1
|
Nakashima M, Funabiki K, Izume S, Maruyama Y, Yamamoto A, Watanabe M, Okaga S, Hashimoto T, Hayasaki-Kajiwara Y, Nakano Y. Development of a reverse genetic system for mononegaviruses using a circular polymerase extension reaction. Biochem Biophys Res Commun 2025; 754:151493. [PMID: 40010138 DOI: 10.1016/j.bbrc.2025.151493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
Reverse genetic systems are commonly used to study viruses; the ability to rapidly generate recombinant viruses is critical for studying the functions of viral genes and for the development of new interventions, such as antivirals or vaccines. Reverse genetic methods for mononegaviruses, viruses with non-segmented negative-strand RNA genomes, commonly incorporate a full-length viral genome cDNA into a bacterial artificial chromosomes (BACs) or plasmid DNA. However, the large size of mononegavirus genomes makes their manipulation challenging. In this study, to overcome this limitation, we adopted and optimized the circular polymerase extension reaction (CPER) method for mononegavirus reverse genetics. We segmented the genome of the mononegavirus, respiratory syncytial virus (RSV), into approximately 1.2-2.5 kb fragments and reassembled them with a linker fragment containing a T7 promotor into a circular full-length viral cDNA. Recombinant RSV was then generated by co-transfecting cells with the circular cDNA and helper plasmids carrying viral proteins that are essential to initiate viral replication. This reverse genetic system has the potential to be applied to other mononegaviruses.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Keiko Funabiki
- Shionogi TechnoAdvance Research & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Satoko Izume
- Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Yuki Maruyama
- Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Atsuko Yamamoto
- Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Michie Watanabe
- Shionogi TechnoAdvance Research & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Saori Okaga
- Shionogi TechnoAdvance Research & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | - Takashi Hashimoto
- Shionogi TechnoAdvance Research & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan
| | | | - Yoshiyuki Nakano
- Shionogi & Co., Ltd., 3-1-1, Futabacho, Toyonaka-shi, Osaka, 561-0825, Japan.
| |
Collapse
|
2
|
McCarty TC, Vaisman II. Respiratory Syncytial Virus Vaccine Design Using Structure-Based Machine-Learning Models. Viruses 2024; 16:821. [PMID: 38932114 PMCID: PMC11209532 DOI: 10.3390/v16060821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.
Collapse
Affiliation(s)
- Thomas C. McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA;
| | - Iosif I. Vaisman
- School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| |
Collapse
|
3
|
Karron RA, Luongo C, Woods S, Oliva J, Collins PL, Buchholz UJ. Evaluation of the Live-Attenuated Intranasal Respiratory Syncytial Virus (RSV) Vaccine RSV/6120/ΔNS2/1030s in RSV-Seronegative Young Children. J Infect Dis 2024; 229:346-354. [PMID: 37493269 PMCID: PMC10873187 DOI: 10.1093/infdis/jiad281] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/06/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of pediatric lower respiratory illness (LRI) and a vaccine for immunization of children is needed. RSV/6120/ΔNS2/1030s is a cDNA-derived live-vaccine candidate attenuated by deletion of the interferon antagonist NS2 gene and the genetically stabilized 1030s missense polymerase mutation in the polymerase, conferring temperature sensitivity. METHODS A single intranasal dose of RSV/6120/ΔNS2/1030s was evaluated in a double-blind, placebo-controlled trial (vaccine to placebo ratio, 2:1) at 105.7 plaque-forming units (PFU) in 15 RSV-seropositive 12- to 59-month-old children, and at 105 PFU in 30 RSV-seronegative 6- to 24-month-old children. RESULTS RSV/6120/ΔNS2/1030s infected 100% of RSV-seronegative vaccinees and was immunogenic (geometric mean RSV plaque-reduction neutralizing antibody titer [RSV-PRNT], 1:91) and genetically stable. Mild rhinorrhea was detected more frequently in vaccinees (18/20 vaccinees vs 4/10 placebo recipients, P = .007), and LRI occurred in 1 vaccinee during a period when only vaccine virus was detected. Following the RSV season, 5 of 16 vaccinees had ≥4-fold rises in RSV-PRNT with significantly higher titers than 4 of 10 placebo recipients with rises (1:1992 vs 1:274, P = .02). Thus, RSV/6120/ΔNS2/1030s primed for substantial anamnestic neutralizing antibody responses following naturally acquired RSV infection. CONCLUSIONS RSV/6120/ΔNS2/1030s is immunogenic and genetically stable in RSV-seronegative children, but the frequency of rhinorrhea in vaccinees exceeded that in placebo recipients. CLINICAL TRIALS REGISTRATION NCT03387137.
Collapse
Affiliation(s)
- Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Suzanne Woods
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer Oliva
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy, Immunology, and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Soto JA, Galvez NMS, Rivera DB, Díaz FE, Riedel CA, Bueno SM, Kalergis AM. From animal studies into clinical trials: the relevance of animal models to develop vaccines and therapies to reduce disease severity and prevent hRSV infection. Expert Opin Drug Discov 2022; 17:1237-1259. [PMID: 36093605 DOI: 10.1080/17460441.2022.2123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (hRSV) is an important cause of lower respiratory tract infections in the pediatric and the geriatric population worldwide. There is a substantial economic burden resulting from hRSV disease during winter. Although no vaccines have been approved for human use, prophylactic therapies are available for high-risk populations. Choosing the proper animal models to evaluate different vaccine prototypes or pharmacological treatments is essential for developing efficient therapies against hRSV. AREAS COVERED This article describes the relevance of using different animal models to evaluate the effect of antiviral drugs, pharmacological molecules, vaccine prototypes, and antibodies in the protection against hRSV. The animal models covered are rodents, mustelids, bovines, and nonhuman primates. Animals included were chosen based on the available literature and their role in the development of the drugs discussed in this manuscript. EXPERT OPINION Choosing the correct animal model is critical for exploring and testing treatments that could decrease the impact of hRSV in high-risk populations. Mice will continue to be the most used preclinical model to evaluate this. However, researchers must also explore the use of other models such as nonhuman primates, as they are more similar to humans, prior to escalating into clinical trials.
Collapse
Affiliation(s)
- J A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - N M S Galvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D B Rivera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - C A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - S M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
The rescue and selection of thermally stable type O vaccine candidate strains of foot-and-mouth disease virus. Arch Virol 2021; 166:2131-2140. [PMID: 34003358 DOI: 10.1007/s00705-021-05100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Inactivated foot-and-mouth disease virus (FMDV) vaccines have been used widely to control foot-and-mouth disease (FMD). However, the virions (146S) of this virus are easily dissociated into pentamer subunits (12S), which limits the immune protective efficacy of inactivated vaccines when the temperature is higher than 30 °C. A cold-chain system can maintain the quality of the vaccines, but such systems are usually not reliable in limited-resource settings. Thus, it is imperative to improve the thermostability of vaccine strains to guarantee the quality of the vaccines. In this study, four recombinant FMDV strains containing single or multiple amino acid substitutions in the structural proteins were rescued using a previously constructed FMDV type O full-length infectious clone (pO/DY-VP1). We found that single or multiple amino acid substitutions in the structural proteins affected viral replication to different degrees. Furthermore, the heat and acid stability of the recombinant viruses was significantly increased when compared with the parental virus. Three thermally stable recombinant viruses (rHN/DY-VP1Y2098F, rHN/DY-VP1V2090A-S2093H, and rHN/DY-VP1V2090A-S2093H-Y2098F) were prepared as inactivated vaccines to immunize pigs. Blood samples were collected every week to prepare sera, and a virus neutralization test showed that the substitutions S2093H and Y2098F, separately or in combination, did not affect the immunogenicity of the virus, but the Y2098F mutation increased the thermostability significantly (p < 0.05). Therefore, the rHN/DY-VP1Y2098F mutant should be considered for use in future vaccines.
Collapse
|
6
|
Shan J, Britton PN, King CL, Booy R. The immunogenicity and safety of respiratory syncytial virus vaccines in development: A systematic review. Influenza Other Respir Viruses 2021; 15:539-551. [PMID: 33764693 PMCID: PMC8189192 DOI: 10.1111/irv.12850] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory infection globally. There are vaccine candidates in development, but a systematic review on immunogenicity and safety of vaccine is lacking. Methods This systematic review of RSV vaccine clinical trials was undertaken using four databases. Searches were conducted using both controlled vocabulary terms such as “Respiratory Syncytial Virus, Human,” “Respiratory Syncytial Virus Infections,” “Respiratory Syncytial Virus Vaccines,” “Immunization,” “Immunization Programs” and “Vaccines” and corresponding text word terms. The included studies were limited to clinical trials published from January 2000 to 31 December 2020. RSV infection case was defined as RSV‐associated medically attended acute respiratory illness (MAARI) or RSV infection by serologically confirmed test (Western blot) during the RSV surveillance period. We calculated the relative risk of each vaccine trial with RSV infection case. Results Of 6306 publications, 38 were included and data were extracted covering four major types of RSV vaccine candidates, these being live‐attenuated/chimeric (n = 14), recombinant‐vector (n = 6), subunit (n = 12) and nanoparticle vaccines (n = 6). For RSV infection cases, nine trials were involved and none of them showed a vaccine‐related increased MAARI during RSV surveillance season. Conclusion LID ∆M2‐2, MEDI M2‐2, RSVcps2 and LID/∆M2‐2 /1030s (live‐attenuated) were considered the most promising vaccine candidates in infant and children. In the elderly, a nanoparticle F vaccine candidate and Ad26.RSV.preF were considered as two potential effective vaccines. A promising maternal vaccine candidate is still lacking.
Collapse
Affiliation(s)
- Jing Shan
- Anhui Provincial Children Hospital, Hefei, China.,The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| | - Philip N Britton
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Catherine L King
- National Centre for Immunisation Research and Surveillance (NCIRS), The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Robert Booy
- The Discipline of Child and Adolescent Health, Faculty of Medicine and Health, The Children's Hospital Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
7
|
Chimeric Measles Virus (MV/RSV), Having Ectodomains of Respiratory Syncytial Virus (RSV) F and G Proteins Instead of Measles Envelope Proteins, Induced Protective Antibodies against RSV. Vaccines (Basel) 2021; 9:vaccines9020156. [PMID: 33669275 PMCID: PMC7920054 DOI: 10.3390/vaccines9020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023] Open
Abstract
In our previous study, fusion (F) or glyco (G) protein coding sequence of respiratory syncytial virus (RSV) was inserted at the P/M junction of the measles AIK-C vector (MVAIK), and the recombinant measles virus induced protective immune responses. In the present study, the ectodomains of measles fusion (F) and hemagglutinin (HA) proteins were replaced with those of RSV F and G proteins, and a chimeric MV/RSV vaccine was developed. It expressed F and G proteins of RSV and induced cytopathic effect (CPE) in epithelial cell lines (Vero, A549, and HEp-2 cells), but not in lymphoid cell lines (B95a, Jurkat, and U937 cells). A chimeric MV/RSV grew similarly to AIK-C with no virus growth at 39 °C. It induced NT antibodies against RSV in cotton rats three weeks after immunization through intramuscular route and enhanced response was observed after the second dose at eight weeks. After the RSV challenge with 106 PFU, significantly lower virus (101.4±0.1 PFU of RSV) was recovered from lung tissue in the chimeric MV/RSV vaccine group than in the MVAIK control group with 104.6±0.2 PFU (p < 0.001) and no obvious inflammatory pathological finding was noted. The strategy of ectodomain replacement in the measles virus vector is expected to lead to the development of safe and effective vaccines for other enveloped viruses.
Collapse
|
8
|
Liang B, Matsuoka Y, Le Nouën C, Liu X, Herbert R, Swerczek J, Santos C, Paneru M, Collins PL, Buchholz UJ, Munir S. A Parainfluenza Virus Vector Expressing the Respiratory Syncytial Virus (RSV) Prefusion F Protein Is More Effective than RSV for Boosting a Primary Immunization with RSV. J Virol 2020; 95:e01512-20. [PMID: 33115876 PMCID: PMC7944453 DOI: 10.1128/jvi.01512-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated pediatric vaccines for intranasal administration are being developed for human respiratory syncytial virus (RSV), an important worldwide pediatric respiratory pathogen that lacks a licensed vaccine or suitable antiviral drug. We evaluated a prime-boost strategy in which primary immunization with RSV was boosted by secondary immunization with RSV or with a chimeric recombinant bovine/human parainfluenza virus type 3 (rB/HPIV3) vector expressing the RSV fusion F protein. The vector-expressed F protein had been engineered (DS-Cav1 mutations) for increased stability in the highly immunogenic prefusion (pre-F) conformation, with or without replacement of its transmembrane and cytoplasmic tail domains with their counterparts from bovine parainfluenza virus type 3 (BPIV3) F protein to direct incorporation into the vector virion for increased immunogenicity. In hamsters that received a primary infection with RSV, a booster infection with RSV ∼6 weeks later was completely restricted for producing infectious virus but induced a significant increase in the serum RSV-plaque-reduction neutralizing antibody titer (RSV-PRNT). Boosting instead with the rB/HPIV3-RSV-pre-F vectors resulted in efficient replication and induced significantly higher RSV-PRNTs than RSV. In African green monkeys that received a primary infection with RSV, a booster infection with RSV ∼2, ∼6, or ∼15 months later was highly restricted, whereas booster infections with the vectors had robust replication. Compared with RSV, boosts with the vectors induced 7- to 15-fold higher titers of RSV-specific serum antibodies with high neutralizing activity, as well as significantly higher titers of RSV-specific mucosal IgA antibodies. These findings support further development of this heterologous prime-boost strategy.IMPORTANCE Immune responses to RSV in infants can be reduced due to immunological immaturity and immunosuppression by RSV-specific maternal antibodies. In infants and young children, two infections with wild-type RSV typically are needed to achieve the titers of RSV-specific serum antibodies and protection against illness that are observed in adults. Therefore, a boost might substantially improve the performance of live pediatric RSV vaccines presently being developed. Hamsters and African green monkeys received a primary intranasal infection with RSV and were given a boost with RSV or a parainfluenza virus (PIV) vector expressing RSV fusion protein engineered for enhanced immunogenicity. The RSV boost was highly restricted but induced a significant increase in serum RSV-neutralizing antibodies. The PIV vectors replicated efficiently and induced significantly higher antibody responses. The use of an attenuated PIV vector expressing RSV antigen to boost a primary immunization with an attenuated RSV warrants further evaluation.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Chlorocebus aethiops
- Cricetinae
- Immunization, Secondary/methods
- Immunogenicity, Vaccine
- Mutation
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respirovirus/genetics
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
Collapse
Affiliation(s)
- Bo Liang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard Herbert
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Poolesville, Maryland, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Monica Paneru
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Teng MN, Mejias A, Ramilo O, Peeples ME. Live Attenuated Vaccine With a Stabilized Mutation and Gene Deletion for Prevention of Respiratory Syncytial Virus Disease in Young Children. J Infect Dis 2020; 221:501-503. [PMID: 31758179 DOI: 10.1093/infdis/jiz604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael N Teng
- Joy McCann Culverhouse Airway Disease Research Center, Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Departamento de Farmacología y Pediatria, Facultad de Medicina, Universidad de Malaga, Spain
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Division of Pediatric Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
10
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Mueller S, Stauft CB, Kalkeri R, Koidei F, Kushnir A, Tasker S, Coleman JR. A codon-pair deoptimized live-attenuated vaccine against respiratory syncytial virus is immunogenic and efficacious in non-human primates. Vaccine 2020; 38:2943-2948. [PMID: 32107060 DOI: 10.1016/j.vaccine.2020.02.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Despite a critical need for a respiratory syncytial virus (RSV) vaccine and decades of development efforts, a vaccine to protect infants, elderly, and other at-risk populations from RSV infection remains elusive. We have previously generated a new, live-attenuated vaccine candidate against RSV using rational, computer-aided gene design and chemical synthesis through a process termed viral gene "deoptimization." In this study, we assessed the attenuation, immunogenicity, and efficacy of this synthetic, live-attenuated RSV vaccine candidate, RSV-MinL4.0, in African Green Monkeys. RSV-MinL4.0 was produced under good-manufacturing-practice (GMP) in Vero cells. Vaccination with RSV-MinL4.0 resulted in minimal virus shedding after vaccination, generation of robust humoral and cellular immune responses (despite the presence of baseline RSV neutralizing antibodies in one animal) that were comparable to a wildtype infection, and protection from virus shedding post-challenge with wildtype RSV. These findings demonstrate the promise of RSV-MinL4.0 as a live-attenuated vaccine which will undergo clinical trials to test its ability to safely and effectively protect pediatric and elderly populations from infection with RSV.
Collapse
Affiliation(s)
| | | | - Raj Kalkeri
- Southern Research, Inc., Frederick, MD, United States.
| | | | - Anna Kushnir
- Codagenix, Inc., Farmingdale, NY, United States.
| | - Sybil Tasker
- Codagenix, Inc., Farmingdale, NY, United States.
| | | |
Collapse
|
12
|
McFarland EJ, Karron RA, Muresan P, Cunningham CK, Libous J, Perlowski C, Thumar B, Gnanashanmugam D, Moye J, Schappell E, Barr E, Rexroad V, Fearn L, Spector SA, Aziz M, Cielo M, Beneri C, Wiznia A, Luongo C, Collins P, Buchholz UJ. Live Respiratory Syncytial Virus Attenuated by M2-2 Deletion and Stabilized Temperature Sensitivity Mutation 1030s Is a Promising Vaccine Candidate in Children. J Infect Dis 2020; 221:534-543. [PMID: 31758177 PMCID: PMC6996856 DOI: 10.1093/infdis/jiz603] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The safety and immunogenicity of live respiratory syncytial virus (RSV) candidate vaccine, LID/ΔM2-2/1030s, with deletion of RSV ribonucleic acid synthesis regulatory protein M2-2 and genetically stabilized temperature-sensitivity mutation 1030s in the RSV polymerase protein was evaluated in RSV-seronegative children. METHODS Respiratory syncytial virus-seronegative children ages 6-24 months received 1 intranasal dose of 105 plaque-forming units (PFU) of LID/ΔM2-2/1030s (n = 21) or placebo (n = 11). The RSV serum antibodies, vaccine shedding, and reactogenicity were assessed. During the following RSV season, medically attended acute respiratory illness (MAARI) and pre- and postsurveillance serum antibody titers were monitored. RESULTS Eighty-five percent of vaccinees shed LID/ΔM2-2/1030s vaccine (median peak nasal wash titers: 3.1 log10 PFU/mL by immunoplaque assay; 5.1 log10 copies/mL by reverse-transcription quantitative polymerase chain reaction) and had ≥4-fold rise in serum-neutralizing antibodies. Respiratory symptoms and fever were common (60% vaccinees and 27% placebo recipients). One vaccinee had grade 2 wheezing with rhinovirus but without concurrent LID/ΔM2-2/1030s shedding. Five of 19 vaccinees had ≥4-fold increases in antibody titers postsurveillance without RSV-MAARI, indicating anamnestic responses without significant illness after infection with community-acquired RSV. CONCLUSIONS LID/ΔM2-2/1030s had excellent infectivity without evidence of genetic instability, induced durable immunity, and primed for anamnestic antibody responses, making it an attractive candidate for further evaluation.
Collapse
Affiliation(s)
- Elizabeth J McFarland
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ruth A Karron
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Petronella Muresan
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health/Frontier Science, Boston, Massachusetts, USA
| | - Coleen K Cunningham
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Bhagvanji Thumar
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Devasena Gnanashanmugam
- Maternal, Adolescent and Pediatric Research Branch, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jack Moye
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Schappell
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Emily Barr
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Vivian Rexroad
- Investigational Drug Service Pharmacy, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Laura Fearn
- Department of Pediatrics, Northwestern University Medical School and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Stephen A Spector
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| | - Mariam Aziz
- Section of Infectious Disease, Rush University Medical Center, Chicago, Illinois, USA
| | - Mikhaela Cielo
- Division of Infectious Diseases, Maternal Child and Adolescent Center, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Christy Beneri
- Department of Pediatrics, SUNY Stony Brook, Stony Brook, New York, USA
| | - Andrew Wiznia
- Department of Pediatrics, Albert Einstein College of Medicine and Jacobi Medical Center, Bronx, New York, USA
| | - Cindy Luongo
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ursula J Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Rossey I, Saelens X. Vaccines against human respiratory syncytial virus in clinical trials, where are we now? Expert Rev Vaccines 2019; 18:1053-1067. [DOI: 10.1080/14760584.2019.1675520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019; 179:193-204.e14. [PMID: 31495574 PMCID: PMC7111336 DOI: 10.1016/j.cell.2019.08.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/06/2019] [Indexed: 01/29/2023]
Abstract
Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.
Collapse
Affiliation(s)
- Morgan S A Gilman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheng Liu
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Amy Fung
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Ishani Behera
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Paul Jordan
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Peter Rigaux
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Julien Sourimant
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, 78350 Jouy en Josas, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Dirk Roymans
- Janssen Infectious Diseases and Vaccines, 2340 Beerse, Belgium
| | - Zhinan Jin
- Janssen BioPharma, Inc., Janssen Pharmaceutical Companies, South San Francisco, CA 94080, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Buchholz UJ, Cunningham CK, Muresan P, Gnanashanmugam D, Sato P, Siberry GK, Rexroad V, Valentine M, Perlowski C, Schappell E, Thumar B, Luongo C, Barr E, Aziz M, Yogev R, Spector SA, Collins PL, McFarland EJ, Karron RA. Live Respiratory Syncytial Virus (RSV) Vaccine Candidate Containing Stabilized Temperature-Sensitivity Mutations Is Highly Attenuated in RSV-Seronegative Infants and Children. J Infect Dis 2019; 217:1338-1346. [PMID: 29509929 DOI: 10.1093/infdis/jiy066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is the most important viral cause of severe respiratory illness in young children and lacks a vaccine. RSV cold-passage/stabilized 2 (RSVcps2) is a modification of a previously evaluated vaccine candidate in which 2 major attenuating mutations have been stabilized against deattenuation. Methods RSV-seronegative 6-24-month-old children received an intranasal dose of 105.3 plaque-forming units (PFU) of RSVcps2 (n = 34) or placebo (n = 16) (International Maternal Pediatric Adolescent AIDS Clinical Trials protocol P1114 and companion protocol CIR285). RSV serum neutralizing antibody titers before and 56 days after vaccination, vaccine virus infectivity (defined as vaccine virus shedding detectable in nasal wash and/or a ≥4-fold rise in serum antibodies), reactogenicity, and genetic stability were assessed. During the following RSV transmission season, participants were monitored for respiratory illness, with serum antibody titers measured before and after the season. Results A total of 85% of vaccinees were infected with RSVcps2 (median peak titer, 0.5 log10 PFU/mL by culture and 2.9 log10 copies/mL by polymerase chain reaction analysis); 77% shed vaccine virus, and 59% developed a ≥4-fold rise in RSV-serum neutralizing antibody titers. Respiratory tract and/or febrile illness occurred at the same rate (50%) in the vaccine and placebo groups. Deattenuation was not detected at either of 2 stabilized mutation sites. Conclusions RSVcps2 was well tolerated and moderately immunogenic and had increased genetic stability in 6-24-month-old RSV-seronegative children. Clinical Trials Registration NCT01852266 and NCT01968083.
Collapse
Affiliation(s)
| | - Coleen K Cunningham
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Paul Sato
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda
| | - George K Siberry
- Maternal Pediatric Infectious Disease Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda
| | | | | | | | - Elizabeth Schappell
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bhagvinji Thumar
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, Bethesda
| | - Emily Barr
- Department of Pediatric Infectious Diseases, Aurora, Colorado.,Mucosal and Vaccine Research Program Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mariam Aziz
- Rush University Medical Center, Chicago, Illinois
| | - Ram Yogev
- Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen A Spector
- Clinical Trials Unit, International Maternal Pediatric Adolescent AIDS Clinical Trials Group, University of California, San Diego, California
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, Bethesda
| | - Elizabeth J McFarland
- Department of Pediatric Infectious Diseases, Aurora, Colorado.,Mucosal and Vaccine Research Program Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ruth A Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | |
Collapse
|
16
|
Scott KA, Kotecha A, Seago J, Ren J, Fry EE, Stuart DI, Charleston B, Maree FF. SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. J Virol 2017; 91:e02312-16. [PMID: 28298597 PMCID: PMC5411616 DOI: 10.1128/jvi.02312-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines.IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses.
Collapse
Affiliation(s)
- Katherine A Scott
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Abhay Kotecha
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Julian Seago
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
| | - David I Stuart
- Division of Structural Biology, University of Oxford, Headington, Oxford, United Kingdom
- Life Science Division, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | | | - Francois F Maree
- Transboundary Animal Disease Programme, ARC-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Microbiology and Plant Pathology, Faculty of Agricultural and Natural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Packaging and Prefusion Stabilization Separately and Additively Increase the Quantity and Quality of Respiratory Syncytial Virus (RSV)-Neutralizing Antibodies Induced by an RSV Fusion Protein Expressed by a Parainfluenza Virus Vector. J Virol 2016; 90:10022-10038. [PMID: 27581977 DOI: 10.1128/jvi.01196-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major pediatric respiratory pathogens that lack vaccines. A chimeric bovine/human PIV3 (rB/HPIV3) virus expressing the unmodified, wild-type (wt) RSV fusion (F) protein from an added gene was previously evaluated in seronegative children as a bivalent intranasal RSV/HPIV3 vaccine, and it was well tolerated but insufficiently immunogenic for RSV F. We recently showed that rB/HPIV3 expressing a partially stabilized prefusion form (pre-F) of RSV F efficiently induced "high-quality" RSV-neutralizing antibodies, defined as antibodies that neutralize RSV in vitro without added complement (B. Liang et al., J Virol 89:9499-9510, 2015, doi:10.1128/JVI.01373-15). In the present study, we modified RSV F by replacing its cytoplasmic tail (CT) domain or its CT and transmembrane (TM) domains (TMCT) with counterparts from BPIV3 F, with or without pre-F stabilization. This resulted in RSV F being packaged in the rB/HPIV3 particle with an efficiency similar to that of RSV particles. Enhanced packaging was substantially attenuating in hamsters (10- to 100-fold) and rhesus monkeys (100- to 1,000-fold). Nonetheless, TMCT-directed packaging substantially increased the titers of high-quality RSV-neutralizing serum antibodies in hamsters. In rhesus monkeys, a strongly additive immunogenic effect of packaging and pre-F stabilization was observed, as demonstrated by 8- and 30-fold increases of RSV-neutralizing serum antibody titers in the presence and absence of added complement, respectively, compared to pre-F stabilization alone. Analysis of vaccine-induced F-specific antibodies by binding assays indicated that packaging conferred substantial stabilization of RSV F in the pre-F conformation. This provides an improved version of this well-tolerated RSV/HPIV3 vaccine candidate, with potently improved immunogenicity, which can be returned to clinical trials. IMPORTANCE Human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are major viral agents of acute pediatric bronchiolitis and pneumonia worldwide that lack vaccines. A bivalent intranasal RSV/HPIV3 vaccine candidate consisting of a chimeric bovine/human PIV3 (rB/HPIV3) strain expressing the RSV fusion (F) protein was previously shown to be well tolerated by seronegative children but was insufficiently immunogenic for RSV F. In the present study, the RSV F protein was engineered to be packaged efficiently into vaccine virus particles. This resulted in a significantly enhanced quantity and quality of RSV-neutralizing antibodies in hamsters and nonhuman primates. In nonhuman primates, this effect was strongly additive to the previously described stabilization of the prefusion conformation of the F protein. The improved immunogenicity of RSV F by packaging appeared to involve prefusion stabilization. These findings provide a potently more immunogenic version of this well-tolerated vaccine candidate and should be applicable to other vectored vaccines.
Collapse
|
18
|
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of severe lower respiratory tract infection, such as bronchiolitis, bronchitis, or pneumonia, in both infants and the elderly. Despite the global burden of diseases attributable to RSV infection, no clinically approved vaccine is available, and a humanized monoclonal antibody for prophylaxis is not readily affordable in developing countries. There are several hurdles to the successful development of RSV vaccines: immune-vulnerable target populations such as premature infants, pregnant women, and immunocompromised people; safety concerns associated with vaccine-enhanced diseases; repeated infection; and waning memory. To develop successful strategies for the prevention of RSV infection, it is necessary to understand the protective and pathologic roles of host immune responses to RSV infection. In this review, we will summarize the positive and negative relationship between RSV infection and host immunity and discuss strategies for the development of the first successful RSV vaccine.
Collapse
Affiliation(s)
- Joo Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
19
|
Abstract
Human respiratory syncytial virus (RSV) is understood to be a significant human pathogen in infants, young children, and the elderly and the immunocompromised. Over the last decade many important mechanisms contributing to RSV infection, replication, and disease pathogenesis have been revealed; however, there is still insufficient knowledge which has in part hampered vaccine development. Considerable information is accumulating regarding how RSV proteins modulate molecular signaling and immune responses to infection. Understanding how RSV interacts with its host is crucial to facilitate the development of safe and effective vaccines and therapeutic treatments.In this chapter, we provide a brief introduction into RSV replication, pathogenesis, and host immune response, and summarize the state of RSV vaccine and antiviral compounds in clinical stages of development. This chapter frames features of this book and the molecular methods used for understanding RSV interaction with the host.
Collapse
Affiliation(s)
- Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Lydia Anderson
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, Animal Health Research Center, University of Georgia, 111 Carlton Street, Athens, GA, 30602, USA.
| |
Collapse
|
20
|
Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. THE LANCET RESPIRATORY MEDICINE 2015; 3:888-900. [PMID: 26411809 DOI: 10.1016/s2213-2600(15)00255-6] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/20/2023]
Abstract
Respiratory syncytial virus (RSV) is a major worldwide cause of morbidity and mortality in children under five years of age. Evidence-based management guidelines suggest that there is no effective treatment for RSV lower respiratory tract infection (LRTI) and that supportive care, ie, hydration and oxygenation, remains the cornerstone of clinical management. However, RSV treatments in development in the past decade include 10 vaccines and 11 therapeutic agents in active clinical trials. Maternal vaccination is particularly relevant because the most severe disease occurs within the first 6 months of life, when children are unlikely to benefit from active immunisation. We must optimise the implementation of novel RSV therapeutics by understanding the target populations, showing safety, and striving for acceptable pricing in the context of this worldwide health problem. In this Review, we outline the limitations of RSV LRTI management, the drugs in development, and the remaining challenges related to study design, regulatory approval, and implementation.
Collapse
|
21
|
Enhanced Neutralizing Antibody Response Induced by Respiratory Syncytial Virus Prefusion F Protein Expressed by a Vaccine Candidate. J Virol 2015; 89:9499-510. [PMID: 26157122 DOI: 10.1128/jvi.01373-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are the first and second leading viral agents of severe respiratory tract disease in infants and young children worldwide. Vaccines are not available, and an RSV vaccine is particularly needed. A live attenuated chimeric recombinant bovine/human PIV3 (rB/HPIV3) vector expressing the RSV fusion (F) glycoprotein from an added gene has been under development as a bivalent vaccine against RSV and HPIV3. Previous clinical evaluation of this vaccine candidate suggested that increased genetic stability and immunogenicity of the RSV F insert were needed. This was investigated in the present study. RSV F expression was enhanced 5-fold by codon optimization and by modifying the amino acid sequence to be identical to that of an early passage of the original clinical isolate. This conferred a hypofusogenic phenotype that presumably reflects the original isolate. We then compared vectors expressing stabilized prefusion and postfusion versions of RSV F. In a hamster model, prefusion F induced increased quantity and quality of RSV-neutralizing serum antibodies and increased protection against wild-type (wt) RSV challenge. In contrast, a vector expressing the postfusion F was less immunogenic and protective. The genetic stability of the RSV F insert was high and was not affected by enhanced expression or the prefusion or postfusion conformation of RSV F. These studies provide an improved version of the previously well-tolerated rB/HPIV3-RSV F vaccine candidate that induces a superior RSV-neutralizing serum antibody response. IMPORTANCE Respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (HPIV3) are two major causes of pediatric pneumonia and bronchiolitis. The rB/HPIV3 vector expressing RSV F protein is a candidate bivalent live vaccine against HPIV3 and RSV. Previous clinical evaluation indicated the need to increase the immunogenicity and genetic stability of the RSV F insert. Here, we increased RSV F expression by codon optimization and by modifying the RSV F amino acid sequence to conform to that of an early passage of the original isolate. This resulted in a hypofusogenic phenotype, which likely represents the original phenotype before adaptation to cell culture. We also included stabilized versions of prefusion and postfusion RSV F protein. Prefusion RSV F induced a larger quantity and higher quality of RSV-neutralizing serum antibodies and was highly protective. This provides an improved candidate for further clinical evaluation.
Collapse
|
22
|
Abstract
ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization among infants. Despite the significant healthcare burden, there is no licensed RSV vaccine currently available. This problem is further exacerbated as a natural RSV infection fails to elicit the development of long-lived immunity. It is well established that RSV-specific antibodies play a critical role in mediating protection from severe disease. The CD8 T-cell response is critical for mediating virus clearance following an acute RSV infection. However, the relative contribution of memory CD8 T cells in providing protection against secondary RSV infections remains unclear. In addition, data from animal models indicate that memory CD8 T-cell responses can be pathogenic under certain conditions. Herein, we provide an overview of the CD8 T-cell response elicited by RSV infection and how our current knowledge may impact future studies and vaccine development.
Collapse
Affiliation(s)
- Cory J Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol 2014; 89:1825-37. [PMID: 25410877 DOI: 10.1128/jvi.02729-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBVΔNSs) or NSm (rSBVΔNSm) or both of these proteins (rSBVΔNSs/ΔNSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR(-/-)) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBVΔNSs and rSBVΔNSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR(-/-) mice, all mutants were virulent, with the highest mortality rate for rSBVΔNSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses. IMPORTANCE SBV induces only mild clinical signs in adult ruminants but causes severe fetal malformation and, thereby, can have an important impact on animal welfare and production. As SBV is an insect-transmitted pathogen, vaccination will be one of the most important aspects of disease control. Here, mutant viruses lacking one or two proteins that essentially contribute to viral pathogenicity were tested as modified live vaccines in cattle. It could be demonstrated that a novel recombinant double deletion mutant is a safe and efficacious vaccine candidate. This is the first description of a putative modified live vaccine for the complete genus Orthobunyavirus, and in addition, such a vaccine type has never been tested in cattle for any virus of the entire family Bunyaviridae. Therefore, the described vaccine also represents the first model for a broad range of related viruses and is of high importance to the field.
Collapse
|
24
|
Interchange of L polymerase protein between two strains of viral hemorrhagic septicemia virus (VHSV) genotype IV alters temperature sensitivities in vitro. Virus Res 2014; 195:203-6. [PMID: 25456404 DOI: 10.1016/j.virusres.2014.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 11/21/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) has four genotypes (I-IV) and sub-lineages within genotype I and IV. Using a reverse genetics approach, we explored the importance of the L gene for growth characteristics at different temperatures following interchange of the L gene within genotype IV (IVa and IVb) strains. VHSV strains harboring heterologous L gene were recovered and we show that the L gene determines growth characteristics at different temperatures in permissive cell lines.
Collapse
|
25
|
Bohmwald K, Espinoza JA, González PA, Bueno SM, Riedel CA, Kalergis AM. Central nervous system alterations caused by infection with the human respiratory syncytial virus. Rev Med Virol 2014; 24:407-19. [PMID: 25316031 DOI: 10.1002/rmv.1813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023]
Abstract
Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
26
|
The evolution of life history trade-offs in viruses. Curr Opin Virol 2014; 8:79-84. [DOI: 10.1016/j.coviro.2014.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 11/15/2022]
|
27
|
Le Nouën C, Brock LG, Luongo C, McCarty T, Yang L, Mehedi M, Wimmer E, Mueller S, Collins PL, Buchholz UJ, DiNapoli JM. Attenuation of human respiratory syncytial virus by genome-scale codon-pair deoptimization. Proc Natl Acad Sci U S A 2014; 111:13169-13174. [PMID: 25157129 PMCID: PMC4246931 DOI: 10.1073/pnas.1411290111] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most important viral agent of serious pediatric respiratory-tract disease worldwide. A vaccine or generally effective antiviral drug is not yet available. We designed new live attenuated RSV vaccine candidates by codon-pair deoptimization (CPD). Specifically, viral ORFs were recoded by rearranging existing synonymous codons to increase the content of underrepresented codon pairs. Amino acid coding was completely unchanged. Four CPD RSV genomes were designed in which the indicated ORFs were recoded: Min A (NS1, NS2, N, P, M, and SH), Min B (G and F), Min L (L), and Min FLC (all ORFs except M2-1 and M2-2). Surprisingly, the recombinant CPD viruses were temperature-sensitive for replication in vitro (level of sensitivity: Min FLC > Min L > Min B > Min A). All of the CPD mutants grew less efficiently in vitro than recombinant wild-type (WT) RSV, even at the typically permissive temperature of 32 °C (growth efficiency: WT > Min L > Min A > Min FLC > Min B). CPD of the ORFs for the G and F surface glycoproteins provided the greatest restrictive effect. The CPD viruses exhibited a range of restriction in mice and African green monkeys comparable with that of two attenuated RSV strains presently in clinical trials. This study provided a new type of attenuated RSV and showed that CPD can rapidly generate vaccine candidates against nonsegmented negative-strand RNA viruses, a large and expanding group that includes numerous pathogens of humans and animals.
Collapse
Affiliation(s)
- Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Linda G Brock
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Thomas McCarty
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Masfique Mehedi
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Steffen Mueller
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - Peter L Collins
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Joshua M DiNapoli
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
28
|
Hu B, Jiang J, Zhan J, Li G, Jiang Y, Guan X, Chen Y, Fang Z. Development of a reverse genetics system for respiratory syncytial virus long strain and an immunogenicity study of the recombinant virus. Virol J 2014; 11:142. [PMID: 25107552 PMCID: PMC4254404 DOI: 10.1186/1743-422x-11-142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/05/2014] [Indexed: 11/24/2022] Open
Abstract
Background Respiratory Syncytial Virus (RSV) is an important human respiratory pathogen, particularly of infants and older adults, and despite several decades of research and development, no licensed vaccine is available. Studies have confirmed that enhancement of RSV disease does not occur after inoculation with RSV live-attenuated vaccine candidates, making such vaccines preferable. In this paper, reverse genetics was used to construct two recombinant viruses, a recombinant Long strain (rLong) and rLong-∆G-EGFP; rLong-∆G-EGFP is a recombinant mutant in which G was replaced with the EGFP gene, based on the Long strain of RSV. Results Both rLong and rLong-∆G-EGFP were constructed successfully and recovered in Hep-2 cells, and autofluorescence was observed in rLong-∆G-EGFP-infected cells during consecutive passages. Titers of rLong and rLong-∆G-EGFP were ~100-fold lower than the parental strain. Although virulence was attenuated, high titers of neutralizing antibodies were induced in BALB/c mice after being inoculated with recombinant viruses in a three-dose schedule. Unexpectedly, the neutralizing antibody titer in rLong-∆G-EGFP-immunized recipients did not decline significantly compared with the rLong strain. Protective efficacy of recombinant viruses in lung tissue was up to 100%, and the serum neutralizing antibody levels could stabilize at 21 days with no significant fall post-challenge. Enzyme-linked immunospot (ELISPOT) assays showed that both recombinant viruses were capable of inducing CD8+ T cell immune responses, which are crucial for virus clearance, and that rLong stimulated a higher level of IFN-γ production by comparison. In terms of inducing a balanced immune response, rLong-∆G-EGFP elicited slightly higher levels of IgG2a antibodies and lower levels of IgG1/IgG2a than the rLong virus. Conclusions This study suggested that immunization with rLong and rLong-∆G-EGFP were immunogenic and protected against RSV infection in the lower respiratory tract of BALB/c mice better than in the nose. Because of a relative low IgG1/IgG2a ratio, rLong-∆G-EGFP was more inclined to make CD4+ T cells, shifting toward a Th1-type response, indicating that the generation of a more balanced Th1/Th2 response was desirable. This explorative study on the recombinant Long viruses also contributed to obtaining more RSV attenuated candidates by a reverse genetics approach.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Infectious Disease Control and Prevention, Hubei Provincial Center for Disease Control and Prevention, No,6 North Zhuodaoquan Road, Wuhan City, Hubei province 430079, China.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
RNA virus reverse genetics and vaccine design. Viruses 2014; 6:2531-50. [PMID: 24967693 PMCID: PMC4113782 DOI: 10.3390/v6072531] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
Abstract
RNA viruses are capable of rapid spread and severe or potentially lethal disease in both animals and humans. The development of reverse genetics systems for manipulation and study of RNA virus genomes has provided platforms for designing and optimizing viral mutants for vaccine development. Here, we review the impact of RNA virus reverse genetics systems on past and current efforts to design effective and safe viral therapeutics and vaccines.
Collapse
|
30
|
Palomo C, Mas V, Vázquez M, Cano O, Luque D, Terrón MC, Calder LJ, Melero JA. Polyclonal and monoclonal antibodies specific for the six-helix bundle of the human respiratory syncytial virus fusion glycoprotein as probes of the protein post-fusion conformation. Virology 2014; 460-461:119-27. [PMID: 25010277 DOI: 10.1016/j.virol.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 12/01/2022]
Abstract
Human respiratory syncytial virus (hRSV) has two major surface glycoproteins (G and F) anchored in the lipid envelope. Membrane fusion promoted by hRSV_F occurs via refolding from a pre-fusion form to a highly stable post-fusion state involving large conformational changes of the F trimer. One of these changes results in assembly of two heptad repeat sequences (HRA and HRB) into a six-helix bundle (6HB) motif. To assist in distinguishing pre- and post-fusion conformations of hRSV_F, we have prepared polyclonal (α-6HB) and monoclonal (R145) rabbit antibodies specific for the 6HB. Among other applications, these antibodies were used to explore the requirements of 6HB formation by isolated protein segments or peptides and by truncated mutants of the F protein. Site-directed mutagenesis and electron microscopy located the R145 epitope in the post-fusion hRSV_F at a site distantly located from previously mapped epitopes, extending the repertoire of antibodies that can decorate the F molecule.
Collapse
Affiliation(s)
- Concepción Palomo
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Vicente Mas
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Mónica Vázquez
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Olga Cano
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Daniel Luque
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - María C Terrón
- Unidad de Microscopía Electrónica y Confocal, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Lesley J Calder
- National Institute for Medical Research, MRC, Mill Hill, London NW7 1AA, UK
| | - José A Melero
- Unidad de Biología Viral, Centro Nacional de Microbiología, Madrid, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
31
|
A single amino acid mutation (I1012F) of the RNA polymerase of marine viral hemorrhagic septicemia virus changes in vitro virulence to rainbow trout gill epithelial cells. J Virol 2014; 88:7189-98. [PMID: 24719422 DOI: 10.1128/jvi.00423-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Viral hemorrhagic septicemia virus (VHSV) is separated into four different genotypes (I to IV) with different sublineages (K. Einer-Jensen, P. Ahrens, R. Forsberg, and N. Lorenzen, J. Gen. Virol. 85:1167-1179, 2004; K. Einer-Jensen, J. Winton, and N. Lorenzen, Vet. Microbiol. 106:167-178, 2005). European marine VHSV strains (of genotypes I to III) are, in general, nonpathogenic or have very low pathogenicity to rainbow trout after a waterborne challenge, and here we also show that genotype IVa is nonpathogenic to trout. Despite several attempts, it has not been possible to link genomic variation to in vivo virulence. In vitro virulence to gill epithelial cells (GECs) has been used as a proxy for in vivo virulence, and here we extend these studies further with the purpose of identifying residues associated with in vitro virulence. Genotype Ia (DK-3592B) and III (NO/650/07) isolates, which are pathogenic to rainbow trout (O. B. Dale, I. Orpetveit, T. M. Lyngstad, S. Kahns, H. F. Skall, N. J. Olesen, and B. H. Dannevig, Dis. Aquat. Organ. 85:93-103, 2009), were compared to two marine strains that are nonpathogenic to trout, genotypes Ib (strain 1p8 [H. F. Mortensen, O. E. Heuer, N. Lorenzen, L. Otte, and N. J. Olesen, Virus Res. 63:95-106, 1999]) and IVa (JF-09). DK-3592 and NO/650/07 were pathogenic to GECs, while marine strains 1p8 and JF-09 were nonpathogenic to GECs. Eight conserved amino acid substitutions contrasting high- and low-virulence strains were identified, and reverse genetics was used in a gain-of-virulence approach based on the JF-09 backbone. Mutations were introduced into the G, NV, and L genes, and seven different virus clones were obtained. For the first time, we show that a single amino acid mutation in conserved region IV of the L protein, I1012F, rendered the virus able to replicate and induce a cytopathic effect in trout GECs. The other six mutated variants remained nonpathogenic. IMPORTANCE This is the first study to clearly link in vitro virulence of viral hemorrhagic septicemia virus (VHSV) with an amino acid residue in the L protein, a site located in conserved region IV of the L protein. In vitro virulence is documented by induction of cytopathic effects and viability studies of gill epithelial cells, and the observed cellular responses to infection are associated with increased viral replication levels. There are no previous studies addressing the importance of the L protein or the RNA-dependent RNA polymerase for virus virulence in vitro or in vivo. Therefore, the findings reported here should broaden the search for pathogenicity traits in novirhabdoviruses, and there is a possibility that the polymerase participates in defining the host species virulence of various VHSV strains.
Collapse
|
32
|
Jorquera PA, Oakley KE, Tripp RA. Advances in and the potential of vaccines for respiratory syncytial virus. Expert Rev Respir Med 2014; 7:411-27. [PMID: 23964629 DOI: 10.1586/17476348.2013.814409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of serious lower respiratory track illness causing bronchiolitis and some mortality in infants and the elderly. Despite decades of research there is no licensed RSV vaccine. To enable the development of RSV vaccines, several major obstacles must be overcome including immature and waning immunity to RSV infection, the capacity of RSV to evade immunity and the failure of RSV infection to induce robust enduring immunity. Since the failure of the formalin-inactivated RSV vaccine trial, more cautious and deliberate progress has been made toward RSV vaccine development using a variety of experimental approaches. The scientific rational and the state of development of these approaches are reviewed in this article.
Collapse
Affiliation(s)
- Patricia A Jorquera
- College of Veterinary Medicine, Department of Infectious Disease, Animal Health Research Center, 111 Carlton Street, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
33
|
Abstract
Respiratory syncytial virus (RSV) disease is an important cause of morbidity and mortality in children and debilitated adults and remains one of the major global unmet challenges for vaccine development. Several immunological issues have delayed the development of vaccines, especially the poorly protective response to natural infection and the enhancement of disease following administration of formalin inactivated vaccines during trials conducted in the 1960s. Advances in knowledge of the immune system, of the virus and its antigenic properties combined with new vaccine technologies are now injecting new hope into the field and have given rise to many promising vaccine approaches. Some of these may be optimal for use in children, while others may be more appropriate for pregnant women or vulnerable older adults. With a multi-pronged approach to prevention, we propose that it may be possible to destabilise community circulation of RSV and thus to significantly lessen the impact of RSV disease.
Collapse
Affiliation(s)
- Aleks K Guvenel
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, W2 1PG, UK
| | - Christopher Chiu
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, W2 1PG, UK
| | - Peter JM Openshaw
- Centre for Respiratory Infection, National Heart and Lung Institute, Imperial College London, W2 1PG, UK
| |
Collapse
|
34
|
Chimeric bovine/human parainfluenza virus type 3 expressing respiratory syncytial virus (RSV) F glycoprotein: effect of insert position on expression, replication, immunogenicity, stability, and protection against RSV infection. J Virol 2014; 88:4237-50. [PMID: 24478424 DOI: 10.1128/jvi.03481-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED A recombinant chimeric bovine/human parainfluenza type 3 virus (rB/HPIV3) vector expressing the respiratory syncytial virus (RSV) fusion F glycoprotein previously exhibited disappointing levels of RSV F immunogenicity and genetic stability in children (D. Bernstein et al., Pediatr. Infect. Dis. J. 31:109-114, 2012; C.-F. Yang et al., Vaccine 31:2822-2827, 2013). To investigate parameters that might affect vaccine performance and stability, we constructed and characterized rB/HPIV3 viruses expressing RSV F from the first (pre-N), second (N-P), third (P-M), and sixth (HN-L) genome positions. There was a 30- to 69-fold gradient in RSV F expression from the first to the sixth position. The inserts moderately attenuated vector replication in vitro and in the upper and lower respiratory tracts of hamsters: this was not influenced by the level of RSV F expression and syncytium formation. Surprisingly, inserts in the second, third, and sixth positions conferred increased temperature sensitivity: this was greatest for the third position and was the most attenuating in vivo. Each rB/HPIV3 vector induced a high titer of neutralizing antibodies in hamsters against RSV and HPIV3. Protection against RSV challenge was greater for position 2 than for position 6. Evaluation of insert stability suggested that RSV F is under selective pressure to be silenced during vector replication in vivo, but this was not exacerbated by a high level of RSV F expression and generally involved a small percentage of recovered vector. Vector passaged in vitro accumulated mutations in the HN open reading frame, causing a dramatic increase in plaque size that may have implications for vaccine production and immunogenicity. IMPORTANCE The research findings presented here will be instrumental for improving the design of a bivalent pediatric vaccine for respiratory syncytial virus and parainfluenza virus type 3, two major causes of severe respiratory tract infection in infants and young children. Moreover, this knowledge has general application to the development and clinical evaluation of other mononegavirus vectors and vaccines.
Collapse
|
35
|
Haynes LM. Progress and Challenges in RSV Prophylaxis and Vaccine Development. J Infect Dis 2013; 208 Suppl 3:S177-83. [DOI: 10.1093/infdis/jit512] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
36
|
Anderson LJ. Respiratory syncytial virus vaccine development. Semin Immunol 2013; 25:160-71. [PMID: 23778071 DOI: 10.1016/j.smim.2013.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/03/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022]
Abstract
The importance of RSV as a respiratory pathogen in young children made it a priority for vaccine development shortly after it was discovered. Unfortunately, after over 50 years of vaccine development no vaccine has yet been licensed and it is not certain which if any vaccines being developed will be successful. The first candidate vaccine, a formalin inactivated RSV vaccine (FI-RSV), was tested in children in the 1960s and predisposed young recipients to more serious disease with later natural infection. The ongoing challenges in developing RSV vaccines are balanced by advances in our understanding of the virus, the host immune response to vaccines and infection, and pathogenesis of disease. It seems likely that with efficient and appropriately focused effort a safe and effective vaccine is within reach. There are at least 4 different target populations for an RSV vaccine, i.e. the RSV naïve young infant, the RSV naïve infant >4-6 months of age, pregnant women, and elderly adults. Each target population has different issues related to vaccine development. Numerous vaccines from live attenuated RSV to virus like particle vaccines have been developed and evaluated in animals. Very few vaccines have been studied in humans and studies in humans are needed to determine which vaccines are worth moving toward licensure. Some changes in the approach may improve the efficiency of evaluating candidate vaccines. The complexity of the challenges for developing RSV vaccines suggests that collaboration among academic, government, and funding institutions and industry is needed to most efficiently achieve an RSV vaccine.
Collapse
Affiliation(s)
- Larry J Anderson
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, United States.
| |
Collapse
|
37
|
Karron RA, Thumar B, Schappell E, Buchholz UJ, Collins PL. Attenuation of live respiratory syncytial virus vaccines is associated with reductions in levels of nasal cytokines. J Infect Dis 2013; 207:1773-9. [PMID: 23482643 PMCID: PMC3693589 DOI: 10.1093/infdis/jit089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/21/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract illness (LRTI) in children. Several promising live-attenuated RSV vaccines are in development. Defining additional markers of attenuation could enhance clinical trials. METHODS We used clinical data, virologic data, and nasal wash (NW) specimens from 20 RSV-naive children enrolled in studies of 4 live-attenuated RSV vaccines. Seven received minimally attenuated cpts248/955 or cpts530/1009 (group 1), 6 received moderately attenuated cpts248/404 (group 2), and 7 received highly attenuated rA2cp248/404/1030/ΔSH (group 3). NW specimens were tested for cytokines and chemokines via an electrochemiluminescence biosensor assay. RESULTS Group 1 exhibited 1 instance of LRTI and significantly higher rates of fever than groups 2 or 3; there were no significant differences in peak titers of vaccine virus in NW specimens. In contrast, levels of interferon γ, interleukin 1β, interleukin 2, interleukin 6, and interleukin 13 were significantly greater in NW specimens from group 1, compared with those from group 3. Maximum increases in levels of most cytokines occurred after peak viral replication but coincided with clinical illness. CONCLUSIONS Substantial increases in proinflammatory, antiinflammatory, T-helper 1, T-helper 2, and regulatory cytokines were detected in children who received minimally attenuated live RSV vaccines but not in children who received highly attenuated vaccines. Levels of cytokines in NW specimens may be useful biomarkers of attenuation for live RSV vaccines.
Collapse
Affiliation(s)
- Ruth A Karron
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public HealthBaltimore, Maryland, USA.
| | | | | | | | | |
Collapse
|
38
|
Dhariwal J, Edwards MR, Johnston SL. Anti-viral agents: potential utility in exacerbations of asthma. Curr Opin Pharmacol 2013; 13:331-6. [PMID: 23664758 PMCID: PMC7172264 DOI: 10.1016/j.coph.2013.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/30/2023]
Abstract
Respiratory virus infections are the single greatest precipitants of asthma exacerbations. Current treatment options for AE are limited and have developed little in recent years. Development of effective anti-viral treatments remains a key target for therapeutic intervention. Approaches include therapies that either target the virus or boost host response to the virus. New clinical studies are needed to further our understanding of the mechanisms of virus induced asthma exacerbation.
Asthma is the most common chronic respiratory disease and its prevalence is on the increase. Respiratory viral infections in early life have been suggested to increase the risk of development of asthma in later life and virus infection remains the single greatest precipitant of asthma exacerbations. The development of effective anti-viral treatments remains a key target for therapeutic intervention. Here we discuss the role of respiratory viral infection in asthma exacerbation and highlight current and potential anti-viral agents and their mechanisms of action.
Collapse
Affiliation(s)
- Jaideep Dhariwal
- Airway Disease Infection Section, National Heart Lung Institute, Imperial College London, UK
| | | | | |
Collapse
|
39
|
Ferolla FM, Hijano DR, Acosta PL, Rodríguez A, Dueñas K, Sancilio A, Barboza E, Caría A, Gago GF, Almeida RE, Castro L, Pozzolo C, Martínez MV, Grimaldi LA, Rebec B, Calvo M, Henrichsen J, Nocito C, González M, Barbero G, Losada JV, Caballero MT, Zurankovas V, Raggio M, Schavlovsky G, Kobylarz A, Wimmenauer V, Bugna J, Williams JV, Sastre G, Flamenco E, Pérez AR, Ferrero F, Libster R, Grijalva CG, Polack FP. Macronutrients during Pregnancy and Life-Threatening Respiratory Syncytial Virus Infections in Children. Am J Respir Crit Care Med 2013; 187:983-90. [DOI: 10.1164/rccm.201301-0016oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 2013; 4:3731-53. [PMID: 23342375 PMCID: PMC3528288 DOI: 10.3390/v4123731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV plays a significant role in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Infection of calves with bovine RSV shares features in common with RSV infection in children, such as an age-dependent susceptibility. In addition, comparable microscopic lesions consisting of bronchiolar neutrophilic infiltrates, epithelial cell necrosis, and syncytial cell formation are observed. Further, our studies have shown an upregulation of pro-inflammatory mediators in RSV-infected calves, including IL-12p40 and CXCL8 (IL-8). This finding is consistent with increased levels of IL-8 observed in children with RSV bronchiolitis. Since rodents lack IL-8, neonatal calves can be useful for studies of IL-8 regulation in response to RSV infection. We have recently found that vitamin D in milk replacer diets can be manipulated to produce calves differing in circulating 25-hydroxyvitamin D3. The results to date indicate that although the vitamin D intracrine pathway is activated during RSV infection, pro-inflammatory mediators frequently inhibited by the vitamin D intacrine pathway in vitro are, in fact, upregulated or unaffected in lungs of infected calves. This review will summarize available data that provide parallels between bovine RSV infection in neonatal calves and human RSV in infants.
Collapse
|
41
|
Abstract
Live-attenuated respiratory syncytial virus (RSV) vaccines offer several advantages for immunization of infants and young children: (1) they do not cause vaccine-associated enhanced RSV disease; (2) they broadly stimulate innate, humoral, and cellular immunity, both systemically and locally in the respiratory tract; (3) they are delivered intranasally; and (4) they replicate in the upper respiratory tract of young infants despite the presence of passively acquired maternally derived RSV neutralizing antibody. This chapter describes early efforts to develop vaccines through the classic methods of serial cold-passage and chemical mutagenesis, and recent efforts using reverse genetics to derive attenuated derivatives of wild-type (WT) RSV and to develop parainfluenza vaccine vectors that express RSV surface glycoproteins.
Collapse
MESH Headings
- Administration, Intranasal
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Child, Preschool
- Genetic Vectors/chemistry
- Genetic Vectors/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunity, Innate/drug effects
- Infant
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/pathology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/pathogenicity
- Respirovirus/genetics
- Respirovirus/immunology
- Reverse Genetics/methods
- Vaccines, Attenuated
Collapse
Affiliation(s)
- Ruth A Karron
- Center for Immunization Research, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA,
| | | | | |
Collapse
|
42
|
Beeler JA, Eichelberger MC. Influenza and respiratory syncytial virus (RSV) vaccines for infants: safety, immunogenicity, and efficacy. Microb Pathog 2012; 55:9-15. [PMID: 23247146 PMCID: PMC7127028 DOI: 10.1016/j.micpath.2012.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 02/04/2023]
Abstract
Respiratory viral infections in infants and young children frequently cause illness that can easily progress to hospitalization and death. There are currently no licensed vaccines to prevent respiratory viral disease in children younger than 6 months, reflecting safety concerns and the difficulty in inducing effective immune responses in infants. This review discusses vaccines that have been developed, or are currently being developed, against influenza and respiratory syncytial virus, with a focus on studies performed to demonstrate their safety and efficacy, and the impact of immunologic immaturity and maternal antibodies on the infant response to vaccines.
Collapse
Affiliation(s)
- Judy A Beeler
- Division of Viral Products, CBER, OVRR, FDA, United States.
| | | |
Collapse
|
43
|
Respiratory syncytial virus modified by deletions of the NS2 gene and amino acid S1313 of the L polymerase protein is a temperature-sensitive, live-attenuated vaccine candidate that is phenotypically stable at physiological temperature. J Virol 2012; 87:1985-96. [PMID: 23236065 DOI: 10.1128/jvi.02769-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the leading viral cause of lower respiratory tract disease in infants and children worldwide. In previous work to develop point mutations in RSV with improved genetic stability, we observed that an attenuating mutation at amino acid position 1321 in the L polymerase protein was subject to deattenuation by a spontaneous second-site compensatory mutation at position 1313 (C. Luongo, C. C. Winter, P. L. Collins, and U. J. Buchholz, J. Virol. 86:10792-10804, 2012). In the present study, we found that deletion of position 1313 (Δ1313), irrespective of the presence of an attenuating mutation at position 1321, provided a new attenuating mutation. RSV bearing Δ1313 replicated in cell culture as efficiently as wild-type virus at 32°C, was restricted for replication at 37°C, and was restricted 50-fold and 150-fold in the upper and lower respiratory tracts, respectively, of mice. We combined the Δ1313 deletion with the previously described, attenuating NS2 gene deletion (ΔNS2) to produce the recombinant live-attenuated RSV vaccine candidate ΔNS2/Δ1313. During in vitro stress tests involving serial passage at incrementally increasing temperatures, a second-site compensatory mutation was detected in close proximity of Δ1313, namely, I1314T. This site was genetically and phenotypically stabilized by an I1314L substitution. Combination of I1314L with ΔNS2/Δ1313 yielded a virus, ΔNS2/Δ1313/1314L, with genetic stability at physiological temperature. This stabilized vaccine candidate was moderately temperature sensitive and had a level of restriction in chimpanzees comparable to that of MEDI-559, a promising RSV vaccine candidate that presently is in clinical trials but lacks stabilized attenuating mutations. The level of attenuation and genetic stability identify ΔNS2/Δ1313/1314L as a promising candidate for evaluation in pediatric phase I studies.
Collapse
|