1
|
Baculovirus Display of Peptides and Proteins for Medical Applications. Viruses 2023; 15:v15020411. [PMID: 36851625 PMCID: PMC9962271 DOI: 10.3390/v15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.
Collapse
|
2
|
Ravikumar R, Chan J, Prabakaran M. Vaccines against Major Poultry Viral Diseases: Strategies to Improve the Breadth and Protective Efficacy. Viruses 2022; 14:v14061195. [PMID: 35746665 PMCID: PMC9230070 DOI: 10.3390/v14061195] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 12/24/2022] Open
Abstract
The poultry industry is the largest source of meat and eggs for human consumption worldwide. However, viral outbreaks in farmed stock are a common occurrence and a major source of concern for the industry. Mortality and morbidity resulting from an outbreak can cause significant economic losses with subsequent detrimental impacts on the global food supply chain. Mass vaccination is one of the main strategies for controlling and preventing viral infection in poultry. The development of broadly protective vaccines against avian viral diseases will alleviate selection pressure on field virus strains and simplify vaccination regimens for commercial farms with overall savings in husbandry costs. With the increasing number of emerging and re-emerging viral infectious diseases in the poultry industry, there is an urgent need to understand the strategies for broadening the protective efficacy of the vaccines against distinct viral strains. The current review provides an overview of viral vaccines and vaccination regimens available for common avian viral infections, and strategies for developing safer and more efficacious viral vaccines for poultry.
Collapse
|
3
|
Basak S, Kang HJ, Chu KB, Oh J, Quan FS. Simple and rapid plaque assay for recombinant baculoviruses expressing influenza hemagglutinin. Sci Prog 2021; 104:368504211004261. [PMID: 33787402 PMCID: PMC10454765 DOI: 10.1177/00368504211004261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recombinant baculoviruses (rBVs) have been extensively used to generate virus-like particles, and baculoviruses expressing antigenic proteins have become efficient tools for inducing protective immunity. However, current methods for generating baculoviruses are costly and inefficient. Thus, the development of a simple, rapid, and accurate method of baculovirus titration is critically important. We established a method of plaque assay using an immunostaining method by which plaques can be easily visualized in Sf9 cells under a light microscope. Sf9 cells were infected with recombinant baculoviruses expressing influenza hemagglutinin surface proteins from H1N1 (A/California/04/09) or rH5N1 (A/Vietnam/1203/04). The infected cells were incubated with anti-HA antibody and the plaques were visualized using the chromogen 3'3-diaminobenzidine (DAB). Plaques were observed from days 1 to 6 post-infection, and differences in Sf9 cell seeding densities resulted in variations in the final plaque quantification. Sf9 cells seeded at a concentration of 5.5 × 104 cells/well or 7.5 × 104 cells/well showed the higher plaque titers at days 3, 4, and 5 post-infection than those found at days 1, 2, and 6 post-infection. With 5.5 × 104 cells/well or 7.5 × 104 cells/well of cell concentrations, recombinant baculovirus for rBV-HA (H1N1) showed 6 × 107 pfu/ml of titer and rBVs for rBV-HA (rH5N1) showed 5.4 × 107 pfu/ml of titer. Three days of baculovirus incubation with a certain concentration of Sf9 cells seeded are required for a rapid, simple, and accurate plaque assay, which could significantly contribute to all baculovirus-related studies.
Collapse
Affiliation(s)
- Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Judy Oh
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Lei H, Gao T, Cen Q, Peng X. Haemagglutinin displayed on the surface of Lactococcus lactis confers broad cross-clade protection against different H5N1 viruses in chickens. Microb Cell Fact 2020; 19:193. [PMID: 33059676 PMCID: PMC7557258 DOI: 10.1186/s12934-020-01453-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background The highly pathogenic avian influenza (HPAI) H5N1 virus poses a potential threat to the poultry industry. The currently available avian influenza H5N1 vaccines for poultry are clade-specific. Therefore, an effective vaccine for preventing and controlling H5N1 viruses belonging to different clades needs to be developed. Results Recombinant L. lactis/pNZ8148-Spax-HA was generated, and the influenza virus haemagglutinin (HA) protein of A/Vietnam/1203/2004 (H5N1) was displayed on the surface of Lactococcus lactis (L. lactis). Spax was used as an anchor protein. Chickens vaccinated orally with unadjuvanted L. lactis/pNZ8148-Spax-HA could produce significant humoral and mucosal responses and neutralizing activities against H5N1 viruses belonging to different clades. Importantly, unadjuvanted L. lactis/pNZ8148-Spax-HA conferred cross-clade protection against lethal challenge with different H5N1 viruses in the chicken model. Conclusion This study provides insights into the cross-clade protection conferred by unadjuvanted L. lactis/pNZ8148-Spax-HA, and the results might help the establishment of a promising platform for the development of a safe and effective H5N1 cross-clade vaccine for poultry.
Collapse
Affiliation(s)
- Han Lei
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Tong Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qianhong Cen
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xiaojue Peng
- Department of Biotechnology, College of Life Science, Nanchang University, Jiangxi, 330031, China
| |
Collapse
|
5
|
Basak S, Chu KB, Kang HJ, Kim MJ, Lee SH, Yoon KW, Jin H, Suh JW, Moon EK, Quan FS. Orally administered recombinant baculovirus vaccine elicits partial protection against avian influenza virus infection in mice. Microb Pathog 2020; 149:104495. [PMID: 32910984 DOI: 10.1016/j.micpath.2020.104495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Avian influenza outbreaks have placed a tremendous economic burden on the poultry industry, necessitating the need for an effective vaccine. Although multiple vaccine candidates are available, its development is hindered by several drawbacks associated with the vaccine platforms and as such, more improvements to the vaccines are needed. Therefore, in this study, the vaccine efficacy in the murine models was assessed prior to evaluation in chickens. An oral recombinant baculovirus (rBV) vaccine expressing influenza hemagglutinin (HA) (A/H5N1) was generated and its efficacy was investigated against homologous avian influenza infection in mice. Our results confirmed that oral administration of rBVs enhanced the level of virus-specific antibodies in the sera following boost immunization. Upon challenge infection with a lethal dose of highly pathogenic avian influenza virus (HPAI, H5N1) virus, a marked increase in mucosal IgG and IgA were observed. Drastically increased antibody secretory cell responses from the bone marrow cells and splenocytes of vaccinated mice were observed, in addition to the strongly elicited germinal center responses in the lungs and the spleens. Vaccinated mice showed significantly reduced lung pro-inflammatory cytokine responses, lung viral loads, body weight loss, and mortality. Though mice were only partially protected upon challenge infection, these results highlight the potential of orally administered rBVs expressing the HA as a vaccine candidate for controlling avian influenza outbreaks.
Collapse
Affiliation(s)
- Swarnendu Basak
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hae-Ji Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ju Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Keon-Woong Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hui Jin
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Joo Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Myongji University, Gyeonggi-do, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Tao LN, Liu ZH, Xu HL, Lu Y, Liao M, He F. LvYY1 Activates WSSV ie1 Promoter for Enhanced Vaccine Production and Efficacy. Vaccines (Basel) 2020; 8:E510. [PMID: 32911686 PMCID: PMC7563808 DOI: 10.3390/vaccines8030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
The baculovirus expression vector system (BEVS) has been used as a preferred platform for the production of recombinant protein complexes and efficacious vaccines. However, limited protein yield hinders the application of BEVS. It is well accepted that transcription enhancers are capable of increasing translational efficiency of mRNAs, thereby achieving better protein production. In this study, the ability of LvYY1 as a transcription enhancer was assessed. LvYY1 could interact with the WSSV ie1 promoter via binding to special DNA sites in BEVS. The effects of LvYY1 on protein expression mediated by WSSV ie1 promoter of BEVS was investigated using eGFP as a reporter gene. Enhanced eGFP expression was observed in Sf-9 cells with LvYY1. On this basis, a modified vector combining ie1 promoter and LvYY1 was developed to express either secreting CSFV E2 or baculovirus surface displayed H5 HA of AIVs. Compared to control groups without LvYY1, E2 protein yield increases to 1.6-fold, while H5 production improves as revealed by an upregulated hemagglutination titer of 8-fold at least. Moreover, with LvYY1, H5 displaying baculovirus driven by WSSV ie1 promoter (BV-LvYY1-ie1-HA) sustains the transduction activity in CEF cells. In chicken, BV-LvYY1-ie1-HA elicits a robust immune response against H5 AIVs in the absence of adjuvant, as indicated by specific antibody and cytokine responses. The findings suggest its potential function as both a vectored and subunit vaccine. These results demonstrate that the coexpression with LvYY1 serves as a promising strategy to extensively improve the efficiency of BEVS for efficacious vaccine production.
Collapse
Affiliation(s)
- Li-Na Tao
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Ze-Hui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Ying Lu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China;
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (L.-N.T.); (Z.-H.L.); (H.-L.X.); (Y.L.)
| |
Collapse
|
7
|
Influenza vaccine efficacy induced by orally administered recombinant baculoviruses. PLoS One 2020; 15:e0233520. [PMID: 32459823 PMCID: PMC7252623 DOI: 10.1371/journal.pone.0233520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Although vaccine delivery through the oral route remains the most convenient and safest way for mass immunization purposes, this method is limited by the requirement for large antigen doses and low vaccine efficacy. In this study, we generated recombinant baculoviruses (rBVs) expressing influenza hemagglutinin (A/PR/8/34) and orally delivered a low dose of rBVs to evaluate its vaccine efficacy in mice. Intranasal rBV vaccination was included in the whole experiment for comparison. We found that oral vaccination elicited high levels of virus-specific IgG and IgA antibody responses in both serum and mucosal samples (lung, tracheal, intestinal, fecal and vaginal). Surprisingly, complete protection from the lethal influenza challenge was observed, as indicated by reductions in the virus titer, inflammatory cytokine production, body weight change, and enhanced survival. These results suggest that oral delivery of the influenza rBV vaccine induces mucosal and systemic immunity, which protect mice from the lethal influenza virus challenge. Oral delivery of baculovirus vaccines can be developed as an effective vaccination route.
Collapse
|
8
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
9
|
Trianti I, Akeprathumchai S, Mekvichitsaeng P, Rachdawong S, Poomputsa K. Recombinant neuraminidase pseudotyped baculovirus: a dual vector for delivery of Angiotensin II peptides and DNA vaccine. AMB Express 2018; 8:170. [PMID: 30328017 PMCID: PMC6191402 DOI: 10.1186/s13568-018-0699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022] Open
Abstract
Baculovirus is a promising vaccine deliver vector due to its biosafety profiles, gene transfer efficiency, ability to display small foreign antigens on its surface, strong adjuvant activities, etc. A dual vector for peptide antigens and a DNA vaccine delivery was constructed. In this vector, a tetrameric glycoprotein neuraminidase (NA) from influenza A virus (H5N1) serves as a baculovirus surface protein to improve baculovirus transduction efficiency and a partner for displaying the target peptide antigen. Nucleotides encoding target peptides could be fused to a full length NA gene, at the lower part of its head structure, integrated into Autographa californica multinucleopolyhedrovirus genome and expressed under the control of a White Spot Syndrome Virus IE-1 shuttle promoter. Angiotensin II (AngII) peptides, a potent vasoconstrictor that causes high blood pressure, was our target antigen. The recombinant NA-AngII pseudotyped baculovirus had the AngII peptides fused to the NA and displayed on its surface. In vitro studies revealed that this recombinant baculovirus successfully delivered AngII peptides, as DNA vaccine, into human HEK293A cells. A single subcutaneous injection of the recombinant NA-AngII pseudotyped baculovirus into moderately high blood pressure rats at 4 × 109 pfu/rat, stimulated anti-AngII antibody production and their systolic blood pressure (SBP) levels were found to have decreased. In addition, a single intranasal immunization at 8 × 108 pfu/rat, raised anti-AngII antibodies in a rat and its SBP was also reduced. The recombinant neuraminidase pseudotyped baculovirus is a potential vector for AngII peptide antigen and DNA vaccine for subcutaneous or intranasal immunization for treatment of hypertension.
Collapse
|
10
|
Molinari P, Molina GN, Tavarone E, Del Médico Zajac MP, Morón G, Taboga O. Baculovirus capsid display in vaccination schemes: effect of a previous immunity against the vector on the cytotoxic response to delivered antigens. Appl Microbiol Biotechnol 2018; 102:10139-10146. [PMID: 30238142 DOI: 10.1007/s00253-018-9368-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
Abstract
The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, although it also has been used as display vector for vaccine development. In this work, we evaluated the effectiveness of repetitive doses of AcMNPV-based vectors on the cytotoxic immune response specific to the capsid-displayed heterologous antigen ovalbumin (OVA). Our results demonstrate that baculovirus vectors induce a boosting effect in the cytotoxic immune response to OVA, making possible to recover the levels obtained in the primary response. Moreover, mice preimmunized with wild-type baculovirus showed a complete lack of antigen-specific CD8 cytotoxic T lymphocytes (CTLs) that may be related to the presence of antibodies directed to baculoviral surface proteins, particularly to GP64. However, baculovirus was able to induce the innate immune response in spite of a previous response against this vector, although some quantitative differences reflect a distinct activation of the immune cells in prime and boost. This is the first report in which the novel capsid display strategy is evaluated in prime-boost schemes to improve efficient CTL responses.
Collapse
Affiliation(s)
- Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Guido N Molina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eugenia Tavarone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Paula Del Médico Zajac
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias, INTA Castelar, Nicolás Repetto y De Los Reseros S/N° (B1686IGC), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Wang Z, Gao Y, Xia X. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine 2018; 36:5990-5998. [PMID: 30172635 DOI: 10.1016/j.vaccine.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.
Collapse
Affiliation(s)
- Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China.
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Jing Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Weiyang Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Kun Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
12
|
Premanand B, Zhong Wee P, Prabakaran M. Baculovirus Surface Display of Immunogenic Proteins for Vaccine Development. Viruses 2018; 10:E298. [PMID: 29857561 PMCID: PMC6024371 DOI: 10.3390/v10060298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Vaccination is an efficient way to prevent the occurrence of many infectious diseases in humans. To date, several viral vectors have been utilized for the generation of vaccines. Among them, baculovirus-categorized as a nonhuman viral vector-has been used in wider applications. Its versatile features, like large cloning capacity, nonreplicative nature in mammalian cells, and broad tissue tropism, hold it at an excellent position among vaccine vectors. In addition to ease and safety during swift production, recent key improvements to existing baculovirus vectors (such as inclusion of hybrid promoters, immunostimulatory elements, etc.) have led to significant improvements in immunogenicity and efficacy of surface-displayed antigens. Furthermore, some promising preclinical results have been reported that mirror the scope and practicality of baculovirus as a vaccine vector for human applications in the near future. Herein, this review provides an overview of the induced immune responses by baculovirus surface-displayed vaccines against influenza and other infectious diseases in animal models, and highlights the strategies applied to enhance the protective immune responses against the displayed antigens.
Collapse
Affiliation(s)
- Balraj Premanand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Poh Zhong Wee
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
13
|
Rajesh Kumar S, Chelvaretnam S, Tan Y, Prabakaran M. Broadening the H5N3 Vaccine Immunogenicity against H5N1 Virus by Modification of Neutralizing Epitopes. Viruses 2017; 10:E2. [PMID: 29295514 PMCID: PMC5795415 DOI: 10.3390/v10010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus remains to be one of the world's largest pandemic threats due to the emergence of new variants. The rapid evolution of new sub-lineages is currently the greatest challenge in vaccine development. In this study, we developed an epitope modified non-pathogenic H5N3 (A/duck/Singapore/97) vaccine for broad protection against influenza H5 subtype. H5N3 hemagglutinin (HA) mutant reassortant viruses with A/Puerto Rico/8/34 (PR8) backbone were generated by mutating amino acids at the 140th loop and 190th α-helix of hemagglutinin. The cross-neutralizing efficacy of reverse genetics-derived H5N3HA (RG-H5N3HA) mutants was confirmed by testing reactivity with reference chicken anti-H5N1 clade 2 virus sera. Furthermore, RG-H5N3HA mutant immunized mice induced cross-neutralizing antibodies and cross-protection against distinct H5N1 viral infection. Our findings suggest that the use of non-pathogenic H5 viruses antigenically related to HPAI-H5N1 allows for the development of broadly protective vaccines and reduces the need for biosafety level 3 (BSL3) containment facilities.
Collapse
Affiliation(s)
| | - Sharenya Chelvaretnam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Yunrui Tan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Mookkan Prabakaran
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
14
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
15
|
Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity. Sci Rep 2016; 6:24290. [PMID: 27063566 PMCID: PMC4827022 DOI: 10.1038/srep24290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/22/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant baculoviruses with different promoter and regulatory elements were constructed to enhance the expression of target protein and boost the efficacies of avian influenza vaccine. Hemagglutinin gene was cloned into the baculovirus transfer vectors driven by cytomegaloviru (CMV) and White spot syndrome virus immediate-early promoter one (WSSV ie1) promoter respectively, with different regulatory elements. The recombinant baculoviruses were directly used as vaccines to immunize specific pathogen-free chickens. The protein expression levels of recombinant baculoviruses BV-S-HA and BV-S-ITRs-HA were respectively 2.43 and 2.67 times than that of BV-S-con-HA, while the protein expression levels of BV-A-HA and BV-A-ITRs-HA were respectively 2.44 and 2.69 times than that of BV-S-con-HA. Immunoglobulin G (IgG) antibody levels induced by BV-A and BV-S series recombinant baculovirus were significantly higher than the commercialized vaccine group (P < 0.05). Among the groups with same promoter, the IgG antibody levels induced by the baculovirus containing regulatory elements were significantly higher than control group. Additionally, the immune effects induced by BV-A series recombinant baculoviruses with WSSV ie1 promoter were significantly stronger than the BV-S series recombinant baculoviruses with CMV promoter. The avian influenza vaccine prepared based on baculovirus vector can simultaneously stimulate the humoral and cellular immune responses.
Collapse
|
16
|
He F, Leyrer S, Kwang J. Strategies towards universal pandemic influenza vaccines. Expert Rev Vaccines 2015; 15:215-25. [DOI: 10.1586/14760584.2016.1115352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fang He
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Sonja Leyrer
- Emergent Product Development Germany GmbH, Munich, Germany
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Han PF, Li J, Hu Y, Sun W, Zhang S, Yang YH, Li YC, Kang XP, Wu XY, Zhu SY, Zhang Y, Zhu QY, Qin CF, Jiang T. H5N1 influenza A virus with K193E and G225E double mutations in haemagglutinin is attenuated and immunogenic in mice. J Gen Virol 2015; 96:2522-2530. [PMID: 25998916 DOI: 10.1099/vir.0.000193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated influenza vaccines (LAIVs) are now available for the prevention of influenza, with LAIV strains generally derived from serial passage in cultures or by reverse genetics (RG). The receptor-binding domain (RBD) in haemagglutinin (HA) of influenza virus is responsible for viral binding to the avian-type 2,3-α-linked or human-type 2,6-α-linked sialic acid receptor; however, the virulence determinants in the RBD of H5N1 virus remain largely unknown. In the present study, serial passage of H5N1 virus A/Vietnam/1194/2004 in Madin-Darby canine kidney cells resulted in the generation of adapted variants with large-plaque morphology, and genomic sequencing of selected variants revealed two specific amino acid substitutions (K193E and G225E) in the RBD. RG was used to generate H5N1 viruses containing either single or double substitutions in HA. The RG virus containing K193E and G225E mutations (rVN-K193E/G225E) demonstrated large-plaque morphology, enhanced replication and genetic stability after serial passage, without changing the receptor-binding preference. Importantly, in vivo virulence assessment demonstrated that rVN-K193E/G225E was significantly attenuated in mice. Microneutralization and haemagglutination inhibition assays demonstrated that immunization with rVN-K193E/G225E efficiently induced a robust antibody response against WT H5N1 virus in mice. Taken together, our experiments demonstrated that K193E and G225E mutations synergistically attenuated H5N1 virus without enhancing the receptor-binding avidity, and that the RG virus rVN-K193E/G225E represents a potential H5N1 LAIV strategy that deserves further development. These findings identify the RBD as a novel attenuation target for live vaccine development and highlight the complexity of RBD interactions.
Collapse
Affiliation(s)
- Peng-Fei Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Jing Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yi Hu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Wei Sun
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Sen Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yin-Hui Yang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yu-Chang Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiao-Ping Kang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Xiao-Yan Wu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Qing-Yu Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| |
Collapse
|
18
|
Protection against Amoebic Liver Abscess in Hamster by Intramuscular Immunization with an Autographa californica Baculovirus Driving the Expression of the Gal-Lectin LC3 Fragment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760598. [PMID: 26090442 PMCID: PMC4452260 DOI: 10.1155/2015/760598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
Abstract
In a previous study, we demonstrated that oral immunization using Autographa californica baculovirus driving the expression of the Gal-lectin LC3 fragment (AcNPV-LC3) of Entamoeba histolytica conferred protection against ALA development in hamsters. In this study, we determined the ability of AcNPV-LC3 to protect against ALA by the intramuscular route as well as the liver immune response associated with protection. Results showed that 55% of hamsters IM immunized with AcNPV-LC3 showed sterile protection against ALA, whereas other 20% showed reduction in the size and extent of abscesses, resulting in some protection in 75% of animals compared to the sham control group. Levels of protection showed a linear correlation with the development and intensity of specific antiamoeba cellular and humoral responses, evaluated in serum and spleen of hamsters, respectively. Evaluation of the Th1/Th2 cytokine patterns expressed in the liver of hamsters showed that sterile protection was associated with the production of high levels of IFNγ and IL-4. These results suggest that the baculovirus system is equally efficient by the intramuscular as well as the oral routes for ALA protection and that the Gal-lectin LC3 fragment is a highly protective antigen against hepatic amoebiasis through the local induction of IFNγ and IL-4.
Collapse
|
19
|
Shahsavandi S, Ebrahimi MM, Sadeghi K, Mahravani H. Design of a heterosubtypic epitope-based peptide vaccine fused with hemokinin-1 against influenza viruses. Virol Sin 2015; 30:200-7. [PMID: 25894902 DOI: 10.1007/s12250-014-3504-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023] Open
Abstract
Influenza viruses continue to emerge and re-emerge, posing new threats for public health. Control and treatment of influenza depends mainly on vaccination and chemoprophylaxis with approved antiviral drugs. Identification of specific epitopes derived from influenza viruses has significantly advanced the development of epitope-based vaccines. Here, we explore the idea of using HLA binding data to design an epitope-based vaccine that can elicit heterosubtypic T-cell responses against circulating H7N9, H5N1, and H9N2 subtypes. The hemokinin-1 (HK-1) peptide sequence was used to induce immune responses against the influenza viruses. Five conserved high score cytotoxic T lymphocyte (CTL) epitopes restricted to HLA-A*0201-binding peptides within the hemagglutinin (HA) protein of the viruses were chosen, and two HA CTL/HK-1 chimera protein models designed. Using in silico analysis, which involves interferon epitope scanning, protein structure prediction, antigenic epitope determination, and model quality evaluation, chimeric proteins were designed. The applicability of one of these proteins as a heterosubtypic epitopebased vaccine candidate was analyzed.
Collapse
|
20
|
Ross KA, Loyd H, Wu W, Huntimer L, Ahmed S, Sambol A, Broderick S, Flickinger Z, Rajan K, Bronich T, Mallapragada S, Wannemuehler MJ, Carpenter S, Narasimhan B. Hemagglutinin-based polyanhydride nanovaccines against H5N1 influenza elicit protective virus neutralizing titers and cell-mediated immunity. Int J Nanomedicine 2014; 10:229-43. [PMID: 25565816 PMCID: PMC4284014 DOI: 10.2147/ijn.s72264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H5₃) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H5₃ antigen was a robust immunogen. Immunizing mice with H5₃ encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4(+) T cell recall responses in mice. Finally, the H5₃-based polyanhydride nanovaccine induced protective immunity against a low-pathogenic H5N1 viral challenge. Informatics analyses indicated that mice receiving the nanovaccine formulations and subsequently challenged with virus were similar to naïve mice that were not challenged. The current studies provide a basis to further exploit the advantages of polyanhydride nanovaccines in pandemic scenarios.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Hyelee Loyd
- Animal Science, Iowa State University, Ames, IA, USA
| | - Wuwei Wu
- Animal Science, Iowa State University, Ames, IA, USA
| | - Lucas Huntimer
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Shaheen Ahmed
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony Sambol
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Broderick
- Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | | | - Krishna Rajan
- Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | - Tatiana Bronich
- Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | | | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
21
|
Prabakaran M, Rajesh Kumar S, Ashok Raj KV, Wu X, He F, Zhou J, Kwang J. Cross-protective efficacy of baculovirus displayed hemagglutinin against highly pathogenic influenza H7 subtypes. Antiviral Res 2014; 109:149-59. [DOI: 10.1016/j.antiviral.2014.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/04/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022]
|
22
|
Lin SY, Chung YC, Hu YC. Update on baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert Rev Vaccines 2014; 13:1501-21. [DOI: 10.1586/14760584.2014.951637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Wu Q, Yu F, Xu J, Li Y, Chen H, Xiao S, Fu ZF, Fang L. Rabies-virus-glycoprotein-pseudotyped recombinant baculovirus vaccine confers complete protection against lethal rabies virus challenge in a mouse model. Vet Microbiol 2014; 171:93-101. [DOI: 10.1016/j.vetmic.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 11/28/2022]
|
24
|
Ross KA, Loyd H, Wu W, Huntimer L, Wannemuehler MJ, Carpenter S, Narasimhan B. Structural and antigenic stability of H5N1 hemagglutinin trimer upon release from polyanhydride nanoparticles. J Biomed Mater Res A 2014; 102:4161-8. [DOI: 10.1002/jbm.a.35086] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/19/2013] [Accepted: 01/15/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Kathleen A. Ross
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011
| | - Hyelee Loyd
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Wuwei Wu
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Lucas Huntimer
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames Iowa 50011
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine; Iowa State University; Ames Iowa 50011
| | - Susan Carpenter
- Department of Animal Science; Iowa State University; Ames Iowa 50011
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011
| |
Collapse
|
25
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Kiener TK, Premanand B, Kwang J. Immune responses to baculovirus-displayed enterovirus 71 VP1 antigen. Expert Rev Vaccines 2013; 12:357-64. [PMID: 23560917 DOI: 10.1586/erv.13.18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The increased distribution and neurovirulence of enterovirus 71 is an important health threat for young children in Asia Pacific. Vaccine design has concentrated on inactivated virus with the most advanced undergoing Phase III clinical trials. By using a subunit vaccine approach, production costs could be reduced by lowering the need for biocontainment. In addition, novel mutations could be rapidly incorporated to reflect the emergence of new enterovirus 71 subgenogroups. To circumvent the problems associated with conventional subunit vaccines, the antigen can be displayed on a viral vector that conveys stability and facilitates purification. Additional advantages of viral-vectored subunit vaccines are their ability to stimulate the innate immune system by transducing cells and the possibility of oral or nasal delivery, which dispenses with the need for syringes and medical personnel. Baculovirus-displayed VP1 combines all these benefits with protection that is as efficient as inactivated virus.
Collapse
Affiliation(s)
- Tanja K Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Singapore
| | | | | |
Collapse
|
27
|
Karuppannan AK, Qiang J, Chang CC, Kwang J. A novel baculovirus vector shows efficient gene delivery of modified porcine reproductive and respiratory syndrome virus antigens and elicits specific immune response. Vaccine 2013; 31:5471-8. [PMID: 24035590 DOI: 10.1016/j.vaccine.2013.08.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 01/19/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating epizootic of porcine species. Current vaccines are inadequate to control the disease burden and outbreaks in the field. We report a novel baculovirus vaccine vector with White spot syndrome virus immediate early 1 shuttle promoter, with strong activity in both insect cells and mammalian cells, for immunization against PRRSV. The insect cell cultured baculovirus vector produces PRRSV envelope glycoproteins ORF2a, ORF3, ORF4 and ORF5, which are similar to the antigens in the infectious PRRS virion, and these antigens are stably incorporated on the surface of the baculovirus. Further, the baculovirus vector efficiently transduces these antigens in cells of porcine origin, thereby simulating a live infection. The baculovirus vectored PRRSV antigens, upon inoculation in mice, elicits robust neutralizing antibodies against the infective PRRS virus. Further, the experiments indicate that hitherto under emphasized ORF2a and ORF4 are important target antigens for neutralizing PRRSV infectivity.
Collapse
Affiliation(s)
- Anbu K Karuppannan
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram, Chennai 600051, India
| | | | | | | |
Collapse
|
28
|
Prabakaran M, Kwang J. Recombinant baculovirus displayed vaccine: a novel tool for the development of a cross-protective influenza H5N1 vaccine. Bioengineered 2013; 5:45-8. [PMID: 23941989 DOI: 10.4161/bioe.26001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The rapid evolution of new sublineages of H5N1 influenza in Asia poses the greatest challenge in vaccine development for pre-pandemic preparedness. To overcome the antigenic diversity of H5N1 strains, multiple vaccine strains can be designed based on the distribution of neutralizing epitopes in the globular head of H5 hemagglutinin (HA). Recently, we selected two different HAs of H5N1 strains based on the neutralizing epitopes and reactivity with different neutralizing antibodies. The HAs of selected vaccine strains were individually expressed on the baculovirus envelope (bivalent-BacHA) with its native antigenic configuration. Further, oral delivery of live bivalent-BacHA elicited broadly reactive humoral, mucosal and cell-mediated immune responses and showed complete protection against antigenically distinct H5N1 strains in mice. The strategy for the vaccine strain selection, vaccine design and route of administration will provide an idea for development of a widely protective vaccine against highly pathogenic H5N1 for pre-pandemic preparedness.
Collapse
Affiliation(s)
- Mookkan Prabakaran
- Animal Health Biotechnology; Temasek Life Sciences Laboratory; National University of Singapore; Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology; Temasek Life Sciences Laboratory; National University of Singapore; Singapore, Singapore; Department of Microbiology; Faculty of Medicine; National University of Singapore; Singapore, Singapore
| |
Collapse
|
29
|
Abstract
Vaccination is the primary strategy for prevention and control of influenza. The surface hemagglutinin (HA) protein of the influenza virus contains two structural elements (head and stalk) that differ in their potential utility as vaccine targets. The head of the HA protein is the primary target of antibodies that confer protective immunity to influenza viruses. The underlying health status, age, and gene polymorphisms of vaccine recipients and, just as importantly, the extent of the antigenic match between the viruses in the vaccine and those that are circulating modulate influenza vaccine protection. Vaccine adjuvants and live attenuated influenza vaccine improve the breadth of immunity to seasonal and pandemic virus strains. Eliciting antibodies against the conserved HA stem region that cross-react with HAs within influenza virus types or subtypes would allow for the development of a universal influenza vaccine. The highly complex network of interactions generated after influenza infection and vaccination can be studied with the use of systems biology tools, such as DNA microarray chips. The use of systems vaccinology has allowed for the generation of gene expression signatures that represent key transcriptional differences between asymptomatic and symptomatic host responses to influenza infection. Additionally, the use of systems vaccinology tools have resulted in the identification of novel surrogate gene markers that are predictors of the magnitude of host responses to vaccines, which is critical to both vaccine development and public health. Identifying associations between variations in vaccine immune responses and gene polymorphisms is critical in the development of universal influenza vaccines.
Collapse
Affiliation(s)
| | - Matthew J Fenton
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Rajesh Kumar S, Syed Khader SM, Kiener TK, Szyporta M, Kwang J. Intranasal immunization of baculovirus displayed hemagglutinin confers complete protection against mouse adapted highly pathogenic H7N7 reassortant influenza virus. PLoS One 2013; 8:e63856. [PMID: 23762234 PMCID: PMC3676417 DOI: 10.1371/journal.pone.0063856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/06/2013] [Indexed: 01/08/2023] Open
Abstract
Background Avian influenza A H7N7 virus poses a pandemic threat to human health because of its ability for direct transmission from domestic poultry to humans and from human to human. The wide zoonotic potential of H7N7 combined with an antiviral immunity inhibition similar to pandemic 1918 H1N1 and 2009 H1N1 influenza viruses is disconcerting and increases the risk of a putative H7N7 pandemic in the future, underlining the urgent need for vaccine development against this virus. Methodology/Principal Findings In this study, we developed a recombinant vaccine by expressing the H7N7-HA protein on the surface of baculovirus (Bac-HA). The protective efficacy of the live Bac-HA vaccine construct was evaluated in a mouse model by challenging mice immunized intranasally (i.n.) or subcutaneously (s.c.) with high pathogenic mouse adapted H7N7 reassorted strain. Although s.c. injection of live Bac-HA induced higher specific IgG than i.n. immunization, the later resulted in an elevated neutralization titer. Interestingly, 100% protection from the lethal viral challenge was only observed for the mice immunized intranasally with live Bac-HA, whereas no protection was achieved in any other s.c. or i.n. immunized mice groups. In addition, we also observed higher mucosal IgA as well as increased IFN-γ and IL-4 responses in the splenocytes of the surviving mice coupled with a reduced viral titer and diminished histopathological signs in the lungs. Conclusion Our results indicated that protection from high pathogenic H7N7 (NL/219/03) virus requires both mucosal and systemic immune responses in mice. The balance between Th1 and Th2 cytokines is also required for the protection against the H7N7 pathogen. Intranasal administration of live Bac-HA induced all these immune responses and protected the mice from lethal viral challenge. Therefore, live Bac-HA is an effective vaccine candidate against H7N7 viral infections.
Collapse
MESH Headings
- Adaptation, Physiological/immunology
- Administration, Intranasal
- Animals
- Antibodies, Neutralizing/immunology
- Baculoviridae/genetics
- Enzyme-Linked Immunospot Assay
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunity, Cellular/immunology
- Immunity, Mucosal/immunology
- Immunization
- Influenza A Virus, H7N7 Subtype/genetics
- Influenza A Virus, H7N7 Subtype/immunology
- Influenza A Virus, H7N7 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/immunology
- Lung/pathology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Reassortant Viruses/genetics
- Reassortant Viruses/immunology
- Reproducibility of Results
- Subcutaneous Tissue/immunology
- Subcutaneous Tissue/pathology
- Subcutaneous Tissue/virology
Collapse
Affiliation(s)
- Subaschandrabose Rajesh Kumar
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Syed Musthaq Syed Khader
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Milene Szyporta
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Lifesciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
31
|
Adaptive immune responses elicited by baculovirus and impacts on subsequent transgene expression in vivo. J Virol 2013; 87:4965-73. [PMID: 23408634 DOI: 10.1128/jvi.03510-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Baculovirus (BV) is a promising gene therapy vector and typically requires readministration because BV mediates transient expression. However, how the prime-boost regimen triggers BV-specific adaptive responses and their impacts on BV readministration, transgene expression, and therapeutic/vaccine efficacy remain unknown. Here we unraveled that BV injection into BALB/c mice induced the production of BV-specific antibodies, including IgG1 and IgG2a, which could neutralize BV by antagonizing the envelope protein gp64 and impede BV-mediated transgene expression. Moreover, humans did not possess preexisting anti-BV antibodies. BV injection also elicited BV-specific Th1 and Th2 responses as well as CD4(+) and CD8(+) T cell responses. gp64 was a primary immunogen to activate the antibody and CD8(+) T cell response, with its peptide at positions 457 to 465 (peptide 457-465) being the major histocompatibility complex (MHC) class I epitope to stimulate CD8(+) T cell and cytotoxic responses. Nonetheless, a hybrid Sleeping Beauty-based BV enabled long-term expression for >1 year by a single injection, indicating that the T cell responses did not completely eradicate BV-transduced cells and implicating the potential of this hybrid BV vector for gene therapy. These data unveil that BV injection triggers adaptive immunity and benefit rational design of BV administration schemes for gene therapy and vaccination.
Collapse
|
32
|
Premanand B, Prabakaran M, Kiener TK, Kwang J. Recombinant baculovirus associated with bilosomes as an oral vaccine candidate against HEV71 infection in mice. PLoS One 2013; 8:e55536. [PMID: 23390538 PMCID: PMC3563597 DOI: 10.1371/journal.pone.0055536] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human enterovirus 71 (HEV71) is one of the major pathogen responsible for hand, foot and mouth disease (HFMD). Currently no effective vaccine or antiviral drugs are available. Like poliovirus, EV71 is transmitted mainly by the feco-oral route. To date the majority of the studied EV71 vaccine candidates are administered parenterally. Injectable vaccines induce good systemic immunity but mucosal responses are often unsatisfactory, whereas mucosal vaccines provide both systemic and mucosal immunity. Therefore, oral immunization appears to be an attractive alternative to parenteral immunization. METHODOLOGY/PRINCIPAL FINDINGS In this report, we studied the efficacy of an orally administered vaccine candidate developed using recombinant baculovirus displaying VP1 (Bac-VP1) in a murine model. Gastrointestinal delivery of Bac-VP1 significantly induced VP1-specific humoral (IgG) and mucosal (IgA) immune responses. Further, we studied the efficacy of the Bac-VP1 associated with bilosomes and observed that the Bac-VP1 associated with bilosomes elicited significantly higher immune responses compared to bilosomes non-associated with Bac-VP1. However, mice immunized subcutaneously with live Bac-VP1 had significantly enhanced VP1 specific serum IgG levels and higher neutralizing antibody titers compared with mice orally immunized with live Bac-VP1 alone or associated with bilosomes. CONCLUSION Bilosomes have been shown to possess inherent adjuvant properties when associated with antigen. Therefore Bac-VP1 with bilosomes could be a promising oral vaccine candidate against EV71 infections. Thus, Bac-VP1 loaded bilosomes may provide a needle free, painless approach for immunization against EV71, thereby increasing patient compliance and consequently increasing vaccination coverage.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Baculoviridae/genetics
- Baculoviridae/immunology
- Enterovirus A, Human/drug effects
- Enterovirus A, Human/immunology
- Female
- Hand, Foot and Mouth Disease/blood
- Hand, Foot and Mouth Disease/immunology
- Hand, Foot and Mouth Disease/prevention & control
- Humans
- Immunity, Humoral/drug effects
- Immunity, Mucosal/drug effects
- Immunization
- Liposomes/administration & dosage
- Liposomes/chemistry
- Liposomes/immunology
- Mice
- Mice, Inbred BALB C
- Vaccines, Synthetic
- Viral Structural Proteins/genetics
- Viral Structural Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Balraj Premanand
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Mookkan Prabakaran
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Cross-protective efficacy of bivalent recombinant baculoviral vaccine against heterologous influenza H5N1 challenge. Vaccine 2013; 31:1385-92. [PMID: 23328313 DOI: 10.1016/j.vaccine.2013.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/26/2012] [Accepted: 01/01/2013] [Indexed: 11/22/2022]
Abstract
The present study demonstrates the cross-protective efficacy of baculovirus displayed HAs of A/Indonesia/669/06 and A/Anhui/01/05 against heterologous H5N1 challenges in a mouse model. Mice orally or subcutaneously immunized with live bivalent-BacHA vaccine significantly induced higher HA-specific humoral and cellular immune responses when compared with inactivated bivalent-BacHA. In addition, oral administration of live bivalent-BacHA vaccine was able to induce significant level of antigen-specific mucosal IgA levels. Microneutralization assay indicated that live bivalent-BacHA vaccine was able to induce strong cross-clade neutralization titer against distinct H5N1 clades (1, 2.1.3, 2.2.1.1, 2.3.2, 2.3.4, 4, 7 and 9). The production of both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) by splenocytes from vaccinated mice indicated that mice vaccinated orally or subcutaneously with live bivalent-BacHA stimulated both IFN-γ secreting Th1 cells and IL-4 secreting Th2 cells, whereas mice immunized subcutaneously with inactive adjuvanted bivalent-BacHA stimulated only IL-4 secreting Th2 cells. Cross-protective immunity study also showed that mice immunized either orally or subcutaneously with live bivalent-BacHA were completely protected against 5MLD50 of clade 1 and clade 2.2.1.1 H5N1 viral infections. The protective immune response elicited by bivalent-BacHA vaccine against H5N1 variants demonstrates the possibility of protection against a broad range of H5N1 strains.
Collapse
|
34
|
Chen CY, Lin SY, Cheng MC, Tsai CP, Hung CL, Lo KW, Hwang Y, Hu YC. Baculovirus vector as an avian influenza vaccine: hemagglutinin expression and presentation augment the vaccine immunogenicity. J Biotechnol 2013; 164:143-50. [PMID: 23313887 DOI: 10.1016/j.jbiotec.2012.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 12/11/2022]
Abstract
Baculovirus simultaneously displaying and expressing the avian influenza virus (AIV) hemagglutinin (HA) protein can induce potent anti-HA humoral and cellular immune responses. Based on the hypothesis that improving the antigen expression and presentation can further boost the AIV vaccine efficacies, we first constructed a baculoviral vector (Bac-HAW) with HA gene fused with the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) near its 3' end and expressed under the control of the hybrid CAG promoter. The WPRE fusion improved the HA expression and augmented the humoral and Th1 cellular immune responses after intramuscular administration into BALB/c mice. With Bac-HAW as the backbone, we next constructed Bac-HAMW which harbored the HA gene flanked with the signal sequence (MHCIss) and trafficking domain (MITD) of MHC class I molecule. In comparison with Bac-HAW, Bac-HAMW ameliorated the HA peptide presentation, significantly elevated the HA-specific humoral response (total IgG, IgG2a and hemagglutination inhibition titers) and favorably boosted the Th1 and IFN-γ(+)/CD8(+) T cell responses without extraneous adjuvants. These data collectively confirmed that enhancement of antigen expression and presentation by combining the WPRE and MHCIss/MITD fusion can potentiate the immunogenicity of the baculovirus-based vaccine, and implicates the potential of Bac-HAMW as an appealing AIV vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Kolpe AB, Kiener TK, Grotenbreg GM, Kwang J. Display of enterovirus 71 VP1 on baculovirus as a type II transmembrane protein elicits protective B and T cell responses in immunized mice. Virus Res 2012; 168:64-72. [PMID: 22728446 DOI: 10.1016/j.virusres.2012.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/24/2023]
Abstract
Human enterovirus 71 (EV71) has become a major public health threat across Asia Pacific. The virus causes hand, foot, and mouth disease which can lead to neurological complications in young children. There are no specific antivirals or vaccines against EV71 infection. The major neutralizing epitope of EV71 is located in the carboxy-terminal half of the VP1 protein at amino acid positions 215-219 (Lim et al., 2012). To study the immunogenicity of VP1 we have developed a baculovirus vector which displays VP1 as a type II transmembrane protein, providing an accessible C-terminus. Immunization of mice with this recombinant baculovirus elicited neutralizing antibodies against heterologous EV71 in an in vitro microneutralization assay. Passive protection of neonatal mice confirmed the prophylactic efficacy of the antisera. Additionally, EV71 specific T cell responses were stimulated. Taken together, our results demonstrate that the display of VP1 as a type II transmembrane protein efficiently stimulated both humoral and cellular immunities.
Collapse
Affiliation(s)
- Annasaheb B Kolpe
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
36
|
Tao L, Chen J, Zheng Z, Meng J, Zhang Z, Chen Y, Luo H, Li H, Chen Z, Hu Q, Wang H. H5N1 influenza virus-like particles produced by transient expression in mammalian cells induce humoral and cellular immune responses in mice. Can J Microbiol 2012; 58:391-401. [DOI: 10.1139/w2012-006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vaccination is an effective way to protect from influenza virus infection. Among the new candidates of influenza vaccines, influenza virus-like particles (VLPs) seem to be promising. Here, we generated 2 types of H5N1 influenza VLPs by co-expressing influenza virus Env (envelope protein) and murine leukemia virus (MLV) Gag–Pol. VLPs generated by co-transfection of pHCMV-wtH5 or pHCMV-mtH5 with pSV-Mo-MLVgagpol and pHCMV-N1 were named as wtH5N1 VLPs or mtH5N1 VLPs. The plasmid of pHCMV-wtH5 encoded the wild-type hemagglutinin (HA) (wtH5) from A/swine/Anhui/ca/2004 (H5N1) with a multibasic cleavage site, while pHCMV-mtH5 encoded the modified mutant-type (mtH5) with a monobasic cleavage site. Influenza virus HA VLPs were characterized and equal amounts of them were used to immunize mice subcutaneously, intraperitoneally, or intramuscularly. The levels of HA-specific IgG1, IFN-γ, and neutralization antibodies were significantly induced in mice immunized with wtH5N1 VLPs or mtH5N1 VLPs via all 3 routes, while HA-specific IgG2a was barely detectable. IL-4 secretion was detected in mice subcutaneously immunized with wtH5N1 VLPs or mtH5N1 VLPs, or intramuscularly immunized with mtH5N1 VLPs. Our results indicated that both H5N1 influenza VLPs could induce specific humoral and cellular immune responses in immunized mice. In conclusion, our study provides helpful information for designing new candidate vaccines against H5N1 influenza viruses.
Collapse
Affiliation(s)
- Ling Tao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Jianjun Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
| | - Zhenhua Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Jin Meng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Zhenfeng Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Yao Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Huanle Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
- Graduate School, Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan, Beijing 100049, People’s Republic of China
| | - Hongxia Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
| | - Ze Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, People’s Republic of China
| |
Collapse
|
37
|
New strategies for the development of H5N1 subtype influenza vaccines: progress and challenges. BioDrugs 2012; 25:285-98. [PMID: 21942913 DOI: 10.1007/bf03256169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The emergence and spread of highly pathogenic avian influenza (H5N1) viruses among poultry in Asia, the Middle East, and Africa have fueled concerns of a possible human pandemic, and spurred efforts towards developing vaccines against H5N1 influenza viruses, as well as improving vaccine production methods. In recent years, promising experimental reverse genetics-derived H5N1 live attenuated vaccines have been generated and characterized, including vaccines that are attenuated through temperature-sensitive mutation, modulation of the interferon antagonist protein, or disruption of the M2 protein. Live attenuated influenza virus vaccines based on each of these modalities have conferred protection against homologous and heterologous challenge in animal models of influenza virus infection. Alternative vaccine strategies that do not require the use of live virus, such as virus-like particle (VLP) and DNA-based vaccines, have also been vigorously pursued in recent years. Studies have demonstrated that influenza VLP vaccination can confer homologous and heterologous protection from lethal challenge in a mouse model of infection. There have also been improvements in the formulation and production of vaccines following concerns over the threat of H5N1 influenza viruses. The use of novel substrates for the growth of vaccine virus stocks has been intensively researched in recent years, and several candidate cell culture-based systems for vaccine amplification have emerged, including production systems based on Madin-Darby canine kidney, Vero, and PerC6 cell lines. Such systems promise increased scalability of product, and reduced reliance on embryonated chicken eggs as a growth substrate. Studies into the use of adjuvants have shown that oil-in-water-based adjuvants can improve the immunogenicity of inactivated influenza vaccines and conserve antigen in such formulations. Finally, efforts to develop more broadly cross-protective immunization strategies through the inclusion of conserved influenza virus antigens in vaccines have led to experimental vaccines based on the influenza hemagglutinin (HA) stem domain. Such vaccines have been shown to confer protection from lethal challenge in mouse models of influenza virus infection. Through further development, vaccines based on the HA stem have the potential to protect vaccinated individuals against unanticipated pandemic and epidemic influenza virus strains. Overall, recent advances in experimental vaccines and in vaccine production processes provide the potential to lower mortality and morbidity resulting from influenza infection.
Collapse
|
38
|
Quan FS, Compans RW, Kang SM. Oral vaccination with inactivated influenza vaccine induces cross-protective immunity. Vaccine 2011; 30:180-8. [PMID: 22107852 DOI: 10.1016/j.vaccine.2011.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/20/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Oral vaccination would provide an easy and safe measure to prevent infectious diseases by facilitating mass immunization. We investigated the feasibility of oral vaccination with inactivated whole influenza virus (A/PR8/34). Oral vaccination of mice induced high levels of serum IgG and IgA antibodies specific to the homologous virus (A/PR8) as well as cross reactive to heterologous (A/California/04/09) and heterosubtypic viruses (A/Philippines/2/82). IgG1 isotype antibodies were found to be induced at significantly higher levels than IgG2a antibodies. These antibodies induced by oral vaccination exhibited hemagglutination inhibition activities. High levels of both IgG and IgA antibodies were induced in vagina and lungs. Mucosal IgA antibodies were also elicited in other sites including saliva, urine, and fecal samples. Orally vaccinated mice were completely protected against challenge with homologous or heterologous viruses, and partially protected against heterosubtypic virus. Importantly, high recall antibody secreting cell (ASC) responses were induced in spleen, indicating the generation of memory B cells by oral vaccination. The present study therefore presents new findings of cross-reactive antibodies at systemic and diverse mucosal sites, recall antibody responses, and cross-protective efficacies by oral vaccination, thus supporting a proof-of-concept that oral delivery of vaccines can be developed as an effective vaccination route.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Biotechnology, Chungju National University, Jeungpyeong 368-701, South Korea
| | | | | |
Collapse
|
39
|
Meneses-Ruiz DM, Laclette JP, Aguilar-Díaz H, Hernández-Ruiz J, Luz-Madrigal A, Sampieri A, Vaca L, Carrero JC. Mucosal delivery of ACNPV baculovirus driving expression of the Gal-lectin LC3 fragment confers protection against amoebic liver abscess in hamster. Int J Biol Sci 2011; 7:1345-56. [PMID: 22110386 PMCID: PMC3221370 DOI: 10.7150/ijbs.7.1345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/23/2022] Open
Abstract
Mucosal vaccination against amoebiasis using the Gal-lectin of E. histolytica has been proposed as one of the leading strategies for controlling this human disease. However, most mucosal adjuvants used are toxic and the identification of safe delivery systems is necessary. Here, we evaluate the potential of a recombinant Autographa californica baculovirus driving the expression of the LC3 fragment of the Gal-lectin to confer protection against amoebic liver abscess (ALA) in hamsters following oral or nasal immunization. Hamsters immunized by oral route showed complete absence (57.9%) or partial development (21%) of ALA, resulting in some protection in 78.9% of animals when compared with the wild type baculovirus and sham control groups. In contrast, nasal immunization conferred only 21% of protection efficacy. Levels of ALA protection showed lineal correlation with the development of an anti-amoebic cellular immune response evaluated in spleens, but not with the induction of seric IgG anti-amoeba antibodies. These results suggest that baculovirus driving the expression of E. histolytica vaccine candidate antigens is useful for inducing protective cellular and humoral immune responses following oral immunization, and therefore it could be used as a system for mucosal delivery of an anti-amoebic vaccine.
Collapse
Affiliation(s)
- D M Meneses-Ruiz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México. A.P. 70228, México D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Subcutaneous immunization with baculovirus surface-displayed hemagglutinin of pandemic H1N1 Influenza A virus induces protective immunity in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1582-5. [PMID: 21752948 DOI: 10.1128/cvi.05114-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The protective immunity of baculovirus displaying influenza virus hemagglutinin (BacHA) against influenza 2009 H1N1 virus infection in a murine model was investigated. The results showed that mice vaccinated with live BacHA or an inactive form of adjuvanted BacHA had enhanced specific antibody responses and induced protective immunity against 2009 H1N1 virus infection, suggesting the potential of baculovirus as a live or inactivated vaccine.
Collapse
|
41
|
Meng T, Kolpe AB, Kiener TK, Chow VTK, Kwang J. Display of VP1 on the surface of baculovirus and its immunogenicity against heterologous human enterovirus 71 strains in mice. PLoS One 2011; 6:e21757. [PMID: 21747954 PMCID: PMC3128602 DOI: 10.1371/journal.pone.0021757] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/06/2011] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Human Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease (HFMD) in young children. It is often associated with severe neurological diseases and has caused high mortalities in recent outbreaks across the Asia Pacific region. Currently, there is no effective vaccine and antiviral agents available against EV71 infections. VP1 is one of the major immunogenic capsid protein of EV71 and plays a crucial role in viral infection. Antibodies against VP1 are important for virus neutralization. METHODOLOGY/PRINCIPAL FINDING In the present study, infectious EV71 viruses were generated from their synthetic complementary DNA using the human RNA polymerase I reverse genetics system. Secondly, the major immunogenic capsid protein (VP1) of EV71-Fuyang (subgenogroup C4) was displayed on the surface of recombinant baculovirus Bac-Pie1-gp64-VP1 as gp64 fusion protein under a novel White Spot Syndrome Virus (WSSV) immediate early ie1 promoter. Baculovirus expressed VP1 was able to maintain its structural and antigenic conformity as indicated by immunofluorescence assay and western blot analysis. Interestingly, our results with confocal microscopy revealed that VP1 was able to localize on the plasma membrane of insect cells infected with recombinant baculovirus. In addition, we demonstrated with transmission electron microscopy that baculovirus successfully acquired VP1 from the insect cell membrane via the budding process. After two immunizations in mice, Bac-Pie1-gp64-VP1 elicited neutralization antibody titer of 1∶64 against EV71 (subgenogroup C4) in an in vitro neutralization assay. Furthermore, the antisera showed high cross-neutralization activities against all 11 subgenogroup EV71 strains. CONCLUSION Our results illustrated that Bac-Pie1-gp64-VP1 retained native epitopes of VP1 and acted as an effective EV71 vaccine candidate which would enable rapid production without any biosafety concerns.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Antigens, Viral/immunology
- Baculoviridae/genetics
- Baculoviridae/immunology
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cell Line
- DNA, Complementary/genetics
- DNA, Recombinant/genetics
- Enterovirus A, Human/genetics
- Enterovirus A, Human/immunology
- Enterovirus A, Human/pathogenicity
- Female
- Genetic Engineering
- Humans
- Immunity, Humoral/immunology
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- RNA Polymerase I/metabolism
- Spodoptera/cytology
- Spodoptera/genetics
- Vaccines/genetics
- Vaccines/immunology
Collapse
Affiliation(s)
- Tao Meng
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Republic of Singapore
| | - Annasaheb B. Kolpe
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Republic of Singapore
| | - Tanja K. Kiener
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Republic of Singapore
| | - Vincent T. K. Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Jimmy Kwang
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, Republic of Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
42
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
43
|
A recombinant vaccine of H5N1 HA1 fused with foldon and human IgG Fc induced complete cross-clade protection against divergent H5N1 viruses. PLoS One 2011; 6:e16555. [PMID: 21304591 PMCID: PMC3029370 DOI: 10.1371/journal.pone.0016555] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/04/2011] [Indexed: 01/28/2023] Open
Abstract
Development of effective vaccines to prevent influenza, particularly highly pathogenic avian influenza (HPAI) caused by influenza A virus (IAV) subtype H5N1, is a challenging goal. In this study, we designed and constructed two recombinant influenza vaccine candidates by fusing hemagglutinin 1 (HA1) fragment of A/Anhui/1/2005(H5N1) to either Fc of human IgG (HA1-Fc) or foldon plus Fc (HA1-Fdc), and evaluated their immune responses and cross-protection against divergent strains of H5N1 virus. Results showed that these two recombinant vaccines induced strong immune responses in the vaccinated mice, which specifically reacted with HA1 proteins and an inactivated heterologous H5N1 virus. Both proteins were able to cross-neutralize infections by one homologous strain (clade 2.3) and four heterologous strains belonging to clades 0, 1, and 2.2 of H5N1 pseudoviruses as well as three heterologous strains (clades 0, 1, and 2.3.4) of H5N1 live virus. Importantly, immunization with these two vaccine candidates, especially HA1-Fdc, provided complete cross-clade protection against high-dose lethal challenge of different strains of H5N1 virus covering clade 0, 1, and 2.3.4 in the tested mouse model. This study suggests that the recombinant fusion proteins, particularly HA1-Fdc, could be developed into an efficacious universal H5N1 influenza vaccine, providing cross-protection against infections by divergent strains of highly pathogenic H5N1 virus.
Collapse
|
44
|
Affiliation(s)
- Linda C Lambert
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
45
|
Chen CY, Liu HJ, Tsai CP, Chung CY, Shih YS, Chang PC, Chiu YT, Hu YC. Baculovirus as an avian influenza vaccine vector: differential immune responses elicited by different vector forms. Vaccine 2010; 28:7644-51. [PMID: 20883735 DOI: 10.1016/j.vaccine.2010.09.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 11/25/2022]
Abstract
Baculovirus is an enveloped virus that infects insects in nature and has emerged as a novel vaccine vector. We previously constructed a recombinant baculovirus displaying the hemagglutinin protein (HA) of avian influenza virus (AIV) on the viral envelope (Bac-HA64), and demonstrated the induction of humoral responses in immunized mice. To improve the vector design and explore how the vector forms influence the vaccine efficacy, we constructed two more baculoviruses Bac-CHA and Bac-CHA/HA64. Bac-CHA expressed HA after transducing the host cells while Bac-CHA/HA64 not only expressed HA but also displayed HA on the envelope. After administration into BALB/c mice, all three vectors elicited HA-specific humoral (IgG1, IgG2a and hemagglutination inhibition titers), mucosal (IgA titers) and cellular (interferon (IFN)-γ and IL-4 producing T cells and IFN-γ(+)/CD8(+) T cells) immune responses. Intriguingly, the magnitudes and types of responses hinged on the vaccine form and administration route. Via intranasal (i.n.) and subcutaneous (s.c.) inoculation, the HA-displaying vectors Bac-HA64 and Bac-CHA/HA64 triggered stronger humoral and mucosal responses than Bac-CHA, but upon intramuscular (i.m.) injection the HA-expressing vectors (Bac-CHA and Bac-CHA/2HA64) elicited more robust humoral and cellular responses than Bac-HA64. Via either administration route, the dual form vaccine Bac-CHA/HA64 gave rise to superior or at least comparable HA-specific immune responses than the other two vaccine forms, implicating the potential of Bac-CHA/HA64 as a vaccine candidate against AIV infection.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Neutralizing epitopes of influenza virus hemagglutinin: target for the development of a universal vaccine against H5N1 lineages. J Virol 2010; 84:11822-30. [PMID: 20844051 DOI: 10.1128/jvi.00891-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection. Particularly, variations within the amino acid sequences of major neutralizing epitopes of influenza virus hemagglutinin (HA) hindered the development of universal vaccines against H5N1 lineages. Based on distribution analyses of the identified major neutralizing epitopes of hemagglutinin, we selected three vaccine strains that cover the entire variants in the neutralizing epitopes among the H5N1 lineages. HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the preclinical efficacy of the vaccine formulations was evaluated in a mouse model. The combination of three selected vaccine strains could effectively neutralize viruses from clades 1, 2.1, 2.2, 4, 7, and 8 of influenza H5N1 viruses. In contrast, a vaccine formulation containing only adjuvanted monovalent BacHA (mono-BacHA) or a single strain of inactivated whole viral vaccine was able to neutralize only clade 1 (homologous), clade 2.1, and clade 8.0 viruses. Also, the trivalent BacHA vaccine was able to protect 100% of the mice against challenge with three different clades (clade 1.0, clade 2.1, and clade 7.0) of H5N1 strains compared to mono-BacHA or inactivated whole viral vaccine. The present findings provide a rationale for the development of a universal vaccine against H5N1 lineages. Furthermore, baculoviruses displaying HA will serve as an ideal choice for a vaccine in prepandemic or pandemic situations and expedite vaccine technology without the requirement of high-level-biocontainment facilities or tedious protein purification processes.
Collapse
|
47
|
Tang XC, Lu HR, Ross TM. Hemagglutinin displayed baculovirus protects against highly pathogenic influenza. Vaccine 2010; 28:6821-31. [PMID: 20727393 DOI: 10.1016/j.vaccine.2010.08.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 07/11/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
Baculovirus (BV) replicating in insect cells can express a foreign gene product as part of its genome. The influenza hemagglutinin (HA) can be expressed from BV and displayed on the surface of baculovirus (HA-DBV). In this study we first generated six recombinant baculoviruses that expressed chimeric HAs with segments of the BV glycoprotein (gp64). The signal peptide (SP) and cytoplasmic tail (CT) domains of gp64 can enhance the display of HA from A/PR8/34 on BV surface, while the transmembrane (TM) domain of gp64 impairs HA display. Different doses of either live or β-propiolactone (BPL)-inactivated HA-DBV were administered to BALB/c mice. Live HA-DBV elicited higher hemagglutination-inhibition (HAI) titers than BPL-inactivated HA-DBV, and provided sterilizing protection. A second generation recombinant BV simultaneously displaying four HAs derived from four subclades of H5N1 influenza viruses was constructed. This tetravalent H5N1 HA-DBV vaccine elicited HAI titers against all four homologous H5N1 viruses, significantly decreasing viral lung titers of challenged mice and providing 100% protection against lethal doses of homologous H5N1 viruses. Moreover, mice vaccinated with HA-DBV had high levels of IFNγ-secreting and HA-specific CD8+ T cells. Taken together, this study demonstrates that HA-DBV can stimulate strong humoral, as well as cellular immune responses, and is an effective vaccine candidate for influenza.
Collapse
Affiliation(s)
- Xian-Chun Tang
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
48
|
Alternative influenza vaccines made by insect cells. Trends Mol Med 2010; 16:313-20. [DOI: 10.1016/j.molmed.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 02/07/2023]
|