1
|
Soliman RM, Nishioka K, Murakoshi F, Nakaya T. Use of live attenuated recombinant Newcastle disease virus carrying avian paramyxovirus 2 HN and F protein genes to enhance immune responses against species A rotavirus VP6 protein. Vet Res 2024; 55:16. [PMID: 38317245 PMCID: PMC10845738 DOI: 10.1186/s13567-024-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Numerous infectious diseases in cattle lead to reductions in body weight, milk production, and reproductive performance. Cattle are primarily vaccinated using inactivated vaccines due to their increased safety. However, inactivated vaccines generally result in weaker immunity compared with live attenuated vaccines, which may be insufficient in certain cases. Over the last few decades, there has been extensive research on the use of the Newcastle disease virus (NDV) as a live vaccine vector for economically significant livestock diseases. A single vaccination dose of NDV can sufficiently induce immunity; therefore, a booster vaccination dose is expected to yield limited induction of further immune response. We previously developed recombinant chimeric NDV (rNDV-2F2HN), in which its hemagglutinin-neuraminidase (HN) and fusion (F) proteins were replaced with those of avian paramyxovirus 2 (APMV-2). In vitro analysis revealed that rNDV-2F2HN expressing human interferon-gamma had potential as a cancer therapeutic tool, particularly for immunized individuals. In the present study, we constructed rNDV-2F2HN expressing the bovine rotavirus antigen VP6 (rNDV-2F2HN-VP6) and evaluated its immune response in mice previously immunized with NDV. Mice primarily inoculated with recombinant wild-type NDV expressing VP6 (rNDV-WT-VP6), followed by a booster inoculation of rNDV-2F2HN-VP6, showed a significantly stronger immune response than that in mice that received rNDV-WT-VP6 as both primary and booster inoculations. Therefore, our findings suggest that robust immunity could be obtained from the effects of chimeric rNDV-2F2HN expressing the same or a different antigen of a particular pathogen as a live attenuated vaccine vector.
Collapse
Affiliation(s)
- Rofaida Mostafa Soliman
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Animal Medicine (Infectious Diseases Division), Faculty of Veterinary Medicine, Damanhour University, Damanhour, El‑Beheira, Egypt
| | - Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Miyagi, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
2
|
Murr M, Mettenleiter T. Negative-Strand RNA Virus-Vectored Vaccines. Methods Mol Biol 2024; 2786:51-87. [PMID: 38814390 DOI: 10.1007/978-1-0716-3770-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Vectored RNA vaccines offer a variety of possibilities to engineer targeted vaccines. They are cost-effective and safe, but replication competent, activating the humoral as well as the cellular immune system.This chapter focuses on RNA vaccines derived from negative-strand RNA viruses from the order Mononegavirales with special attention to Newcastle disease virus-based vaccines and their generation. It shall provide an overview on the advantages and disadvantages of certain vector platforms as well as their scopes of application, including an additional section on experimental COVID-19 vaccines.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Park HS, Matsuoka Y, Luongo C, Yang L, Santos C, Liu X, Ahlers LRH, Moore IN, Afroz S, Johnson RF, Lafont BAP, Dorward DW, Fischer ER, Martens C, Samal SK, Munir S, Buchholz UJ, Le Nouën C. Intranasal immunization with avian paramyxovirus type 3 expressing SARS-CoV-2 spike protein protects hamsters against SARS-CoV-2. NPJ Vaccines 2022; 7:72. [PMID: 35764659 PMCID: PMC9240059 DOI: 10.1038/s41541-022-00493-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Current vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are administered parenterally and appear to be more protective in the lower versus the upper respiratory tract. Vaccines are needed that directly stimulate immunity in the respiratory tract, as well as systemic immunity. We used avian paramyxovirus type 3 (APMV3) as an intranasal vaccine vector to express the SARS-CoV-2 spike (S) protein. A lack of pre-existing immunity in humans and attenuation by host-range restriction make APMV3 a vector of interest. The SARS-CoV-2 S protein was stabilized in its prefusion conformation by six proline substitutions (S-6P) rather than the two that are used in most vaccine candidates, providing increased stability. APMV3 expressing S-6P (APMV3/S-6P) replicated to high titers in embryonated chicken eggs and was genetically stable, whereas APMV3 expressing non-stabilized S or S-2P were unstable. In hamsters, a single intranasal dose of APMV3/S-6P induced strong serum IgG and IgA responses to the S protein and its receptor-binding domain, and strong serum neutralizing antibody responses to SARS-CoV-2 isolate WA1/2020 (lineage A). Sera from APMV3/S-6P-immunized hamsters also efficiently neutralized Alpha and Beta variants of concern. Immunized hamsters challenged with WA1/2020 did not exhibit the weight loss and lung inflammation observed in empty-vector-immunized controls; SARS-CoV-2 replication in the upper and lower respiratory tract of immunized animals was low or undetectable compared to the substantial replication in controls. Thus, a single intranasal dose of APMV3/S-6P was highly immunogenic and protective against SARS-CoV-2 challenge, suggesting that APMV3/S-6P is suitable for clinical development.
Collapse
Affiliation(s)
- Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura R H Ahlers
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharmin Afroz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David W Dorward
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Craig Martens
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shirin Munir
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ursula J Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Elbehairy MA, Samal SK, Belov GA. Encoding of a transgene in-frame with a Newcastle disease virus protein increases transgene expression and stability. J Gen Virol 2022; 103. [PMID: 35758932 PMCID: PMC10027024 DOI: 10.1099/jgv.0.001761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Newcastle disease virus (NDV) has been extensively explored as a vector for vaccine and oncolytic therapeutic development. In conventional NDV-based vectors, the transgene is arranged as a separate transcription unit in the NDV genome. Here, we expressed haemagglutinin protein (HA) of an avian influenza virus using an NDV vector design in which the transgene ORF is encoded in-frame with the ORF of an NDV gene. This arrangement does not increase the number of transcription units in the NDV genome, and imposes a selection pressure against mutations interrupting the transgene ORF. We placed the HA ORF upstream or downstream of N, M, F and HN ORFs of NDV so that both proteins are encoded in-frame and are separated by either a self-cleaving 2A peptide, furin cleavage site or both. Only constructs in which HA was placed downstream of the NDV HN were viable. These constructs expressed the transgene at a higher level compared to the vector encoding the same transgene in the same position in the NDV genome but as a separate transcription unit. Furthermore, the transgene expressed in one ORF with the NDV protein proved to be more stable over multiple passages. Thus, this design may be useful for applications where the stability of the transgene expression is highly important for a recombinant NDV vector.
Collapse
Affiliation(s)
- Mohamed A Elbehairy
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
- Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - George A Belov
- Virginia-Maryland College of Veterinary Medicine, Department of Veterinary Medicine, University of Maryland, College Park, MD 20740, USA
| |
Collapse
|
5
|
Yang F, Liu P, Li X, Liu R, Gao L, Cui H, Zhang Y, Liu C, Qi X, Pan Q, Liu A, Wang X, Gao Y, Li K. Recombinant Duck Enteritis Virus-Vectored Bivalent Vaccine Effectively Protects Against Duck Hepatitis A Virus Infection in Ducks. Front Microbiol 2021; 12:813010. [PMID: 35003046 PMCID: PMC8727602 DOI: 10.3389/fmicb.2021.813010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Duck enteritis virus (DEV) and duck hepatitis A virus (DHAV) are prevalent duck pathogens, causing significant economic losses in the duck industry annually. Using a fosmid-based rescue system, we generated two DEV recombinants, rDEV-UL26/27-P13C and rDEV-US7/8-P13C, in which the P1 and 3C genes from DHAV type 3 (DHAV-3) were inserted into the DEV genome between genes UL26 and UL27 or genes US7 and US8. We inserted a self-cleaving 2A-element between P1 and 3C, allowing the production of both proteins from a single open reading frame. P1 and 3C were simultaneously expressed in infected chicken embryo fibroblasts, with no difference in growth kinetics between cells infected with the recombinant viruses and those infected with the parent DEV. Both recombinant viruses induced neutralizing antibodies against DHAV-3 and DEV in ducks. A single dose of the recombinant viruses induced solid protection against lethal DEV challenge and completely prevented DHAV-3 infection as early as 7 days post-vaccination. These recombinant P1- and 3C-expressing DEVs provide potential bivalent vaccines against DEV and DHAV-3 infection in ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yulong Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Immunogenicity and protective efficacy of an intranasal live-attenuated vaccine against SARS-CoV-2. iScience 2021; 24:102941. [PMID: 34368648 PMCID: PMC8332743 DOI: 10.1016/j.isci.2021.102941] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/27/2021] [Accepted: 07/30/2021] [Indexed: 01/08/2023] Open
Abstract
Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic. Vaccine induces high levels of neutralizing Abs and T-cell-mediated immunity Vaccine ameliorates lung inflammation and pathology in hamster induced by SARS-CoV-2 The SARS-CoV-2 remains undetectable in lungs and nasal turbinates of vaccinated hamster Two doses of intranasal vaccine show complete protection against SARS-CoV-2 challenge
Collapse
|
7
|
Chen J, Wang J, Zhang J, Ly H. Advances in Development and Application of Influenza Vaccines. Front Immunol 2021; 12:711997. [PMID: 34326849 PMCID: PMC8313855 DOI: 10.3389/fimmu.2021.711997] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza A virus is one of the most important zoonotic pathogens that can cause severe symptoms and has the potential to cause high number of deaths and great economic loss. Vaccination is still the best option to prevent influenza virus infection. Different types of influenza vaccines, including live attenuated virus vaccines, inactivated whole virus vaccines, virosome vaccines, split-virion vaccines and subunit vaccines have been developed. However, they have several limitations, such as the relatively high manufacturing cost and long production time, moderate efficacy of some of the vaccines in certain populations, and lack of cross-reactivity. These are some of the problems that need to be solved. Here, we summarized recent advances in the development and application of different types of influenza vaccines, including the recent development of viral vectored influenza vaccines. We also described the construction of other vaccines that are based on recombinant influenza viruses as viral vectors. Information provided in this review article might lead to the development of safe and highly effective novel influenza vaccines.
Collapse
Affiliation(s)
- Jidang Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiehuang Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jipei Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, MN, United States
| |
Collapse
|
8
|
Sekiya T, Ohno M, Nomura N, Handabile C, Shingai M, Jackson DC, Brown LE, Kida H. Selecting and Using the Appropriate Influenza Vaccine for Each Individual. Viruses 2021; 13:971. [PMID: 34073843 PMCID: PMC8225103 DOI: 10.3390/v13060971] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022] Open
Abstract
Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.
Collapse
Affiliation(s)
- Toshiki Sekiya
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Naoki Nomura
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Chimuka Handabile
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
| | - David C. Jackson
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Lorena E. Brown
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- The Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan; (T.S.); (M.O.); (N.N.); (C.H.); (M.S.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (D.C.J.); (L.E.B.)
- Collaborating Research Center for the Control of Infectious Diseases, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
A Scalable Topical Vectored Vaccine Candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8:vaccines8030472. [PMID: 32846910 PMCID: PMC7565466 DOI: 10.3390/vaccines8030472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/30/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) caused an ongoing unprecedented global public health crises of coronavirus disease in 2019 (CoVID-19). The precipitously increased death rates, its impact on livelihood and trembling economies warrant the urgent development of a SARS-CoV-2 vaccine which would be safe, efficacious and scalable. Owing to unavailability of the vaccine, we propose a de novo synthesized avian orthoavulavirus 1 (AOaV-1)-based topical respiratory vaccine candidate against CoVID-19. Avirulent strain of AOaV-1 was engineered to express full length spike (S) glycoprotein which is highly neutralizing and a major protective antigen of the SARS-CoV-2. Broad-scale in vitro characterization of a recombinant vaccine candidate demonstrated efficient co-expression of the hemagglutinin-neuraminidase (HN) of AOaV-1 and S protein of SARS-CoV-2, and comparable replication kinetics were observed in a cell culture model. The recombinant vaccine candidate virus actively replicated and spread within cells independently of exogenous trypsin. Interestingly, incorporation of S protein of SARS-CoV-2 into the recombinant AOaV-1 particles attributed the sensitivity to anti-SARS-CoV-2 antiserum and more prominently to anti-AOaV-1 antiserum. Finally, our results demonstrated that the recombinant vaccine vector stably expressed S protein after multiple propagations in chicken embryonated eggs, and this expression did not significantly impact the in vitro growth characteristics of the recombinant. Taken together, the presented respiratory vaccine candidate is highly attenuated in primates per se, safe and lacking pre-existing immunity in human, and carries the potential for accelerated vaccine development against CoVID-19 for clinical studies.
Collapse
|
10
|
Xu L, Qin Z, Qiao L, Wen J, Shao H, Wen G, Pan Z. Characterization of thermostable Newcastle disease virus recombinants expressing the hemagglutinin of H5N1 avian influenza virus as bivalent vaccine candidates. Vaccine 2020; 38:1690-1699. [PMID: 31937412 DOI: 10.1016/j.vaccine.2019.12.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene delivery. In the present study, we generated the thermostable recombinant NDV (rNDV) expressing the different forms of hemagglutinin (HA) of highly pathogenic avian influenza virus (HPAIV) H5N1 based on the full-length cDNA clone of thermostable TS09-C strain. The recombinant thermostable Newcastle disease viruses, rTS-HA, rTS-HA1 and rTS-tPAs/HA1, expressed the HA, HA1 or modified HA1 protein with the tissue plasminogen activator signal sequence (tPAs), respectively. The rNDVs displayed similar thermostability, growth kinetics and pathogenicity compared with the parental TS09-C virus. The tPAs facilitated the expression and secretion of HA1 protein in cells infected with rNDV. Animal studies demonstrated that immunization with rNDVs elicited effective H5N1- and NDV-specific antibody responses and conferred immune protection against lethal H5N1 and NDV challenges in chickens and mice. Importantly, vaccination of rTS-tPAs/HA1 resulted in enhanced protective immunity in chickens and mice. Our study thus provides a novel thermostable NDV-vectored vaccine candidate expressing a soluble form of a heterologous viral protein, which will greatly aid the poultry industry in developing countries.
Collapse
Affiliation(s)
- Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jie Wen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
11
|
Roy Chowdhury I, Yeddula SGR, Pierce BG, Samal SK, Kim SH. Newcastle disease virus vectors expressing consensus sequence of the H7 HA protein protect broiler chickens and turkeys against highly pathogenic H7N8 virus. Vaccine 2019; 37:4956-4962. [PMID: 31320218 DOI: 10.1016/j.vaccine.2019.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
Abstract
Continuous outbreaks of highly pathogenic avian influenza (HPAI) viruses in commercial poultry have caused devastating losses to domestic poultry with a raising public health concern. The outbreaks of HPAI viruses have increased worldwide, including the North America. Therefore, vaccination has been considered as an alternative strategy for an efficient control of HPAI viruses. In this study, we aimed to generate Newcastle disease virus (NDV) vectored H7 serotype-specific vaccines by expressing the consensus sequence of the HA protein. Conventional NDV strain LaSota vector and a chimeric NDV vector containing the avian paramyxovirus type-2 F and HN protein were able to express the consensus sequence of HA protein. The protective efficacy of vaccines was evaluated in broiler chickens and in turkeys. One-day-old poults were prime immunized with the chimeric vector expressing the HA protein followed by boost immunization with LaSota vector expressing the HA protein or co-expressing the HA and NA proteins. Our vaccine candidates provided complete protection of broiler chickens from mortality and shedding of H7N8 HPAI challenge virus. Turkeys were better protected by boosting with the LaSota vector co-expressing the HA and NA proteins than the LaSota vector expressing only the HA protein. Our study demonstrated a potential use of heterologous prime and boost vaccination strategy to protect poultry against H7 HPAI viruses.
Collapse
Affiliation(s)
- Ishita Roy Chowdhury
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | - Brian G Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Shin-Hee Kim
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
12
|
Innovation in Newcastle Disease Virus Vectored Avian Influenza Vaccines. Viruses 2019; 11:v11030300. [PMID: 30917500 PMCID: PMC6466292 DOI: 10.3390/v11030300] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) and Newcastle disease are economically important avian diseases worldwide. Effective vaccination is critical to control these diseases in poultry. Live attenuated Newcastle disease virus (NDV) vectored vaccines have been developed for bivalent vaccination against HPAI viruses and NDV. These vaccines have been generated by inserting the hemagglutinin (HA) gene of avian influenza virus into NDV genomes. In laboratory settings, several experimental NDV-vectored vaccines have protected specific pathogen-free chickens from mortality, clinical signs, and virus shedding against H5 and H7 HPAI viruses and NDV challenges. NDV-vectored H5 vaccines have been licensed for poultry vaccination in China and Mexico. Recently, an antigenically chimeric NDV vector has been generated to overcome pre-existing immunity to NDV in poultry and to provide early protection of poultry in the field. Prime immunization of one-day-old poults with a chimeric NDV vector followed by boosting with a conventional NDV vector has shown to protect broiler chickens against H5 HPAI viruses and a highly virulent NDV. This novel vaccination approach can provide efficient control of HPAI viruses in the field and facilitate poultry vaccination.
Collapse
|
13
|
Cho Y, Lamichhane B, Nagy A, Chowdhury IR, Samal SK, Kim SH. Co-expression of the Hemagglutinin and Neuraminidase by Heterologous Newcastle Disease Virus Vectors Protected Chickens against H5 Clade 2.3.4.4 HPAI Viruses. Sci Rep 2018; 8:16854. [PMID: 30443041 PMCID: PMC6237909 DOI: 10.1038/s41598-018-35337-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Avian influenza remains an important zoonotic disease with a significant global impact. The spread of H5 highly pathogenic avian influenza (HPAI) viruses (clade 2.3.4.4) by migratory birds has caused outbreaks in wide geographic regions (Asia, Europe, and North America) with great economic losses during 2014-2015. Efficient vaccines and vaccination approaches are needed to enhance protective immunity against HPAI viruses. Although several vaccination strategies have been developed, none has been satisfactory. Our strategy has been to use avirulent vaccine strain of Newcastle disease virus (NDV) as a vaccine vector for HPAI viruses. For poultry vaccination, we previously generated a new platform of chimeric NDV vector to overcome preexisting maternal antibodies to NDV in poultry. In this study, we have generated vaccine candidates targeting H5 clade 2.3.4.4 HPAI viruses by using our chimeric NDV and conventional NDV strain LaSota vectors for a heterologous prime-boost immunization approach. Co-expression of the HA and NA proteins by our vaccine vectors induced enhanced HPAI virus specific immune responses in specific-pathogen free and broiler chickens prior to challenge. Further, these vaccine candidates efficiently protected broiler chickens from mortality, clinical signs, and shedding of homologous and heterologous H5 HPAI viruses and highly virulent NDV, thus providing a dual vaccination approach in the field.
Collapse
Affiliation(s)
- Yeonwoo Cho
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Barisha Lamichhane
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Abdou Nagy
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Ishita Roy Chowdhury
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Siba K Samal
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Shin-Hee Kim
- VA-MD Regional College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
14
|
Newcastle Disease Virus-Based Vectored Vaccine against Poliomyelitis. J Virol 2018; 92:JVI.00976-18. [PMID: 29925653 DOI: 10.1128/jvi.00976-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
The poliovirus eradication initiative has spawned global immunization infrastructure and dramatically decreased the prevalence of the disease, yet the original virus eradication goal has not been met. The suboptimal properties of the existing vaccines are among the major reasons why the program has repeatedly missed eradication deadlines. Oral live poliovirus vaccine (OPV), while affordable and effective, occasionally causes the disease in the primary recipients, and the attenuated viruses rapidly regain virulence and can cause poliomyelitis outbreaks. Inactivated poliovirus vaccine (IPV) is safe but expensive and does not induce the mucosal immunity necessary to interrupt virus transmission. While the need for a better vaccine is widely recognized, current efforts are focused largely on improvements to the OPV or IPV, which are still beset by the fundamental drawbacks of the original products. Here we demonstrate a different design of an antipoliovirus vaccine based on in situ production of virus-like particles (VLPs). The poliovirus capsid protein precursor, together with a protease required for its processing, are expressed from a Newcastle disease virus (NDV) vector, a negative-strand RNA virus with mucosal tropism. In this system, poliovirus VLPs are produced in the cells of vaccine recipients and are presented to their immune systems in the context of active replication of NDV, which serves as a natural adjuvant. Intranasal administration of the vectored vaccine to guinea pigs induced strong neutralizing systemic and mucosal antibody responses. Thus, the vectored poliovirus vaccine combines the affordability and efficiency of a live vaccine with absolute safety, since no full-length poliovirus genome is present at any stage of the vaccine life cycle.IMPORTANCE A new, safe, and effective vaccine against poliovirus is urgently needed not only to complete the eradication of the virus but also to be used in the future to prevent possible virus reemergence in a postpolio world. Currently, new formulations of the oral vaccine, as well as improvements to the inactivated vaccine, are being explored. In this study, we designed a viral vector with mucosal tropism that expresses poliovirus capsid proteins. Thus, poliovirus VLPs are produced in vivo, in the cells of a vaccine recipient, and are presented to the immune system in the context of vector virus replication, stimulating the development of systemic and mucosal immune responses. Such an approach allows the development of an affordable and safe vaccine that does not rely on the full-length poliovirus genome at any stage.
Collapse
|
15
|
Hu H, Roth JP, Yu Q. Generation of a recombinant Newcastle disease virus expressing two foreign genes for use as a multivalent vaccine and gene therapy vector. Vaccine 2018; 36:4846-4850. [PMID: 30037477 DOI: 10.1016/j.vaccine.2018.06.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/20/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Newcastle disease virus (NDV) has been used as a vector in the development of vaccines and gene therapy. A majority of these NDV vectors express only a single foreign gene through either an independent transcription unit (ITU) or an internal ribosomal entry site (IRES). In the present study, we combined the ITU and IRES methods to generate a novel NDV LaSota strain-based recombinant virus vectoring the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological assessments of the recombinant virus, rLS/IRES-RFP/GFP, showed that it was slightly attenuated in vivo, yet maintained similar growth dynamics and viral yields in vitro when compared to the parental LaSota virus. Expression of both the RFP and GFP was detected from the rLS/IRES-RFP/GFP virus-infected DF-1 cells by fluorescence microscopy. These data suggest that the rLS/IRES-RFP/GFP virus may be used as a multivalent vector for the development of vaccines and gene therapy agents.
Collapse
Affiliation(s)
- Haixia Hu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Jason P Roth
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Services, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
16
|
Manoharan VK, Khattar SK, LaBranche CC, Montefiori DC, Samal SK. Modified Newcastle Disease virus as an improved vaccine vector against Simian Immunodeficiency virus. Sci Rep 2018; 8:8952. [PMID: 29895833 PMCID: PMC5997738 DOI: 10.1038/s41598-018-27433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/23/2018] [Indexed: 11/26/2022] Open
Abstract
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Collapse
Affiliation(s)
- Vinoth K Manoharan
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sunil K Khattar
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Celia C LaBranche
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University, Durham, North Carolina, USA
| | - Siba K Samal
- Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
17
|
A viral-vectored RSV vaccine induces long-lived humoral immunity in cotton rats. Vaccine 2018; 36:3842-3852. [PMID: 29779923 DOI: 10.1016/j.vaccine.2018.04.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 11/23/2022]
Abstract
Human respiratory syncytial virus (RSV) is the leading cause of lower airway disease in infants worldwide and repeatedly infects immunocompetent individuals throughout life. Severe lower airway RSV infection during infancy can be life-threatening, but is also associated with important sequelae including development of asthma and recurrent wheezing in later childhood. The basis for the inadequate, short-lived adaptive immune response to RSV infection is poorly understood, but it is widely recognized that RSV actively antagonizes Type I interferon (IFN) production. In addition to the induction of the anti-viral state, IFN production during viral infection is critical for downstream development of robust, long-lived immunity. Based on the hypothesis that a vaccine that induced robust IFN production would be protective, we previously constructed a Newcastle disease virus-vectored vaccine that expresses the F glycoprotein of RSV (NDV-F) and demonstrated that vaccinated mice had reduced lung viral loads and an enhanced IFN-γ response after RSV challenge. Here we show that vaccination also protected cotton rats from RSV challenge and induced long-lived neutralizing antibody production, even in RSV immune animals. Finally, pulmonary eosinophilia induced by RSV infection of unvaccinated cotton rats was prevented by vaccination. Overall, these data demonstrate enhanced protective immunity to RSV F when this protein is presented in the context of an abortive NDV infection.
Collapse
|
18
|
Sun M, Dong J, Li L, Lin Q, Sun J, Liu Z, Shen H, Zhang J, Ren T, Zhang C. Recombinant Newcastle disease virus (NDV) expressing Duck Tembusu virus (DTMUV) pre-membrane and envelope proteins protects ducks against DTMUV and NDV challenge. Vet Microbiol 2018; 218:60-69. [PMID: 29685222 PMCID: PMC7117350 DOI: 10.1016/j.vetmic.2018.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Firstly generated a NDV-vectored Duck Tembusu Virus (DTMUV) bivalent vaccine that expressing the pre-membrane and envelope proteins of DTMUV. Evaluated the efficacy of the NDV-vectored Duck Tembusu Virus bivalent vaccine. Provided a new method for NDV and DTMUV controlling in waterfowl.
The newly emerged Duck Tembusu virus (DTMUV) is responsible for considerable economic loss in waterfowl-raising areas in China since 2010. Meanwhile, the virulent Newcastle disease virus (NDV) has also caused sporadic outbreaks in waterfowl. The individual vaccines against both diseases are available, however, there is no bivalent or combined vaccine for either disease. Here, we constructed a recombinant NDV-vectored vaccine candidate that expresses the pre-membrane (prM) and envelope (E) genes from DTMUV, designated as aGM/prM + E. The foreign prM and E proteins were stably expressed in aGM/prM + E and exhibited similar pathogenicity but higher growth kinetics than those of the parental virus. The aGM/prM + E carries a fusion cleavage site in accordance with avirulent viruses that have been frequently isolated from waterfowl, and induced remarkably (p < 0.001) higher NDV-specific hemagglutination inhibition (HI) titers than commercially available live NDV vaccines (LaSota strain). The aGM/prM + E also elicited significantly higher (p < 0.05) virus neutralization (VN) titers than commercially available DTMUV inactivated vaccines (HB strain). The aGM/prM + E not only provided complete protection against NDV challenge but also reduced the gross lesions on ovarian folliculi and provided 80% protection against DTMUV in ducks. We note that the aGM/prM + E vaccine can prevent challenged ducks from shedding of NDV and DTMUV. Our results suggest that the candidate vaccine aGM/prM + E would help decrease NDV and DTMUV transmissions in waterfowl raising areas in China.
Collapse
Affiliation(s)
- Minhua Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jiawen Dong
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Linlin Li
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China
| | - Junying Sun
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Zhicheng Liu
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Haiyan Shen
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong, China.
| | - Chunhong Zhang
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture; Guangdong Open Laboratory of Veterinary Public Health, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Baishigang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Kim SH, Samal SK. Reverse Genetics for Newcastle Disease Virus as a Vaccine Vector. ACTA ACUST UNITED AC 2018; 48:18.5.1-18.5.12. [PMID: 29512119 DOI: 10.1002/cpmc.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Newcastle disease virus (NDV) is an economically important pathogen in the poultry industry worldwide. Recovery of infectious NDV from cDNA using reverse genetics has made it possible to manipulate the genome of NDV. This has greatly contributed to our understanding of the molecular biology and pathogenesis of NDV. Furthermore, NDV has modular genome and accommodates insertion of a foreign gene as a transcriptional unit, thus enabling NDV as a vaccine vector against diseases of humans and animals. Avirulent NDV strains (e.g., LaSota and B1) have been commonly used as vaccine vectors. In this protocol, we have described reverse genetics of NDV to be used as a vaccine vector by exemplifying the recovery of NDV vectored avian influenza virus vaccine. Specifically, cloning and recovery of NDV expressing the hemagglutinin protein of highly pathogenic influenza virus were explained. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shin-Hee Kim
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, Maryland
| | - Siba K Samal
- VA-MD College of Veterinary Medicine, University of Maryland, College Park, Maryland
| |
Collapse
|
20
|
Universal type/subtype-specific antibodies for quantitative analyses of neuraminidase in trivalent influenza vaccines. Sci Rep 2018; 8:1067. [PMID: 29348625 PMCID: PMC5773574 DOI: 10.1038/s41598-017-18663-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 01/06/2023] Open
Abstract
Both influenza viral hemagglutinin and neuraminidase can induce protective immune responses in humans. Although the viral hemagglutinin antigens have been quantified in influenza vaccines, the amounts of neuraminidase remain undetermined. Using comprehensive bioinformatics analyses of all neuraminidase sequences, we identified highly conserved and subtype-specific peptide epitopes within each of N1, N2 and type B neuraminidase groups. Mono-specific antibodies generated against these peptides bound to their respective subtype/type only while demonstrating remarkable specificity against the viral neuraminidase sequences without any cross-reactivity with allantoic and cellular proteins. Moreover, the subtype/type-specific antibodies were found not to interfere with one another when a mixture of vaccine samples was analysed. Importantly, immunoassay based on these antibodies can quantitatively determine neuraminidase in commercial trivalent vaccine samples. Analyses of vaccines from eight manufacturers using the same vaccine seeds revealed significant differences in neuraminidase levels. Specifically, while the ratio between neuraminidase and hemagglutinin in some products are found to be close 1/5, other products have a ratio of approximately 1/100, a level which is far below the theoretical ratio between neuraminidase and hemagglutinin in a virus. The antibody-based assays reported here could be of great value for better quality control of both monovalent and trivalent vaccines.
Collapse
|
21
|
Kuiken T, Buijs P, van Run P, van Amerongen G, Koopmans M, van den Hoogen B. Pigeon paramyxovirus type 1 from a fatal human case induces pneumonia in experimentally infected cynomolgus macaques (Macaca fascicularis). Vet Res 2017; 48:80. [PMID: 29162154 PMCID: PMC5697235 DOI: 10.1186/s13567-017-0486-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/08/2017] [Indexed: 12/01/2022] Open
Abstract
Although avian paramyxovirus type 1 is known to cause mild transient conjunctivitis in human beings, there are two recent reports of fatal respiratory disease in immunocompromised human patients infected with the pigeon lineage of the virus (PPMV-1). In order to evaluate the potential of PPMV-1 to cause respiratory tract disease, we inoculated a PPMV-1 isolate (hPPMV-1/Netherlands/579/2003) from an immunocompromised human patient into three healthy cynomolgus macaques (Macaca fascicularis) and examined them by clinical, virological, and pathological assays. In all three macaques, PPMV-1 replication was restricted to the respiratory tract and caused pulmonary consolidation affecting up to 30% of the lung surface. Both alveolar and bronchiolar epithelial cells expressed viral antigen, which co-localized with areas of diffuse alveolar damage. The results of this study demonstrate that PPMV-1 is a primary respiratory pathogen in cynomolgus macaques, and support the conclusion that PPMV-1 may cause fatal respiratory disease in immunocompromised human patients.
Collapse
Affiliation(s)
- Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.
| | - Pascal Buijs
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Surgery, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Peter van Run
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Geert van Amerongen
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Marion Koopmans
- Department of Viroscience, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | |
Collapse
|
22
|
Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge. J Virol 2017; 91:JVI.01579-17. [PMID: 28931689 DOI: 10.1128/jvi.01579-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats.IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing awareness of the contribution of neuraminidase (NA) to influenza virus vaccine efficacy. Although NA is immunologically subdominant to HA, and clinical studies have shown variable NA responses to vaccination, in this study, we show that vaccination with a parainfluenza virus 5 recombinant vaccine candidate expressing NA (PIV5-NA) from a pandemic influenza (pdmH1N1) virus or highly pathogenic avian influenza (H5N1) virus elicits robust, cross-reactive protection from influenza virus infection in two animal models. New vaccination strategies incorporating NA, including PIV5-NA, could improve seasonal influenza virus vaccine efficacy and provide protection against emerging influenza viruses.
Collapse
|
23
|
Yan Y, Su C, Hang M, Huang H, Zhao Y, Shao X, Bu X. Recombinant Newcastle disease virus rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells via regulating alpha 7 nicotinic acetylcholine receptors in vitro. Virol J 2017; 14:190. [PMID: 28974241 PMCID: PMC5627431 DOI: 10.1186/s12985-017-0852-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study were to investigate the possible pro-apoptotic mechanisms of the recombinant Newcastle disease virus (NDV) strain rL-RVG, which expresses the rabies virus glycoprotein, in A549 lung adenocarcinoma cells via the regulation of alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) and to analyze the relationships between α7 nAChR expression in lung cancer and the clinical pathological features. METHODS α7 nAChR expression in A549, LΑ795, and small-cell lung carcinoma (SCLC) cells, among others, was detected using reverse transcription polymerase chain reaction (RT-PCR). The optimal α7 nAChR antagonist and agonist concentrations for affecting A549 lung adenocarcinoma cells were detected using MTT assays. The α7 nAChR expression in A549 cells after various treatments was assessed by Western blot, immunofluorescence and RT-PCR analyses. Apoptosis in the various groups was also monitored by Western blot and TUNEL assays, followed by the detection of cell migration via transwell and scratch tests. Furthermore, α7 nAChR expression was examined by immunohistochemistry in lung cancer tissue samples from 130 patients and 40 pericancerous tissue samples, and the apoptotis in lung adenocarcinoma tissue was detected by Tunel assay, Then, the expression levels and clinicopathological characteristics were analyzed. RESULTS Of the A549, LΑ795, SCLC and U251 cell lines, the A549 cells exhibited the highest α7 nAChR expression. The cells infected with rL-RVG exhibited high RVG gene and protein expression. The rL-RVG group exhibited weaker α7 nAChR expression compared with the methyllycaconitine citrate hydrate (MLA, an α7 nAChR antagonist) and NDV groups. At the same time, the MLA and rL-RVG treatments significantly inhibited proliferation and migration and promoted apoptosis in the lung cancer cells (P < 0.05). The expression of α7 nAChR was upregulated in lung cancer tissue compared with pericancerous tissue (P = 0.000) and was significantly related to smoking, clinical tumor-node-metastases stage, and histological differentiation (P < 0.05). The AI in lung adenocarcinoma tissue in high-medium differentiation group was lower than that in low differentiation group (p < 0.01). CONCLUSIONS An antagonist of α7 nAChR may be used as a molecular target for lung adenocarcinoma therapy. Recombinant NDV rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells by regulating α7 nAChR signaling pathways.
Collapse
Affiliation(s)
- Yulan Yan
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| | - Chunxiang Su
- Department of Respiratory Medicine, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| | - Min Hang
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Hua Huang
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Yinghai Zhao
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Xiaomei Shao
- Department of Internal Medicine, Clinical Medicine College of Jiangsu University, Zhenjiang, Jiangsu 212013 People’s Republic of China
| | - Xuefeng Bu
- Department of General Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002 People’s Republic of China
| |
Collapse
|
24
|
LIU RQ, GE JY, WANG JL, SHAO Y, ZHANG HL, WANG JL, WEN ZY, BU ZG. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. JOURNAL OF INTEGRATIVE AGRICULTURE : JIA 2017; 16:2264-2273. [PMID: 32288953 PMCID: PMC7128255 DOI: 10.1016/s2095-3119(17)61660-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/10/2017] [Indexed: 06/11/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV), a member of the Coronaviridae family, is the causative pathogen for MERS that is characterized by high fever, pneumonia, acute respiratory distress syndrome (ARDS), as well as extrapulmonary manifestations. Currently, there are no approved treatment regimens or vaccines for MERS. Here, we generated recombinant nonvirulent Newcastle disease virus (NDV) LaSota strain expressing MERS-CoV S protein (designated as rLa-MERS-S), and evaluated its immunogenicity in mice and Bactrian camels. The results revealed that rLa-MERS-S showed similar growth properties to those of LaSota in embryonated chicken eggs, while animal immunization studies showed that rLa-MERS-S induced MERS-CoV neutralizing antibodies in mice and camels. Our findings suggest that recombinant rLa-MERS-S may be a potential MERS-CoV veterinary vaccine candidate for camels and other animals affected by MERS.
Collapse
Affiliation(s)
- Ren-qiang LIU
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-ying GE
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-ling WANG
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, P.R.China
| | - Yu SHAO
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Hui-lei ZHANG
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Jin-liang WANG
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Zhi-yuan WEN
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| | - Zhi-gao BU
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P.R.China
| |
Collapse
|
25
|
Kim SH, Samal SK. Heterologous prime-boost immunization of Newcastle disease virus vectored vaccines protected broiler chickens against highly pathogenic avian influenza and Newcastle disease viruses. Vaccine 2017; 35:4133-4139. [PMID: 28668574 DOI: 10.1016/j.vaccine.2017.06.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 06/15/2017] [Indexed: 11/24/2022]
Abstract
Avian Influenza virus (AIV) is an important pathogen for both human and animal health. There is a great need to develop a safe and effective vaccine for AI infections in the field. Live-attenuated Newcastle disease virus (NDV) vectored AI vaccines have shown to be effective, but preexisting antibodies to the vaccine vector can affect the protective efficacy of the vaccine in the field. To improve the efficacy of AI vaccine, we generated a novel vectored vaccine by using a chimeric NDV vector that is serologically distant from NDV. In this study, the protective efficacy of our vaccines was evaluated by using H5N1 highly pathogenic avian influenza virus (HPAIV) strain A/Vietnam/1203/2004, a prototype strain for vaccine development. The vaccine viruses were three chimeric NDVs expressing the hemagglutinin (HA) protein in combination with the neuraminidase (NA) protein, matrix 1 protein, or nonstructural 1 protein. Comparison of their protective efficacy between a single and prime-boost immunizations indicated that prime immunization of 1-day-old SPF chicks with our vaccine viruses followed by boosting with the conventional NDV vector strain LaSota expressing the HA protein provided complete protection of chickens against mortality, clinical signs and virus shedding. Further verification of our heterologous prime-boost immunization using commercial broiler chickens suggested that a sequential immunization of chickens with chimeric NDV vector expressing the HA and NA proteins following the boost with NDV vector expressing the HA protein can be a promising strategy for the field vaccination against HPAIVs and against highly virulent NDVs.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| |
Collapse
|
26
|
Kim SH, Paldurai A, Samal SK. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus. Virology 2017; 503:31-36. [PMID: 28110247 DOI: 10.1016/j.virol.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Avian influenza (AI) is an economically-important disease of poultry worldwide. The use of vaccines to control AI has increased because of frequent outbreaks of the disease in endemic countries. Newcastle disease virus (NDV) vectored vaccine has shown to be effective in protecting chickens against a highly pathogenic avian influenza virus (HPAIV) infection. However, preexisting antibodies to NDV vector might affect protective efficacy of the vaccine in the field. As an alternative strategy, we evaluated vaccine efficacy of a chimeric NDV vectored vaccine in which the ectodomains of F and HN proteins were replaced by those of avian paramyxovirus serotype-2. The chimeric NDV vector stably expressed the HA protein in vivo, did not cross-react with NDV, was attenuated to be used as a safe vaccine, and provided a partial protection of 1-day-old immunized chickens against HPAIV subtype H5N1challenge, indicating its potential use for early protection of chickens.
Collapse
Affiliation(s)
- Shin-Hee Kim
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Anandan Paldurai
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Siba K Samal
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA.
| |
Collapse
|
27
|
Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch Virol 2016; 162:359-367. [PMID: 27757685 PMCID: PMC5306239 DOI: 10.1007/s00705-016-3078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/19/2016] [Indexed: 11/13/2022]
Abstract
Bovine ephemeral fever (BEF) is caused by the arthropod-borne bovine ephemeral fever virus (BEFV), which is a member of the family Rhabdoviridae and the genus Ephemerovirus. BEFV causes an acute febrile infection in cattle and water buffalo. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of BEFV (rL-BEFV-G) was constructed, and its biological characteristics in vitro and in vivo, pathogenicity, and immune response in mice and cattle were evaluated. BEFV G enabled NDV to spread from cell to cell. rL-BEFV-G remained nonvirulent in poultry and mice compared with vector LaSota virus. rL-BEFV-G triggered a high titer of neutralizing antibodies against BEFV in mice and cattle. These results suggest that rL-BEFV-G might be a suitable candidate vaccine against BEF.
Collapse
|
28
|
Sun Y, Yang C, Li J, Li L, Cao M, Li Q, Li H. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks. Arch Virol 2016; 162:171-179. [PMID: 27709401 DOI: 10.1007/s00705-016-3077-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022]
Abstract
H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 103 TCID50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.
Collapse
Affiliation(s)
- Ying Sun
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Chenghuai Yang
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Junping Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ling Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Minghui Cao
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Qihong Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Huijiao Li
- China Institute of Veterinary Drug Control, No. 8 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
29
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
30
|
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses 2016; 8:v8070183. [PMID: 27384578 PMCID: PMC4974518 DOI: 10.3390/v8070183] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022] Open
Abstract
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Collapse
|
31
|
Wang J, Yang J, Ge J, Hua R, Liu R, Li X, Wang X, Shao Y, Sun E, Wu D, Qin C, Wen Z, Bu Z. Newcastle disease virus-vectored West Nile fever vaccine is immunogenic in mammals and poultry. Virol J 2016; 13:109. [PMID: 27342050 PMCID: PMC4920995 DOI: 10.1186/s12985-016-0568-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND West Nile virus (WNV) is an emerging zoonotic pathogen which is harmful to human and animal health. Effective vaccination in susceptible hosts should protect against WNV infection and significantly reduce viral transmission between animals and from animals to humans. A versatile vaccine suitable for different species that can be delivered via flexible routes remains an essential unmet medical need. In this study, we developed a recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing WNV premembrane/envelope (PrM/E) proteins (designated rLa-WNV-PrM/E) and evaluated its immunogenicity in mice, horses, chickens, ducks and geese. RESULTS Mouse immunization experiments disclosed that rLa-WNV-PrM/E induces significant levels of WNV-neutralizing antibodies and E protein-specific CD4+ and CD8+ T-cell responses. Moreover, recombinant rLa-WNV-PrM/E elicited significant levels of WNV-specific IgG in horses upon delivery via intramuscular immunization, and in chickens, ducks and geese via intramuscular, oral or intranasal immunization. CONCLUSIONS Our results collectively support the utility of rLa-WNV-PrM/E as a promising WNV veterinary vaccine candidate for mammals and poultry.
Collapse
Affiliation(s)
- Jinliang Wang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Jie Yang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Jinying Ge
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Ronghong Hua
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Renqiang Liu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Xiaofeng Li
- />Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xijun Wang
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Yu Shao
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Encheng Sun
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Donglai Wu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Chengfeng Qin
- />Department of Virology, State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyuan Wen
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| | - Zhigao Bu
- />State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, Heilongjiang 150001 People’s Republic of China
| |
Collapse
|
32
|
Zhang M, Ge J, Li X, Chen W, Wang X, Wen Z, Bu Z. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice. Virol J 2016; 13:31. [PMID: 26911572 PMCID: PMC4765107 DOI: 10.1186/s12985-016-0481-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vesicular stomatitis virus (VSV) causes severe losses to the animal husbandry industry. In this study, a recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of VSV (rL-VSV-G) was constructed and its pathogenicity and immune protective efficacy in mouse were evaluated. RESULTS In pathogenicity evaluation test, the analysis of the viral distribution in mouse organs and body weight change showed that rL-VSV-G was safe in mice. In immune protection assay, the recombinant rL-VSV-G triggered a high titer of neutralizing antibodies against VSV. After challenge, the wild-type (wt) VSV viral load in mouse organs was lower in rL-VSV-G group than that in rLaSota groups. wt VSV was not detected in the blood, liver, or kidneys of mice, whereas it was found in these tissues in control groups. The mice body weight had no significant change after challenge in the rL-VSV-G group. Additionally, suckling mice produced from female mice immunized with rL-VSV-G were partially protected from wt VSV challenge. CONCLUSIONS These results demonstrated that rL-VSV-G may be a suitable candidate vaccine against vesicular stomatitis (VS).
Collapse
Affiliation(s)
- Minmin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xiaofang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Weiye Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Harbin, 150001, People's Republic of China.
| |
Collapse
|
33
|
Khattar SK, Palaniyandi S, Samal S, LaBranche CC, Montefiori DC, Zhu X, Samal SK. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 Gag and Env proteins expressed by Newcastle disease virus. Hum Vaccin Immunother 2015; 11:504-15. [PMID: 25695657 DOI: 10.4161/21645515.2014.987006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8(+) T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4(+) T cells. The level of Gag-specific CD8(+) and CD4(+) T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins.
Collapse
Affiliation(s)
- Sunil K Khattar
- a Virginia-Maryland Regional College of Veterinary Medicine ; University of Maryland ; College Park , MD USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Enhanced Immune Responses to HIV-1 Envelope Elicited by a Vaccine Regimen Consisting of Priming with Newcastle Disease Virus Expressing HIV gp160 and Boosting with gp120 and SOSIP gp140 Proteins. J Virol 2015; 90:1682-6. [PMID: 26581986 DOI: 10.1128/jvi.02847-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022] Open
Abstract
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost.
Collapse
|
35
|
Czako R, Subbarao K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol 2015; 10:1033-1047. [PMID: 26587050 DOI: 10.2217/fvl.15.69] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vaccination is the most effective strategy for prevention and control of influenza. Timely production and deployment of seasonal influenza vaccines is based on an understanding of the epidemiology of influenza and on global disease and virologic surveillance. Experience with seasonal influenza vaccines guided the initial development of pandemic influenza vaccines. A large investment in pandemic influenza vaccines in the last decade has resulted in much progress and a body of information that can now be applied to refine the established paradigm. Critical and complementary considerations for pandemic influenza vaccines include improved assessment of the pandemic potential of animal influenza viruses, proactive development and deployment of pandemic influenza vaccines, and application of novel platforms and strategies for vaccine production and administration.
Collapse
Affiliation(s)
- Rita Czako
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
36
|
Kingstad-Bakke B, Kamlangdee A, Osorio JE. Mucosal administration of raccoonpox virus expressing highly pathogenic avian H5N1 influenza neuraminidase is highly protective against H5N1 and seasonal influenza virus challenge. Vaccine 2015; 33:5155-62. [PMID: 26271828 DOI: 10.1016/j.vaccine.2015.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/29/2015] [Accepted: 08/01/2015] [Indexed: 10/23/2022]
Abstract
We previously generated recombinant poxviruses expressing influenza antigens and studied their efficacy as potential highly pathogenic avian influenza (HPAI) vaccines in mice. While both modified vaccinia Ankara (MVA) and raccoon poxvirus (RCN) expressing hemagglutinin (HA) provided strong protection when administered by parenteral routes, only RCN-neuraminidase (NA) showed promise as a mucosal vaccine. In the present study we evaluated the efficacy of RCN-NA constructs by both intradermal (ID) and intranasal (IN) routes. Surprisingly, while RCN-NA completely protected mice when administered by the IN route, it failed to protect mice when administered by the ID route. After challenge, significantly less virus induced pathology was observed in the lungs of mice vaccinated with RCN-NA by the IN route as compared to the ID route. Furthermore, IN administration of RCN-NA elicited neutralizing antibodies detected in bronchoalveolar lavage (BAL) samples. We also determined the role of cellular immune responses in protection elicited by RCN-NA by depleting CD4 and CD8 T cells prior to challenge. Finally, we demonstrated for the first time that antibodies against NA can block viral entry in addition to viral spread in vitro. These studies demonstrate the importance of mucosal administration of RCN viral vectors for eliciting protective immune responses against the NA antigen.
Collapse
Affiliation(s)
- Brock Kingstad-Bakke
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Attapon Kamlangdee
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
37
|
Duan Z, Xu H, Ji X, Zhao J. Recombinant Newcastle disease virus-vectored vaccines against human and animal infectious diseases. Future Microbiol 2015; 10:1307-23. [PMID: 26234909 DOI: 10.2217/fmb.15.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent advances in recombinant genetic engineering techniques have brought forward a leap in designing new vaccines in modern medicine. One attractive strategy is the application of reverse genetics technology to make recombinant Newcastle disease virus (rNDV) deliver protective antigens of pathogens. In recent years, numerous studies have demonstrated that rNDV-vectored vaccines can induce quicker and better humoral and mucosal immune responses than conventional vaccines and are protective against pathogen challenges. With deeper understanding of NDV molecular biology, it is feasible to develop gene-modified rNDV vaccines accompanied by good safety, high efficacy, low toxicity and better immunogenicity. This review summarizes the development of reverse genetics technology in using NDV as a promising vaccine vector to design new vaccines for human and animal use.
Collapse
Affiliation(s)
- Zhiqiang Duan
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Houqiang Xu
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jiafu Zhao
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China.,Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
38
|
Zhang Z, Zhao W, Li D, Yang J, Zsak L, Yu Q. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. J Gen Virol 2015; 96:2028-2035. [DOI: 10.1099/vir.0.000142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhenyu Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| | - Wei Zhao
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
- Beijing Centre for Disease Control and Prevention, Beijing 100013, PR China
| | - Deshan Li
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jinlong Yang
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Laszlo Zsak
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| | - Qingzhong Yu
- United States Department of Agriculture, U.S. National Poultry Research Center, Agricultural Research Services, 934 College Station Road, Athens, GA, 30605, USA
| |
Collapse
|
39
|
Bitrus Y, Andrew JN, Owolodun OA, Luka PD, Umaru DA. The reoccurrence of H5N1 outbreaks necessitates the development of safe and effective influenza vaccine technologies for the prevention and control of avian influenza in Sub-Saharan Africa. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/bmbr2015.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Mucosal Immunization with Newcastle Disease Virus Vector Coexpressing HIV-1 Env and Gag Proteins Elicits Potent Serum, Mucosal, and Cellular Immune Responses That Protect against Vaccinia Virus Env and Gag Challenges. mBio 2015. [PMID: 26199332 PMCID: PMC4513081 DOI: 10.1128/mbio.01005-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV.
Collapse
|
41
|
Wen G, Chen C, Guo J, Zhang Z, Shang Y, Shao H, Luo Q, Yang J, Wang H, Wang H, Zhang T, Zhang R, Cheng G, Yu Q. Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene. J Gen Virol 2015; 96:1219-1228. [DOI: 10.1099/vir.0.000067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/20/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- Guoyuan Wen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan 430070, PR China
- Southeast Poultry Research Laboratory, Agricultural Research Services, US Department of Agriculture, Athens, GA 30605, USA
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Chen Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Jing Guo
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Zhenyu Zhang
- Southeast Poultry Research Laboratory, Agricultural Research Services, US Department of Agriculture, Athens, GA 30605, USA
| | - Yu Shang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Jun Yang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Hongling Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Hongcai Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Tengfei Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Rongrong Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430070, PR China
| | - Guofu Cheng
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qingzhong Yu
- Southeast Poultry Research Laboratory, Agricultural Research Services, US Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
42
|
Kumar S. Newcastle disease virus outbreaks in India: Time to revisit the vaccine type and strategies. Vaccine 2015; 33:3268-9. [DOI: 10.1016/j.vaccine.2015.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/16/2022]
|
43
|
Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J Virol 2015; 89:7401-8. [PMID: 25926639 DOI: 10.1128/jvi.00031-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/14/2015] [Indexed: 02/02/2023] Open
Abstract
Sporadic human infections by a novel H7N9 virus occurred over a large geographic region in China. In this study, we show that Newcastle disease virus (NDV)-vectored H7 (NDV-H7) and NDV-H5 vaccines are able to induce antibodies with high hemagglutination inhibition (HI) titers and completely protect chickens from challenge with the novel H7N9 or highly pathogenic H5N1 viruses, respectively. Notably, a baculovirus-expressed H7 protein failed to protect chickens from H7N9 virus infection.
Collapse
|
44
|
Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus: A Brief Review. Transbound Emerg Dis 2015; 64:53-67. [DOI: 10.1111/tbed.12355] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- P. Gogoi
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - K. Ganar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| | - S. Kumar
- Department of Biosciences and Bioengineering; Indian Institute of Technology Guwahati; Guwahati India
| |
Collapse
|
45
|
Zou Z, Hu Y, Liu Z, Zhong W, Cao H, Chen H, Jin M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Vet Res 2015; 46:42. [PMID: 25889564 PMCID: PMC4397706 DOI: 10.1186/s13567-015-0174-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 03/23/2015] [Indexed: 01/01/2023] Open
Abstract
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.
Collapse
Affiliation(s)
- Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhigang Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Life Sciences, AnQing Normal University, AnQing, 246011, China.
| | - Wei Zhong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hangzhou Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
46
|
Wang J, Cong Y, Yin R, Feng N, Yang S, Xia X, Xiao Y, Wang W, Liu X, Hu S, Ding C, Yu S, Wang C, Ding Z. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Res 2015; 203:77-83. [PMID: 25882914 PMCID: PMC7114436 DOI: 10.1016/j.virusres.2015.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/11/2015] [Accepted: 04/03/2015] [Indexed: 12/01/2022]
Abstract
Newcastle disease virus (NDV) and Goose parvovirus (GPV) are considered to be two of the most important and widespread viruses infecting geese. In this study, we generated a recombinant rmNA-VP3, expressing GPV VP3 using a modified goose-origin NDV NA-1 by changing the multi-basic cleavage site motif RRQKR↓F of the F protein to the dibasic motif GRQGR↓L as that of the avirulent strain LaSota as a vaccine vector. Expression of the VP3 protein in rmNA-VP3 infected cells was detected by immunofluorescence and Western blot assay. The genetic stability was examined by serially passaging 10 times in 10-day-old embryonated SPF chicken eggs. Goslings were inoculated with rmNA-VP3 showed no apparent signs of disease and developed a strong GPV and NDV neutralizing antibodies response. This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds.
Collapse
Affiliation(s)
- Jianzhong Wang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Na Feng
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China
| | - Songtao Yang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun 130122, China
| | - Yueqiang Xiao
- Shandong Binzhou Animal Science and Veterinary Medicine Institute, Binzhou 256600, China
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Institute, Binzhou 256600, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunfeng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| |
Collapse
|
47
|
Ge J, Wang X, Tian M, Gao Y, Wen Z, Yu G, Zhou W, Zu S, Bu Z. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine 2015; 33:2457-62. [PMID: 25865465 DOI: 10.1016/j.vaccine.2015.03.091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/22/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species.
Collapse
Affiliation(s)
- Jinying Ge
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Xijun Wang
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Meijie Tian
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhiyuan Wen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guimei Yu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Weiwei Zhou
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shulong Zu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhigao Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| |
Collapse
|
48
|
The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014. Antiviral Res 2015; 117:75-98. [PMID: 25746173 DOI: 10.1016/j.antiviral.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.
Collapse
|
49
|
Biological and protective properties of immune sera directed to the influenza virus neuraminidase. J Virol 2014; 89:1550-63. [PMID: 25392225 DOI: 10.1128/jvi.02949-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.
Collapse
|
50
|
Abstract
The advent of reverse genetic approaches to manipulate the genomes of both positive (+) and negative (-) sense RNA viruses allowed researchers to harness these genomes for basic research. Manipulation of positive sense RNA virus genomes occurred first largely because infectious RNA could be transcribed directly from cDNA versions of the RNA genomes. Manipulation of negative strand RNA virus genomes rapidly followed as more sophisticated approaches to provide RNA-dependent RNA polymerase complexes coupled with negative-strand RNA templates were developed. These advances have driven an explosion of RNA virus vaccine vector development. That is, development of approaches to exploit the basic replication and expression strategies of RNA viruses to produce vaccine antigens that have been engineered into their genomes. This study has led to significant preclinical testing of many RNA virus vectors against a wide range of pathogens as well as cancer targets. Multiple RNA virus vectors have advanced through preclinical testing to human clinical evaluation. This review will focus on RNA virus vectors designed to express heterologous genes that are packaged into viral particles and have progressed to clinical testing.
Collapse
Affiliation(s)
- Mark A Mogler
- Harrisvaccines, Inc., 1102 Southern Hills Drive, Suite 101, Ames, IA 50010, USA
| | | |
Collapse
|