1
|
Zhao X, Qiao Y, Fan S, Chang X, Zhao J, Zhong K, Han Y, Zhu H, Zhang C. HnRNPM inhibits pseudorabies virus replication by inducing apoptosis in infected cells. Vet Microbiol 2025; 304:110455. [PMID: 40068468 DOI: 10.1016/j.vetmic.2025.110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins that play crucial roles in RNA processing, transcriptional regulation, nucleocytoplasmic transport, and apoptosis. As a member of the hnRNP family, heterogeneous nuclear ribonucleoprotein M (hnRNPM) has been implicated in diverse cellular processes, including the regulation of tumor-associated gene expression, promotion of angiogenesis, enhancement of tumor cell invasion and metastasis, and modulation of RNA virus replication. However, the interaction between hnRNPM and pseudorabies virus (PRV) remains unexplored. In this study, we demonstrated that hnRNPM overexpression in PK15 and 3D4/21 cells significantly inhibited PRV replication, whereas hnRNPM knockdown enhanced viral replication. Although PRV infection did not alter total cellular hnRNPM levels, it induced the nuclear translocation of hnRNPM. Mechanistically, hnRNPM promoted apoptosis in PRV-infected cells by upregulating the expression of cleaved caspase-3, -6, and -7, as well as Bax, while downregulating Bcl-2. This apoptosis induction consequently suppressed PRV replication. Furthermore, hnRNPM was found to colocalize with caspase-6. Our findings reveal that hnRNPM inhibits PRV replication by inducing apoptosis in infected cells. These results not only enhance our understanding of PRV-host interactions but also highlight hnRNPM as a promising therapeutic target for the development of antiviral strategies against PRV.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China
| | - Yan Qiao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China
| | - Songjie Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China
| | - Xiaotian Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China
| | - Jiafu Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China
| | - Kai Zhong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450046, China
| | - Yingqian Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450046, China
| | - Heshui Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairsof the People's Republic of China, Zhengzhou, Henan 450046, China; Key Laboratory of Animal Growth and Development, Zhengzhou, Henan 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Kofler M, Venugopal S, Gill G, Di Ciano-Oliveira C, Kapus A. M-Motif, a potential non-conventional NLS in YAP/TAZ and other cellular and viral proteins that inhibits classic protein import. iScience 2025; 28:112105. [PMID: 40224012 PMCID: PMC11986988 DOI: 10.1016/j.isci.2025.112105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/22/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Multiple mechanisms were proposed to mediate the nuclear import of TAZ/YAP, transcriptional co-activators regulating organ growth and regeneration. Our earlier observations showed that TAZ/YAP harbor a C-terminal, unconventional nuclear localization signal (NLS). Here, we show that this sequence, necessary and sufficient for basal, ATP-independent nuclear import, contains an indispensable central methionine flanked by negatively charged residues. Based on these features, we define the M-motif and propose that it is a new class of NLS, also present and import-competent in other cellular (STAT1 and cyclin B1) and viral (ORF6 of SARS-CoV2, VSV-M) proteins. Accordingly, ORF6 SARS-Cov2 competitively inhibits TAZ/YAP uptake, while TAZ abrogates STAT1 import. Similar to viral M-motif proteins, TAZ binds RAE1 and inhibits classic nuclear protein import, including that of antiviral factors (IRF3 and NF-κB). However, RAE1 is dispensable for TAZ import itself. Thus, the TAZ/YAP NLS has a dual function: it mediates unconventional nuclear import and inhibits classic import, contributing to the suppression of antiviral responses.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | - Gary Gill
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
| | | | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON, Canada
- Department Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
3
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
5
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Westcott CE, Isom CM, Karki D, Sokoloski KJ. Dancing with the Devil: A Review of the Importance of Host RNA-Binding Proteins to Alphaviral RNAs during Infection. Viruses 2023; 15:164. [PMID: 36680204 PMCID: PMC9865062 DOI: 10.3390/v15010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Alphaviruses are arthropod-borne, single-stranded positive sense RNA viruses that rely on the engagement of host RNA-binding proteins to efficiently complete the viral lifecycle. Because of this reliance on host proteins, the identification of host/pathogen interactions and the subsequent characterization of their importance to viral infection has been an intensive area of study for several decades. Many of these host protein interaction studies have evaluated the Protein:Protein interactions of viral proteins during infection and a significant number of host proteins identified by these discovery efforts have been RNA Binding Proteins (RBPs). Considering this recognition, the field has shifted towards discovery efforts involving the direct identification of host factors that engage viral RNAs during infection using innovative discovery approaches. Collectively, these efforts have led to significant advancements in the understanding of alphaviral molecular biology; however, the precise extent and means by which many RBPs influence viral infection is unclear as their specific contributions to infection, as per any RNA:Protein interaction, have often been overlooked. The purpose of this review is to summarize the discovery of host/pathogen interactions during alphaviral infection with a specific emphasis on RBPs, to use new ontological analyses to reveal potential functional commonalities across alphaviral RBP interactants, and to identify host RBPs that have, and have yet to be, evaluated in their native context as RNA:Protein interactors.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Cierra M. Isom
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Deepa Karki
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Disease (CPM), University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
8
|
Zhou R, Li J, Zhang Y, Xiao H, Zuo Y, Ye L. Characterization of plasma metabolites and proteins in patients with herpetic neuralgia and development of machine learning predictive models based on metabolomic profiling. Front Mol Neurosci 2022; 15:1009677. [PMID: 36277496 PMCID: PMC9583257 DOI: 10.3389/fnmol.2022.1009677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes zoster (HZ) is a localized, painful cutaneous eruption that occurs upon reactivation of the herpes virus. Postherpetic neuralgia (PHN) is the most common chronic complication of HZ. In this study, we examined the metabolomic and proteomic signatures of disease progression in patients with HZ and PHN. We identified differentially expressed metabolites (DEMs), differentially expressed proteins (DEPs), and key signaling pathways that transition from healthy volunteers to the acute or/and chronic phases of herpetic neuralgia. Moreover, some specific metabolites correlated with pain scores, disease duration, age, and pain in sex dimorphism. In addition, we developed and validated three optimal predictive models (AUC > 0.9) for classifying HZ and PHN from healthy individuals based on metabolic patterns and machine learning. These findings may reveal the overall metabolomics and proteomics landscapes and proposed the optimal machine learning predictive models, which provide insights into the mechanisms of HZ and PHN.
Collapse
Affiliation(s)
- Ruihao Zhou
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Li
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yujun Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Xiao
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Yunxia Zuo,
| | - Ling Ye
- Department of Pain Management and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ling Ye,
| |
Collapse
|
9
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Cleaves Heterogeneous Nuclear Ribonucleoprotein K to Facilitate Viral Replication. Front Microbiol 2022; 13:945443. [PMID: 35875542 PMCID: PMC9298500 DOI: 10.3389/fmicb.2022.945443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 02/03/2023] Open
Abstract
Seneca Valley virus (SVV) has emerged as an important pathogen that is associated with idiopathic vesicular infection in pigs, causing a potential threat to the global swine industry. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) that shuttles between the nucleus and cytoplasm plays an important role in viral infection. In this study, we observed that infection with SVV induced cleavage, degradation, and cytoplasmic redistribution of hnRNP K in cultured cells, which was dependent on the activity of viral 3Cpro protease. Also, the 3Cpro induced degradation of hnRNP K via the caspase pathway. Further studies demonstrated that SVV 3Cpro cleaved hnRNP K at residue Q364, and the expression of the cleavage fragment hnRNP K (aa.365–464) facilitates viral replication, which is similar to full-length hnRNP K, whereas hnRNP K (aa.1–364) inhibits viral replication. Additionally, hnRNP K interacts with the viral 5′ untranslated region (UTR), and small interfering RNA (siRNA)-mediated knockdown of hnRNP K results in significant inhibition of SVV replication. Overall, our results demonstrated that the hnRNP K positively regulates SVV replication in a protease activity-dependent fashion in which the cleaved C-terminal contributes crucially to the upregulation of SVV replication. This finding of the role of hnRNP K in promoting SVV propagation provides a novel antiviral strategy to utilize hnRNP K as a potential target for therapy.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Zhang A, Sun Y, Jing H, Liu J, Duan E, Ke W, Tao R, Li Y, Wang J, Cao S, Zhao P, Wang H, Zhang Y. Interaction of HnRNP F with the guanine-rich segments in viral antigenomic RNA enhances porcine reproductive and respiratory syndrome virus-2 replication. Virol J 2022; 19:82. [PMID: 35570267 PMCID: PMC9107676 DOI: 10.1186/s12985-022-01811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein (HnRNP) F is a member of HnRNP family proteins that participate in splicing of cellular newly synthesized mRNAs by specifically recognizing tandem guanine-tracts (G-tracts) RNA sequences. Whether HnRNP F could recognize viral-derived tandem G-tracts and affect virus replication remain poorly defined. Methods The effect of HnRNP F on porcine reproductive and respiratory syndrome virus (PRRSV) propagation was evaluated by real-time PCR, western blotting, and plaque-forming unit assay. The association between HnRNP F and PRRSV guanine-rich segments (GRS) were analyzed by RNA pulldown and RNA immunoprecipitation. The expression pattern of HnRNP F was investigated by western blotting and nuclear and cytoplasmic fractionation. Results Knockdown of endogenous HnRNP F effectively blocks the synthesis of viral RNA and nucleocapsid (N) protein. Conversely, overexpression of porcine HnRNP F has the opposite effect. Moreover, RNA pulldown and RNA immunoprecipitation assays reveal that the qRMM1 and qRRM2 domains of HnRNP F recognize the GRS in PRRSV antigenomic RNA. Finally, HnRNP F is redistributed into the cytoplasm and forms a complex with guanine-quadruplex (G4) helicase DHX36 during PRRSV infection. Conclusions These findings elucidate the potential functions of HnRNP F in regulating the proliferation of PRRSV and contribute to a better molecular understanding of host-PRRSV interactions.
Collapse
|
11
|
Chen Y, Chen Y, Yan X, Li Q, Wang P, Sun Y, Xu T. hnRNPub inhibits LPS-induced NF-κB pathway by targeting TRAF6 for K48-linked ubiquitination in miiuy croaker (Miichthys miiuy). FISH & SHELLFISH IMMUNOLOGY 2022; 121:498-504. [PMID: 35074523 DOI: 10.1016/j.fsi.2022.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
As an important adaptor protein in innate immunity, TRAF6 is not only responsible for the transduction of signal pathways, but its E3 ligase activity to transfer ubiquitination has also been widely studied. Under LPS stimulation, TRAF6 transfers the K63-linked ubiquitination chain to TAK1, which in turn activates the transcription factor NF-κB and cell signaling factors downstream of the signaling pathway. However, how TRAF6 expression is regulated remains largely unknown, especially in teleost. In this study, we identified hnRNPub as a suppressor of TRAF6 expression. The mRNA level of hnRNPub significantly increased under LPS stimulation, and hnRNPub inhibited NF-κB signaling pathway by targeting TRAF6. Knockdown of hnRNPub potentiated inflammatory cytokines, such as TNFα,IL-1β,IL-8. Mechanistically, hnRNPub inhibited NF-κB signaling pathway through mediating K48-linked ubiquitination and proteasomal degradation of TRAF6. Thus, our findings reveal that hnRNPub limits LPS-induced innate activation by promoting K48-linked polyubiquitination and proteasomal degradation of TRAF6.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qi Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, China.
| |
Collapse
|
12
|
Importin alpha 1 is required for the nucleus entry of Fowl Adenovirus serotype 4 Fiber-1 protein. Vet Microbiol 2022; 266:109351. [PMID: 35121306 DOI: 10.1016/j.vetmic.2022.109351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
Abstract
Fiber-1 protein (F1) is the structural protein of Fowl Adenovirus serotype 4 (FAdV-4), which could recondite the receptors of host cytomembrane. In this study, we firstly determined that F1 protein located in nucleus of LMH cells after infection with FAdV-4. We additionally revealed that F1 protein had a classic NLS, and the NLS was required for F1 nucleus entry, which was intently associated to the 26th Pro in NLS. The time rule result indicated that some F1 proteins firstly positioned in the nucleus 6 h posttranfection, and it entirely located in the nucleus 12 h posttranfection, then it ordinarily placed in cytoplasm 18 h posttranfection by means of microscopic fluorescence observation and Western Blotting. Then after transfection with pCI-neo-flag-F1 or infection with FAdV-4, the importin alpha 1 was once investigated whether or not it was required for F1 protein nucleus entry through immunofluorescence and/or Co-IP, results demonstrated that the F1 protein and importin alpha 1 co-located in the nucleus 6 h and 12 h posttranfection. The tiers of F1 protein vicinity in nucleus have been additionally investigated after knockdown expression or overexpression of importin alpha 1, and the results further revealed that importin alpha 1 used to be required for F1 protein nucleus entry. Finally, the function of F1 protein nucleus entry was investigated by qPCR, RT-PCR and Western Blotting, and the results revealed that F1 protein nucleus location was conducive to the proliferation of FAdV-4. In summary, we firstly reveal that the F1 protein of FAdV-4 locates in nucleus infected with FAdV-4, and confirm that importin alpha 1 binds to the NLS of F1 protein to nucleus localization, which promotes the proliferation of FAdV-4.
Collapse
|
13
|
Kaur R, Batra J, Stuchlik O, Reed MS, Pohl J, Sambhara S, Lal SK. Heterogeneous Ribonucleoprotein A1 (hnRNPA1) Interacts with the Nucleoprotein of the Influenza a Virus and Impedes Virus Replication. Viruses 2022; 14:v14020199. [PMID: 35215793 PMCID: PMC8880450 DOI: 10.3390/v14020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV), like other viruses, depends on the host cellular machinery for replication and production of progeny. The relationship between a virus and a host is complex, shaped by many spatial and temporal interactions between viral and host proteome, ultimately dictating disease outcome. Therefore, it is imperative to identify host-virus interactions as crucial determinants of disease pathogenies. Heterogeneous ribonucleoprotein A1 (hnRNPA1) is an RNA binding protein involved in the life cycle of many DNA and RNA viruses; however, its role in IAV remains undiscovered. Here we report that human hnRNPA1 physically interacts with the nucleoprotein (NP) of IAV in mammalian cells at different time points of the viral replication cycle. Temporal distribution studies identify hnRNPA1 and NP co-localize in the same cellular milieu in both nucleus and mitochondria in NP-transfected and IAV-infected mammalian cells. Interestingly, hnRNPA1 influenced NP gene expression and affected viral replication. Most importantly, hnRNPA1 knockdown caused a significant increase in NP expression and enhanced viral replication (93.82%) in IAV infected A549 cells. Conversely, hnRNPA1 overexpression reduced NP expression at the mRNA and protein levels and impeded virus replication by (60.70%), suggesting antagonistic function. Taken together, results from this study demonstrate that cellular hnRNPA1 plays a protective role in the host hitherto unknown and may hold potential as an antiviral target to develop host-based therapeutics against IAV.
Collapse
Affiliation(s)
- Ramandeep Kaur
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Jyoti Batra
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
| | - Olga Stuchlik
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Matthew S. Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Jan Pohl
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (O.S.); (M.S.R.); (J.P.)
- Correspondence: (S.S.); (S.K.L.)
| | - Sunil Kumar Lal
- School of Science, Monash University, Selangor 47500, Malaysia; (R.K.); (J.B.)
- Tropical Medicine & Biology Platform, Monash University, Selangor 47500, Malaysia
- Correspondence: (S.S.); (S.K.L.)
| |
Collapse
|
14
|
Kler S, Ma M, Narayan S, Ahrens MB, Pan YA. Cre-Dependent Anterograde Transsynaptic Labeling and Functional Imaging in Zebrafish Using VSV With Reduced Cytotoxicity. Front Neuroanat 2021; 15:758350. [PMID: 34720892 PMCID: PMC8549678 DOI: 10.3389/fnana.2021.758350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
The small size and translucency of larval zebrafish (Danio rerio) have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory (vglut2a positive) and inhibitory (gad1b positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.
Collapse
Affiliation(s)
- Stanislav Kler
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Manxiu Ma
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Sujatha Narayan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Y. Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
15
|
Tong L, Chu Z, Gao X, Yang M, Adam FEA, Theodore DWP, Liu H, Wang X, Xiao S, Yang Z. Newcastle disease virus V protein interacts with hnRNP H1 to promote viral replication. Vet Microbiol 2021; 260:109093. [PMID: 34265512 DOI: 10.1016/j.vetmic.2021.109093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
The interactions between host cellular proteins and viral proteins are important for successful infection by viruses. Previous studies from our group have identified various host cellular proteins that can interact with the Newcastle disease virus V protein (Chu et al., 2018a), but their function in NDV replication has not been fully determined. The present study reports that heterogenous nuclear ribonucleoprotein H1 (hnRNP H1) can interact with NDV V protein in yeast. The immunofluorescence results showed that hnRNP H1 and V protein could colocalize in the cytoplasm of a chicken embryo fibroblast cell line (DF-1 cells). Co-immunoprecipitation assays further verified the interaction of these two proteins. The effects of overexpression and knockdown of hnRNP H1 on NDV replication were evaluated in DF-1 cells through real time quantitative PCR (RT-qPCR) and plaque assays. The regulation of V protein on hnRNP H1 expression was also examined. The results indicated that overexpression of hnRNP H1 facilitated NDV replication, while knockdown of hnRNP H1 decreased NDV replication. It was also shown that V protein could regulate hnRNP H1 expression at the protein level instead of the transcription level. The effect of V protein and hnRNP H1 on the DF-1 cell cycle was also tested and the results revealed that V protein may regulate cell proliferation by controlling the expression of hnRNP H1. Taken together, these results suggest that NDV V protein could promote viral replication by interacting with hnRNP H1.
Collapse
Affiliation(s)
- Lina Tong
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810000, China
| | - Zhili Chu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaolong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810000, China
| | - Mengqing Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fathalrhman Eisa A Adam
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | | | - Haijin Liu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Contu L, Balistreri G, Domanski M, Uldry AC, Mühlemann O. Characterisation of the Semliki Forest Virus-host cell interactome reveals the viral capsid protein as an inhibitor of nonsense-mediated mRNA decay. PLoS Pathog 2021; 17:e1009603. [PMID: 34019569 PMCID: PMC8174725 DOI: 10.1371/journal.ppat.1009603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/03/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
The positive-sense, single-stranded RNA alphaviruses pose a potential epidemic threat. Understanding the complex interactions between the viral and the host cell proteins is crucial for elucidating the mechanisms underlying successful virus replication strategies and for developing specific antiviral interventions. Here we present the first comprehensive protein-protein interaction map between the proteins of Semliki Forest Virus (SFV), a mosquito-borne member of the alphaviruses, and host cell proteins. Among the many identified cellular interactors of SFV proteins, the enrichment of factors involved in translation and nonsense-mediated mRNA decay (NMD) was striking, reflecting the virus' hijacking of the translation machinery and indicating viral countermeasures for escaping NMD by inhibiting NMD at later time points during the infectious cycle. In addition to observing a general inhibition of NMD about 4 hours post infection, we also demonstrate that transient expression of the SFV capsid protein is sufficient to inhibit NMD in cells, suggesting that the massive production of capsid protein during the SFV reproduction cycle is responsible for NMD inhibition.
Collapse
Affiliation(s)
- Lara Contu
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Balistreri
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Abstract
The subcellular localization of RNAs correlates with their function and how they are regulated. Most protein-coding mRNAs are exported into the cytoplasm for protein synthesis, while some mRNA species, long noncoding RNAs, and some regulatory element-associated unstable transcripts tend to be retained in the nucleus, where they function as a regulatory unit and/or are regulated by nuclear surveillance pathways. While the mechanisms regulating mRNA export and localization have been well summarized, the mechanisms governing nuclear retention of RNAs, especially of noncoding RNAs, are seldomly reviewed. In this review, we summarize recent advances in the mechanistic study of RNA nuclear retention, especially for noncoding RNAs, from the angle of cis-acting elements embedded in RNA transcripts and their interaction with trans-acting factors. We also try to illustrate the general principles of RNA nuclear retention and we discuss potential areas for future investigation.
Collapse
Affiliation(s)
- Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Kato K, Ikliptikawati DK, Kobayashi A, Kondo H, Lim K, Hazawa M, Wong RW. Overexpression of SARS-CoV-2 protein ORF6 dislocates RAE1 and NUP98 from the nuclear pore complex. Biochem Biophys Res Commun 2020; 536:59-66. [PMID: 33360543 PMCID: PMC7733692 DOI: 10.1016/j.bbrc.2020.11.115] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
The novel human betacoronavirus SARS-CoV-2 has caused an unprecedented pandemic in the 21st century. Several studies have revealed interactions between SARS-CoV-2 viral proteins and host nucleoporins, yet their functions are largely unknown. Here, we demonstrate that the open-reading frame 6 (ORF6) of SARS-CoV-2 can directly manipulate localization and functions of nucleoporins. We found that ORF6 protein disrupted nuclear rim staining of nucleoporins RAE1 and NUP98. Consequently, this disruption caused aberrant nucleocytoplasmic trafficking and led to nuclear accumulation of mRNA transporters such as hnRNPA1. Ultimately, host cell nucleus size was reduced and cell growth was halted.
Collapse
Affiliation(s)
- Koki Kato
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Dini Kurnia Ikliptikawati
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Akiko Kobayashi
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Hiroya Kondo
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Masaharu Hazawa
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Richard W Wong
- School of Natural System, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Cell-Bionomics Research Unit, Institute for Frontier Science Initiative (INFINITI), Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan; WPI-Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
19
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
20
|
On the Host Side of the Hepatitis E Virus Life Cycle. Cells 2020; 9:cells9051294. [PMID: 32456000 PMCID: PMC7291229 DOI: 10.3390/cells9051294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E virus (HEV) infection is one of the most common causes of acute hepatitis in the world. HEV is an enterically transmitted positive-strand RNA virus found as a non-enveloped particle in bile as well as stool and as a quasi-enveloped particle in blood. Current understanding of the molecular mechanisms and host factors involved in productive HEV infection is incomplete, but recently developed model systems have facilitated rapid progress in this area. Here, we provide an overview of the HEV life cycle with a focus on the host factors required for viral entry, RNA replication, assembly and release. Further developments of HEV model systems and novel technologies should yield a broader picture in the future.
Collapse
|
21
|
Pingale KD, Kanade GD, Karpe YA. Heterogeneous Nuclear Ribonucleoproteins Participate in Hepatitis E Virus Replication. J Mol Biol 2020; 432:2369-2387. [PMID: 32119874 DOI: 10.1016/j.jmb.2020.02.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Coordinated assembly of viral and host factors is essential for the successful propagation of viruses as well as the generation of host antiviral response. Previous studies from our group, as well as from other groups, have identified host proteins interacting with various components of the hepatitis E virus (HEV). However, the functional relevance of host protein interactions in HEV replication context has been notably overlooked. The present study reports that heterogeneous nuclear ribonucleoproteins (hnRNPs), namely hnRNPK, hnRNPA2B1, hnRNPH, PCBP1 and PCBP2, interact with HEV RNA promoter and RNA-dependent RNA polymerase to regulate HEV replication. We found that hnRNPK and hnRNPA2B1 are the virus-supportive factors interacting with HEV RNA at promoter regions along with HEV polymerase protein, which are essential for HEV replication in the cells. Contrarily, hnRNPH, PCBP1 and PCBP2 are the antiviral factors that interact exclusively with HEV genomic promoter and inhibit HEV replication in Huh7 S10-3 cells. In vitro RNA-binding assays revealed that the antiviral hnRNP proteins hamper the binding of virus-supportive hnRNP proteins at HEV genomic promoter. In the binding reaction, the binding of HEV polymerase protein to the genomic promoter is slightly affected by the presence of antiviral hnRNPH. In an effort of visualizing the subcellular localization of hnRNP proteins in the HEV replication scenario in the Huh7 cells, we showed that hnRNPK, hnRNPA2B1, hnRNPH, PCBP1 and PCBP2 redistribute from nucleus to cytoplasm. In conclusion, our study highlights the importance of hnRNP proteins in HEV replication regulation.
Collapse
Affiliation(s)
- Kunal D Pingale
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Gayatri D Kanade
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- Agharkar Research Institute, Nanobioscience Group, G. G. Agarkar Road, Pune 411004, India; Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
22
|
Kaur R, Lal SK. The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Rev Med Virol 2020; 30:e2097. [PMID: 31989716 PMCID: PMC7169068 DOI: 10.1002/rmv.2097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Viruses are obligate parasites known to interact with a wide variety of host proteins at different stages of infection. Current antiviral treatments target viral proteins and may be compromised due to the emergence of drug resistant viral strains. Targeting viral-host interactions is now gaining recognition as an alternative approach against viral infections. Recent research has revealed that heterogeneous ribonucleoprotein A1, an RNA-binding protein, plays an essential functional and regulatory role in the life cycle of many viruses. In this review, we summarize the interactions between heterogeneous ribonucleoprotein A1 (hnRNPA1) and multiple viral proteins during the life cycle of RNA and DNA viruses. hnRNPA1 protein levels are modulated differently, in different viruses, which further dictates its stability, function, and intracellular localization. Multiple reports have emphasized that in Sindbis virus, enteroviruses, porcine endemic diarrhea virus, and rhinovirus infection, hnRNPA1 enhances viral replication and survival. However, in others like hepatitis C virus and human T-cell lymphotropic virus, it exerts a protective response. The involvement of hnRNPA1 in viral infections highlights its importance as a central regulator of host and viral gene expression. Understanding the nature of these interactions will increase our understanding of specific viral infections and pathogenesis and eventually aid in the development of novel and robust antiviral intervention strategies.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
23
|
West KO, Scott HM, Torres-Odio S, West AP, Patrick KL, Watson RO. The Splicing Factor hnRNP M Is a Critical Regulator of Innate Immune Gene Expression in Macrophages. Cell Rep 2019; 29:1594-1609.e5. [PMID: 31693898 PMCID: PMC6981299 DOI: 10.1016/j.celrep.2019.09.078] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
While transcriptional control of innate immune gene expression is well characterized, almost nothing is known about how pre-mRNA splicing decisions influence, or are influenced by, macrophage activation. Here, we demonstrate that the splicing factor hnRNP M is a critical repressor of innate immune gene expression and that its function is regulated by pathogen sensing cascades. Loss of hnRNP M led to hyperinduction of a unique regulon of inflammatory and antimicrobial genes following diverse innate immune stimuli. While mutating specific serines on hnRNP M had little effect on its ability to control pre-mRNA splicing or transcript levels of housekeeping genes in resting macrophages, it greatly impacted the protein's ability to dampen induction of specific innate immune transcripts following pathogen sensing. These data reveal a previously unappreciated role for pattern recognition receptor signaling in controlling splicing factor phosphorylation and establish pre-mRNA splicing as a critical regulatory node in defining innate immune outcomes.
Collapse
Affiliation(s)
- Kelsi O West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Haley M Scott
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sylvia Torres-Odio
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - A Phillip West
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
24
|
Bellmann J, Monette A, Tripathy V, Sójka A, Abo-Rady M, Janosh A, Bhatnagar R, Bickle M, Mouland AJ, Sterneckert J. Viral Infections Exacerbate FUS-ALS Phenotypes in iPSC-Derived Spinal Neurons in a Virus Species-Specific Manner. Front Cell Neurosci 2019; 13:480. [PMID: 31695598 PMCID: PMC6817715 DOI: 10.3389/fncel.2019.00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) arises from an interplay of genetic mutations and environmental factors. ssRNA viruses are possible ALS risk factors, but testing their interaction with mutations such as in FUS, which encodes an RNA-binding protein, has been difficult due to the lack of a human disease model. Here, we use isogenic induced pluripotent stem cell (iPSC)-derived spinal neurons (SNs) to investigate the interaction between ssRNA viruses and mutant FUS. We find that rabies virus (RABV) spreads ALS phenotypes, including the formation of stress granules (SGs) with aberrant composition due to increased levels of FUS protein, as well as neurodegeneration and reduced restriction activity by FUS mutations. Consistent with this, iPSC-derived SNs harboring mutant FUS are more sensitive to human immunodeficiency virus (HIV-1) and Zika viruses (ZIKV). We demonstrate that RABV and HIV-1 exacerbate cytoplasmic mislocalization of FUS. Our results demonstrate that viral infections worsen ALS pathology in SNs with genetic risk factors, suggesting a novel role for viruses in modulating patient phenotypes.
Collapse
Affiliation(s)
- Jessica Bellmann
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vadreenath Tripathy
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Anna Sójka
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Masin Abo-Rady
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Antje Janosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew J Mouland
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Balaguer N, Moreno I, Herrero M, González M, Simón C, Vilella F. Heterogeneous nuclear ribonucleoprotein C1 may control miR-30d levels in endometrial exosomes affecting early embryo implantation. Mol Hum Reprod 2019; 24:411-425. [PMID: 29846695 DOI: 10.1093/molehr/gay026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Is there a specific mechanism to load the microRNA (miRNA), hsa-miR-30d, into exosomes to facilitate maternal communication with preimplantation embryos? SUMMARY ANSWER The heterogeneous nuclear ribonucleoprotein C1 (hnRNPC1) is involved in the internalization of endometrial miR-30d into exosomes to prepare for its subsequent incorporation into trophectoderm cells. WHAT IS KNOWN ALREADY Our group previously described a novel cell-to-cell communication mechanism involving the delivery of endometrial miRNAs from the maternal endometrium to the trophectoderm cells of preimplantation embryos. Specifically, human endometrial miR-30d is taken up by murine blastocysts causing the overexpression of certain genes involved in embryonic adhesion (Itb3, Itga7 and Cdh5) increasing embryo adhesion rates. STUDY DESIGN, SIZE, DURATION Transfer of maternal miR-30d to preimplantation embryos was confirmed by co-culture of wild-type (WT) and miR-30d knockout (KO) murine embryos with primary cultures of human endometrial epithelial cells (hEECs) in which mir-30d was labeled with specific Molecular Beacon (MB) or SmartFlare probes. Potential molecules responsible for the miR-30d loading into exosomes were purified by pull-down analysis with a biotinylated form of miR-30d on protein lysates from human endometrial exosomes, identified using mass spectrometry and assessed by flow cytometry, western blotting and co-localization studies. The role of hnRNPC1 in the miR-30d loading and transportation was interrogated by quantification of this miRNA in exosomes isolated from endometrial cells in which hnRNPC1 was transiently silenced using small interference RNA. Finally, the transfer of miR-30d to WT and KO embryos was assessed upon co-culture with sihnRNPC1 transfected cells. PARTICIPANTS/MATERIALS, SETTING, METHODS Murine embryos from miR-30d WT and KO mice, (strain MirC26tm1Mtm/Mmjax), were obtained by oviduct flushing of superovulated females. Endometrial Exosomes were purified by ultracentrifugation of supernatants from primary cultures of hEECs or Ishikawa cells. MB and Smartflare miR-30d probes were detected by confocal and/or transmission electron microscopy (TEM). hEECs and exosomes derived from them were subjected to pull-down with a biotinylated form of miR-30d. Captured proteins were identified by mass spectrometry (MS/MS). Western blotting was performed to detect hnRNPC1 and CYR61 in whole lysates, subcellular fractions and secreted vesicles from hEECs. Co-localization studies of the selected proteins with the exosomal marker CD63 were performed. FACS analysis was carried out to determine the presence of hnRNPC1 inside exosomes. Silencing of hnRNPC1 was conducted in the Ishikawa Cell Line with the Smart Pool Accell HNRNPC siRNA at a final concentration of 50 nM. RT-qPCRs were done to determine the messenger levels of miR-30d in cells and exosomes. Co-cultures of WT and KO embryos were established with Ishikawa cells double-transfected with sihnRPNC1 and MB probes. MAIN RESULTS AND THE ROLE OF CHANCE MS/MS analysis allowed us to identify hnRNPC1 as a possible protein to influence miR-30d loading into exosomes. Co-localization studies of hnRNPC1 with CD63 and FACS analyses suggested the presence of hnRNPC1 inside exosomes. Silencing of hnRNPC1 in Ishikawa cells resulted in a sharp decrease of the levels of miR-30d in both epithelial-like cells (P = 0.0001) and exosomes (P = 0.0152), suggesting its potential role in miR-30d biogenesis and transfer. Co-culture assays of miR-30d KO embryos with sihnRNPC1 hEECs revealed a decrease in embryo-miR-30d acquisition during the adhesion and invasion stages. In turn, transient silencing of hnRNPC1 results in a significant decrease of blastocyst adhesion compared to mock transfection conditions using Block-it, in both WT [Mean ± SD; 67 ± 10.0% vs. 38 ± 8.5%(P = 0.0006)] and miR-30d KO embryos [Mean ± SD; 50 ± 11.5% vs. 26 ± 8.8% (P = 0.0029) (n = 2); 14 embryos transferred per condition tested]. LARGE-SCALE DATA MS/MS data are available via ProteomeXchange with identifier PXD008773. LIMITATIONS, REASONS FOR CAUTION The Ishikawa Cell Line was used as a model of hEECs in silencing experiments due to the low survival rates of primary hEECs after transfection. WIDER IMPLICATIONS OF THE FINDINGS The data show that hnRNPC1 may be involved in the internalization of miR-30d inside exosomes. The decreased rates of embryo adhesion in endometrial epithelial-like cells transiently silenced with sihnRNPC1evidence that hnRNPC1 could be an important player in the maternal-embryo communication established in the early stages of implantation. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by the Miguel Servet Program Type I of Instituto de Salud Carlos III [CP13/00038]; FIS project [PI14/00545] to F.V.; the 'Atracció de Talent' Program from VLC-CAMPUS [UV-INV-PREDOC14-178329 to NB]; a Torres-Quevedo grant (PTQ-13-06133) by the Spanish Ministry of Economy and Competitiveness to IM and MINECO/FEDER Grant [SAF2015-67154-R] to C.S. The authors declare there is no conflict of interest.
Collapse
Affiliation(s)
- N Balaguer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - I Moreno
- Department of Basic Research, Igenomix, S.L. Parque Tecnológico de Paterna, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Stanford University, CA, USA
| | - M Herrero
- Department of Basic Research, Igenomix, S.L. Parque Tecnológico de Paterna, Valencia, Spain
| | - M González
- Department of Basic Research, Igenomix, S.L. Parque Tecnológico de Paterna, Valencia, Spain
| | - C Simón
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain.,Department of Basic Research, Igenomix, S.L. Parque Tecnológico de Paterna, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Stanford University, CA, USA.,Department of Reproductive Medicine, Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| | - F Vilella
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, CA, USA.,Department of Reproductive Medicine, Igenomix Foundation, Instituto de Investigación Sanitaria Hospital Clínico (INCLIVA), Valencia, Spain
| |
Collapse
|
26
|
Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus-host interactions? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1543. [PMID: 31034770 PMCID: PMC6767064 DOI: 10.1002/wrna.1543] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Upon viral infection, a tug of war is triggered between host cells and viruses to maintain/gain control of vital cellular functions, the result of which will ultimately dictate the fate of the host cell. Among these essential cellular functions, alternative splicing (AS) is an important RNA maturation step that allows exons, or parts of exons, and introns to be retained in mature transcripts, thereby expanding proteome diversity and function. AS is widespread in higher eukaryotes, as it is estimated that nearly all genes in humans are alternatively spliced. Recent evidence has shown that upon infection by numerous viruses, the AS landscape of host‐cells is affected. In this review, we summarize recent advances in our understanding of how virus infection impacts the AS of cellular transcripts. We also present various molecular mechanisms allowing viruses to modulate cellular AS. Finally, the functional consequences of these changes in the RNA splicing signatures during virus–host interactions are discussed. This article is categorized under:RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patricia Roy
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Martin Bisaillon
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
27
|
Chauhan K, Kalam H, Dutt R, Kumar D. RNA Splicing: A New Paradigm in Host-Pathogen Interactions. J Mol Biol 2019; 431:1565-1575. [PMID: 30857970 DOI: 10.1016/j.jmb.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 12/21/2022]
Abstract
RNA splicing brings diversity to the eukaryotic proteome. Different spliced variants of a gene may differ in their structure, function, localization, and stability influencing protein stoichiometry and physiological outcomes. Alternate spliced variants of different genes are known to associate with various chronic pathologies including cancer. Emerging evidence suggests precise regulation of splicing as fundamental to normal well-being. In this context, infection-induced alternative splicing has emerged as a new pivot of host function, which pathogenic microbes can alter-directly or indirectly-to tweak the host immune responses against the pathogen. The implications of these findings are vast, and although not explored much in the case of pathogenic infections, we present here examples from splicing mediated regulation of immune responses across a variety of conditions and explore how this fascinating finding brings a new paradigm to host-pathogen interactions.
Collapse
Affiliation(s)
- Komal Chauhan
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Haroon Kalam
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ravi Dutt
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
28
|
Host Range and Population Survey of Spodoptera frugiperda Rhabdovirus. J Virol 2019; 93:JVI.02028-18. [PMID: 30626676 DOI: 10.1128/jvi.02028-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 11/20/2022] Open
Abstract
The Sf9 and Sf21 cell lines derived from ovarian tissues of the wide-host-range phytophagous lepidopteran Spodoptera frugiperda are widely used for research and commercial-scale production of recombinant proteins. These cell lines are chronically infected with a rhabdovirus (Sf-RV) that does not cause any overt cytopathic effects. We demonstrate that wild populations of S. frugiperda in the eastern United States and Caribbean are infected with genetically diverse strains of Sf-RV and that this virus is also capable of infecting cells of Spodoptera exigua, Heliothis subflexa, and Bombyx mori Feeding studies demonstrated the ability of S. frugiperda larvae to deposit Sf-RV onto human-consumed vegetables during feeding. Although no evidence for replication in two species of plant cells was detected, subcellular localization studies demonstrated that the Sf-RV nucleocapsid was targeted to plasmodesmata, while two forms of the accessory protein were differentiated on the basis of their ability to localize to nuclei. Collectively, the results from this study suggest that environmental exposure of humans to Sf-RV is likely to be commonplace and frequent, but its inability to replicate in plant or human cells suggests that there is no substantial risk to human health.IMPORTANCE Insect-derived cell lines are widely used commercially for the production of vaccines and protein-based pharmaceuticals. After decades of safe and beneficial use, it was a surprise to the biotechnology industry to discover an endemic rhabdovirus in Sf9 cells. This discovery was made possible only by the substantial advancements in DNA sequencing technologies. Given the public health concerns associated with many rhabdovirus species, several initiatives were undertaken to establish that Spodoptera frugiperda rhabdovirus (Sf-RV) does not pose a threat to humans. Such actions include the generation of cell lines that have been cleared of Sf-RV. Given that Sf9 is derived from a moth whose larvae feed on human-edible foods, we explored the prevalence of Sf-RV in its wild and lab-grown populations, as well as its ability to be deposited on food items during feeding. Collectively, our data suggest that there is no overt risk from exposure to Sf-RV.
Collapse
|
29
|
Boudreault S, Armero VES, Scott MS, Perreault JP, Bisaillon M. The Epstein-Barr virus EBNA1 protein modulates the alternative splicing of cellular genes. Virol J 2019; 16:29. [PMID: 30832682 PMCID: PMC6399920 DOI: 10.1186/s12985-019-1137-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Alternative splicing (AS) is an important mRNA maturation step that allows increased variability and diversity of proteins in eukaryotes. AS is dysregulated in numerous diseases, and its implication in the carcinogenic process is well known. However, progress in understanding how oncogenic viruses modulate splicing, and how this modulation is involved in viral oncogenicity has been limited. Epstein-Barr virus (EBV) is involved in various cancers, and its EBNA1 oncoprotein is the only viral protein expressed in all EBV malignancies. Methods In the present study, the ability of EBNA1 to modulate the AS of cellular genes was assessed using a high-throughput RT-PCR approach to examine AS in 1238 cancer-associated genes. RNA immunoprecipitation coupled to RNA sequencing (RIP-Seq) assays were also performed to identify cellular mRNAs bound by EBNA1. Results Upon EBNA1 expression, we detected modifications to the AS profiles of 89 genes involved in cancer. Moreover, we show that EBNA1 modulates the expression levels of various splicing factors such as hnRNPA1, FOX-2, and SF1. Finally, RNA immunoprecipitation coupled to RIP-Seq assays demonstrate that EBNA1 immunoprecipitates specific cellular mRNAs, but not the ones that are spliced differently in EBNA1-expressing cells. Conclusion The EBNA1 protein can modulate the AS profiles of numerous cellular genes. Interestingly, this modulation protein does not require the RNA binding activity of EBNA1. Overall, these findings underline the novel role of EBNA1 as a cellular splicing modulator. Electronic supplementary material The online version of this article (10.1186/s12985-019-1137-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Victoria E S Armero
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
30
|
Meng W, Wang XJ, Wang HCR. Targeting nuclear proteins for control of viral replication. Crit Rev Microbiol 2019; 45:495-513. [DOI: 10.1080/1040841x.2018.1553848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| |
Collapse
|
31
|
Cytoplasmic Relocalization and Colocalization with Viroplasms of Host Cell Proteins, and Their Role in Rotavirus Infection. J Virol 2018; 92:JVI.00612-18. [PMID: 29769336 DOI: 10.1128/jvi.00612-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Rotavirus replicates in the cytoplasm of infected cells in unique virus-induced cytoplasmic inclusion bodies called viroplasms (VMs), which are nucleated by two essential viral nonstructural proteins, NSP2 and NSP5. However, the precise composition of the VM, the intracellular localization of host proteins during virus infection, and their association with VMs or role in rotavirus growth remained largely unexplored. Mass spectrometry analyses revealed the presence of several host heterogeneous nuclear ribonucleoproteins (hnRNPs), AU-rich element-binding proteins (ARE-BPs), and cytoplasmic proteins from uninfected MA104 cell extracts in the pulldown (PD) complexes of the purified viroplasmic proteins NSP2 and NSP5. Immunoblot analyses of PD complexes from RNase-treated and untreated cell extracts, analyses of coimmunoprecipitation complexes using RNase-treated infected cell lysates, and direct binding assays using purified recombinant proteins further demonstrated that the interactions of the majority of the hnRNPs and ARE-BPs with viroplasmic proteins are RNA independent. Time course immunoblot analysis of the nuclear and cytoplasmic fractions from rotavirus-infected and mock-infected cells and immunofluorescence confocal microscopy analyses of virus-infected cells revealed a surprising sequestration of the majority of the relocalized host proteins in viroplasms. Analyses of ectopic overexpression and small interfering RNA (siRNA)-mediated downregulation of expression revealed that host proteins either promote or inhibit viral protein expression and progeny virus production in virus-infected cells. This study demonstrates that rotavirus induces the cytoplasmic relocalization and sequestration of a large number of nuclear and cytoplasmic proteins in viroplasms, subverting essential cellular processes in both compartments to promote rapid virus growth, and reveals that the composition of rotavirus viroplasms is much more complex than is currently understood.IMPORTANCE Rotavirus replicates exclusively in the cytoplasm. Knowledge on the relocalization of nuclear proteins to the cytoplasm or the role(s) of host proteins in rotavirus infection is very limited. In this study, it is demonstrated that rotavirus infection induces the cytoplasmic relocalization of a large number of nuclear RNA-binding proteins (hnRNPs and AU-rich element-binding proteins). Except for a few, most nuclear hnRNPs and ARE-BPs, nuclear transport proteins, and some cytoplasmic proteins directly interact with the viroplasmic proteins NSP2 and NSP5 in an RNA-independent manner and become sequestered in the viroplasms of infected cells. The host proteins differentially affected viral gene expression and virus growth. This study demonstrates that rotavirus induces the relocalization and sequestration of a large number of host proteins in viroplasms, affecting host processes in both compartments and generating conditions conducive for virus growth in the cytoplasm of infected cells.
Collapse
|
32
|
Goodin MM. Protein Localization and Interaction Studies in Plants: Toward Defining Complete Proteomes by Visualization. Adv Virus Res 2017; 100:117-144. [PMID: 29551133 DOI: 10.1016/bs.aivir.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein interaction and localization studies in plants are a fundamental component of achieving mechanistic understanding of virus:plant interactions at the systems level. Many such studies are conducted using transient expression assays in leaves of Nicotiana benthamiana, the most widely used experimental plant host in virology, examined by laser-scanning confocal microscopy. This chapter provides a workflow for protein interaction and localization experiments, with particular attention to the many control and supporting assays that may also need to be performed. Basic principles of microscopy are introduced to aid researchers in the early stages of adding imaging techniques to their experimental repertoire. Three major types of imaging-based experiments are discussed in detail: (i) protein localization using autofluorescent proteins, (ii) colocalization studies, and (iii) bimolecular fluorescence complementation, with emphasis on judicious interpretation of the data obtained from these approaches. In addition to establishing a general framework for protein localization experiments in plants, the need for proteome-scale localization projects is discussed, with emphasis on nuclear-localized proteins.
Collapse
|
33
|
Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements. PLoS Negl Trop Dis 2016; 10:e0004921. [PMID: 27556644 PMCID: PMC4996428 DOI: 10.1371/journal.pntd.0004921] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. METHODOLOGY/PRINCIPAL FINDINGS Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. CONCLUSIONS/SIGNIFICANCE The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.
Collapse
Affiliation(s)
- Olga V. Viktorovskaya
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
34
|
Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13:131. [PMID: 27473856 PMCID: PMC4966872 DOI: 10.1186/s12985-016-0590-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.
Collapse
Affiliation(s)
- Meghana Rastogi
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit Kumar Singh
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
35
|
Redondo N, Madan V, Alvarez E, Carrasco L. Impact of Vesicular Stomatitis Virus M Proteins on Different Cellular Functions. PLoS One 2015; 10:e0131137. [PMID: 26091335 PMCID: PMC4474437 DOI: 10.1371/journal.pone.0131137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Three different matrix (M) proteins termed M1, M2 and M3 have been described in cells infected with vesicular stomatitis virus (VSV). Individual expression of VSV M proteins induces an evident cytopathic effect including cell rounding and detachment, in addition to a partial inhibition of cellular protein synthesis, likely mediated by an indirect mechanism. Analogous to viroporins, M1 promotes the budding of new virus particles; however, this process does not produce an increase in plasma membrane permeability. In contrast to M1, M2 and M3 neither interact with the cellular membrane nor promote the budding of double membrane vesicles at the cell surface. Nonetheless, all three species of M protein interfere with the transport of cellular mRNAs from the nucleus to the cytoplasm and also modulate the redistribution of the splicing factor. The present findings indicate that all three VSV M proteins share some activities that interfere with host cell functions.
Collapse
Affiliation(s)
- Natalia Redondo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
- * E-mail:
| | - Vanesa Madan
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Enrique Alvarez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
| | - Luis Carrasco
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
36
|
Brunetti JE, Scolaro LA, Castilla V. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication. Virus Res 2015; 203:84-91. [DOI: 10.1016/j.virusres.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 02/05/2023]
|
37
|
Dechtawewat T, Songprakhon P, Limjindaporn T, Puttikhunt C, Kasinrerk W, Saitornuang S, Yenchitsomanus PT, Noisakran S. Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virol J 2015; 12:14. [PMID: 25890165 PMCID: PMC4351676 DOI: 10.1186/s12985-014-0219-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Host and viral proteins are involved in dengue virus (DENV) replication. Heterogeneous ribonucleoprotein (hnRNP) C1/C2 are abundant host cellular proteins that exhibit RNA binding activity and play important roles in the replication of positive-strand RNA viruses such as poliovirus and hepatitis C virus. hnRNP C1/C2 have previously been shown to interact with vimentin and viral NS1 in DENV-infected cells; however, their functional role in DENV replication is not clearly understood. In the present study, we investigated the role of hnRNP C1/C2 in DENV replication by using an in vitro model of DENV infection in a hepatocyte cell line (Huh7) and siRNA-mediated knockdown of hnRNP C1/C2. METHODS Huh7 cells were transfected with hnRNP C1/C2-specific siRNA or irrelevant siRNA (control) followed by infection with DENV. Mock and DENV-infected knockdown cells were processed for immunoprecipitation using hnRNP C1/C2-specific antibody or their isotype-matched control antibody. The immunoprecipitated samples were subjected to RNA extraction and reverse transcriptase polymerase chain reaction (RT-PCR) for detection of DENV RNA. In addition, the knockdown cells harvested at varying time points after the infection were assessed for cell viability, cell proliferation, percentage of DENV infection, amount of viral RNA, and viral E and NS1 expression. Culture supernatants were subjected to focus forming unit assays to determine titers of infectious DENV. DENV luciferase reporter assay was also set up to determine viral translation. RESULTS Immunoprecipitation with the anti-hnRNP C1/C2 antibody and subsequent RT-PCR revealed the presence of DENV RNA in the immunoprecipitated complex containing hnRNP C1/C2 proteins. Transfection with hnRNP C1/C2-specific siRNA resulted in a significant reduction of hnRNP C1/C2 mRNA and protein levels but did not induce cell death during DENV infection. The reduced hnRNP C1/C2 expression decreased the percentage of DENV antigen-positive cells as well as the amount of DENV RNA and the relative levels of DENV E and NS1 proteins; however, it had no direct effect on DENV translation. In addition, a significant reduction of DENV titers was observed in the supernatant from DENV-infected cells following the knockdown of hnRNP C1/C2. CONCLUSIONS Our findings suggest that hnRNP C1/C2 is involved in DENV replication at the stage of viral RNA synthesis.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Chiang Mai, 50200, Thailand.
| | - Sawanan Saitornuang
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sansanee Noisakran
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
38
|
Misasi J, Sullivan NJ. Camouflage and misdirection: the full-on assault of ebola virus disease. Cell 2014; 159:477-86. [PMID: 25417101 DOI: 10.1016/j.cell.2014.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 01/30/2023]
Abstract
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and "cytokine storm" that is characteristic of fatal ebolavirus infection. Here, we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade antiviral defenses.
Collapse
Affiliation(s)
- John Misasi
- Boston Children's Hospital, Department of Medicine, Division of Infectious Diseases, Boston, MA 02115, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
39
|
Dinh PX, Das A, Franco R, Pattnaik AK. Heterogeneous nuclear ribonucleoprotein K supports vesicular stomatitis virus replication by regulating cell survival and cellular gene expression. J Virol 2013; 87:10059-69. [PMID: 23843646 PMCID: PMC3754001 DOI: 10.1128/jvi.01257-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/30/2013] [Indexed: 11/20/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus.
Collapse
Affiliation(s)
- Phat X. Dinh
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Anshuman Das
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | | | - Asit K. Pattnaik
- School of Veterinary Medicine and Biomedical Sciences
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
40
|
Viral subversion of the nuclear pore complex. Viruses 2013; 5:2019-42. [PMID: 23959328 PMCID: PMC3761240 DOI: 10.3390/v5082019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.
Collapse
|
41
|
Downregulation of Nipah virus N mRNA occurs through interaction between its 3' untranslated region and hnRNP D. J Virol 2013; 87:6582-8. [PMID: 23514888 DOI: 10.1128/jvi.02495-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nipah virus (NiV) is a nonsegmented, single-stranded, negative-sense RNA virus belonging to the genus Henipavirus, family Paramyxoviridae. NiV causes acute encephalitis and respiratory disease in humans, is associated with high mortality, and poses a threat in southern Asia. The genomes of henipaviruses are about 18,246 nucleotides (nt) long, which is longer than those of other paramyxoviruses (around 15,384 nt). This difference is caused by the noncoding RNA region, particularly the 3' untranslated region (UTR), which occupies more than half of the noncoding RNA region. To determine the function(s) of the NiV noncoding RNA region, we investigated the effects of NiV 3' UTRs on reporter gene expression. The NiV N 3' UTR (nt 1 to 100) demonstrated strong repressor activity associated with hnRNP D protein binding to that region. Mutation of the hnRNP D binding site or knockdown of hnRNP D resulted in increased expression of the NiV N 3' UTR reporter. Our findings suggest that NiV N expression is repressed by hnRNP D through the NiV N 3' UTR and demonstrate the involvement of posttranscriptional regulation in the NiV life cycle. To the best of our knowledge, this provides the first report of the functions of the NiV noncoding RNA region.
Collapse
|
42
|
Oh J, Lee C. Proteomic characterization of a novel structural protein ORF5a of porcine reproductive and respiratory syndrome virus. Virus Res 2012; 169:255-63. [DOI: 10.1016/j.virusres.2012.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/18/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
|
43
|
Complexes of vesicular stomatitis virus matrix protein with host Rae1 and Nup98 involved in inhibition of host transcription. PLoS Pathog 2012; 8:e1002929. [PMID: 23028327 PMCID: PMC3460625 DOI: 10.1371/journal.ppat.1002929] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
Vesicular stomatitis virus (VSV) suppresses antiviral responses in infected cells by inhibiting host gene expression at multiple levels, including transcription, nuclear cytoplasmic transport, and translation. The inhibition of host gene expression is due to the activity of the viral matrix (M) protein. Previous studies have shown that M protein interacts with host proteins Rae1 and Nup98 that have been implicated in regulating nuclear-cytoplasmic transport. However, Rae1 function is not essential for host mRNA transport, raising the question of how interaction of a viral protein with a host protein that is not essential for gene expression causes a global inhibition at multiple levels. We tested the hypothesis that there may be multiple M protein-Rae1 complexes involved in inhibiting host gene expression at multiple levels. Using size exclusion chromatography and sedimentation velocity analysis, it was determined that Rae1 exists in high, intermediate, and low molecular weight complexes. The intermediate molecular weight complexes containing Nup98 interacted most efficiently with M protein. The low molecular weight form also interacted with M protein in cells that overexpress Rae1 or cells in which Nup98 expression was silenced. Silencing Rae1 expression had little if any effect on nuclear accumulation of host mRNA in VSV-infected cells, nor did it affect VSV's ability to inhibit host translation. Instead, silencing Rae1 expression reduced the ability of VSV to inhibit host transcription. M protein interacted efficiently with Rae1-Nup98 complexes associated with the chromatin fraction of host nuclei, consistent with an effect on host transcription. These results support the idea that M protein-Rae1 complexes serve as platforms to promote the interaction of M protein with other factors involved in host transcription. They also support the idea that Rae1-Nup98 complexes play a previously under-appreciated role in regulation of transcription. All viruses have mechanisms to suppress or evade host antiviral responses. These mechanisms are critical for viral pathogenicity. Vesicular stomatitis virus (VSV) suppresses antiviral responses by global inhibition of host gene expression mediated by the viral matrix (M) protein. M protein interacts with the host protein Rae1 in a complex with the nucleoporin Nup98. It had been thought that interaction of M protein with Rae1 blocks nuclear-cytoplasmic mRNA transport. However, other data show that Rae1 is not essential for mRNA transport. With this discrepancy in mind, we re-examined the interaction of M protein with Rae1 and Nup98 and the level of host gene expression in which they are involved. A key result was that silencing Rae1 expression did not affect host gene expression, but instead increased cellular resistance to inhibition by M protein. Furthermore, silencing Rae1 expression primarily affected the inhibition of host transcription with no significant effect on nuclear accumulation of mRNA. These results support a model in which Rae1 serves as a “platform” to promote interaction of M protein with cellular targets involved in host transcription. This illustrates a general principle that viral proteins can have multiple cellular effects by interacting with host proteins that are themselves multi-functional.
Collapse
|
44
|
Papadopoulou C, Boukakis G, Ganou V, Patrinou-Georgoula M, Guialis A. Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch Biochem Biophys 2012; 523:151-60. [DOI: 10.1016/j.abb.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/27/2012] [Accepted: 04/13/2012] [Indexed: 11/15/2022]
|
45
|
Castilla V, Scolaro LA. Involvement of heterogeneous nuclear ribonucleoproteins in viral multiplication. Future Virol 2012. [DOI: 10.2217/fvl.12.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The study of virus–host interactions is a major goal in molecular virology and provides new effective targets for antiviral therapies. Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a group of cellular RNA-binding proteins localized predominantly within the nucleus, which participate in gene transcription and subsequent RNA post-transcriptional modifications. The interaction between hnRNPs and viral components was extensively demonstrated, as well as the ability of virus infections to alter the intracellular localization or the level of expression of different hnRNPs. The involvement of these proteins in the replication of numerous viruses including members from the Retroviridae, Flaviviridae, Coronaviridae, Arenaviridae, Rhabdoviridae, Papillomaviridae, Orthomyxoviridae, Picornaviridae, Togaviridae and Herpesviridae families, has been reported. In order to gain an increased understanding of the interactions between virus and cell that result in the productive infection of the latter, in this review we discuss the main findings about the role of hnRNPs in different steps of viral replication, such as RNA synthesis, translation, RNA processing and egress of newly assembled progeny virus.
Collapse
Affiliation(s)
- Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
46
|
Lu Q, Bai J, Zhang L, Liu J, Jiang Z, Michal JJ, He Q, Jiang P. Two-Dimensional Liquid Chromatography–Tandem Mass Spectrometry Coupled with Isobaric Tags for Relative and Absolute Quantification (iTRAQ) Labeling Approach Revealed First Proteome Profiles of Pulmonary Alveolar Macrophages Infected with Porcine Reproductive and Respiratory Syndrome Virus. J Proteome Res 2012; 11:2890-903. [DOI: 10.1021/pr201266z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qi Lu
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Liu
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, Washington 99164-6351,
United States
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, Washington 99164-6351,
United States
| | - Qindong He
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Jiang
- Key Laboratory
of Animal Diseases
Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary
Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
47
|
Shabman RS, Gulcicek EE, Stone KL, Basler CF. The Ebola virus VP24 protein prevents hnRNP C1/C2 binding to karyopherin α1 and partially alters its nuclear import. J Infect Dis 2011; 204 Suppl 3:S904-10. [PMID: 21987768 DOI: 10.1093/infdis/jir323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ebola virus (EBOV) protein VP24 inhibits type I and II interferon (IFN) signaling by binding to NPI-1 subfamily karyopherin α (KPNA) nuclear import proteins, preventing their interaction with tyrosine-phosphorylated STAT1 (phospho-STAT1). This inhibits phospho-STAT1 nuclear import. A biochemical screen now identifies heterogeneous nuclear ribonuclear protein complex C1/C2 (hnRNP C1/C2) nuclear import as an additional target of VP24. Co-immunoprecipitation studies demonstrate that hnRNP C1/C2 interacts with multiple KPNA family members, including KPNA1. Interaction with hnRNP C1/C2 occurs through the same KPNA1 C-terminal region (amino acids 424-457) that binds VP24 and phospho-STAT1. The ability of hnRNP C1/C2 to bind KPNA1 is diminished in the presence of VP24, and cells transiently expressing VP24 redistribute hnRNP C1/C2 from the nucleus to the cytoplasm. These data further define the mechanism of hnRNP C1/C2 nuclear import and demonstrate that the impact of EBOV VP24 on nuclear import extends beyond STAT1.
Collapse
Affiliation(s)
- Reed S Shabman
- Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
48
|
Maeto CA, Knott ME, Linero FN, Ellenberg PC, Scolaro LA, Castilla V. Differential effect of acute and persistent Junín virus infections on the nucleo-cytoplasmic trafficking and expression of heterogeneous nuclear ribonucleoproteins type A and B. J Gen Virol 2011; 92:2181-2190. [DOI: 10.1099/vir.0.030163-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins A and B (hnRNPs A/B), cellular RNA-binding proteins that participate in splicing, trafficking, translation and turnover of mRNAs, have been implicated in the life cycles of several cytoplasmic RNA viruses. Here, we demonstrate that silencing of hnRNPs A1 and A2 significantly reduces the replication of the arenavirus Junín virus (JUNV), the aetiological agent of Argentine haemorrhagic fever. While acute JUNV infection did not modify total levels of expression of hnRNPs A/B in comparison with uninfected cells, non-cytopathic persistent infection exhibited low levels of these cell proteins. Furthermore, acutely infected cells showed a cytoplasmic relocalization of overexpressed hnRNP A1, probably related to the involvement of this protein in virus replicative cycle. This cytoplasmic accumulation was also observed in cells expressing viral nucleoprotein (N), and co-immunoprecipitation studies revealed the interaction between hnRNP A1 and N protein. By contrast, a predominantly nuclear distribution of overexpressed hnRNP A1 was found during persistent infection, even in the presence of endogenous or overexpressed N protein, indicating a differential modulation of nucleo–cytoplasmic trafficking in acute and persistent JUNV infections.
Collapse
Affiliation(s)
- Cynthia A. Maeto
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María E. Knott
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia N. Linero
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula C. Ellenberg
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis A. Scolaro
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
49
|
Antagonistic effects of cellular poly(C) binding proteins on vesicular stomatitis virus gene expression. J Virol 2011; 85:9459-71. [PMID: 21752917 DOI: 10.1128/jvi.05179-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunoprecipitation and subsequent mass spectrometry analysis of the cellular proteins from cells expressing the vesicular stomatitis virus (VSV) P protein identified the poly(C) binding protein 2 (PCBP2) as one of the P protein-interacting proteins. To investigate the role of PCBP2 in the viral life cycle, we examined the effects of depletion or overexpression of this protein on VSV growth. Small interfering RNA-mediated silencing of PCBP2 promoted VSV replication. Conversely, overexpression of PCBP2 in transfected cells suppressed VSV growth. Further studies revealed that PCBP2 negatively regulates overall viral mRNA accumulation and subsequent genome replication. Coimmunoprecipitation and immunofluorescence microscopic studies showed that PCBP2 interacts and colocalizes with VSV P protein in virus-infected cells. The P-PCBP2 interaction did not result in reduced levels of protein complex formation with the viral N and L proteins, nor did it induce degradation of the P protein. In addition, PCBP1, another member of the poly(C) binding protein family with homology to PCBP2, was also found to interact with the P protein and inhibit the viral mRNA synthesis at the level of primary transcription without affecting secondary transcription or genome replication. The inhibitory effects of PCBP1 on VSV replication were less pronounced than those of PCBP2. Overall, the results presented here suggest that cellular PCBP2 and PCBP1 antagonize VSV growth by affecting viral gene expression and highlight the importance of these two cellular proteins in restricting virus infections.
Collapse
|
50
|
Abstract
Enterovirus 71 (EV71) infections continue to remain an important public health problem around the world, especially in the Asia-Pacific region. There is a significant mortality rate following such infections, and there is neither any proven therapy nor a vaccine for EV71. This has spurred much fundamental research into the replication of the virus. In this review, we discuss recent work identifying host cell factors which regulate the synthesis of EV71 RNA and proteins. Three of these proteins, heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), far-upstream element-binding protein 2 (FBP2), and FBP1 are nuclear proteins which in EV71-infected cells are relocalized to the cytoplasm, and they influence EV71 internal ribosome entry site (IRES) activity. hnRNP A1 stimulates IRES activity but can be replaced by hnRNP A2. FBP2 is a negative regulatory factor with respect to EV71 IRES activity, whereas FBP1 has the opposite effect. Two other proteins, hnRNP K and reticulon 3, are required for the efficient synthesis of viral RNA. The cleavage stimulation factor 64K subunit (CstF-64) is a host protein that is involved in the 3' polyadenylation of cellular pre-mRNAs, and recent work suggests that in EV71-infected cells, it may be cleaved by the EV71 3C protease. Such a cleavage would impair the processing of pre-mRNA to mature mRNAs. Host cell proteins play an important role in the replication of EV71, but much work remains to be done in order to understand how they act.
Collapse
|