1
|
McElroy AK. In Vitro Evaluation of Bunyavirus T Cell Immunity. Methods Mol Biol 2025; 2893:137-150. [PMID: 39671035 DOI: 10.1007/978-1-0716-4338-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Characterization and quantitation of T cell responses following infection and/or vaccination can provide insight into mechanisms of host cell immunity that provide resolution of acute infection or protection from future infection or disease. While these types of studies are very advanced for viruses such as HIV, influenza, and SARS-CoV-2, they are less well developed for most of the Bunyaviruses. Cytotoxic CD8T cells are especially relevant in the context of viral infections since they recognize virus-infected cells via interaction of the T cell receptor with virally derived peptides presented in the context of MHCI. CD4T follicular cells are especially important for augmenting the antiviral antibody response. This chapter provides methods for characterizing T cell responses post infection/vaccination in both mice and humans as well as several methods for quantifying virus-specific T cells with the goal of arming bunyavirus researchers with the tools needed to move the field forward.
Collapse
Affiliation(s)
- Anita K McElroy
- Pediatric Infectious Disease and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Andrade VM, Cashman K, Rosenke K, Wilkinson E, Josleyn N, Lynn G, Steffens J, Vantongeren S, Wells J, Schmaljohn C, Facemire P, Jiang J, Boyer J, Patel A, Feldmann F, Hanley P, Lovaglio J, White K, Feldmann H, Ramos S, Broderick KE, Humeau LM, Smith TRF. The DNA-based Lassa vaccine INO-4500 confers durable protective efficacy in cynomolgus macaques against lethal Lassa fever. COMMUNICATIONS MEDICINE 2024; 4:253. [PMID: 39609515 PMCID: PMC11605062 DOI: 10.1038/s43856-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND We have previously developed a DNA-based vaccine, INO-4500, encoding the Lassa lineage IV glycoprotein precursor. INO-4500, when delivered with electroporation, elicited humoral and cellular responses, and conferred 100% protection in cynomolgus non-human primates. Here, we expanded the characterization of INO-4500 assessing immunogenicity and protective efficacy of lower doses and single immunization, and the durability of immune responses. METHODS The study was divided into three arms evaluating INO-4500 vaccination: Arm 1 - Dosing regimen; Arm 2 - Single immunization; and Arm 3-Durability of immune responses and protective efficacy. Humoral and T cell responses were assessed by IgG binding ELISA, IFNγ ELISpot and flow cytometry-based T cell activation assays. NHPs were challenged with a lethal dose of Lassa lineage IV 8 weeks (Arms 1 and 2) or one year (Arm 3) after immunization. NHPs were assigned clinical scores and monitored for survival. Viremia, virus neutralization and release of soluble mediators were assessed post-challenge, as well as disease pathology following NHPs death or euthanasia. RESULTS INO-4500 induces dose-dependent immune responses and protective efficacy. Animals receiving two doses of 2 mg of INO-4500 show complete short- and long-term LASV protection. NHPs receiving 1 mg of INO-4500 are protected from LASV challenge one year after vaccination but are only partially protected 8 weeks post-vaccination. LASV-specific memory T cells are present in vaccinated NHPs one year after vaccination. INO-4500 vaccination prevents NHPs from developing severe disease. CONCLUSIONS These studies demonstrate that INO-4500 can provide short- and long-term protection in NHPs from lethal LASV challenge.
Collapse
Affiliation(s)
| | - Kathleen Cashman
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Kyle Rosenke
- Laboratory of Virology (LV), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | - Eric Wilkinson
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Nicole Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Ginger Lynn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Jesse Steffens
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Sean Vantongeren
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Jay Wells
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | - Connie Schmaljohn
- Office of the Chief Scientists, Headquarters, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), Integrated Research Facility (IRF), Frederick, MD, USA
| | - Paul Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD, USA
| | | | - Jean Boyer
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA, USA
| | - Aditya Patel
- Inovio Pharmaceuticals Inc., Plymouth Meeting, PA, USA
| | - Friederike Feldmann
- Rocky Mountain Laboratory Veterinary Branch (RMVB), Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Laboratory Veterinary Branch (RMVB), Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Laboratory Veterinary Branch (RMVB), Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | - Kimberly White
- Laboratory of Virology (LV), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology (LV), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rocky Mountain Laboratories (RML), Hamilton, MT, USA
| | | | | | | | | |
Collapse
|
3
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Brouwer PJM, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Bontjer I, Lee WH, Ferguson JA, Schauflinger M, Müller-Kräuter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. Cell Rep 2024; 43:114708. [PMID: 39243373 PMCID: PMC11422484 DOI: 10.1016/j.celrep.2024.114708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024] Open
Abstract
Lassa fever continues to be a major public health burden in West Africa, yet effective therapies or vaccines are lacking. The isolation of protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccine candidates have generally been unsuccessful at doing so, and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron microscopy-based epitope mapping workflow that enables high-resolution structural characterization of polyclonal antibodies to the GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization that involve epitopes of the GPC-A competition cluster. Furthermore, by identifying undescribed immunogenic off-target epitopes, we expose the challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Ilja Bontjer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
6
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
7
|
Brouwer PJ, Perrett HR, Beaumont T, Nijhuis H, Kruijer S, Burger JA, Lee WH, Müller-Kraüter H, Sanders RW, Strecker T, van Gils MJ, Ward AB. Defining bottlenecks and opportunities for Lassa virus neutralization by structural profiling of vaccine-induced polyclonal antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572918. [PMID: 38187682 PMCID: PMC10769344 DOI: 10.1101/2023.12.21.572918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Lassa fever continues to be a major public health burden in endemic countries in West Africa, yet effective therapies or vaccines are lacking. The isolation of potent and protective neutralizing antibodies against the Lassa virus glycoprotein complex (GPC) justifies the development of vaccines that can elicit strong neutralizing antibody responses. However, Lassa vaccines candidates have generally been unsuccessful in doing so and the associated antibody responses to these vaccines remain poorly characterized. Here, we establish an electron-microscopy based epitope mapping pipeline that enables high-resolution structural characterization of polyclonal antibodies to GPC. By applying this method to rabbits vaccinated with a recombinant GPC vaccine and a GPC-derived virus-like particle, we reveal determinants of neutralization which involve epitopes of the GPC-C, GPC-A, and GP1-A competition clusters. Furthermore, by identifying previously undescribed immunogenic off-target epitopes, we expose challenges that recombinant GPC vaccines face. By enabling detailed polyclonal antibody characterization, our work ushers in a next generation of more rational Lassa vaccine design.
Collapse
Affiliation(s)
- Philip J.M. Brouwer
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Hailee R. Perrett
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Tim Beaumont
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Haye Nijhuis
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Sabine Kruijer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Judith A. Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | | | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam 1105 AZ, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
8
|
Grant DS, Samuels RJ, Garry RF, Schieffelin JS. Lassa Fever Natural History and Clinical Management. Curr Top Microbiol Immunol 2023. [PMID: 37106159 DOI: 10.1007/82_2023_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lassa fever is caused by Lassa virus (LASV), an Old World Mammarenavirus that is carried by Mastomys natalensis and other rodents. It is endemic in Sierra Leone, Nigeria, and other countries in West Africa. The clinical presentation of LASV infection is heterogenous varying from an inapparent or mild illness to a fatal hemorrhagic fever. Exposure to LASV is usually through contact with rodent excreta. After an incubation period of 1-3 weeks, initial symptoms such as fever, headache, and fatigue develop that may progress to sore throat, retrosternal chest pain, conjunctival injection, vomiting, diarrhea, and abdominal pain. Severe illness, including hypotension, shock, and multiorgan failure, develops in a minority of patients. Patient demographics and case fatality rates are distinctly different in Sierra Leone and Nigeria. Laboratory diagnosis relies on the detection of LASV antigens or genomic RNA. LASV-specific immunoglobulin G and M assays can also contribute to clinical management. The mainstay of treatment for Lassa fever is supportive care. The nucleoside analog ribavirin is commonly used to treat acute Lassa fever but is considered useful only if treatment is begun early in the disease course. Drugs in development, including a monoclonal antibody cocktail, have the potential to impact the management of Lassa fever.
Collapse
Affiliation(s)
- Donald S Grant
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
- College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone
| | - Robert J Samuels
- Lassa Fever Program, Kenema Government Hospital, Ministry of Health, Kenema, Sierra Leone
| | - Robert F Garry
- School of Medicine, Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
- Zalgen Labs, Frederick, MD, 21703, USA
- Global Virus Network (GVN), Baltimore, MD, 21201, USA
| | - John S Schieffelin
- School of Medicine, Department of Pediatrics, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
9
|
Abstract
Lassa virus (LASV) is endemic in the rodent populations of Sierra Leone, Nigeria and other countries in West Africa. Spillover to humans occurs frequently and results in Lassa fever, a viral haemorrhagic fever (VHF) associated with a high case fatality rate. Despite advances, fundamental gaps in knowledge of the immunology, epidemiology, ecology and pathogenesis of Lassa fever persist. More frequent outbreaks, the potential for further geographic expansion of Mastomys natalensis and other rodent reservoirs, the ease of procurement and possible use and weaponization of LASV, the frequent importation of LASV to North America and Europe, and the emergence of novel LASV strains in densely populated West Africa have driven new initiatives to develop countermeasures for LASV. Although promising candidates are being evaluated, as yet there are no approved vaccines or therapeutics for human use. This Review discusses the virology of LASV, the clinical course of Lassa fever and the progress towards developing medical countermeasures.
Collapse
Affiliation(s)
- Robert F Garry
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA.
- Zalgen Labs, Frederick, MD, USA.
- Global Viral Network, Baltimore, MD, USA.
| |
Collapse
|
10
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|
11
|
Brisse M, Fernández-Alarcón C, Huang Q, Kirk N, Schleiss MR, Liang Y, Ly H. Hearing loss in outbred Hartley guinea pigs experimentally infected with Pichinde virus as a surrogate model of human mammarenaviral hemorrhagic fevers. Virulence 2022; 13:1049-1061. [PMID: 35758052 PMCID: PMC9794012 DOI: 10.1080/21505594.2022.2087948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lassa fever (LF) is a neglected tropical disease that is caused by Lassa virus (LASV), a human hemorrhagic fever-causing mammarenavirus. A notable sequela of LF is sensorineural hearing loss (SNHL) that can develop in about 33% of the patients. Animal models of LF-associated SNHL have been limited in size and scope because LASV is a biosafety level 4 (BSL4) pathogen that requires its handling in a high biocontainment laboratory. In this report, we describe the development of an alternative arenavirus hearing loss model by infecting outbred Hartley guinea pigs with a virulent strain (rP18) of the Pichinde virus (PICV), which is a guinea pig-adapted mammarenavirus that has been used as a surrogate model of mammarenaviral hemorrhagic fevers in a conventional (BSL2) laboratory. By measuring auditory brainstem response (ABR) throughout the course of the virulent rP18 PICV infection, we noticed that some of the animals experienced an acute but transient level of hearing loss. Cochleae of hearing-impaired animals, but not of controls, had demonstrable viral RNA by quantitative RT-PCR, indicating the presence of virus in the affected inner ear with no overt histopathological changes. In contrast, neither the outbred Hartley guinea pigs infected with a known avirulent strain (rP2) of PICV nor those that were mock-infected showed any evidence of hearing loss or viral infection of the inner ear. This is the first report of an immunocompetent small animal model of mammarenavirus-induced hearing loss that can be used to evaluate potential therapeutics against virus-induced hearing impairment under a conventional laboratory setting.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | | | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Natalie Kirk
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Mark R. Schleiss
- Department of Pediatrics, School of Medicine University of Minnesota, Twin Cities, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| | - Hinh Ly
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Twin Cities, Minnesota, USA,Department of Veterinary and Biomedical Sciences College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA,CONTACT Hinh Ly
| |
Collapse
|
12
|
Murphy H, Ly H. Understanding Immune Responses to Lassa Virus Infection and to Its Candidate Vaccines. Vaccines (Basel) 2022; 10:1668. [PMID: 36298533 PMCID: PMC9612042 DOI: 10.3390/vaccines10101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic fever disease that is endemic in several countries in West Africa. It is caused by Lassa virus (LASV), which has been estimated to be responsible for approximately 300,000 infections and 5000 deaths annually. LASV is a highly pathogenic human pathogen without effective therapeutics or FDA-approved vaccines. Here, we aim to provide a literature review of the current understanding of the basic mechanism of immune responses to LASV infection in animal models and patients, as well as to several of its candidate vaccines.
Collapse
Affiliation(s)
| | - Hinh Ly
- Comparative & Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, St Paul, MN 55108, USA
| |
Collapse
|
13
|
Okogbenin S, Erameh C, Okoeguale J, Edeawe O, Ekuaze E, Iraoyah K, Agho J, Groger M, Kreuels B, Oestereich L, Babatunde FO, Akhideno P, Günther S, Ramharter M, Omansen T. Two Cases of Lassa Fever Successfully Treated with Ribavirin and Adjunct Dexamethasone for Concomitant Infections. Emerg Infect Dis 2022; 28:2060-2063. [PMID: 36148915 PMCID: PMC9514364 DOI: 10.3201/eid2810.220625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lassa fever is a viral hemorrhagic fever treated with supportive care and the broad-spectrum antiviral drug ribavirin. The pathophysiology, especially the role of hyperinflammation, of this disease is unknown. We report successful remission of complicated Lassa fever in 2 patients in Nigeria who received the antiinflammatory agent dexamethasone and standard ribavirin.
Collapse
|
14
|
Avatar Mice Underscore the Role of the T Cell-Dendritic Cell Crosstalk in Ebola Virus Disease and Reveal Mechanisms of Protection in Survivors. J Virol 2022; 96:e0057422. [PMID: 36073921 PMCID: PMC9517696 DOI: 10.1128/jvi.00574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus disease (EVD) is a complex infectious disease characterized by high inflammation, multiorgan failure, the dysregulation of innate and adaptive immune responses, and coagulation abnormalities. Evidence accumulated over the last 2 decades indicates that, during fatal EVD, the infection of antigen-presenting cells (APC) and the dysregulation of T cell immunity preclude a successful transition between innate and adaptive immunity, which constitutes a key disease checkpoint. In order to better understand the contribution of the APC-T cell crosstalk to EVD pathophysiology, we have developed avatar mice transplanted with human, donor-specific APCs and T cells. Here, we show that the transplantation of T cells and APCs from Ebola virus (EBOV)-naive individuals into avatar mice results in severe disease and death and that this phenotype is dependent on T cell receptor (TCR)-major histocompatibility complex (MCH) recognition. Conversely, avatar mice were rescued from death induced by EBOV infection after the transplantation of both T cells and plasma from EVD survivors. These results strongly suggest that protection from EBOV reinfection requires both cellular and humoral immune memory responses. IMPORTANCE The crosstalk between dendritic cells and T cells marks the transition between innate and adaptive immune responses, and it constitutes an important checkpoint in EVD. In this study, we present a mouse avatar model in which T cell and dendritic cell interactions from a specific donor can be studied during EVD. Our findings indicate that T cell receptor-major histocompatibility complex-mediated T cell-dendritic cell interactions are associated with disease severity, which mimics the main features of severe EVD in these mice. Resistance to an EBOV challenge in the model was achieved via the transplantation of both survivor T cells and plasma.
Collapse
|
15
|
Jeong S, Jeon M, Lee H, Kim SY, Park SH, Shin EC. IFITM3 Is Upregulated Characteristically in IL-15-Mediated Bystander-Activated CD8 + T Cells during Influenza Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1901-1911. [PMID: 35346965 DOI: 10.4049/jimmunol.2100629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
In bystander activation, pre-existing memory CD8+ T cells unrelated to the infecting microbes are activated by cytokines without cognate Ags. The detailed mechanisms and unique gene signature of bystander activation remain to be elucidated. In this study, we investigated bystander activation of OT-1 memory cells in a mouse model of influenza infection. We found that OT-1 memory cells are activated with upregulation of granzyme B and IFN-γ, during PR8 (A/Puerto Rico/8/1934) infection, and IL-15 is a critical cytokine for bystander activation. In transcriptomic analysis, the IFN-induced gene signature was upregulated in bystander-activated OT-1 memory cells during PR8 infection but not in the presence of TCR stimulation. Among the IFN-induced genes, upregulation of IFN-induced transmembrane protein 3 (IFITM3) distinguished bystander-activated OT-1 memory cells from TCR-activated OT-1 memory cells. Therefore, we reveal that bystander-activated memory CD8+ T cells have a unique transcriptomic feature compared with TCR-activated memory CD8+ T cells. In particular, IFITM3 upregulation can be used as a marker of bystander-activated memory CD8+ T cells at early infection.
Collapse
Affiliation(s)
- Seongju Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minwoo Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - So-Young Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Raabe V, Mehta AK, Evans JD. Lassa Virus Infection: a Summary for Clinicians. Int J Infect Dis 2022; 119:187-200. [PMID: 35395384 DOI: 10.1016/j.ijid.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES This summary on Lassa virus (LASV) infection and Lassa fever disease (LF) was developed from a clinical perspective to provide clinicians a condensed, accessible understanding of the current literature. The information provided highlights pathogenesis, clinical features, and diagnostics with an emphasis on therapies and vaccines that have demonstrated potential value for use in clinical or research environments. METHODS An integrative literature review was conducted on the clinical and pathological features, vaccines, and treatments for LASV infection, with a focus on recent studies and in vivo evidence from humans and/or non-human primates (NHPs), when available. RESULTS Two antiviral medications with potential benefit for the treatment of LASV infection and one for post-exposure prophylaxis were identified, although a larger number of potential candidates are currently being evaluated. Multiple vaccine platforms are in pre-clinical development for LASV prevention, but data from human clinical trials are not yet available. CONCLUSION We provide succinct summaries of medical countermeasures against LASV to give the busy clinician a rapid reference. Although there are no approved drugs or vaccines for LF, we provide condensed information from a literature review for measures that can be taken when faced with a suspected infection, including investigational treatment options and hospital engineering controls.
Collapse
Affiliation(s)
- Vanessa Raabe
- New York University Grossman School of Medicine, New York, NY.
| | | | - Jared D Evans
- Johns Hopkins Applied Physics Laboratory, Laurel, MD.
| |
Collapse
|
17
|
Significance of bystander T cell activation in microbial infection. Nat Immunol 2022; 23:13-22. [PMID: 34354279 DOI: 10.1038/s41590-021-00985-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.
Collapse
|
18
|
Murphy HL, Ly H. Pathogenicity and virulence mechanisms of Lassa virus and its animal modeling, diagnostic, prophylactic, and therapeutic developments. Virulence 2021; 12:2989-3014. [PMID: 34747339 PMCID: PMC8923068 DOI: 10.1080/21505594.2021.2000290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lassa fever (LF) is a deadly viral hemorrhagic disease that is endemic to West Africa. The causative agent of LF is Lassa virus (LASV), which causes approximately 300,000 infections and 5,000 deaths annually. There are currently no approved therapeutics or FDA-approved vaccines against LASV. The high genetic variability between LASV strains and immune evasion mediated by the virus complicate the development of effective therapeutics and vaccines. Here, we aim to provide a comprehensive review of the basic biology of LASV and its mechanisms of disease pathogenesis and virulence in various animal models, as well as an update on prospective vaccines, therapeutics, and diagnostics for LF. Until effective vaccines and/or therapeutics are available for use to prevent or treat LF, a better level of understanding of the basic biology of LASV, its natural genetic variations and immune evasion mechanisms as potential pathogenicity factors, and of the rodent reservoir-vector populations and their geographical distributions, is necessary for the development of accurate diagnostics and effective therapeutics and vaccines against this deadly human viral pathogen.
Collapse
Affiliation(s)
- Hannah L Murphy
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, Comparative & Molecular Biosciences Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities
| |
Collapse
|
19
|
Hoffmann C, Wurr S, Pallasch E, Bockholt S, Rieger T, Günther S, Oestereich L. Experimental Morogoro Virus Infection in Its Natural Host, Mastomys natalensis. Viruses 2021; 13:851. [PMID: 34067011 PMCID: PMC8151005 DOI: 10.3390/v13050851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/26/2023] Open
Abstract
Natural hosts of most arenaviruses are rodents. The human-pathogenic Lassa virus and several non-pathogenic arenaviruses such as Morogoro virus (MORV) share the same host species, namely Mastomys natalensis (M. natalensis). In this study, we investigated the history of infection and virus transmission within the natural host population. To this end, we infected M. natalensis at different ages with MORV and measured the health status of the animals, virus load in blood and organs, the development of virus-specific antibodies, and the ability of the infected individuals to transmit the virus. To explore the impact of the lack of evolutionary virus-host adaptation, experiments were also conducted with Mobala virus (MOBV), which does not share M. natalensis as a natural host. Animals infected with MORV up to two weeks after birth developed persistent infection, seroconverted and were able to transmit the virus horizontally. Animals older than two weeks at the time of infection rapidly cleared the virus. In contrast, MOBV-infected neonates neither developed persistent infection nor were able to transmit the virus. In conclusion, we demonstrate that MORV is able to develop persistent infection in its natural host, but only after inoculation shortly after birth. A related arenavirus that is not evolutionarily adapted to M. natalensis is not able to establish persistent infection. Persistently infected animals appear to be important to maintain virus transmission within the host population.
Collapse
Affiliation(s)
- Chris Hoffmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Stephanie Wurr
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Elisa Pallasch
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Sabrina Bockholt
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Toni Rieger
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
| | - Stephan Günther
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| | - Lisa Oestereich
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; (C.H.); (S.W.); (E.P.); (S.B.); (T.R.); (S.G.)
- German Center for Infectious Diseases (DZIF), Partner Site Hamburg, Partner Site Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|