1
|
Naveed A, Umer R, Fatemah A, Naveed R. Nucleolin a Central Player in Host Virus Interactions and its Role in Viral Progeny Production. Mol Biotechnol 2025:10.1007/s12033-025-01372-1. [PMID: 39821823 DOI: 10.1007/s12033-025-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Nucleolin (NCL) is a prevalent and widely distributed nucleolar protein in cells. While primarily located in the nucleolus, NCL is also found within the nucleoplasm, cytoplasm, and even on the cell surface. NCL's unique nature arises from its multifaceted roles and extensive interactions with various proteins. The structural stability of NCL is reliant on protease inhibitors, particularly in proliferating cells, indicating its essential role in cellular maintenance. This review is centered on elucidating the structure of NCL, its significance in host-viral interactions, and its various contributions to viral progeny production. This work is to enhance the scientific community's understanding of NCL functionality and its implications for viral infection processes. NCL is highlighted as a crucial host protein that viruses frequently target, exploiting it to support their own life cycles and establish infections. Understanding these interactions is key to identifying NCL's role in viral pathogenesis and its potential as a therapeutic target. Our current knowledge, alongside extensive scientific literature, underscores the critical role of host proteins like NCL in both viral infections and other diseases. As a target for viral exploitation, NCL supports viral replication and survival, making it a promising candidate for therapeutic intervention. By delving deeper into the intricacies of NCL-viral protein interactions, researchers may uncover effective antiviral mechanisms. This review aspires to inspire further research into NCL's role in viral infections and promote advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Ahsan Naveed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA.
| | - Rumaisa Umer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Ayzal Fatemah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- Albert B Chandler Hospital, University of Kentucky, Lexington, Fayette, USA
| | - Rabia Naveed
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Kelnhofer-Millevolte LE, Arnold EA, Nguyen DH, Avgousti DC. Controlling Much? Viral Control of Host Chromatin Dynamics. Annu Rev Virol 2024; 11:171-191. [PMID: 38684115 DOI: 10.1146/annurev-virology-100422-011616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses-herpesviruses and adenoviruses-as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.
Collapse
Affiliation(s)
- Laurel E Kelnhofer-Millevolte
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Edward A Arnold
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel H Nguyen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
| | - Daphne C Avgousti
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA;
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Mancebo FJ, Nuévalos M, Lalchandani J, Martín Galiano AJ, Fernández-Ruiz M, Aguado JM, García-Ríos E, Pérez-Romero P. Cytomegalovirus UL44 protein induces a potent T-cell immune response in mice. Antiviral Res 2024; 227:105914. [PMID: 38759930 DOI: 10.1016/j.antiviral.2024.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Due to the severity of CMV infection in immunocompromised individuals the development of a vaccine has been declared a priority. However, despite the efforts made there is no yet a vaccine available for clinical use. We designed an approach to identify new CMV antigens able to inducing a broad immune response that could be used in future vaccine formulations. We have used serum samples from 28 kidney transplant recipients, with a previously acquired CMV-specific immune response to identify viral proteins that were recognized by the antibodies present in the patient serum samples by Western blot. A band of approximately 45 kDa, identified as UL44, was detected by most serum samples. UL44 immunogenicity was tested in BALB/c mice that received three doses of the UL44-pcDNA DNA vaccine. UL44 elicited both, a strong antibody response and CMV-specific cellular response. Using bioinformatic analysis we demonstrated that UL44 is a highly conserved protein and contains epitopes that are able to activate CD8 lymphocytes of the most common HLA alleles in the world population. We constructed a UL44 ORF deletion mutant virus that produced no viral progeny, suggesting that UL44 is an essential viral protein. In addition, other authors have demonstrated that UL44 is one of the most abundant viral proteins after infection and have suggested an essential role of UL44 in viral replication. Altogether, our data suggests that UL44 is a potent antigen, and favored by its abundance, it may be a good candidate to include in a vaccine formulation.
Collapse
Affiliation(s)
- Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | - Jaanam Lalchandani
- National Center for Microbiology, Instituto de Salud Carlos III. Majadahonda, Madrid, Spain
| | | | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre', Instituto de Investigación Biomédica Hospital "12 de Octubre' (imas12) Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Estéfani García-Ríos
- Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain.
| | - Pilar Pérez-Romero
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Lytic Reactivation of the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Is Accompanied by Major Nucleolar Alterations. Viruses 2022; 14:v14081720. [PMID: 36016343 PMCID: PMC9412354 DOI: 10.3390/v14081720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2′-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.
Collapse
|
7
|
Song J, Quan R, Wang D, Liu J. Seneca Valley Virus 3C pro Mediates Cleavage and Redistribution of Nucleolin To Facilitate Viral Replication. Microbiol Spectr 2022; 10:e0030422. [PMID: 35357201 PMCID: PMC9045095 DOI: 10.1128/spectrum.00304-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Seneca Valley virus (SVV) is a recently discovered pathogen that poses a significant threat to the global pig industry. It has been shown that many viruses are reliant on nucleocytoplasmic trafficking of nucleolin (NCL) for their own replication. Here, we demonstrate that NCL, a critical protein component of the nucleolus, is cleaved and translocated out of the nucleoli following SVV infection. Furthermore, our data suggest that SVV 3C protease (3Cpro) is responsible for this cleavage and subsequent delocalization from the nucleoli, and that inactivation of this protease activity abolished this cleavage and translocation. SVV 3Cpro cleaved NCL at residue Q545, and the cleavage fragment (aa 1 to 545) facilitated viral replication, which was similar to the activities described for full-length NCL. Small interfering RNA-mediated knockdown indicated that NCL is required for efficient viral replication and viral protein expression. In contrast, lentivirus-mediated overexpression of NCL significantly enhanced viral replication. Taken together, these results indicate that SVV 3Cpro targets NCL for its cleavage and redistribution, which contributes to efficient viral replication, thereby emphasizing the potential target of antiviral strategies for the control of SVV infection. IMPORTANCE The nucleolus is a subnuclear cellular compartment, and nucleolin (NCL) resides predominantly in the nucleolus. NCL participates in viral replication, translation, internalization, and also serves as a receptor for virus entry. The interaction between NCL and SVV is still unknown. Here, we demonstrate that SVV 3Cpro targets NCL for its cleavage and nucleocytoplasmic transportation, which contributes to efficient viral replication. Our results reveal novel function of SVV 3Cpro and provide further insight into the mechanisms by which SVV utilizes nucleoli for efficient replication.
Collapse
Affiliation(s)
- Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Tyl MD, Betsinger CN, Cristea IM. Virus-host protein interactions as footprints of human cytomegalovirus replication. Curr Opin Virol 2022; 52:135-147. [PMID: 34923282 PMCID: PMC8844139 DOI: 10.1016/j.coviro.2021.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a pervasive β-herpesvirus that causes lifelong infection. The lytic replication cycle of HCMV is characterized by global organelle remodeling and dynamic virus-host interactions, both of which are necessary for productive HCMV replication. With the advent of new technologies for investigating protein-protein and protein-nucleic acid interactions, numerous critical interfaces between HCMV and host cells have been identified. Here, we review temporal and spatial virus-host interactions that support different stages of the HCMV replication cycle. Understanding how HCMV interacts with host cells during entry, replication, and assembly, as well as how it interfaces with host cell metabolism and immune responses promises to illuminate processes that underlie the biology of infection and the resulting pathologies.
Collapse
Affiliation(s)
- Matthew D. Tyl
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA,Corresponding author and lead contact: Ileana M. Cristea, 210 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, Tel: 6092589417, Fax: 6092584575,
| |
Collapse
|
9
|
Iarovaia OV, Ioudinkova ES, Velichko AK, Razin SV. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021; 10:cells10071597. [PMID: 34202380 PMCID: PMC8303250 DOI: 10.3390/cells10071597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their exceptional simplicity of organization, viruses rely on the resources, molecular mechanisms, macromolecular complexes, regulatory pathways, and functional compartments of the host cell for an effective infection process. The nucleolus plays an important role in the process of interaction between the virus and the infected cell. The interactions of viral proteins and nucleic acids with the nucleolus during the infection process are universal phenomena and have been described for almost all taxonomic groups. During infection, proteins of the nucleolus in association with viral components can be directly used for the processes of replication and transcription of viral nucleic acids and the assembly and transport of viral particles. In the course of a viral infection, the usurpation of the nucleolus functions occurs and the usurpation is accompanied by profound changes in ribosome biogenesis. Recent studies have demonstrated that the nucleolus is a multifunctional and dynamic compartment. In addition to the biogenesis of ribosomes, it is involved in regulating the cell cycle and apoptosis, responding to cellular stress, repairing DNA, and transcribing RNA polymerase II-dependent genes. A viral infection can be accompanied by targeted transport of viral proteins to the nucleolus, massive release of resident proteins of the nucleolus into the nucleoplasm and cytoplasm, the movement of non-nucleolar proteins into the nucleolar compartment, and the temporary localization of viral nucleic acids in the nucleolus. The interaction of viral and nucleolar proteins interferes with canonical and non-canonical functions of the nucleolus and results in a change in the physiology of the host cell: cell cycle arrest, intensification or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and the modification of signaling cascades involved in the stress response. The nucleolus is, therefore, an important target during viral infection. In this review, we discuss the functional impact of viral proteins and nucleic acid interaction with the nucleolus during infection.
Collapse
|
10
|
Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis. Virus Res 2021; 298:198394. [PMID: 33775751 DOI: 10.1016/j.virusres.2021.198394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.
Collapse
|
11
|
Razin SV, Gavrilov AA, Iarovaia OV. Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection. Acta Naturae 2020; 12:34-46. [PMID: 33456976 PMCID: PMC7800604 DOI: 10.32607/actanaturae.11041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.
Collapse
Affiliation(s)
- S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences
| | | | | |
Collapse
|
12
|
Wang YQ, Zhao XY. Human Cytomegalovirus Primary Infection and Reactivation: Insights From Virion-Carried Molecules. Front Microbiol 2020; 11:1511. [PMID: 32765441 PMCID: PMC7378892 DOI: 10.3389/fmicb.2020.01511] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous beta-herpesvirus, is able to establish lifelong latency after initial infection. Periodical reactivation occurs after immunosuppression, remaining a major cause of death in immunocompromised patients. HCMV has to reach a structural and functional balance with the host at its earliest entry. Virion-carried mediators are considered to play pivotal roles in viral adaptation into a new cellular environment upon entry. Additionally, one clear difference between primary infection and reactivation is the idea that virion-packaged factors are already formed such that those molecules can be used swiftly by the virus. In contrast, virion-carried mediators have to be transcribed and translated; thus, they are not readily available during reactivation. Hence, understanding virion-carried molecules helps to elucidate HCMV reactivation. In this article, the impact of virion-packaged molecules on viral structure, biological behavior, and viral life cycle will be reviewed.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,PKU-THU Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| |
Collapse
|
13
|
Rainbow Kaposi's Sarcoma-Associated Herpesvirus Revealed Heterogenic Replication with Dynamic Gene Expression. J Virol 2020; 94:JVI.01565-19. [PMID: 31969436 PMCID: PMC7108829 DOI: 10.1128/jvi.01565-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms of Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation have been studied primarily by measuring the total or average activity of an infected cell population, which often consists of a mixture of both nonresponding and reactivating cells that in turn contain KSHVs at various stages of replication. Studies on KSHV gene regulation at the individual cell level would allow us to better understand the basis for this heterogeneity, and new preventive measures could be developed based on findings from nonresponding cells exposed to reactivation stimuli. Here, we generated a recombinant reporter virus, which we named "Rainbow-KSHV," that encodes three fluorescence-tagged KSHV proteins (mBFP2-ORF6, mCardinal-ORF52, and mCherry-LANA). Rainbow-KSHV replicated similarly to a prototype reporter-KSHV, KSHVr.219, and wild-type BAC16 virus. Live imaging revealed unsynchronized initiation of reactivation and KSHV replication with diverse kinetics between individual cells. Cell fractionation revealed temporal gene regulation, in which early lytic gene expression was terminated in late protein-expressing cells. Finally, isolation of fluorescence-positive cells from nonresponders increased dynamic ranges of downstream experiments 10-fold. Thus, this study demonstrates a tool to examine heterogenic responses of KSHV reactivation for a deeper understanding of KSHV replication.IMPORTANCE Sensitivity and resolution of molecular analysis are often compromised by the use of techniques that measure the ensemble average of large cell populations. Having a research tool to nondestructively identify the KSHV replication stage in an infected cell would not only allow us to effectively isolate cells of interest from cell populations but also enable more precise sample selection for advanced single-cell analysis. We prepared a recombinant KSHV that can report on its replication stage in host cells by differential fluorescence emission. Consistent with previous host gene expression studies, our experiments reveal the highly heterogenic nature of KSHV replication/gene expression at individual cell levels. The utilization of a newly developed reporter-KSHV and initial characterization of KSHV replication in single cells are presented.
Collapse
|
14
|
Hao H, Han T, Xuan B, Sun Y, Tang S, Yue N, Qian Z. Dissecting the Role of DDX21 in Regulating Human Cytomegalovirus Replication. J Virol 2019; 93:e01222-19. [PMID: 31554690 PMCID: PMC6880175 DOI: 10.1128/jvi.01222-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
DDX21 regulates the biogenesis of rRNA and transcription of ribonucleoprotein genes. Recently, it has been reported that DDX21 regulates the growth of some RNA viruses through various mechanisms, such as inhibiting viral genome replication, suppressing virion assembly and release, and modulating antiviral immune responses (Chen et al., Cell Host Microbe 15:484-493, 2014, https://doi.org/10.1016/j.chom.2014.03.002; Dong et al., Biophys Res Commun, 473:648-653, 2016, https://doi.org/10.1016/j.bbrc.2016.03.120; and Watanabe et al., PLoS Pathog 5:e1000654, 2009, https://doi.org/10.1371/journal.ppat.1000654). The relationship between DDX21 and DNA viruses has not yet been explored. In this study, we used human cytomegalovirus (HCMV), a large human DNA virus, to investigate the potential role of DDX21 in DNA virus replication. We found that HCMV infection prevented the repression of DDX21 at protein and mRNA levels. Knockdown of DDX21 inhibited HCMV growth in human fibroblast cells (MRC5). Immunofluorescence and quantitative PCR (qPCR) results showed that knockdown of DDX21 did not affect viral DNA replication or the formation of the viral replication compartment but did significantly inhibit viral late gene transcription. Some studies have reported that DDX21 knockdown promotes the accumulation of R-loops that could restrain RNA polymerase II elongation and inhibit the transcription of certain genes. Thus, we used the DNA-RNA hybrid-specific S9.6 antibody to stain R-loops and observed that more R-loops formed in DDX21-knockdown cells than in control cells. Moreover, an DNA-RNA immunoprecipitation assay showed that more R-loops accumulated on a viral late gene in DDX21-knockdown cells. Altogether, these results suggest that DDX21 knockdown promotes the accumulation of R-loops, which prevents viral late gene transcription and consequently results in the suppression of HCMV growth. This finding provides new insight into the relationship between DDX21 and DNA virus replication.IMPORTANCE Previous studies have confirmed that DDX21 is vital for the regulation of various aspects of RNA virus replication. Our research is the first report on the role of DDX21 in HCMV DNA virus replication. We identified that DDX21 knockdown affected HCMV growth and viral late gene transcription. In order to elucidate how DDX21 regulated this transcription, we applied DNA-RNA immunoprecipitation by using the DNA-RNA hybrid-specific S9.6 antibody to test whether more R-loops accumulated on the viral late gene. Consistent with our expectation, more R-loops were detected on the viral late gene at late HCMV infection time points, which demonstrated that the accumulation of R-loops caused by DDX21 knockdown prevented viral late gene transcription and consequently impaired HCMV replication. These results reveal that DDX21 plays an important role in regulating HCMV replication and also provide a basis for investigating the role of DDX21 in regulating other DNA viruses.
Collapse
Affiliation(s)
- Hongyun Hao
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tian Han
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yamei Sun
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shubing Tang
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Yue
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Hidalgo P, Gonzalez RA. Formation of adenovirus DNA replication compartments. FEBS Lett 2019; 593:3518-3530. [PMID: 31710378 DOI: 10.1002/1873-3468.13672] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/23/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Adenoviruses induce an extensive reorganization of the host cell nucleus during replication. Such a process results in the assembly of viral and cellular macromolecules into nuclear structures called adenovirus replication compartments (AdRCs), which function as platforms for viral DNA replication and gene expression. AdRCs co-opt host proteins and cellular pathways that restrict viral replication, suggesting that the mechanisms that control AdRC formation and function are essential for viral replication and lay at the basis of virus-host interactions. Here, we review the hallmarks of AdRCs and recent progress in our understanding of the formation, composition, and function of AdRCs. Furthermore, we discuss how AdRCs facilitate the interplay between viral and cellular machineries and hijack cellular functions to promote viral genome replication and expression.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
16
|
Neo JYJ, Wee SYK, Bonne I, Tay SH, Raida M, Jovanovic V, Fairhurst AM, Lu J, Hanson BJ, MacAry PA. Characterisation of a human antibody that potentially links cytomegalovirus infection with systemic lupus erythematosus. Sci Rep 2019; 9:9998. [PMID: 31292492 PMCID: PMC6620320 DOI: 10.1038/s41598-019-46329-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/26/2019] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that has been linked with the development of systemic lupus erythematosus (SLE). Thus far, molecular mimicry has been implicated as the principal mechanism that explains this association. In this study, we characterise a potential alternative process whereby HCMV contributes to SLE. In a cohort of SLE patients, we show a significant association between HCMV infection and SLE through a human antibody response that targets UL44. UL44 is an obligate nuclear-resident, non-structural viral protein vital for HCMV DNA replication. The intracellular nature of this viral protein complicates its targeting by the humoral response - the mechanism remains unresolved. To characterise this response, we present a thorough molecular analysis of the first human monoclonal antibody specific for UL44 derived from a HCMV seropositive donor. This human antibody immunoprecipitates UL44 from HCMV-infected cells together with known nuclear-resident SLE autoantigens - namely, nucleolin, dsDNA and ku70. We also show that UL44 is redistributed to the cell surface during virus-induced apoptosis as part of a complex with these autoantigens. This phenomenon represents a potential mechanism for the bystander presentation of SLE autoantigens to the humoral arm of our immune system under circumstances that favour a break in peripheral tolerance.
Collapse
Affiliation(s)
- Jie Ying Jacklyn Neo
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Seng Yin Kelly Wee
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Isabelle Bonne
- Electron Microscopy Laboratory, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sen Hee Tay
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University Health System, Singapore, Singapore
- Division of Rheumatology, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Manfred Raida
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vojislav Jovanovic
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anna-Marie Fairhurst
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jinhua Lu
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Paul A MacAry
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Human Cytomegalovirus DNA Polymerase Subunit UL44 Antagonizes Antiviral Immune Responses by Suppressing IRF3- and NF-κB-Mediated Transcription. J Virol 2019; 93:JVI.00181-19. [PMID: 30867312 DOI: 10.1128/jvi.00181-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/02/2019] [Indexed: 01/09/2023] Open
Abstract
Innate immunity is the first line of host defense against viral invasion. The induction of type I interferons (IFNs) and inflammatory cytokines is essential to host antiviral immune responses, which are also key targets of viral immune evasion. Human cytomegalovirus (HCMV) can establish long-term latent infections, in which immune evasion is a pivotal step. In this study, we identified HCMV protein UL44, a DNA polymerase processivity factor, as an inhibitor of the interferon regulatory factor 3 (IRF3)- and NF-κB-dependent antiviral response. Ectopic expression of UL44 inhibited HCMV-triggered induction of downstream effector genes and enhanced viral replication. Conversely, knockdown of UL44 potentiated HCMV-triggered induction of downstream antiviral genes. UL44 interacted with IRF3 and p65, and it inhibited the binding of IRF3 and NF-κB to the promoters of their downstream antiviral genes. These findings reveal an important mechanism of immune evasion by HCMV at the transcriptional level.IMPORTANCE Induction of type I IFNs and inflammatory cytokines plays pivotal roles in host antiviral innate immune responses. Viruses have evolved various mechanisms to interfere with these processes. HCMV causes severe ailments in immunodeficient populations and is a major cause of birth defects. It has been shown that HCMV antagonizes host innate immune defenses, which is important for establishing immune evasion and latent infection. In this study, we identified the HCMV DNA polymerase subunit UL44 as a suppressor of antiviral innate immune responses. Overexpression of UL44 impaired HCMV-triggered induction of type I IFNs and other antiviral genes and thus potentiated viral replication, whereas UL44 deficiency showed opposite effects. Mechanistic studies indicated that UL44 acts by inhibiting the binding of IRF3 and NF-κB to the promoters of downstream antiviral genes. These findings defined an important mechanism of HCMV immune evasion at the transcriptional level, which may provide a therapeutic target for the treatment of HCMV infection.
Collapse
|
18
|
A Role for Myosin Va in Human Cytomegalovirus Nuclear Egress. J Virol 2018; 92:JVI.01849-17. [PMID: 29298889 DOI: 10.1128/jvi.01849-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/21/2017] [Indexed: 02/01/2023] Open
Abstract
Herpesviruses replicate and package their genomes into capsids in replication compartments within the nuclear interior. Capsids then move to the inner nuclear membrane for envelopment and release into the cytoplasm in a process called nuclear egress. We previously found that nuclear F-actin is induced upon infection with the betaherpesvirus human cytomegalovirus (HCMV) and is important for nuclear egress and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Despite these and related findings, it has not been shown that any specific motor protein is involved in herpesvirus nuclear egress. In this study, we have investigated whether the host motor protein, myosin Va, could be fulfilling this role. Using immunofluorescence microscopy and coimmunoprecipitation, we observed associations between a nuclear population of myosin Va and the viral major capsid protein, with both concentrating at the periphery of replication compartments. Immunoelectron microscopy showed that nearly 40% of assembled nuclear capsids associate with myosin Va. We also found that myosin Va and major capsid protein colocalize with nuclear F-actin. Importantly, antagonism of myosin Va with RNA interference or a dominant negative mutant revealed that myosin Va is important for the efficient production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization away from replication compartment-like inclusions toward the nuclear rim. Our results lead us to suggest a working model whereby human cytomegalovirus capsids associate with myosin Va for movement from replication compartments to the nuclear periphery during nuclear egress.IMPORTANCE Little is known regarding how newly assembled and packaged herpesvirus capsids move from the nuclear interior to the periphery during nuclear egress. While it has been proposed that an actomyosin-based mechanism facilitates intranuclear movement of alphaherpesvirus capsids, a functional role for any specific myosin in nuclear egress has not been reported. Furthermore, the notion that an actomyosin-based mechanism facilitates intranuclear capsid movement is controversial. Here we show that human cytomegalovirus capsids associate with nuclear myosin Va and F-actin and that antagonism of myosin Va impairs capsid localization toward the nuclear rim and nuclear egress. Together with our previous results showing that nuclear F-actin is induced upon HCMV infection and is also important for these processes, our results lend support to the hypothesis that nascent human cytomegalovirus capsids migrate to the nuclear periphery via actomyosin-based movement. These results shed light on a poorly understood viral process and the cellular machinery involved.
Collapse
|
19
|
Feng L, Sheng J, Vu GP, Liu Y, Foo C, Wu S, Trang P, Paliza-Carre M, Ran Y, Yang X, Sun X, Deng Z, Zhou T, Lu S, Li H, Liu F. Human cytomegalovirus UL23 inhibits transcription of interferon-γ stimulated genes and blocks antiviral interferon-γ responses by interacting with human N-myc interactor protein. PLoS Pathog 2018; 14:e1006867. [PMID: 29377960 PMCID: PMC5805366 DOI: 10.1371/journal.ppat.1006867] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/08/2018] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Interferon-γ (IFN-γ) represents one of the most important innate immunity responses in a host to combat infections of many human viruses including human herpesviruses. Human N-myc interactor (Nmi) protein, which has been shown to interact with signal transducer and activator of transcription (STAT) proteins including STAT1, is important for the activation of IFN-γ induced STAT1-dependent transcription of many genes responsible for IFN-γ immune responses. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi. This interaction was identified through a yeast two-hybrid screen and co-immunoprecipitation in human cells. We observed that Nmi, when bound to UL23, was not associated with STAT1, suggesting that UL23 binding of Nmi disrupts the interaction of Nmi with STAT1. In cells overexpressing UL23, we observed (a) significantly reduced levels of Nmi and STAT1 in the nuclei, the sites where these proteins act to induce transcription of IFN-γ stimulated genes, and (b) decreased levels of the induction of the transcription of IFN-γ stimulated genes. UL23-deficient HCMV mutants induced higher transcription of IFN-γ stimulated genes and exhibited lower titers than parental and control revertant viruses expressing functional UL23 in IFN-γ treated cells. Thus, UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ induced responses and an increase of viral resistance to IFN-γ. Our results further highlight the roles of UL23-Nmi interactions in facilitating viral immune escape from IFN-γ responses and enhancing viral resistance to IFN antiviral effects. Interferon-γ (IFN-γ) responses are vital for a host to combat infections of many human viruses including human herpesviruses. Upon treatment of IFN-γ, transcription of many genes responsible for IFN-γ immune responses is activated primarily by the signal transducer and activator of transcription (STAT) proteins such as STAT1 protein. Human N-myc interactor (Nmi) protein has been shown to interact with STAT proteins including STAT1 and activate IFN-γ induced STAT-dependent transcription. However, no proteins encoded by herpesviruses have been reported to interact with Nmi and inhibit Nmi-mediated activation of IFN-γ immune responses to achieve immune evasion from IFN-γ responses. In this study, we show strong evidence that the UL23 protein of human cytomegalovirus (HCMV), a human herpesvirus, specifically interacts with Nmi protein. UL23 appears to interact directly with Nmi and inhibit nuclear translocation of Nmi and its associated protein STAT1, leading to a decrease of IFN-γ responses and an increase of viral resistance to IFN-γ. Blocking UL23 expression led to higher transcription of IFN-γ stimulated genes and significant inhibition of viral growth in infected cells. These results suggest that interfering with Nmi function may represent an effective mechanism for a herpesvirus to block Nmi-mediated IFN-γ responses and increase viral resistance to IFN-γ. This also provides a potentially new therapeutic strategy to treat HCMV infection by modulating Nmi activity with blocking the expression of a viral protein.
Collapse
Affiliation(s)
- Linyuan Feng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chingman Foo
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Songbin Wu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Marco Paliza-Carre
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanhong Ran
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Yang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zemin Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tianhong Zhou
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Hongjian Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- * E-mail: (FL); (HL)
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (FL); (HL)
| |
Collapse
|
20
|
Cytomegalovirus Late Protein pUL31 Alters Pre-rRNA Expression and Nuclear Organization during Infection. J Virol 2017; 91:JVI.00593-17. [PMID: 28659485 DOI: 10.1128/jvi.00593-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
The replication cycle of human cytomegalovirus (CMV) leads to drastic reorganization of domains in the host cell nucleus. However, the mechanisms involved and how these domains contribute to infection are not well understood. Our recent studies defining the CMV-induced nuclear proteome identified several viral proteins of unknown functions, including a protein encoded by the UL31 gene. We set out to define the role of UL31 in CMV replication. UL31 is predicted to encode a 74-kDa protein, referred to as pUL31, containing a bipartite nuclear localization signal, an intrinsically disordered region overlapping arginine-rich motifs, and a C-terminal dUTPase-like structure. We observed that pUL31 is expressed with true late kinetics and is localized to nucleolin-containing nuclear domains. However, pUL31 is excluded from the viral nuclear replication center. Nucleolin is a marker of nucleoli, which are membrane-less regions involved in regulating ribosome biosynthesis and cellular stress responses. Other CMV proteins associate with nucleoli, and we demonstrate that pUL31 specifically interacts with the viral protein, pUL76. Coexpression of both proteins altered pUL31 localization and nucleolar organization. During infection, pUL31 colocalizes with nucleolin but not the transcriptional activator, UBF. In the absence of pUL31, CMV fails to reorganize nucleolin and UBF and exhibits a replication defect at a low multiplicity of infection. Finally, we observed that pUL31 is necessary and sufficient to reduce pre-rRNA levels, and this was dependent on the dUTPase-like motif in pUL31. Our studies demonstrate that CMV pUL31 functions in regulating nucleolar biology and contributes to the reorganization of nucleoli during infection.IMPORTANCE Nucleolar biology is important during CMV infection with the nucleolar protein, with nucleolin playing a role in maintaining the architecture of the viral nuclear replication center. However, the extent of CMV-mediated regulation of nucleolar biology is not well established. Proteins within nucleoli regulate ribosome biosynthesis and p53-dependent cellular stress responses that are capable of inducing cell cycle arrest and/or apoptosis, and they are proposed targets for cancer therapies. This study establishes that CMV protein pUL31 is necessary and sufficient to regulate nucleolar biology involving the reorganization of nucleolar proteins. Understanding these processes will help define approaches to stimulate cellular intrinsic stress responses that are capable of inhibiting CMV infection.
Collapse
|
21
|
Bates PJ, Reyes-Reyes EM, Malik MT, Murphy EM, O'Toole MG, Trent JO. G-quadruplex oligonucleotide AS1411 as a cancer-targeting agent: Uses and mechanisms. Biochim Biophys Acta Gen Subj 2017; 1861:1414-1428. [PMID: 28007579 DOI: 10.1016/j.bbagen.2016.12.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AS1411 is a 26-mer G-rich DNA oligonucleotide that forms a variety of G-quadruplex structures. It was identified based on its cancer-selective antiproliferative activity and subsequently determined to be an aptamer to nucleolin, a multifunctional protein that preferentially binds quadruplex nucleic acids and which is present at high levels on the surface of cancer cells. AS1411 has exceptionally efficient cellular internalization compared to non-quadruplex DNA sequences. SCOPE OF REVIEW Recent developments related to AS1411 will be examined, with a focus on its use for targeted delivery of therapeutic and imaging agents. MAJOR CONCLUSIONS Numerous research groups have used AS1411 as a targeting agent to deliver nanoparticles, oligonucleotides, and small molecules into cancer cells. Studies in animal models have demonstrated that AS1411-linked materials can accumulate selectively in tumors following systemic administration. The mechanism underlying the cancer-targeting ability of AS1411 is not completely understood, but recent studies suggest a model that involves: (1) initial uptake by macropinocytosis, a form of endocytosis prevalent in cancer cells; (2) stimulation of macropinocytosis by a nucleolin-dependent mechanism resulting in further uptake; and (3) disruption of nucleolin-mediated trafficking and efflux leading to cargoes becoming trapped inside cancer cells. SIGNIFICANCE Human trials have indicated that AS1411 is safe and can induce durable remissions in a few patients, but new strategies are needed to maximize its clinical impact. A better understanding of the mechanisms by which AS1411 targets and kills cancer cells may hasten the development of promising technologies using AS1411-linked nanoparticles or conjugates for cancer-targeted therapy and imaging. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA.
| | | | - Mohammad T Malik
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| | - Emily M Murphy
- Department of Biomedical Engineering, University of Louisville, USA
| | - Martin G O'Toole
- Department of Biomedical Engineering, University of Louisville, USA
| | - John O Trent
- Department of Medicine, University of Louisville, USA; James Graham Brown Cancer Center, University of Louisville, USA
| |
Collapse
|
22
|
Kumar D, Broor S, Rajala MS. Interaction of Host Nucleolin with Influenza A Virus Nucleoprotein in the Early Phase of Infection Limits the Late Viral Gene Expression. PLoS One 2016; 11:e0164146. [PMID: 27711134 PMCID: PMC5053498 DOI: 10.1371/journal.pone.0164146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Influenza A virus nucleoprotein, is a multifunctional RNA-binding protein, encoded by segment-5 of the negative sense RNA genome. It serves as a key connector between the virus and the host during virus replication. It continuously shuttles between the cytoplasm and the nucleus interacting with various host cellular factors. In the current study, host proteins interacting with nucleoprotein of Influenza A virus of H1N1 2009 pandemic strain were identified by co-immunoprecipitation studies followed by MALDI-TOF/MS analysis. Here we report the host nucleolin, a major RNA-binding protein of the nucleolus as a novel interacting partner to influenza A virus nucleoprotein. We thus, explored the implications of this interaction in virus life cycle and our studies have shown that these two proteins interact early during infection in the cytoplasm of infected cells. Depletion of nucleolin in A549 cells by siRNA targeting endogenous nucleolin followed by influenza A virus infection, disrupted its interaction with viral nucleoprotein, resulting in increased expression of gene transcripts encoding late viral proteins; matrix (M1) and hemagglutinin (HA) in infected cells. On the contrary, over expression of nucleolin in cells transiently transfected with pEGFP-NCL construct followed by virus infection significantly reduced the late viral gene transcripts, and consequently the viral titer. Altered expression of late viral genes and titers following manipulation of host cellular nucleolin, proposes the functional importance of its interaction with nucleoprotein during influenza A virus infection.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Dogs
- Gene Expression Regulation, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/epidemiology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Nucleocapsid Proteins
- Pandemics
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- RNA Interference
- RNA, Small Interfering/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Seasons
- Transcription, Genetic
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
- Nucleolin
Collapse
Affiliation(s)
- Deepshikha Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shobha Broor
- Department of Microbiology, Faculty of Medicine and Health Science, Shree Guru Gobind Singh Tricentenary University, Gurgaon, Haryana, India
| | | |
Collapse
|
23
|
Abstract
Herpesviruses, which include important pathogens, remodel the host cell nucleus to facilitate infection. This remodeling includes the formation of structures called replication compartments (RCs) in which herpesviruses replicate their DNA. During infection with the betaherpesvirus, human cytomegalovirus (HCMV), viral DNA synthesis occurs at the periphery of RCs within the nuclear interior, after which assembled capsids must reach the inner nuclear membrane (INM) for translocation to the cytoplasm (nuclear egress). The processes that facilitate movement of HCMV capsids to the INM during nuclear egress are unknown. Although an actin-based mechanism of alphaherpesvirus capsid trafficking to the INM has been proposed, it is controversial. Here, using a fluorescently-tagged, nucleus-localized actin-binding peptide, we show that HCMV, but not herpes simplex virus 1, strongly induced nuclear actin filaments (F-actin) in human fibroblasts. Based on studies using UV inactivation and inhibitors, this induction depended on viral gene expression. Interestingly, by 24 h postinfection, nuclear F-actin formed thicker structures that appeared by super-resolution microscopy to be bundles of filaments. Later in infection, nuclear F-actin primarily localized along the RC periphery and between the RC periphery and the nuclear rim. Importantly, a drug that depolymerized nuclear F-actin caused defects in production of infectious virus, capsid accumulation in the cytoplasm, and capsid localization near the nuclear rim, without decreasing capsid accumulation in the nucleus. Thus, our results suggest that for at least one herpesvirus, nuclear F-actin promotes capsid movement to the nuclear periphery and nuclear egress. We discuss our results in terms of competing models for these processes. The mechanisms underlying herpesvirus nuclear egress have not been fully determined. In particular, how newly assembled capsids move to the inner nuclear membrane for envelopment is uncertain and controversial. In this study, we show that HCMV, an important human pathogen, induces actin filaments in the nuclei of infected cells and that an inhibitor of nuclear F-actin impairs nuclear egress and capsid localization toward the nuclear periphery. Herpesviruses are widespread pathogens that cause or contribute to an array of human diseases. A better understanding of how herpesvirus capsids traffic in the nucleus may uncover novel targets for antiviral intervention and elucidate aspects of the nuclear cytoskeleton, about which little is known.
Collapse
|
24
|
Terrier O, Carron C, De Chassey B, Dubois J, Traversier A, Julien T, Cartet G, Proust A, Hacot S, Ressnikoff D, Lotteau V, Lina B, Diaz JJ, Moules V, Rosa-Calatrava M. Nucleolin interacts with influenza A nucleoprotein and contributes to viral ribonucleoprotein complexes nuclear trafficking and efficient influenza viral replication. Sci Rep 2016; 6:29006. [PMID: 27373907 PMCID: PMC4931502 DOI: 10.1038/srep29006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/09/2016] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses replicate their single-stranded RNA genomes in the nucleus of infected cells and these replicated genomes (vRNPs) are then exported from the nucleus to the cytoplasm and plasma membrane before budding. To achieve this export, influenza viruses hijack the host cell export machinery. However, the complete mechanisms underlying this hijacking remain not fully understood. We have previously shown that influenza viruses induce a marked alteration of the nucleus during the time-course of infection and notably in the nucleolar compartment. In this study, we discovered that a major nucleolar component, called nucleolin, is required for an efficient export of vRNPs and viral replication. We have notably shown that nucleolin interacts with the viral nucleoprotein (NP) that mainly constitutes vRNPs. Our results suggest that this interaction could allow vRNPs to "catch" the host cell export machinery, a necessary step for viral replication.
Collapse
Affiliation(s)
- Olivier Terrier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Coralie Carron
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Benoît De Chassey
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Dubois
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Gaëlle Cartet
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Anaïs Proust
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Denis Ressnikoff
- CIQLE, Centre d’imagerie quantitative Lyon-Est, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Lotteau
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Lina
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Laboratory of Virology, Lyon, France
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR Inserm 1052 CNRS 5286, Centre Léon Bérard, Lyon, France and Université de Lyon, Lyon, France
| | - Vincent Moules
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - Team VirPath - Université Claude Bernard Lyon 1 - Hospices Civils de Lyon, Lyon, France
- CIRI, International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Lyon 1, Lyon, France
| |
Collapse
|
25
|
Expression of Oncogenic Alleles Induces Multiple Blocks to Human Cytomegalovirus Infection. J Virol 2016; 90:4346-4356. [PMID: 26889030 DOI: 10.1128/jvi.00179-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/08/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED In contrast to many viruses, human cytomegalovirus (HCMV) is unable to productively infect most cancer-derived cell lines. The mechanisms of this restriction are unclear. To explore this issue, we tested whether defined oncogenic alleles, including the simian virus 40 (SV40) T antigen (TAg) and oncogenic H-Ras, inhibit HCMV infection. We found that expression of SV40 TAg blocks HCMV infection in human fibroblasts, whereas the replication of a related herpesvirus, herpes simplex virus 1 (HSV-1), was not impacted. The earliest restriction of HCMV infection involves a block of viral entry, as TAg expression prevented the nuclear delivery of viral DNA and pp65. Subsequently, we found that TAg expression reduces the abundance of platelet-derived growth factor receptor α (PDGFRα), a host protein important for HCMV entry. Viral entry into TAg-immortalized fibroblasts could largely be rescued by PDGFRα overexpression. Similarly, PDGFRα overexpression in HeLa cells markedly increased the levels of HCMV gene expression and DNA replication. However, the robust production of viral progeny was not restored by PDGFRα overexpression in either HeLa cells or TAg-immortalized fibroblasts, suggesting additional restrictions associated with transformation and TAg expression. In TAg-expressing fibroblasts, expression of the immediate early 2 (IE2) protein was not rescued to the same extent as that of the immediate early 1 (IE1) protein, suggesting that TAg expression impacts the accumulation of major immediate early (MIE) transcripts. Transduction of IE2 largely rescued HCMV gene expression in TAg-expressing fibroblasts but did not rescue the production of infectious virions. Collectively, our data indicate that oncogenic alleles induce multiple restrictions to HCMV replication. IMPORTANCE HCMV cannot replicate in most cancerous cells, yet the causes of this restriction are not clear. The mechanisms that restrict viral replication in cancerous cells represent viral vulnerabilities that can potentially be exploited therapeutically in other contexts. Here we found that SV40 T antigen-mediated transformation inhibits HCMV infection at multiple points in the viral life cycle, including through inhibition of proper viral entry, normal expression of immediate early genes, and viral DNA replication. Our results suggest that the SV40 T antigen could be a valuable tool to dissect cellular activities that are important for successful infection, thereby potentially informing novel antiviral development strategies. This is an important consideration, given that HCMV is a leading cause of birth defects and causes severe infection in immunocompromised individuals.
Collapse
|
26
|
Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells. J Virol 2016; 90:3411-27. [PMID: 26764008 DOI: 10.1128/jvi.00033-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.
Collapse
|
27
|
Rawlinson SM, Moseley GW. The nucleolar interface of
RNA
viruses. Cell Microbiol 2015; 17:1108-20. [DOI: 10.1111/cmi.12465] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Stephen M. Rawlinson
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| | - Gregory W. Moseley
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| |
Collapse
|
28
|
Loroch S, Schommartz T, Brune W, Zahedi RP, Sickmann A. Multidimensional electrostatic repulsion–hydrophilic interaction chromatography (ERLIC) for quantitative analysis of the proteome and phosphoproteome in clinical and biomedical research. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:460-8. [DOI: 10.1016/j.bbapap.2015.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 11/29/2022]
|
29
|
Strang BL. Viral and cellular subnuclear structures in human cytomegalovirus-infected cells. J Gen Virol 2014; 96:239-252. [PMID: 25359764 DOI: 10.1099/vir.0.071084-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In human cytomegalovirus (HCMV)-infected cells, a dramatic remodelling of the nuclear architecture is linked to the creation, utilization and manipulation of subnuclear structures. This review outlines the involvement of several viral and cellular subnuclear structures in areas of HCMV replication and virus-host interaction that include viral transcription, viral DNA synthesis and the production of DNA-filled viral capsids. The structures discussed include those that promote or impede HCMV replication (such as viral replication compartments and promyelocytic leukaemia nuclear bodies, respectively) and those whose role in the infected cell is unclear (for example, nucleoli and nuclear speckles). Viral and cellular proteins associated with subnuclear structures are also discussed. The data reviewed here highlight advances in our understanding of HCMV biology and emphasize the complexity of HCMV replication and virus-host interactions in the nucleus.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
30
|
Jean Beltran PM, Cristea IM. The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert Rev Proteomics 2014; 11:697-711. [PMID: 25327590 DOI: 10.1586/14789450.2014.971116] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Viruses have coevolved with their hosts, acquiring strategies to subvert host cellular pathways for effective viral replication and spread. Human cytomegalovirus (HCMV), a widely-spread β-herpesvirus, is a major cause of birth defects and opportunistic infections in HIV-1/AIDS patients. HCMV displays an intricate system-wide modulation of the human cell proteome. An impressive array of virus-host protein interactions occurs throughout the infection. To investigate the virus life cycle, proteomics has recently become a significant component of virology studies. Here, we review the mass spectrometry-based proteomics approaches used in HCMV studies, as well as their contribution to understanding the HCMV life cycle and the virus-induced changes to host cells. The importance of the biological insights gained from these studies clearly demonstrate the impact that proteomics has had and can continue to have on understanding HCMV biology and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Pierre M Jean Beltran
- Department of Molecular Biology, 210 Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey, NJ 08544, USA
| | | |
Collapse
|
31
|
Wang W, Luo J, Xiang F, Liu X, Jiang M, Liao L, Hu J. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells. PLoS One 2014; 9:e110101. [PMID: 25290311 PMCID: PMC4188626 DOI: 10.1371/journal.pone.0110101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 09/16/2014] [Indexed: 01/20/2023] Open
Abstract
High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC) down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.
Collapse
MESH Headings
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Antineoplastic Agents/pharmacology
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Apoptosis/drug effects
- Azo Compounds/pharmacology
- Cell Line
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- Dose-Response Relationship, Drug
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Gene Expression Regulation
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Monocytes/cytology
- Monocytes/drug effects
- Monocytes/metabolism
- Phosphoproteins/antagonists & inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Primary Cell Culture
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Purinergic Agonists/pharmacology
- Purinergic Antagonists/pharmacology
- Pyridoxal Phosphate/analogs & derivatives
- Pyridoxal Phosphate/pharmacology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/antagonists & inhibitors
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1/deficiency
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y12/deficiency
- Receptors, Purinergic P2Y12/genetics
- S Phase Cell Cycle Checkpoints/drug effects
- S Phase Cell Cycle Checkpoints/genetics
- Signal Transduction
- Thionucleotides/pharmacology
- Nucleolin
Collapse
Affiliation(s)
- Wenmeng Wang
- Department of Internal Medicine, Hunan Armed Police Force's Hospital, Changsha, Hunan, China
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Junqing Luo
- Department of Internal Medicine, Hunan Armed Police Force's Hospital, Changsha, Hunan, China
| | - Fang Xiang
- Department of Internal Medicine, Hunan Armed Police Force's Hospital, Changsha, Hunan, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Lingjuan Liao
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| | - Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan, China
| |
Collapse
|
32
|
Perng YC, Campbell JA, Lenschow DJ, Yu D. Human cytomegalovirus pUL79 is an elongation factor of RNA polymerase II for viral gene transcription. PLoS Pathog 2014; 10:e1004350. [PMID: 25166009 PMCID: PMC4148446 DOI: 10.1371/journal.ppat.1004350] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/20/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we have identified a unique mechanism in which human cytomegalovirus (HCMV) protein pUL79 acts as an elongation factor to direct cellular RNA polymerase II for viral transcription during late times of infection. We and others previously reported that pUL79 and its homologues are required for viral transcript accumulation after viral DNA synthesis. We hypothesized that pUL79 represented a unique mechanism to regulate viral transcription at late times during HCMV infection. To test this hypothesis, we analyzed the proteome associated with pUL79 during virus infection by mass spectrometry. We identified both cellular transcriptional factors, including multiple RNA polymerase II (RNAP II) subunits, and novel viral transactivators, including pUL87 and pUL95, as protein binding partners of pUL79. Co-immunoprecipitation (co-IP) followed by immunoblot analysis confirmed the pUL79-RNAP II interaction, and this interaction was independent of any other viral proteins. Using a recombinant HCMV virus where pUL79 protein is conditionally regulated by a protein destabilization domain ddFKBP, we showed that this interaction did not alter the total levels of RNAP II or its recruitment to viral late promoters. Furthermore, pUL79 did not alter the phosphorylation profiles of the RNAP II C-terminal domain, which was critical for transcriptional regulation. Rather, a nuclear run-on assay indicated that, in the absence of pUL79, RNAP II failed to elongate and stalled on the viral DNA. pUL79-dependent RNAP II elongation was required for transcription from all three kinetic classes of viral genes (i.e. immediate-early, early, and late) at late times during virus infection. In contrast, host gene transcription during HCMV infection was independent of pUL79. In summary, we have identified a novel viral mechanism by which pUL79, and potentially other viral factors, regulates the rate of RNAP II transcription machinery on viral transcription during late stages of HCMV infection. In this study, we report a novel mechanism used by human cytomegalovirus (HCMV) to regulate the elongation rate of RNA polymerase II (RNAP II) to facilitate viral transcription during late stages of infection. Recently, we and others have identified several viral factors that regulate gene expression during late infection. These factors are functionally conserved among beta- and gamma- herpesviruses, suggesting a unique transcriptional regulation shared by viruses of these two subfamilies. However, the mechanism remains elusive. Here we show that HCMV pUL79, one of these factors, interacts with RNAP II as well as other viral factors involved in late gene expression. We have started to elucidate the nature of the pUL79-RNAP II interaction, finding that pUL79 does not alter the protein levels of RNAP II or its recruitment to viral promoters. However, during late times of infection, pUL79 helps RNAP II efficiently elongate along the viral DNA template to transcribe HCMV genes. Host genes are not regulated by this pUL79-mediated mechanism. Therefore, our study discovers a previously uncharacterized mechanism where RNAP II activity is modulated by viral factor pUL79, and potentially other viral factors as well, for coordinated viral transcription.
Collapse
Affiliation(s)
- Yi-Chieh Perng
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jessica A. Campbell
- Department of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Deborah J. Lenschow
- Department of Medicine, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dong Yu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
33
|
Dynamic and nucleolin-dependent localization of human cytomegalovirus UL84 to the periphery of viral replication compartments and nucleoli. J Virol 2014; 88:11738-47. [PMID: 25078694 DOI: 10.1128/jvi.01889-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein-protein and protein-nucleic acid interactions within subcellular compartments are required for viral genome replication. To understand the localization of the human cytomegalovirus viral replication factor UL84 relative to other proteins involved in viral DNA synthesis and to replicating viral DNA in infected cells, we created a recombinant virus expressing a FLAG-tagged version of UL84 (UL84FLAG) and used this virus in immunofluorescence assays. UL84FLAG localization differed at early and late times of infection, transitioning from diffuse distribution throughout the nucleus to exclusion from the interior of replication compartments, with some concentration at the periphery of replication compartments with newly labeled DNA and the viral DNA polymerase subunit UL44. Early in infection, UL84FLAG colocalized with the viral single-stranded DNA binding protein UL57, but colocalization became less prominent as infection progressed. A portion of UL84FLAG also colocalized with the host nucleolar protein nucleolin at the peripheries of both replication compartments and nucleoli. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a dramatic elimination of UL84FLAG from replication compartments and other parts of the nucleus and its accumulation in the cytoplasm. Reciprocal coimmunoprecipitation of viral proteins from infected cell lysates revealed association of UL84, UL44, and nucleolin. These results indicate that UL84 localization during infection is dynamic, which is likely relevant to its functions, and suggest that its nuclear and subnuclear localization is highly dependent on direct or indirect interactions with nucleolin. Importance: The protein-protein interactions among viral and cellular proteins required for replication of the human cytomegalovirus (HCMV) DNA genome are poorly understood. We sought to understand how an enigmatic HCMV protein critical for virus replication, UL84, localizes relative to other viral and cellular proteins required for HCMV genome replication and replicating viral DNA. We found that UL84 localizes with viral proteins, viral DNA, and the cellular nucleolar protein nucleolin in the subnuclear replication compartments in which viral DNA replication occurs. Unexpectedly, we also found localization of UL84 with nucleolin in nucleoli and showed that the presence of nucleolin is involved in localization of UL84 to the nucleus. These results add to previous work showing the importance of nucleolin in replication compartment architecture and viral DNA synthesis and are relevant to understanding UL84 function.
Collapse
|
34
|
Human cytomegalovirus UL34 early and late proteins are essential for viral replication. Viruses 2014; 6:476-88. [PMID: 24476753 PMCID: PMC3939466 DOI: 10.3390/v6020476] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/16/2023] Open
Abstract
UL34 is one of the ~50 genes of human cytomegalovirus (HCMV) required for replication in cell culture in human fibroblasts. UL34 encodes highly related early (UL34a) and late (UL34b) proteins that are virtually identical, with the early protein containing an additional 21 amino terminal amino acids. The UL34 proteins are sequence-specific DNA‑binding proteins that localize to the nucleus. The HCMV genome contains 14 to 15 UL34 binding sites; two of the UL34 binding sites contribute to transcriptional regulation of two other viral genes, US3 and US9. The roles of the remaining binding sites and the requirement for both UL34 proteins during viral infection remain unknown. We examined the contributions of the early and late UL34 proteins to viral replication by generating HCMV-containing bacterial artificial chromosomes with the initiation codon for the early or the late protein mutated. Neither virus was able to replicate, demonstrating that UL34 expression is required throughout the viral replication cycle. A marked decrease in viral gene expression for each of the mutants suggests that UL34 proteins may contribute generally to transcriptional regulation. Intracellular localization studies demonstrated that UL34 colocalizes with the major immediate early protein, IE2, and the viral DNA polymerase processivity factor, UL44, to viral DNA replication centers. In conclusion, sustained UL34 protein expression is required for viral replication. The sequence-specific DNA binding ability of UL34 proteins, their localization to viral DNA replication centers and their general effects on viral gene expressions suggests that UL34 proteins contribute to the establishment of a nuclear environment necessary for viral gene expression and DNA replication.
Collapse
|
35
|
Chen YL, Liu CD, Cheng CP, Zhao B, Hsu HJ, Shen CL, Chiu SJ, Kieff E, Peng CW. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription. Proc Natl Acad Sci U S A 2014; 111:243-8. [PMID: 24344309 PMCID: PMC3890893 DOI: 10.1073/pnas.1321800111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry. Nucleolin (NCL) was identified to be EBNA1 associated. EBNA1's N-terminal 100 aa and NCL's RNA-binding domains were critical for EBNA1/NCL interaction. Lentivirus shRNA-mediated NCL depletion substantially reduced EBNA1 recruitment to oriP DNA, EBNA1-dependent transcription of an EBV oriP luciferase reporter, and EBV genome maintenance in lymphoblastoid cell lines. NCL RNA-binding domain K429 was critical for ATP and EBNA1 binding. NCL overexpression increased EBNA1 binding to oriP and transcription, whereas NCL K429A was deficient. Moreover, NCL silencing impaired lymphoblastoid cell line growth. These experiments reveal a surprisingly critical role for NCL K429 in EBNA1 episome maintenance and transcription, which may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- Ya-Lin Chen
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Cheng-Der Liu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Chi-Ping Cheng
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Bo Zhao
- Department of Medicine, Brigham and Women’s Hospital, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Chih-Long Shen
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Shu-Jun Chiu
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| | - Elliott Kieff
- Department of Medicine, Brigham and Women’s Hospital, and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Chih-wen Peng
- Department of Life Sciences, Tzu-Chi University, Hualien 97004, Taiwan; and
| |
Collapse
|
36
|
Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta Mol Basis Dis 2013; 1842:840-7. [PMID: 24378568 PMCID: PMC7135015 DOI: 10.1016/j.bbadis.2013.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most – if not all – families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Most viruses interact with the nucleolus that plays a major role in virus life cycle. Virus/nucleolus interaction is crucial for virus replication and pathogenesis. Role of nucleoli in the infection with selected RNA viruses and herpes viruses
Collapse
Affiliation(s)
- Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| | - Anna Greco
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| |
Collapse
|
37
|
Du G, Stinski MF. Interaction network of proteins associated with human cytomegalovirus IE2-p86 protein during infection: a proteomic analysis. PLoS One 2013; 8:e81583. [PMID: 24358118 PMCID: PMC3864812 DOI: 10.1371/journal.pone.0081583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus protein IE2-p86 exerts its functions through interaction with other viral and cellular proteins. To further delineate its protein interaction network, we generated a recombinant virus expressing SG-tagged IE2-p86 and used tandem affinity purification coupled with mass spectrometry. A total of 9 viral proteins and 75 cellular proteins were found to associate with IE2-p86 protein during the first 48 hours of infection. The protein profile at 8, 24, and 48 h post infection revealed that UL84 tightly associated with IE2-p86, and more viral and cellular proteins came into association with IE2-p86 with the progression of virus infection. A computational analysis of the protein-protein interaction network indicated that all of the 9 viral proteins and most of the cellular proteins identified in the study are interconnected to varying degrees. Of the cellular proteins that were confirmed to associate with IE2-p86 by immunoprecipitation, C1QBP was further shown to be upregulated by HCMV infection and colocalized with IE2-p86, UL84 and UL44 in the virus replication compartment of the nucleus. The IE2-p86 interactome network demonstrated the temporal development of stable and abundant protein complexes that associate with IE2-p86 and provided a framework to benefit future studies of various protein complexes during HCMV infection.
Collapse
Affiliation(s)
- Guixin Du
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Mark F. Stinski
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
38
|
Regulated transport into the nucleus of herpesviridae DNA replication core proteins. Viruses 2013; 5:2210-34. [PMID: 24064794 PMCID: PMC3798897 DOI: 10.3390/v5092210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022] Open
Abstract
The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.
Collapse
|
39
|
Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Antiviral Res 2013; 99:318-27. [DOI: 10.1016/j.antiviral.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
40
|
Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 2013; 9:e1003366. [PMID: 23717203 PMCID: PMC3662700 DOI: 10.1371/journal.ppat.1003366] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/02/2013] [Indexed: 12/15/2022] Open
Abstract
The parameters involved in human cytomegalovirus (HCMV) latent infection in CD14 (+) and CD34 (+) cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+) and CD34 (+) cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched experimental latency models, and included two long non-coding RNAs (lncRNAs), RNA4.9 and RNA2.7 as well as the mRNAs encoding replication factors UL84 and UL44. Chromatin immunoprecipitation assays on experimentally infected CD14 (+) monocytes followed by next generation sequencing (ChIP-Seq) were employed to demonstrate both UL84 and UL44 proteins interacted with the latent viral genome and overlapped at 5 of the 8 loci identified. RNA4.9 interacts with components of the polycomb repression complex (PRC) as well as with the MIE promoter region where the enrichment of the repressive H3K27me3 mark suggests that this lncRNA represses transcription. Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE), which identifies nucleosome-depleted viral DNA, was used to confirm that latent mRNAs were associated with actively transcribed, FAIRE analysis also showed that the terminal repeat (TR) region of the latent viral genome is depleted of nucleosomes suggesting that this region may contain an element mediating viral genome maintenance. ChIP assays show that the viral TR region interacts with factors associated with the pre replication complex and a plasmid subclone containing the HCMV TR element persisted in latently infected CD14 (+) monocytes, strongly suggesting that the TR region mediates viral chromosome maintenance. Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus where infection is usually subclinical. HCMV initial infection is followed by the establishment of latency in CD34 (+) myeloid cells and CD14 (+) monocytes. Primary infection or reactivation from latency can be associated with significant morbidity and mortality can occur in immune compromised patients. Latency is marked by the persistence of the viral genome, lack of production of infectious virus and the expression of only a few previously recognized latency associated transcripts. Despite the significant interest in HCMV latent infection, little is known regarding the mechanism involved in establishment or maintenance of the viral chromosome. We have now identified the transacting factors present in latently infected CD14 (+) monocytes and CD34 (+) progenitor cells as well as identification of a region of the HCMV genome, the terminal repeat locus that mediates viral DNA maintenance. This is a major step toward understanding the mechanism of HCMV latent infection.
Collapse
|
41
|
Wang K, Li Y, Zhao G, Wu Y, Zhang X, Li H, Zhou T. Inhibition of human cytomegalovirus DNA replication by small interfering RNAs targeted to UL49. Acta Biochim Biophys Sin (Shanghai) 2013; 45:401-7. [PMID: 23507399 DOI: 10.1093/abbs/gmt025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus. Although the infection in healthy children and adults is usually asymptomatic, in immunocompromised individuals and newborns it is a significant cause of morbidity and mortality. UL49, an essential gene of HCMV, is highly conserved among various HCMV strains. The expression of UL49 is correlated with the production of virions. When UL49 is inhibited in the HCMV, the production of virions is reduced severely. In this study, RNA interference was applied to further investigate the roles of UL49 in viral replication. Two effective small interfering RNAs against UL49 were selected. Silencing of UL49 in HCMV-infected human foreskin fibroblast cells reduced the transcription levels of early and late genes, but not immediate-early ones. In addition, the viral DNA content was significantly reduced. This is the first time to uncover the role of UL49 in viral DNA synthesis, which indicates that UL49 might play an important role in this period. So the down-regulation of UL49 mRNA using RNAi might be a potential clinical therapy against the virus.
Collapse
Affiliation(s)
- Kezhen Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
43
|
Strang BL, Bender BJ, Sharma M, Pesola JM, Sanders RL, Spector DH, Coen DM. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 2012; 86:11066-77. [PMID: 22855486 PMCID: PMC3457161 DOI: 10.1128/jvi.01379-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuri Sharma
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Sanders
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deborah H. Spector
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
44
|
Abstract
The nucleolus is a distinct subnuclear compartment known as the site for ribosome biogenesis in eukaryotes. Consequently, the nucleolus is also proposed to function in cell-cycle control, stress sensing and senescence, as well as in viral infection. An increasing number of viral proteins have been found to localize to the nucleolus. In this article, we review the current understanding of the functions of the nucleolus, the molecular mechanism of cellular and viral protein targeting to the nucleolus and the functional roles of the nucleolus during viral infection with a specific focus on the herpesvirus family.
Collapse
Affiliation(s)
- Liwen Ni
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Shuai Wang
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Chunfu Zheng
- Molecular Virology and Viral Immunology Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| |
Collapse
|
45
|
Abstract
Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
46
|
Duan Y, Miao L, Ye H, Yang C, Fu B, Schwartz PH, Rayner S, Fortunato EA, Luo MH. A faster immunofluorescence assay for tracking infection progress of human cytomegalovirus. Acta Biochim Biophys Sin (Shanghai) 2012; 44:597-605. [PMID: 22659494 DOI: 10.1093/abbs/gms041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunofluorescence assay (IFA) is one of the most frequently used methods in the biological sciences and clinic diagnosis, but it is expensive and time-consuming. To overcome these limitations, we developed a faster and more cost-effective IFA (f-IFA) by modifying the standard IFA, and applied this method to track the progression of human cytomegalovirus (HCMV) infection in different cells. The f-IFA that we developed not only saves time, but also dramatically reduces the quantity of antibody (Ab), which will facilitate the application of IFA in clinic diagnosis. f-IFA requires only 15 min for blocking, 10 min incubation for each primary and secondary Abs, followed by 1 min extensive wash after each incubation. Only 25 μl of diluted Ab solution was needed for each coverslip at the primary and secondary Ab incubation steps. In addition, all steps were performed at room temperature. This f-IFA has been applied successfully to follow virion entry (pp65) and expression of viral genes (IE1, UL44, and pp65) in order to track the details of HCMV infection process. We found that ∼0.5% HCMV-infected T98G cells formed multiple-micronuclei (IE1 and nucleus staining) and had virus shedding (pp65 staining) by f-IFA, which could not be detected by the traditional IFA. Our results indicated that f-IFA is a sensitive, convenient, fast, and cost-effective method for investigating the details of virus infection progress, especially HCMV infection. The faster and cost-effective feature with higher sensitivity and specificity implies that f-IFA has potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Yingliang Duan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ranneberg-Nilsen T, Rollag H, Slettebakk R, Backe PH, Olsen Ø, Luna L, Bjørås M. The chromatin remodeling factor SMARCB1 forms a complex with human cytomegalovirus proteins UL114 and UL44. PLoS One 2012; 7:e34119. [PMID: 22479537 PMCID: PMC3313996 DOI: 10.1371/journal.pone.0034119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/22/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human cytomegalovirus (HCMV) uracil DNA glycosylase, UL114, is required for efficient viral DNA replication. Presumably, UL114 functions as a structural partner to other factors of the DNA-replication machinery and not as a DNA repair protein. UL114 binds UL44 (HCMV processivity factor) and UL54 (HCMV-DNA-polymerase). In the present study we have searched for cellular partners of UL114. METHODOLOGY/PRINCIPAL FINDINGS In a yeast two-hybrid screen SMARCB1, a factor of the SWI/SNF chromatin remodeling complex, was found to be an interacting partner of UL114. This interaction was confirmed in vitro by co-immunoprecipitation and pull-down. Immunofluorescence microscopy revealed that SMARCB1 along with BRG-1, BAF170 and BAF155, which are the core SWI/SNF components required for efficient chromatin remodeling, were present in virus replication foci 24-48 hours post infection (hpi). Furthermore a direct interaction was also demonstrated for SMARCB1 and UL44. CONCLUSIONS/SIGNIFICANCE The core SWI/SNF factors required for efficient chromatin remodeling are present in the HCMV replication foci throughout infection. The proteins UL44 and UL114 interact with SMARCB1 and may participate in the recruitment of the SWI/SNF complex to the chromatinized virus DNA. Thus, the presence of the SWI/SNF chromatin remodeling complex in replication foci and its association with UL114 and with UL44 might imply its involvement in different DNA transactions.
Collapse
Affiliation(s)
- Toril Ranneberg-Nilsen
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Halvor Rollag
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Ragnhild Slettebakk
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Paul Hoff Backe
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Øyvind Olsen
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Luisa Luna
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| | - Magnar Bjørås
- Department of Microbiology, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Department of Medical Biochemistry, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo and Oslo University Hospital HF, Rikshospitalet, Oslo, Norway
| |
Collapse
|
48
|
Strang BL, Boulant S, Kirchhausen T, Coen DM. Host cell nucleolin is required to maintain the architecture of human cytomegalovirus replication compartments. mBio 2012; 3:e00301-11. [PMID: 22318319 PMCID: PMC3280463 DOI: 10.1128/mbio.00301-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Drastic reorganization of the nucleus is a hallmark of herpesvirus replication. This reorganization includes the formation of viral replication compartments, the subnuclear structures in which the viral DNA genome is replicated. The architecture of replication compartments is poorly understood. However, recent work with human cytomegalovirus (HCMV) showed that the viral DNA polymerase subunit UL44 concentrates and viral DNA synthesis occurs at the periphery of these compartments. Any cellular factors involved in replication compartment architecture are largely unknown. Previously, we found that nucleolin, a major protein component of nucleoli, associates with HCMV UL44 in infected cells and is required for efficient viral DNA synthesis. Here, we show that nucleolin binds to purified UL44. Confocal immunofluorescence analysis demonstrated colocalization of nucleolin with UL44 at the periphery of replication compartments. Pharmacological inhibition of viral DNA synthesis prevented the formation of replication compartments but did not abrogate association of UL44 and nucleolin. Thus, association of UL44 and nucleolin is unlikely to be a nonspecific effect related to development of replication compartments. No detectable colocalization of 5-ethynyl-2'-deoxyuridine (EdU)-labeled viral DNA with nucleolin was observed, suggesting that nucleolin is not directly involved in viral DNA synthesis. Small interfering RNA (siRNA)-mediated knockdown of nucleolin caused improper localization of UL44 and a defect in EdU incorporation into viral DNA. We propose a model in which nucleolin anchors UL44 at the periphery of replication compartments to maintain their architecture and promote viral DNA synthesis. IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen. HCMV infection causes considerable rearrangement of the structure of the nucleus, largely due to the formation of viral replication compartments within the nucleus. Within these compartments, the virus replicates its DNA genome. We previously demonstrated that nucleolin is required for efficient viral DNA synthesis and now find that the nucleolar protein nucleolin interacts with a subunit of the viral DNA polymerase, UL44, specifically at the periphery of replication compartments. Moreover, we find that nucleolin is required to properly localize UL44 at this region. Nucleolin is, therefore, involved in the organization of proteins within replication compartments. This, to our knowledge, is the first report identifying a cellular protein required for maintaining replication compartment architecture.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology and
| | | | | | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology and
| |
Collapse
|
49
|
The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog 2012; 8:e1002498. [PMID: 22291595 PMCID: PMC3266931 DOI: 10.1371/journal.ppat.1002498] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/07/2011] [Indexed: 02/08/2023] Open
Abstract
Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between −54 and −43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor. Only recently, intrinsic cellular-based defense mechanisms which give cells the capacity to resist pathogens have been discovered as an essential component of immunity. However, unlike the innate and adaptive branches of the immune system, intrinsic immune defenses are mediated by cellular restriction factors that are constitutively expressed and active even before a pathogen enters the cell. The protein family HIN-200 may act as sensors of foreign DNA and modulate various functions such as growth, apoptosis, and senescence. Here we show that, in the absence of functional IFI16, the replication of some Herpesviruses and in particular of Human Cytomegalovirus (HCMV) is significantly enhanced. Accordingly, IFI16 overexpression strongly inhibited HCMV replication. Accumulation of viral DNA copies was down-regulated along with expression of early and late viral gene expression suggesting that IFI16 inhibits viral DNA synthesis. Using transient transfection, luciferase, gel shift assay, and chromatin immunoprecipitation, we demonstrate that IFI16 suppresses the transcriptional activity of the viral DNA polymerase gene (UL54) and the UL44 gene, also required for viral DNA synthesis. The finding that the nuclear DNA sensor IFI16 controls virus growth represents an important step forward in understanding the intrinsic mechanisms that drive viral infections sustained by DNA viruses such as Herpesviruses.
Collapse
|
50
|
Human cytomegalovirus UL44 concentrates at the periphery of replication compartments, the site of viral DNA synthesis. J Virol 2011; 86:2089-95. [PMID: 22156516 DOI: 10.1128/jvi.06720-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of replication compartments, the subnuclear structures in which the viral DNA genome is replicated, is a hallmark of herpesvirus infections. The localization of proteins and viral DNA within human cytomegalovirus replication compartments is not well characterized. Immunofluorescence analysis demonstrated the accumulation of the viral DNA polymerase subunit UL44 at the periphery of replication compartments and the presence of different populations of UL44 in infected cells. In contrast, the viral single-stranded-DNA binding protein UL57 was distributed throughout replication compartments. Using "click chemistry" to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation into replicating viral DNA and pulse-chase protocols, we found that viral DNA synthesis occurs at the periphery of replication compartments and that replicated viral DNA subsequently localizes to the interior of replication compartments. The interiors of replication compartments also contain regions in which UL44 and EdU-labeled DNA are absent. The treatment of cells with a viral DNA polymerase inhibitor reversibly caused the dispersal of both UL44 and EdU-labeled viral DNA from replication compartments, indicating that ongoing viral DNA synthesis is necessary to maintain the organization of replication compartments. Our results reveal a previously unappreciated complexity of the organization of human cytomegalovirus replication compartments.
Collapse
|