-eye-mucous membrane infection to severe disseminated multiorgan disease, often including encephalitis. In contrast to HSV, clinically severe CMV infections early in life are usually acquired during the intrauterine period. These infections can result in a range of clinical disease, including hearing loss and neurodevelopmental delay. However, term newborns infected with CMV after delivery are generally asymptomatic, and older children and adults often acquire infection with HSV or CMV with either no or mild clinical symptoms. The reasons for these widely variable clinical presentations are not completely understood, but likely relate to developmental differences in immune responses.This review summarizes recent human and animal studies of the immunologic response of the fetus and newborn to these two infections, in comparison to the responses of older children and adults. The immunologic defense of the newborn against each virus is considered under the broader categories of (i) the placental barrier to infection, (ii) skin and mucosal barriers (including antimicrobial peptides), (iii) innate responses, (iv) humoral responses, and (v) cellular responses. A specific focus is made on recent studies of innate and cellular immunity to HSV and CMV.
Collapse
Affiliation(s)
- William J Muller
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | |
Collapse
|
41
|
Innate and adaptive immune responses to herpes simplex virus. Viruses 2009; 1:979-1002. [PMID: 21994578 PMCID: PMC3185534 DOI: 10.3390/v1030979] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/13/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022] Open
Abstract
Immune responses against HSV-1 and HSV-2 are complex and involve a delicate interplay between innate signaling pathways and adaptive immune responses. The innate response to HSV involves the induction of type I IFN, whose role in protection against disease is well characterized in vitro and in vivo. Cell types such as NK cells and pDCs contribute to innate anti-HSV responses in vivo. Finally, the adaptive response includes both humoral and cellular components that play important roles in antiviral control and latency. This review summarizes the innate and adaptive effectors that contribute to susceptibility, immune control and pathogenesis of HSV, and highlights the delicate interplay between these two important arms of immunity.
Collapse
|
42
|
Rose WA, McGowin CL, Pyles RB. FSL-1, a bacterial-derived toll-like receptor 2/6 agonist, enhances resistance to experimental HSV-2 infection. Virol J 2009; 6:195. [PMID: 19903337 PMCID: PMC2780411 DOI: 10.1186/1743-422x-6-195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 11/10/2009] [Indexed: 11/26/2022] Open
Abstract
Background Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulceration that can predispose individuals to an increased risk of acquiring other sexually transmitted infections. There are no approved HSV-2 vaccines and current suppressive therapies require daily compound administration that does not prevent all recurrences. A promising experimental strategy is the use of toll-like receptor (TLR) agonists to induce an innate immune response that provides resistance to HSV-2 infection. Previous studies showed that anti-herpetic activity varied based on origin of the agonists and activation of different TLR indicating that activity likely occurs through elaboration of a specific innate immune response. To test the hypothesis, we evaluated the ability of a bacterial-derived TLR2/6 agonist (FSL-1) to increase resistance to experimental genital HSV-2 infection. Methods Vaginal application of FSL-1 at selected doses and times was evaluated to identify potential increased resistance to genital HSV-2 infection in the mouse model. The FSL-1 induced cytokine profile was quantified using kinetically collected vaginal lavages. Additionally, cytokine elaboration and organ weights were evaluated after single or multiple FSL-1 doses to establish a preliminary safety profile. Human vaginal EC cultures were used to confirm the mouse model outcomes. Results The results showed that vaginally-applied FSL-1 created an environment resistant to a 25-fold higher HSV-2 challenge dose. Mechanistically, vaginal FSL-1 application led to transient elaboration of cytokines linked to anti-herpetic innate immune responses. No gross local or peripheral immunotoxicity was observed even after multiple dosing. FSL-1 also created an anti-herpetic environment in cultures of human vaginal epithelial cells (EC). Conclusion The results showed, for the first time, that the bacterial-derived TLR2/6 agonist FSL-1 induced significant resistance to HSV-2 infection when applied in mice or human vaginal EC cultures. Cytokine evaluation illustrated that anti-herpetic activity correlated with induction of a specific profile. The identified anti-herpetic profile provides an invaluable resource for the future design of novel compounds to reduce genital HSV-2 transmission and improves understanding of the complex innate immune response to potential pathogens elicited by the vaginal mucosa.
Collapse
Affiliation(s)
- William A Rose
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | | |
Collapse
|
43
|
Kaushic C. The role of the local microenvironment in regulating susceptibility and immune responses to sexually transmitted viruses in the female genital tract. J Reprod Immunol 2009; 83:168-72. [PMID: 19857903 DOI: 10.1016/j.jri.2009.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/22/2009] [Accepted: 08/01/2009] [Indexed: 12/28/2022]
Abstract
Sexually transmitted viruses cause chronic infections that have serious long-term health consequences. Based on the evidence from clinical and epidemiological studies, women carry a disproportionately higher burden of sexually transmitted diseases. The reasons for this are not well understood and possibly relate to a variety of social, behavioral and economic factors. In addition to these factors there are biological reasons that contribute to the higher prevalence in women. In this context it is critical to focus on and understand the local microenvironment of the female genital tract, since the majority of viral infections in women occur by heterosexual transmission. The genital tract is also the target site for initiation and maintenance of protective immune responses that could prevent or eliminate viral infections. The epithelial cells of the genital tract provide the first line of defense against viral entry. The interactions between each sexually transmitted virus and the genital epithelium are distinct and determine the outcome of exposure. They are also influenced by a number of factors in the local genital milieu. Among these factors are the female sex hormones that regulate both the susceptibility as well as immune responses to viral infections in the genital tract. Better understanding of the interactions of viruses with the local environment in the female genital tract will lead to development of novel methods to prevent sexually transmitted infections as well as to enhance innate and adaptive immunity.
Collapse
Affiliation(s)
- Charu Kaushic
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, Michael G. DeGroote Center for Learning and Discovery Room 4014, McMaster University, Ontario, Canada.
| |
Collapse
|
44
|
Salmonella enterica serovar typhimurium exploits Toll-like receptor signaling during the host-pathogen interaction. Infect Immun 2009; 77:4750-60. [PMID: 19720755 DOI: 10.1128/iai.00545-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella survives and replicates in host cells by using a type III secretion system to evade host immune defenses. The innate immune system plays an important role as a first line of defense against pathogens and is mediated in part by Toll-like receptors (TLRs); however, the infection dynamics of Salmonella enterica serovar Typhimurium within macrophages stimulated with TLR ligands is poorly understood. We studied the infection dynamics of Salmonella in murine macrophages previously exposed to TLR ligands and report that treatment of macrophages with four different TLR agonists resulted in their increased phagocytic capacity toward Salmonella but not fluorescent microspheres. Further analysis revealed that the intracellular replication of Salmonella was enhanced in TLR-stimulated macrophages in a manner requiring a functional type III secretion system and enhanced transcriptional activity of the sseA virulence gene operon. Studies of mice that normally resolve an acute primary infection with Salmonella revealed that pretreatment of animals with CpG DNA had a detrimental effect on disease outcome. CpG-treated mice infected with Salmonella all succumbed to infection and had higher bacterial loads in the spleen than did control animals. These data suggest that Salmonella can exploit macrophages activated via the innate immune system for increased intracellular survival.
Collapse
|
45
|
Lv Y, Bao E. Apoptosis induced in chicken embryo fibroblasts in vitro by a polyinosinic:polycytidylic acid copolymer. Toxicol In Vitro 2009; 23:1360-4. [PMID: 19563882 DOI: 10.1016/j.tiv.2009.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 05/24/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
This study investigated apoptosis induced in chicken embryo fibroblast (CEF) cells by the toxic effects of polyinosinic:polycytidylic acid copolymer (Poly I:C). Along with cell viability and morphological changes, other indicators were measured in vitro after incubation of the cells with Poly I:C, including phosphatidylserine translocation, the formation of DNA fragments, activity of caspase-3, caspase-8 and caspase-9, and the expression levels of RIPK1 mRNA and TNRSF8 mRNA. An inhibition of proliferation was found with increasing levels of Poly I:C, showing that Poly I:C was toxic to the cells. The findings of phosphatidylserine translocation and formation of DNA fragmentation suggested that Poly I:C induced apoptosis. With increased incubation time, the activities of caspase-3 and caspase-8 increased, while there was no significant change in caspase-9 activity. Accordingly, it is concluded that the apoptosis induced by Poly I:C involves a cell death receptor-mediated pathway. The transcription level of RIPK1 mRNA decreased, while that of TNFRSF8 mRNA increased, indicating that Poly I:C-induced apoptosis was related to upregulation of TNFRSF8. These observations provide insight into the potential mechanism of Poly I:C-induced toxicity.
Collapse
Affiliation(s)
- Yingjun Lv
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | | |
Collapse
|
46
|
Richer MJ, Lavallée DJ, Shanina I, Horwitz MS. Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One 2009; 4:e4127. [PMID: 19122812 PMCID: PMC2606033 DOI: 10.1371/journal.pone.0004127] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/02/2008] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor 3 (TLR3) has been proposed to play a central role in the early recognition of viruses by sensing double stranded RNA, a common intermediate of viral replication. However, several reports have demonstrated that TLR3 signaling is either dispensable or even harmful following infection with certain viruses. Here, we asked whether TLR3 plays a role in the response to coxsackievirus B4 (CB4), a prevalent human pathogen that has been associated with pancreatitis, myocarditis and diabetes. We demonstrate that TLR3 signaling on macrophages is critical to establish protective immunity to CB4. TLR3 deficient mice produced reduced pro-inflammatory mediators and are unable to control viral replication at the early stages of infection resulting in severe cardiac damage. Intriguingly, the absence of TLR3 did not affect the activation of several key innate and adaptive cellular effectors. This suggests that in the absence of TLR3 signaling on macrophages, viral replication outpaces the developing adaptive immune response. We further demonstrate that the MyD88-dependent signaling pathways are not only unable to compensate for the loss of TLR3, they are also dispensable in the response to this RNA virus. Our results demonstrate that TLR3 is not simply part of a redundant system of viral recognition, but rather TLR3 plays an essential role in recognizing the molecular signatures associated with specific viruses including CB4.
Collapse
Affiliation(s)
- Martin J. Richer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle J. Lavallée
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Démoulins T, Abdallah A, Kettaf N, Baron ML, Gerarduzzi C, Gauchat D, Gratton S, Sékaly RP. Reversible blockade of thymic output: an inherent part of TLR ligand-mediated immune response. THE JOURNAL OF IMMUNOLOGY 2008; 181:6757-69. [PMID: 18981093 DOI: 10.4049/jimmunol.181.10.6757] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TLRs constitute a first set of sensors that detect viral nucleic acids including dsRNA which triggers TLR3. We report the early, direct, and detrimental effect of polyinosine-polycytidilic acid treatment on T cell development. Inhibition of thymopoiesis was targeted to several thymocyte subpopulations. First, both a blockade of the double negative (DN)1-DN2 transition and a severe down-regulation of DN3-DN4 thymocyte proliferation were observed. In addition, an important decrease in the absolute numbers of double-positive thymocytes, concomitant with an increase in frequencies of apoptotic cells in this population were shown. This inhibition of thymopoiesis resulted in a reduced thymic output, as evidenced by a drop of the absolute numbers of naive T cells and TCR excision circles levels. The decrease in thymic cellularity and defects in thymic development were severely reduced, but not completely abolished in IFN-alpha/betaR(-/-) mice, showing a direct contribution of type I IFNs, known to be massively up-regulated in viral infections, to the inhibition of T cell development. Strikingly, the TCR repertoire in treated mice was biased toward shorter CDR3 lengths as a result of a decreased expression of TdT and Rag2. However, thymic integrity remained intact since thymopoiesis was restored both quantitatively and qualitatively 14 days after the cessation of polyinosine-polycytidilic acid treatment. These results demonstrate a novel immunomodulatory role for virally encoded TLR ligands and RNA sensors; they further illustrate the diversity of mechanisms that viruses use to interfere with the development of a pathogen-specific immune responses.
Collapse
Affiliation(s)
- Thomas Démoulins
- Laboratoire d'Immunologie, Centre de Recherches du Centre Hospitalier de l'Université de Montréal, Saint-Luc, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nazli A, Yao XD, Smieja M, Rosenthal KL, Ashkar AA, Kaushic C. Differential induction of innate anti-viral responses by TLR ligands against Herpes simplex virus, type 2, infection in primary genital epithelium of women. Antiviral Res 2008; 81:103-12. [PMID: 19013198 DOI: 10.1016/j.antiviral.2008.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 11/16/2022]
Abstract
Genital epithelial cells (GECs) are the first line of mucosal defense against sexually transmitted infections. We exploited the ability of GECs to mount innate immune responses, by using TLR ligands to induce anti-viral activity against Herpes simplex virus, type 2 (HSV-2). Primary cultures of GECs were grown to confluent, polarized monolayers and found to express different levels of mRNA for TLR1-10. Innate anti-viral responses against HSV-2 infection were determined following treatment with eight different TLR ligands. HSV-2 replication was significantly inhibited following treatment with ligands for TLR3, 5 and 9, while lipo-polysaccharide (LPS), a TLR4 ligand, failed to provide any protection. Biologically active interferon-beta and nitric oxide production by GECs correlated with anti-viral activity. Following treatment with TLR3 ligand Poly I:C, inflammatory cytokines were upregulated. Poly I:C treatment led to activation of downstream transcription factors including interferon regulatory factor-3 (IRF-3) and NFkappaB. Anti-viral responses induced by TLR ligands in GECs may provide a unique alternative to topical microbicides by enhancing body's own mucosal innate defense mechanisms against sexually transmitted viruses.
Collapse
Affiliation(s)
- Aisha Nazli
- Center For Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote Center for Learning and Discovery, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | |
Collapse
|
49
|
Double-stranded RNA analog poly(I:C) inhibits human immunodeficiency virus amplification in dendritic cells via type I interferon-mediated activation of APOBEC3G. J Virol 2008; 83:884-95. [PMID: 19004943 DOI: 10.1128/jvi.00023-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus (HIV) is taken up by and replicates in immature dendritic cells (imDCs), which can then transfer virus to T cells, amplifying the infection. Strategies known to boost DC function were tested for their ability to overcome this exploitation when added after HIV exposure. Poly(I:C), but not single-stranded RNA (ssRNA) or a standard DC maturation cocktail, elicited type I interferon (IFN) and interleukin-12 (IL-12) p70 production and the appearance of unique small (15- to 20-kDa) fragments of APOBEC3G (A3G) and impeded HIV(Bal) replication in imDCs when added up to 60 h after virus exposure. Comparable effects were mediated by recombinant alpha/beta IFN (IFN-alpha/beta). Neutralizing the anti-IFN-alpha/beta receptor reversed poly(I:C)-induced inhibition of HIV replication and blocked the appearance of the small A3G proteins. The poly(I:C)-induced appearance of small A3G proteins was not accompanied by significant differences in A3G mRNA or A3G monomer expression. Small interfering RNA (siRNA) knockdown of A3G could not be used to reverse the poly(I:C)-induced protective effect, since siRNAs nonspecifically activated the DCs, inducing the appearance of the small A3G proteins and inhibiting HIV infection. Notably, the appearance of small A3G proteins coincided with the shift of high-molecular-mass inactive A3G complexes to the low-molecular-mass (LMM) active A3G complexes. The unique immune stimulation by poly(I:C) with its antiviral effects on imDCs marked by the expression of IFN-alpha/beta and active LMM A3G renders poly(I:C) a promising novel strategy to combat early HIV infection in vivo.
Collapse
|
50
|
Boivin N, Sergerie Y, Rivest S, Boivin G. Effect of pretreatment with toll-like receptor agonists in a mouse model of herpes simplex virus type 1 encephalitis. J Infect Dis 2008; 198:664-72. [PMID: 18662130 DOI: 10.1086/590671] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We evaluated the effect of pretreatment with Toll-like receptor (TLR) agonists in a mouse model of herpes simplex virus type 1 (HSV-1) encephalitis. METHODS BALB/c mice received a single intraperitoneal or intranasal injection of polyinosinic:polycytidylic acid (poly I:C), a TLR3 agonist; lipopolysaccharide (LPS), a TLR4 agonist; oligodeoxynucleotide (ODN), a TLR9 agonist; or control vehicle. Twenty-four hours later, animals were infected with 5000 plaque-forming units of HSV-1. RESULTS Mice that received intraperitoneal pretreatment with vehicle, LPS, and poly I:C had survival rates of 7%, 13%, and 56%, respectively, and mean life expectancies of 156.80+/-9.56, 176.00+/-9.24, and 213.00+/-7.71 h, respectively (p< .05, poly I:C group vs. other groups). Similarly, intranasal pretreatment with vehicle, LPS, ODN, and poly I:C were associated with survival rates of 20%, 47%, 60%, and 94%, respectively, and mean life expectancies of 153.60+/-11.71, 188.80+/-12.97, 204.80+/-11.73, and 234.00+/-5.81 h, respectively (p< .05, ODN and poly I:C groups vs. vehicle group). Pretreatment with intranasal poly I:C induced early expression of several immune genes in the brain and resulted in a significantly lower virus load. CONCLUSION TLR3 stimulation by poly I:C 24 h before infection reinforces a natural innate immune mechanism of neuroprotection against HSV-1.
Collapse
Affiliation(s)
- Nicolas Boivin
- Research Center in Infectious Diseases, CHUQ-CHUL, Quebec City, Canada.
| | | | | | | |
Collapse
|