1
|
Smith C, Curtis K, Bonham A, Boyer S, Lenz L, Weinberg A. Comparison of immune responses to respiratory syncytial virus in infancy, childhood, and adulthood using an in vitro model of human respiratory infection. Immunohorizons 2025; 9:vlae010. [PMID: 39849994 PMCID: PMC11841974 DOI: 10.1093/immhor/vlae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025] Open
Abstract
Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.3, cocultured with human cord blood mononuclear cells (CBMCs) or peripheral blood mononuclear cells (PBMCs). Mononuclear cells were collected at multiple ages ranging from birth to adulthood. After 20 h of incubation, flow cytometry was used to measure CBMC/PBMC responses to RSV. A549s were more permissive to RSV and when infected produced more CCL5, CCL11, and CXCL9; less CSF-3, CXCL10, interleukin (IL)-1α, IL-1RA, and IL-6; and similar CCL2, CCL3, CCL4, CCL7, CXCL1, CXCL11, IL-1β, IL-7, IL-8, and tumor necrosis factor α compared with fibroblasts; A594s were used for subsequent experiments. CBMCs/PBMCs upregulated multiple markers of activation, maturation, and degranulation upon exposure to RSV-infected A549s. Interferon γ expression in natural killer, CD4, and CD8 cells and CD107a expression in natural killer cells showed a gradual increase from infancy to adulthood. IL-12 expression in dendritic cells and monocytes was highest in adult PBMCs. Our in vitro model of human RSV infection recapitulated the expected bias away from T helper 1 and effector responses to RSV infection in infancy and revealed changes in innate and adaptive RSV-specific cellular immune responses over time.
Collapse
Affiliation(s)
- Christiana Smith
- Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Kaili Curtis
- Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Adrianne Bonham
- Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Shea Boyer
- Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Laurel Lenz
- Departments of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Adriana Weinberg
- Section of Infectious Diseases and Epidemiology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Departments of Medicine and Pathology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
2
|
Rizatdinova SN, Ershova AE, Astrakhantseva IV. Pseudotyped Viruses: A Useful Platform for Pre-Clinical Studies Conducted in a BSL-2 Laboratory Setting. Biomolecules 2025; 15:135. [PMID: 39858529 PMCID: PMC11763035 DOI: 10.3390/biom15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The study of pathogenic viruses has always posed significant biosafety challenges. In particular, the study of highly pathogenic viruses requires methods with low biological risk but relatively high sensitivity and convenience in detection. In recent years, pseudoviruses, which consist of a backbone of one virus and envelope proteins of another virus, have become one of the most widely used tools for exploring the mechanisms of viruses binding to cells, membrane fusion and viral entry, as well as for screening the libraries of antiviral substances, evaluating the potential of neutralizing monoclonal antibodies, developing neutralization tests, and therapeutic platforms. During the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pseudotyped virus-based assays played a pivotal role in advancing our understanding of virus-cell interactions and the role of its proteins in disease pathogenesis. Such tools facilitated the search for potential therapeutic agents and accelerated epidemiological studies on post-infection and post-vaccination humoral immunity. This review focuses on the use of pseudoviruses as a model for large-scale applications to study enveloped viruses.
Collapse
Affiliation(s)
| | | | - Irina V. Astrakhantseva
- Department of Immunobiology and Biomedicine, Sirius University of Science and Technology, 354349 Sirius, Krasnodarsky Krai, Russia; (S.N.R.); (A.E.E.)
| |
Collapse
|
3
|
Santiago-Cruz JA, Posadas-Mondragón A, Pérez-Juárez A, Herrera-González NE, Chin-Chan JM, Aguilar-González JE, Aguilar-Faisal JL. In Vitro Evaluation of the Anti-Chikungunya Virus Activity of an Active Fraction Obtained from Euphorbia grandicornis Latex. Viruses 2024; 16:1929. [PMID: 39772236 PMCID: PMC11680167 DOI: 10.3390/v16121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of Euphorbia grandicornis. Therefore, a biodirected assay was carried out to find the molecules with anti-CHIKV activity. Extractions with hexane, dichloromethane, and methanol and subsequent purification by column chromatography were carried out to later evaluate cytotoxic activity by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and antiviral activity by plaque assay. Our findings show that unlike the others, methanolic extract has a low cytotoxic effect and a good anti-CHIKV effect (EC50 = 26.41 µg/mL), which increases when obtaining the purified active fraction (pAFeg1) (EC50 = 0.4835 µg/mL). Time-of-addition suggests that the possible mechanism of action of pAFeg1 could be inhibiting any of the non-structural proteins of CHIKV. In addition, both the cytotoxic and anti-CHIKV activity of pAFeg1 demonstrate selectivity since it killed cancer cells and could not inhibit DENV2.
Collapse
Affiliation(s)
- José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico; (A.P.-M.); (A.P.-J.); (J.E.A.-G.)
| | - Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico; (A.P.-M.); (A.P.-J.); (J.E.A.-G.)
| | - Angélica Pérez-Juárez
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico; (A.P.-M.); (A.P.-J.); (J.E.A.-G.)
| | - Norma Estela Herrera-González
- Laboratorio de Oncología Molecular de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico;
| | - José Miguel Chin-Chan
- Laboratorio de Epigenética Ambiental y Salud Mental, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Ciudad de Campeche 24039, Mexico;
| | - Joab Eli Aguilar-González
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico; (A.P.-M.); (A.P.-J.); (J.E.A.-G.)
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico; (A.P.-M.); (A.P.-J.); (J.E.A.-G.)
| |
Collapse
|
4
|
Jung SM, Kim SJ, Park YC, Seo ES, Kim CG, Kim T, Lee S, Cho E, Chang J, Yun CH, Shim BS, Cheon IS, Son YM. RSV Vaccine with Nanoparticle-Based Poly-Sorbitol Transporter (PST) Adjuvant Improves Respiratory Protection Against RSV Through Inducing Both Systemic and Mucosal Humoral Immunity. Vaccines (Basel) 2024; 12:1354. [PMID: 39772016 PMCID: PMC11680183 DOI: 10.3390/vaccines12121354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Respiratory syncytial virus (RSV) causes symptoms similar to a mild cold for adults, but in case of infants, it causes bronchitis and/or pneumonia, and in some cases, mortality. Mucosal immunity within the respiratory tract includes tissue-resident memory T (TRM) cells and tissue-resident memory B (BRM) cells, which provides rapid and efficient protection against RSV re-infection. Therefore, vaccine strategies should aim to generate mucosal immune responses. However, the interactions between RSV vaccines and mucosal immune responses within the respiratory tract are poorly understood. We evaluated a mucosal immune system following immunization by RSV vaccine with poly-sorbitol transporter (RSV-PST), a nanoparticle adjuvant. Methods: We intranasally immunized the RSV-PST and identified the systemic and mucosal immune responses. Furthermore, we challenged with RSV A2 strain after immunization and investigated the protective effects. Results: Consequently, antigen-specific CD8+ TRM cells were markedly elevated in the lung parenchyma, yet exhibited impaired cytokine expression. In contrast, humoral immunity, with systemic antibody production from serum, but not in the respiratory tract, was significantly increased by RSV-PST immunization. Interestingly, the production of respiratory mucosal antigen-specific IgG after RSV A2 challenge dramatically increased in the bronchoalveolar lavage fluid (BALF) of the RSV-PST immunized group in the presence of FTY720, and the lung-infected RSV titer was significantly lower in this group. Furthermore, after RSV A2 challenge, CD69+ IgG+ BRM cells were significantly increased in lung tissues in the RSV-PST group. Conclusions: The RSV-PST vaccine has protective effects against RSV infection by promoting both systemic and local humoral immunity rather than cellular immunity.
Collapse
Affiliation(s)
- Seong-Mook Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Soo Ji Kim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Young Chae Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| | - Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; (C.G.K.); (C.-H.Y.)
| | - Taewoo Kim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Sumin Lee
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Eunjin Cho
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; (C.G.K.); (C.-H.Y.)
| | - Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul 08826, Republic of Korea; (S.J.K.); (T.K.); (B.-S.S.)
| | - In Su Cheon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Republic of Korea; (S.-M.J.); (Y.C.P.); (E.S.S.)
| |
Collapse
|
5
|
Rodrigues T, Busso JDS, Dias RVR, Ottenio Lourenço I, de Sa JM, Carvalho SJD, Caruso IP, Souza FPD, Fossey MA. Interaction of Human Respiratory Syncytial Virus (HRSV) Matrix Protein with Resveratrol Shows Antiviral Effect. Int J Mol Sci 2024; 25:12790. [PMID: 39684498 DOI: 10.3390/ijms252312790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
The respiratory syncytial virus (RSV) matrix protein plays key roles in the virus life cycle and is essential for budding, as it stimulates the optimal membrane curvature necessary for the emergence of viral particles. Resveratrol, a polyphenol (3,4',5-trihydroxy-trans-stilbene) produced by plants, exhibits pharmacological effects, including anti-inflammatory and antiviral activities. In this study, resveratrol was tested in HEp-2 (Epidermoid carcinoma of the larynx cell) cells for its post-infection effects, and recombinant M protein was produced to characterize the biophysical mechanisms underlying this interaction. The CC50 (Cytotoxic concentration 50%) value for resveratrol was determined to be 297 μM over 48 h, and the results from the HEp-2 cell cultures demonstrated a viral inhibition of 42.7% in the presence of resveratrol, with an EC50 (Half maximal effective concentration) of 44.26 μM. This mechanism may occur through interaction with the M protein responsible for the budding of mature viral particles. Biophysical assays enabled us to characterize the interaction of the M/resveratrol complex as an entropically driven bond, guided by hydrophobic interactions at the dimerization interface of the M protein, which is essential for the stabilization and formation of the oligomers necessary for viral budding. These findings suggest that one of the targets for resveratrol binding is the M protein, indicating a potential site for blocking the progression of the infection.
Collapse
Affiliation(s)
- Thaina Rodrigues
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Jefferson de Souza Busso
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Raphael Vinicius Rodrigues Dias
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Isabella Ottenio Lourenço
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Jessica Maróstica de Sa
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Sidney Jurado de Carvalho
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
| | - Icaro Putinhon Caruso
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Fatima Pereira de Souza
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Marcelo Andres Fossey
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| |
Collapse
|
6
|
King CR, Berezin CT, Munsky B, Peccoud J. The Transcriptional Gradient in Negative-Strand RNA Viruses Suggests a Common RNA Transcription Mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623041. [PMID: 39605534 PMCID: PMC11601275 DOI: 10.1101/2024.11.11.623041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We introduce a novel model of nonsegmented negative-strand RNA virus (NNSV) transcription. Previous models have relied on polymerase behavioral differences in the highly conserved intergenic sequences. Our model hypothesizes the transcriptional gradient in NNSVs is explained through a simple model with two parameters associated with the viral polymerase. Most differences in expression can be attributed to the processivity of the polymerase while additional attenuation occurs in the presence of overlapping genes. This model reveals a correlation between polymerase processivity and genome length, which is consistent with the universal entry of polymerases through the 3' end of the genome. Using this model, it is now possible to predict the transcriptional behavior of NNSVs from genotype alone, revolutionizing the design of novel NNSV variants for biomedical applications.
Collapse
|
7
|
Barboza MGL, Dyna AL, Lima TF, Tavares ER, Yamada-Ogatta SF, Deduch F, Orsato A, Toledo KA, Cunha AP, Ricardo NMPS, Galhardi LCF. In vitro antiviral effect of sulfated pectin from Mangifera indica against the infection of the viral agent of childhood bronchiolitis (Respiratory Syncytial Virus - RSV). Int J Biol Macromol 2024; 280:135387. [PMID: 39260645 DOI: 10.1016/j.ijbiomac.2024.135387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
The Human Respiratory Syncytial Virus (RSV) is the leading cause of acute respiratory infections in children. Currently, no safe, effective, or feasible option for pharmacological management of RSV exists. Hence, plant-derived natural compounds have been explored as promising antiviral agents. Mangifera indica is a globally distributed plant with reported anti-inflammatory, cardioprotective, and antiviral activities. Our study investigated the antiviral potential of a novel pectin from M. indica peels (PMi) and its chemically sulfated derivative (PSMi) against RSV in HEp-2 cells. The compounds were characterized using Fourier-transform infrared spectroscopy and nuclear magnetic resonance (NMR). NMR analysis revealed the presence of ester and carboxylic acid groups in PMi, and sulfation resulted in a sulfation degree of 0.5. PMi and PSMi showed no cytotoxic effects even at concentrations as high as 2000 μg/mL. PSMi completely inhibited RSV infectivity (100-1.56 μg/mL, 50 % inhibitory concentration of viral infectivity = 0.77 ± 0.11 μg/mL). The mechanism of action was investigated using the 50 % tissue culture infectious dose assay. PSMi displayed virucidal activity at concentrations from 100 to 6.25 μg/mL, and a significant reduction in viral infection was observed at all treatment times. Overall, PSMi is antiviral, cell-safe, and exhibits promising potential as an RSV treatment.
Collapse
Affiliation(s)
- Mario Gabriel Lopes Barboza
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - André Luiz Dyna
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Thiago Ferreira Lima
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Eliandro Reis Tavares
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil; Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Londrina, Paraná 86067-000, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Flávia Deduch
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Alexandre Orsato
- Departamento de Química - Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil
| | - Karina Alves Toledo
- Departamento de Ciências Biológicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Assis, São Paulo 19806-900, Brazil
| | - Arcelina Pacheco Cunha
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Ceará 60455-760, Brazil
| | | | - Ligia Carla Faccin Galhardi
- Departamento de Microbiologia - Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná 86057-970, Brazil.
| |
Collapse
|
8
|
Henke D, Piedra FA, Avadhanula V, Doddapaneni H, Muzny DM, Menon VK, Hoffman KL, Ross MC, Javornik Cregeen SJ, Metcalf G, Gibbs RA, Petrosino JF, Piedra PA. Examining intra-host genetic variation of RSV by short read high-throughput sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541198. [PMID: 39282457 PMCID: PMC11398394 DOI: 10.1101/2023.05.17.541198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Every viral infection entails an evolving population of viral genomes. High-throughput sequencing technologies can be used to characterize such populations, but to date there are few published examples of such work. In addition, mixed sequencing data are sometimes used to infer properties of infecting genomes without discriminating between genome-derived reads and reads from the much more abundant, in the case of a typical active viral infection, transcripts. Here we apply capture probe-based short read high-throughput sequencing to nasal wash samples taken from a previously described group of adult hematopoietic cell transplant (HCT) recipients naturally infected with respiratory syncytial virus (RSV). We separately analyzed reads from genomes and transcripts for the levels and distribution of genetic variation by calculating per position Shannon entropies. Our analysis reveals a low level of genetic variation within the RSV infections analyzed here, but with interesting differences between genomes and transcripts in 1) average per sample Shannon entropies; 2) the genomic distribution of variation 'hotspots'; and 3) the genomic distribution of hotspots encoding alternative amino acids. In all, our results suggest the importance of separately analyzing reads from genomes and transcripts when interpreting high-throughput sequencing data for insight into intra-host viral genome replication, expression, and evolution.
Collapse
Affiliation(s)
- David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Felipe-Andrés Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew C. Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Hu JC, Sethi S. New methods to detect bacterial or viral infections in patients with chronic obstructive pulmonary disease. Expert Rev Respir Med 2024; 18:693-707. [PMID: 39175157 PMCID: PMC11583054 DOI: 10.1080/17476348.2024.2396413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
INTRODUCTION Patients with chronic obstructive pulmonary disease (COPD) are frequently colonized and infected by respiratory pathogens. Identifying these infectious etiologies is critical for understanding the microbial dynamics of COPD and for the appropriate use of antimicrobials during exacerbations. AREAS COVERED Traditional methods, such as bacterial and viral cultures, have been standard in diagnosing respiratory infections. However, these methods have significant limitations, including lack of sensitivity and prolonged turnaround time. Modern molecular approaches offer rapid, sensitive, and specific detection, though they also come with their own challenges. This review explores and evaluates the clinical utility of the latest advancements in detecting bacterial and viral respiratory infections in COPD, encompassing molecular techniques, biomarkers, and emerging technologies. EXPERT OPINION In the evolving landscape of COPD management, integrating molecular diagnostics and emerging technologies holds great promise. The enhanced sensitivity of molecular techniques has significantly advanced our understanding of the role of microbes in COPD. However, many of these technologies have primarily been developed for pneumonia diagnosis or research applications, and their clinical utility in managing COPD requires further evaluation.
Collapse
Affiliation(s)
- John C Hu
- Division of Infectious Diseases, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Sanjay Sethi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
10
|
Baek SM, Kim MN, Kim EG, Lee YJ, Park CH, Kim MJ, Kim KW, Sohn MH. Activated Leukocyte Cell Adhesion Molecule Regulates the Expression of Interleukin-33 in RSV Induced Airway Inflammation by Regulating MAPK Signaling Pathways. Lung 2024; 202:127-137. [PMID: 38502305 DOI: 10.1007/s00408-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The respiratory syncytial virus (RSV) is a common respiratory virus that causes acute lower respiratory tract infectious diseases, particularly in young children and older individuals. Activated leukocyte cell adhesion molecule (ALCAM) is a membrane glycoprotein expressed in various cell types, including epithelial cells, and is associated with inflammatory responses and various cancers. However, the precise role of ALCAM in RSV-induced airway inflammation remains unclear, and our study aimed to explore this gap in the literature. METHODS C57BL/6 wild-type, ALCAM knockout mice and airway epithelial cells were infected with RSV and the expression of ALCAM and inflammatory cytokines were measured. We also conducted further experiments using Anti-ALCAM antibody and recombinant ALCAM in airway epithelial cells. RESULTS The expression levels of ALCAM and inflammatory cytokines increased in both RSV-infected mice and airway epithelial cells. Interestingly, IL-33 expression was significantly reduced in ALCAM-knockdown cells compared to control cells following RSV infection. Anti-ALCAM antibody treatment also reduced IL-33 expression following RSV infection. Furthermore, the phosphorylation of ERK1/2, p38, and JNK was diminished in ALCAM-knockdown cells compared to control cells following RSV infection. Notably, in the control cells, inhibition of these pathways significantly decreased the expression of IL-33. In vivo study also confirmed a reduction in inflammation induced by RSV infection in ALCAM deficient mice compared to wild-type mice. CONCLUSION These findings demonstrate that ALCAM contributes to RSV-induced airway inflammation at least partly by influencing IL-33 expression through mitogen-activated protein kinase signaling pathways. These results suggest that targeting ALCAM could be a potential therapeutic strategy for alleviating IL-33-associated lung diseases.
Collapse
Affiliation(s)
- Seung Min Baek
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Mi Na Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Eun Gyul Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Yu Jin Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Chang Hyun Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Min Jung Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
- Department of Pediatrics, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin, South Korea.
| | - Kyung Won Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea
| | - Myung Hyun Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Institute for Immunology and Immunological Diseases, Severance Biomedical Science Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, South Korea.
| |
Collapse
|
11
|
Scheeff S, Wang Y, Lyu MY, Nasiri Ahmadabadi B, Hau SCK, Hui TKC, Zhang Y, Zuo Z, Chan RWY, Ng BWL. Design and Synthesis of Bicyclo[4.3.0]nonene Nucleoside Analogues. Org Lett 2023; 25:9002-9007. [PMID: 38051027 PMCID: PMC10749478 DOI: 10.1021/acs.orglett.3c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Nucleoside analogues are effective antiviral agents, and the continuous emergence of pathogenic viruses demands the development of novel and structurally diverse analogues. Here, we present the design and synthesis of novel nucleoside analogues with a carbobicyclic core, which mimics the conformation of natural ribonucleosides. Employing a divergent synthetic route featuring an intermolecular Diels-Alder reaction, we successfully synthesized carbobicyclic nucleoside analogues with high antiviral efficacy against respiratory syncytial virus.
Collapse
Affiliation(s)
- Stephan Scheeff
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Yan Wang
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
| | - Mao-Yun Lyu
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Behzad Nasiri Ahmadabadi
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
| | - Sam Chun Kit Hau
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin , Hong Kong
| | | | - Yufeng Zhang
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Zhong Zuo
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Renee Wan Yi Chan
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Li Ka Shing
Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
- S.H. Ho Research
Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Billy Wai-Lung Ng
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
- Li Ka Shing
Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin , Hong Kong
| |
Collapse
|
12
|
Kieser QJ, Granoski MJ, McClelland RD, Griffiths C, Bilawchuk LM, Stojic A, Elawar F, Jamieson K, Proud D, Marchant DJ. Actin cytoskeleton remodeling disrupts physical barriers to infection and presents entry receptors to respiratory syncytial virus. J Gen Virol 2023; 104:001923. [PMID: 38015055 PMCID: PMC10768689 DOI: 10.1099/jgv.0.001923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
RSV is the leading cause of infant hospitalizations and a significant cause of paediatric and geriatric morbidity worldwide. Recently, we reported that insulin-like growth factor 1 receptor (IGF1R) was a receptor for respiratory syncytial virus (RSV) in airway epithelial cells and that activation of IGF1R recruited the coreceptor, nucleolin (NCL), to the cell surface. Cilia and mucus that line the airways pose a significant barrier to viral and bacterial infection. The cortical actin cytoskeleton has been shown by others to mediate RSV entry, so we studied the roles of the RSV receptors and actin remodelling during virus entry. We found that IGF1R expression and phosphorylation were associated with the ability of RSV to infect cells. Confocal immunofluorescence imaging showed that actin projections, a hallmark of macropinocytosis, formed around viral particles 30 min after infection. Consistent with prior reports we also found that virus particles were internalized into early endosome antigen-1 positive endosomes within 90 min. Inhibiting actin polymerization significantly reduced viral titre by approximately ten-fold. Inhibiting PI3 kinase and PKCζ in stratified air-liquid interface (ALI) models of the airway epithelium had similar effects on reducing the actin remodelling observed during infection and attenuating viral entry. Actin projections were associated with NCL interacting with RSV particles resting on apical cilia of the ALIs. We conclude that macropinocytosis-like actin projections protrude through normally protective cilia and mucus layers of stratified airway epithelium that helps present the IGF1R receptor and the NCL coreceptor to RSV particles waiting at the surface.
Collapse
Affiliation(s)
- Quinten J. Kieser
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Madison J. Granoski
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Ryley D. McClelland
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Cameron Griffiths
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908,, USA
| | - Leanne M. Bilawchuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Aleksandra Stojic
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Farah Elawar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| | - Kyla Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David J. Marchant
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G-2E1, Canada
| |
Collapse
|
13
|
Pokharel SM, Mohanty I, Mariasoosai C, Miura TA, Maddison LA, Natesan S, Bose S. Human beta defensin-3 mediated activation of β-catenin during human respiratory syncytial virus infection: interaction of HBD3 with LDL receptor-related protein 5. Front Microbiol 2023; 14:1186510. [PMID: 37426017 PMCID: PMC10324619 DOI: 10.3389/fmicb.2023.1186510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is a non-segmented negative-sense RNA virus belonging to the paramyxovirus family. RSV infects the respiratory tract to cause pneumonia and bronchiolitis in infants, elderly, and immunocompromised patients. Effective clinical therapeutic options and vaccines to combat RSV infection are still lacking. Therefore, to develop effective therapeutic interventions, it is imperative to understand virus-host interactions during RSV infection. Cytoplasmic stabilization of β-catenin protein results in activation of canonical Wingless (Wnt)/β-catenin signaling pathway that culminates in transcriptional activation of various genes regulated by T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors. This pathway is involved in various biological and physiological functions. Our study shows RSV infection of human lung epithelial A549 cells triggering β-catenin protein stabilization and induction of β-catenin mediated transcriptional activity. Functionally, the activated β-catenin pathway promoted a pro-inflammatory response during RSV infection of lung epithelial cells. Studies with β-catenin inhibitors and A549 cells lacking optimal β-catenin activity demonstrated a significant loss of pro-inflammatory chemokine interleukin-8 (IL-8) release from RSV-infected cells. Mechanistically, our studies revealed a role of extracellular human beta defensin-3 (HBD3) in interacting with cell surface Wnt receptor LDL receptor-related protein-5 (LRP5) to activate the non-canonical Wnt independent β-catenin pathway during RSV infection. We showed gene expression and release of HBD3 from RSV-infected cells and silencing of HBD3 expression resulted in reduced stabilization of β-catenin protein during RSV infection. Furthermore, we observed the binding of extracellular HBD3 with cell surface localized LRP5 protein, and our in silico and protein-protein interaction studies have highlighted a direct interaction of HBD3 with LRP5. Thus, our studies have identified the β-catenin pathway as a key regulator of pro-inflammatory response during RSV infection of human lung epithelial cells. This pathway was induced during RSV infection via a non-canonical Wnt-independent mechanism involving paracrine/autocrine action of extracellular HBD3 activating cell surface Wnt receptor complex by directly interacting with the LRP5 receptor.
Collapse
Affiliation(s)
- Swechha M. Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Charles Mariasoosai
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Lisette A. Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Rezende W, Neal HE, Dutch RE, Piedra PA. The RSV F p27 peptide: current knowledge, important questions. Front Microbiol 2023; 14:1219846. [PMID: 37415824 PMCID: PMC10320223 DOI: 10.3389/fmicb.2023.1219846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) remains a leading cause of hospitalizations and death for young children and adults over 65. The worldwide impact of RSV has prioritized the search for an RSV vaccine, with most targeting the critical fusion (F) protein. However, questions remain about the mechanism of RSV entry and RSV F triggering and fusion promotion. This review highlights these questions, specifically those surrounding a cleaved 27 amino acids long peptide within F, p27.
Collapse
Affiliation(s)
- Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States
| | - Hadley E. Neal
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rebecca E. Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Rezende W, Ye X, Angelo LS, Carisey AF, Avadhanula V, Piedra PA. The Efficiency of p27 Cleavage during In Vitro Respiratory Syncytial Virus (RSV) Infection Is Cell Line and RSV Subtype Dependent. J Virol 2023; 97:e0025423. [PMID: 37133390 PMCID: PMC10231215 DOI: 10.1128/jvi.00254-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) fusion protein (F) is highly conserved between subtypes A and B (RSV/A and RSV/B). To become fully active, F precursor undergoes enzymatic cleavage to yield F1 and F2 subunits and releases a 27-amino-acid peptide (p27). Virus-cell fusion occurs when RSV F undergoes a conformational change from pre-F to post-F. Previous data show that p27 is detected on RSV F, but questions remain regarding if and how p27 affects the conformation of mature RSV F. Monoclonal antibodies against p27, site Ø (pre-F specific), and site II were used to monitor RSV F conformation by enzyme-linked immunosorbent assay (ELISA) and imaging flow cytometry. Pre-F to post-F conformational change was induced by a temperature stress test. We found that p27 cleavage efficiency was lower on sucrose-purified RSV/A (spRSV/A) than on spRSV/B. In addition, cleavage of RSV F was cell line dependent: HEp-2 cells had higher retention of p27 than did A549 cells when infected with RSV. Higher levels of p27 were also found on RSV/A-infected cells than on RSV/B-infected cells. We observed that RSV/A F with higher p27 levels could better sustain the pre-F conformation during the temperature stress challenge in both spRSV- and RSV-infected cell lines. Our findings suggest that despite F sequence similarity, p27 of RSV subtypes was cleaved with different efficiencies, which were also dependent on the cell lines used for infection. Importantly, the presence of p27 was associated with greater stability of the pre-F conformation, supporting the possibility that RSV has more than one mechanism for fusion to the host cell. IMPORTANCE RSV fusion protein (F) plays an important role in entry and viral fusion to the host cell. The F undergoes proteolytic cleavages releasing a 27-amino-acid peptide (p27) to become fully functional. The role of p27 in viral entry and the function of the partially cleaved F containing p27 has been overlooked. p27 is thought to destabilize the F trimers, and thus, there is need for a fully cleaved F. In this study, we detected p27 on purified RSV virions and on the surface of virus-infected HEp-2 and A549 cells for circulating RSV strains of both subtypes. Higher levels of partially cleaved F containing p27 better sustained the pre-F conformation during the temperature stress challenge. Our findings highlight that the cleavage efficiency of p27 is different between RSV subtypes and among cell lines and that the presence of p27 contributes to the stability of the pre-F conformation.
Collapse
Affiliation(s)
- Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Xunyan Ye
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Avance Biosciences, Houston, Texas, USA
| | - Laura S. Angelo
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunology, Texas Children’s Hospital, Houston, Texas, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Lu Y, Xu S, Sun H, Shan J, Shen C, Ji J, Lin L, Xu J, Peng L, Dai C, Xie T. Analysis of temporal metabolic rewiring for human respiratory syncytial virus infection by integrating metabolomics and proteomics. Metabolomics 2023; 19:30. [PMID: 36991292 PMCID: PMC10057675 DOI: 10.1007/s11306-023-01991-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/05/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human respiratory syncytial virus (HRSV) infection causes significant morbidity, and no effective treatments are currently available. Viral infections induce substantial metabolic changes in the infected cells to optimize viral production. Metabolites that reflect the interactions between host cells and viruses provided an opportunity to identify the pathways underlying severe infections. OBJECTIVE To better understand the metabolic changes caused by HRSV infection, we analyzed temporal metabolic profiling to provide novel targets for therapeutic strategies for inhaled HRSV infection. METHODS The epithelial cells and BALB/c mice were infected with HRSV. Protein and mRNA levels of inflammation factors were measured by using quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Untargeted metabolomics, lipidomics and proteomics were performed using liquid chromatography coupled with mass spectrometry to profile the metabolic phenotypic alterations in HRSV infection. RESULTS In this study, we evaluated the inflammatory responses in vivo and in vitro and investigated the temporal metabolic rewiring of HRSV infection in epithelial cells. We combined metabolomics and proteomic analyses to demonstrate that the redox imbalance was further provoked by increasing glycolysis and anaplerotic reactions. These responses created an oxidant-rich microenvironment that elevated reactive oxygen species levels and exacerbated glutathione consumption. CONCLUSION These observations indicate that adjusting for metabolic events during a viral infection could represent a valuable approach for reshaping the outcome of infections.
Collapse
Affiliation(s)
- Yao Lu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shan Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Huan Sun
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cunsi Shen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jianya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Linxiu Peng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
McGinnes Cullen L, Luo B, Wen Z, Zhang L, Durr E, Morrison TG. The Respiratory Syncytial Virus (RSV) G Protein Enhances the Immune Responses to the RSV F Protein in an Enveloped Virus-Like Particle Vaccine Candidate. J Virol 2023; 97:e0190022. [PMID: 36602367 PMCID: PMC9888267 DOI: 10.1128/jvi.01900-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.
Collapse
Affiliation(s)
- Lori McGinnes Cullen
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bin Luo
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Zhiyun Wen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Lan Zhang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Trudy G. Morrison
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
18
|
Piedra FA, Henke D, Rajan A, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Ross MC, Javornik Cregeen SJ, Metcalf G, Gibbs RA, Petrosino JF, Avadhanula V, Piedra PA. Modeling nonsegmented negative-strand RNA virus (NNSV) transcription with ejective polymerase collisions and biased diffusion. Front Mol Biosci 2023; 9:1095193. [PMID: 36699700 PMCID: PMC9868645 DOI: 10.3389/fmolb.2022.1095193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Infections by non-segmented negative-strand RNA viruses (NNSV) are widely thought to entail gradient gene expression from the well-established existence of a single promoter at the 3' end of the viral genome and the assumption of constant transcriptional attenuation between genes. But multiple recent studies show viral mRNA levels in infections by respiratory syncytial virus (RSV), a major human pathogen and member of NNSV, that are inconsistent with a simple gradient. Here we integrate known and newly predicted phenomena into a biophysically reasonable model of NNSV transcription. Our model succeeds in capturing published observations of respiratory syncytial virus and vesicular stomatitis virus (VSV) mRNA levels. We therefore propose a novel understanding of NNSV transcription based on the possibility of ejective polymerase-polymerase collisions and, in the case of RSV, biased polymerase diffusion.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Matthew C. Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Sara J. Javornik Cregeen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, Unites States
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, Unites States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, Unites States
| |
Collapse
|
19
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
20
|
Qin S, Huang X, Qu S. Baicalin Induces a Potent Innate Immune Response to Inhibit Respiratory Syncytial Virus Replication via Regulating Viral Non-Structural 1 and Matrix RNA. Front Immunol 2022; 13:907047. [PMID: 35812414 PMCID: PMC9259847 DOI: 10.3389/fimmu.2022.907047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in pediatric patients. Current systemic treatment and vaccines are not curative and re-infection is often associated with a more drastic incidence of the disease. Baicalin is a flavonoid isolated from Scutellaria baicalensis with potent anti-viral characteristics, namely against RSV. However, its precise mechanism of action remains unclear. Here, using in vitro methods and an in vivo murine model of RSV infection, we showed that baicalin inhibits RSV replication induces translational upregulation of type I interferons (IFNs), IFN-α and IFN-β, and reverses epithelial thickening in lung tissues. Moreover, baicalin inhibits transcription of the RSV non-structural proteins NS1 and NS2. Molecular docking and surface plasmon resonance-based affinity analysis showed that baicalin also binds to the α3 helix of the NS1 protein with an affinity constant of 1.119 × 10−5 M. Polysome profiling showed that baicalin inhibits translation of the RSV matrix protein (M) RNA. Baicalin mediates increased release of the ribosomal protein L13a from the large ribosomal subunit, where the extra ribosomal subunit L13a inhibits M RNA translation. These results comprehensively establish the multiple mechanisms by which baicalin induces a potent innate immune response against RSV infection.
Collapse
Affiliation(s)
- Sheng Qin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Xianzhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- *Correspondence: Shaogang Qu, ; Xianzhang Huang,
| |
Collapse
|
21
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|