1
|
Khosravi-Maharlooei M, Vecchione A, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. eLife 2025; 13:RP99389. [PMID: 40293219 PMCID: PMC12037178 DOI: 10.7554/elife.99389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Immunology, Department of Biochemistry and Molecular Biology, Mayo ClinicPhoenixUnited States
| | - Andrea Vecchione
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- San Raffaele HospitalMilanItaly
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Robert Winchester
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Amanda Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Xiaolan Ding
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | | | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Surgery, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Sefik E, Xiao T, Chiorazzi M, Odell I, Zhang F, Agrawal K, Micevic G, Flavell RA. Engineering Mice to Study Human Immunity. Annu Rev Immunol 2025; 43:451-487. [PMID: 40020225 DOI: 10.1146/annurev-immunol-082523-124415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Humanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.
Collapse
Affiliation(s)
- Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
| | - Tianli Xiao
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Chiorazzi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ian Odell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fengrui Zhang
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kriti Agrawal
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Computational Biology and Bioinformatics Program, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Goran Micevic
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; ,
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Khosravi-Maharlooei M, Li HW, Sykes M. T Cell Development and Responses in Human Immune System Mice. Annu Rev Immunol 2025; 43:83-112. [PMID: 39705163 PMCID: PMC12031645 DOI: 10.1146/annurev-immunol-082223-041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| | - Megan Sykes
- Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| |
Collapse
|
4
|
Abstract
For decades, scientists have relied on traditional animal models to study viral infection and the immune response. However, these models have limitations, and the search for more accurate and reliable ways to study the human-pathogen interphase has led to the development of humanized mouse systems. These revolutionary models have transformed how we understand viral infection and the human immune system's interactions with viruses to control or exacerbate disease. They are also paving the way for new treatments and therapies. In this article, we explore the history and development of humanized mouse systems and their advantages, limitations, and applications in viral immunology research. We describe the different types of humanized mouse models, including their generation and utility for studying human pathogens, with an emphasis on human-specific viruses. In addition, we discuss areas for further refinement and future applications.
Collapse
Affiliation(s)
- Angela Wahl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA ; ,
| | - J Victor Garcia
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA ; ,
| |
Collapse
|
5
|
Khosravi-Maharlooei M, Vecchione A, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.591692. [PMID: 38746102 PMCID: PMC11092663 DOI: 10.1101/2024.05.02.591692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh- like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
|
6
|
Patel AK, Trageser K, Kim H, Lim W, Adler C, Porter B, Ni M, Wei Y, Atwal GS, Bigdelou P, Kulshreshtha V, Ajithdoss D, Zhong J, Tu N, Macdonald L, Murphy A, Frleta D. Peripheral human red blood cell development in human immune system mouse model with heme oxygenase-1 deficiency. Blood Adv 2024; 8:5975-5987. [PMID: 39348688 PMCID: PMC11629214 DOI: 10.1182/bloodadvances.2023011754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
ABSTRACT A challenge for human immune system (HIS) mouse models has been the lack of human red blood cell (hRBC) survival after engraftment of these immune-deficient mice with human CD34+ hematopoietic stem cells (HSCs). This limits the use of HIS models for preclinical testing of targets directed at hRBC-related diseases. Although human white blood cells can develop in the peripheral blood of mice engrafted with human HSCs, peripheral hRBCs are quickly phagocytosed by murine macrophages upon egress from the bone marrow. Genetic ablation of murine myeloid cells results in severe pathology in resulting mice, rendering such an approach to increase hRBC survival in HIS mice impractical. Heme oxygenase-1 (HMOX-1)-deficient mice have reduced macrophages due to toxic buildup of intracellular heme upon engulfment of RBCs, but do not have an overall loss of myeloid cells. We took advantage of this observation and generated HMOX-1-/- mice on a humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- background. These mice have reduced murine macrophages but comparable levels of murine myeloid cells to HMOX-1+/+ control mice in the same background. Injected hRBCs survive longer in HMOX-1-/- mice than in HMOX-1+/+ controls. Additionally, upon human HSC engraftment, hRBCs can be observed in the peripheral blood of HMOX-1-/- humanized M-CSF/SIRPα/CD47 Rag2-/- IL-2Rγ-/- mice, and hRBC levels can be increased by treatment with human erythropoietin. Given that hRBC are present in the peripheral blood of engrafted HMOX-1-/- mice, these mice have the potential to be used for hematologic disease modeling, and for testing therapeutic treatments for hRBC diseases in vivo.
Collapse
Affiliation(s)
| | | | - Hyunjin Kim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Weikeat Lim
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | - Min Ni
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | | | | - Jun Zhong
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | - Naxin Tu
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY
| | | | | | | |
Collapse
|
7
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Maldini CR, Messana AC, Bendet PB, Camblin AJ, Musenge FM, White ML, Rocha JJ, Coholan LJ, Karaca C, Li F, Yan B, Vrbanac VD, Marte E, Claiborne DT, Boutwell CL, Allen TM. Immunosuppressant therapy averts rejection of allogeneic FKBP1A-disrupted CAR-T cells. Mol Ther 2024; 32:3485-3503. [PMID: 39222637 PMCID: PMC11489550 DOI: 10.1016/j.ymthe.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells from allogeneic donors promise "off-the-shelf" availability by overcoming challenges associated with autologous cell manufacturing. However, recipient immunologic rejection of allogeneic CAR-T cells may decrease their in vivo lifespan and limit treatment efficacy. Here, we demonstrate that the immunosuppressants rapamycin and tacrolimus effectively mitigate allorejection of HLA-mismatched CAR-T cells in immunocompetent humanized mice, extending their in vivo persistence to that of syngeneic humanized mouse-derived CAR-T cells. In turn, genetic knockout (KO) of FKBP prolyl isomerase 1A (FKBP1A), which encodes a protein targeted by both drugs, was necessary to confer CD19-specific CAR-T cells (19CAR) robust functional resistance to these immunosuppressants. FKBP1AKO 19CAR-T cells maintained potent in vitro functional profiles and controlled in vivo tumor progression similarly to untreated 19CAR-T cells. Moreover, immunosuppressant treatment averted in vivo allorejection permitting FKBP1AKO 19CAR-T cell-driven B cell aplasia. Thus, we demonstrate that genome engineering enables immunosuppressant treatment to improve the therapeutic potential of universal donor-derived CAR-T cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Bo Yan
- Beam Therapeutics, Cambridge, MA 02142, USA
| | - Vladimir D Vrbanac
- Hummanized Immune System Mouse Program, Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Emily Marte
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA
| | - Daniel T Claiborne
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA; Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Todd M Allen
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA 02139, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Lee BC. Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems. BMB Rep 2024; 57:352-362. [PMID: 38919014 PMCID: PMC11362137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems. [BMB Reports 2024; 57(8): 352-362].
Collapse
Affiliation(s)
- Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
10
|
Liu J, Ding C, Shi Y, Wang Y, Zhang X, Huang L, Fang Q, Shuai C, Gao Y, Wu J. Advances in Mechanism of HIV-1 Immune Reconstitution Failure: Understanding Lymphocyte Subpopulations and Interventions for Immunological Nonresponders. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1609-1620. [PMID: 38768409 DOI: 10.4049/jimmunol.2300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
In individuals diagnosed with AIDS, the primary method of sustained suppression of HIV-1 replication is antiretroviral therapy, which systematically increases CD4+ T cell levels and restores immune function. However, there is still a subset of 10-40% of people living with HIV who not only fail to reach normal CD4+ T cell counts but also experience severe immune dysfunction. These individuals are referred to as immunological nonresponders (INRs). INRs have a higher susceptibility to opportunistic infections and non-AIDS-related illnesses, resulting in increased morbidity and mortality rates. Therefore, it is crucial to gain new insights into the primary mechanisms of immune reconstitution failure to enable early and effective treatment for individuals at risk. This review provides an overview of the dynamics of key lymphocyte subpopulations, the main molecular mechanisms of INRs, clinical diagnosis, and intervention strategies during immune reconstitution failure, primarily from a multiomics perspective.
Collapse
Affiliation(s)
- Jiamin Liu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Shi
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yiyu Wang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiangyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lina Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qin Fang
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Chenxi Shuai
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Yong Gao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianjun Wu
- School of Public Health, Anhui Medical University, Hefei, China
- Central Laboratory of HIV Molecular and Immunology, Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| |
Collapse
|
11
|
Liu L, van Schaik TA, Chen KS, Rossignoli F, Borges P, Vrbanac V, Wakimoto H, Shah K. Establishment and immune phenotyping of patient-derived glioblastoma models in humanized mice. Front Immunol 2024; 14:1324618. [PMID: 38274817 PMCID: PMC10808686 DOI: 10.3389/fimmu.2023.1324618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common type of malignant brain tumor diagnosed in adults. Preclinical immunocompetent mouse tumor models generated using mouse tumor cells play a pivotal role in testing the therapeutic efficacy of emerging immune-based therapies for GBMs. However, the clinical translatability of such studies is limited as mouse tumor lines do not fully recapitulate GBMs seen in inpatient settings. In this study, we generated three distinct, imageable human-GBM (hGBM) models in humanized mice using patient-derived GBM cells that cover phenotypic and genetic GBM heterogeneity in primary (invasive and nodular) and recurrent tumors. We developed a pipeline to first enrich the tumor-initiating stem-like cells and then successfully established robust patient-derived GBM tumor engraftment and growth in bone marrow-liver-thymus (BLT) humanized mice. Multiplex immunofluorescence of GBM tumor sections revealed distinct phenotypic features of the patient GBM tumors, with myeloid cells dominating the immune landscape. Utilizing flow cytometry and correlative immunofluorescence, we profiled the immune microenvironment within the established human GBM tumors in the BLT mouse models and showed tumor infiltration of variable human immune cells, creating a unique immune landscape compared with lymphoid organs. These findings contribute substantially to our understanding of GBM biology within the context of the human immune system in humanized mice and lay the groundwork for further translational studies aimed at advancing therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Longsha Liu
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Thijs A. van Schaik
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Vladimir Vrbanac
- Humanized Immune System Mouse Program, Ragon Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
12
|
Kaushik S, Kumari L, Deepak RK. Humanized mouse model for vaccine evaluation: an overview. Clin Exp Vaccine Res 2024; 13:10-20. [PMID: 38362371 PMCID: PMC10864885 DOI: 10.7774/cevr.2024.13.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Animal models are essential in medical research for testing drugs and vaccines. These models differ from humans in various respects, so their results are not directly translatable in humans. To address this issue, humanized mice engrafted with functional human cells or tissue can be helpful. We propose using humanized mice that support the engraftment of human hematopoietic stem cells (HSCs) without irradiation to evaluate vaccines that influence patient immunity. For infectious diseases, several types of antigens and adjuvants have been developed and evaluated for vaccination. Peptide vaccines are generally used for their capability to fight cancer and infectious diseases. Evaluation of adjuvants is necessary as they induce inflammation, which is effective for an enhanced immune response but causes adverse effects in some individuals. A trial can be done on humanized mice to check the immunogenicity of a particular adjuvant and peptide combination. Messenger RNA has also emerged as a potential vaccine against viruses. These vaccines need to be tested with human immune cells because they work by producing a particular peptide of the pathogen. Humanized mice with human HSCs that can produce both myeloid and lymphoid cells show a similar immune response that these vaccines will produce in a patient.
Collapse
Affiliation(s)
| | - Lata Kumari
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
13
|
Roy CN, Shu ST, Kline C, Rigatti L, Smithgall TE, Ambrose Z. Use of pediatric thymus to humanize mice for HIV-1 mucosal transmission. Sci Rep 2023; 13:17067. [PMID: 37816950 PMCID: PMC10564933 DOI: 10.1038/s41598-023-44366-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Humanized mice have been used to study human immunodeficiency virus type 1 (HIV-1) transmission, pathogenesis, and treatment. The ability of pediatric thymus tissue implanted either in the leg (Leg PedThy) or under the renal capsule (Renal PedThy) with allogeneic CD34+ hematopoietic cells (HSCs) in NSG mice was evaluated for reconstitution of human immune cells and for rectal transmission of HIV-1. These mice were compared to traditional BLT mice implanted with fetal liver and thymus under the renal capsule and mice injected only with HSCs. Renal PedThy mice had similar immune reconstitution in the blood, spleen and intestine as BLT mice, while Leg PedThy mice had transient detection of immune cells, particularly CD4+ T cells and macrophages, the target cells for HIV-1 infection. Rectal transmission and replication of HIV-1 was efficient in BLT mice but lower and more variable in Renal PedThy mice. HIV-1 was poorly transmitted in HSC mice and not transmitted in Leg PedThy mice, which correlated with the frequencies of target cells in the spleen and intestine. Humanization of NSG mice with pediatric thymus was successful when implanted under the kidney capsule, but led to less efficient HIV-1 rectal transmission and replication compared to BLT mice.
Collapse
Affiliation(s)
- Chandra N Roy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Kim JT, Bresson-Tan G, Zack JA. Current Advances in Humanized Mouse Models for Studying NK Cells and HIV Infection. Microorganisms 2023; 11:1984. [PMID: 37630544 PMCID: PMC10458594 DOI: 10.3390/microorganisms11081984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Human immunodeficiency virus (HIV) has infected millions of people worldwide and continues to be a major global health problem. Scientists required a small animal model to study HIV pathogenesis and immune responses. To this end, humanized mice were created by transplanting human cells and/or tissues into immunodeficient mice to reconstitute a human immune system. Thus, humanized mice have become a critical animal model for HIV researchers, but with some limitations. Current conventional humanized mice are prone to death by graft versus host disease induced by the mouse signal regulatory protein α and CD47 signaling pathway. In addition, commonly used humanized mice generate low levels of human cytokines required for robust myeloid and natural killer cell development and function. Here, we describe recent advances in humanization procedures and transgenic and knock-in immunodeficient mice to address these limitations.
Collapse
Affiliation(s)
- Jocelyn T. Kim
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Gabrielle Bresson-Tan
- Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA; (J.T.K.)
| | - Jerome A. Zack
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Zhang C, Zaman LA, Poluektova LY, Gorantla S, Gendelman HE, Dash PK. Humanized Mice for Studies of HIV-1 Persistence and Elimination. Pathogens 2023; 12:879. [PMID: 37513726 PMCID: PMC10383313 DOI: 10.3390/pathogens12070879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
A major roadblock to achieving a cure for human immunodeficiency virus type one (HIV-1) is the persistence of latent viral infections in the cells and tissue compartments of an infected human host. Latent HIV-1 proviral DNA persists in resting memory CD4+ T cells and mononuclear phagocytes (MPs; macrophages, microglia, and dendritic cells). Tissue viral reservoirs of both cell types reside in the gut, lymph nodes, bone marrow, spleen, liver, kidney, skin, adipose tissue, reproductive organs, and brain. However, despite the identification of virus-susceptible cells, several limitations persist in identifying broad latent reservoirs in infected persons. The major limitations include their relatively low abundance, the precise identification of latently infected cells, and the lack of biomarkers for identifying latent cells. While primary MP and CD4+ T cells and transformed cell lines are used to interrogate mechanisms of HIV-1 persistence, they often fail to accurately reflect the host cells and tissue environments that carry latent infections. Given the host specificity of HIV-1, there are few animal models that replicate the natural course of viral infection with any precision. These needs underlie the importance of humanized mouse models as both valuable and cost-effective tools for studying viral latency and subsequently identifying means of eliminating it. In this review, we discuss the advantages and limitations of humanized mice for studies of viral persistence and latency with an eye toward using these models to test antiretroviral and excision therapeutics. The goals of this research are to use the models to address how and under which circumstances HIV-1 latency can be detected and eliminated. Targeting latent reservoirs for an ultimate HIV-1 cure is the task at hand.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasanta K. Dash
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA (S.G.)
| |
Collapse
|
16
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
17
|
Kanaya N, Kitamura Y, Vazquez ML, Franco A, Chen KS, van Schaik TA, Farzani TA, Borges P, Ichinose T, Seddiq W, Kuroda S, Boland G, Jahan N, Fisher D, Wakimoto H, Shah K. Gene-edited and -engineered stem cell platform drives immunotherapy for brain metastatic melanomas. Sci Transl Med 2023; 15:eade8732. [PMID: 37256936 PMCID: PMC10799631 DOI: 10.1126/scitranslmed.ade8732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Oncolytic virus therapy has shown activity against primary melanomas; however, its efficacy in brain metastases remains challenging, mainly because of the delivery and immunosuppressive nature of tumors in the brain. To address this challenge, we first established PTEN-deficient melanoma brain metastasis mouse models and characterized them to be more immunosuppressive compared with primary melanoma, mimicking the clinical settings. Next, we developed an allogeneic twin stem cell (TSC) system composed of two tumor-targeting stem cell (SC) populations. One SC was loaded with oncolytic herpes simplex virus (oHSV), and the other SC was CRISPR-Cas9 gene-edited to knock out nectin 1 (N1) receptor (N1KO) to acquire resistance to oHSV and release immunomodulators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF). Using mouse models of brain metastatic BRAFV600E/PTEN-/- and BRAFV600E/wt/PTEN-/- mutant melanomas, we show that locoregional delivery of TSCs releasing oHSV and GM-CSF (TSC-G) activated dendritic cell- and T cell-mediated immune responses. In addition, our strategy exhibited greater therapeutic efficacy when compared with the existing oncolytic viral therapeutic approaches. Moreover, the TSCs composed of SC-oHSV and SCN1KO-releasing GM-CSF and single-chain variable fragment anti-PD-1 (TSC-G/P) had therapeutic efficacy in both syngeneic and patient-derived humanized mouse models of leptomeningeal metastasis. Our findings provide a promising allogeneic SC-based immunotherapeutic strategy against melanomas in the CNS and a road map toward clinical translation.
Collapse
Affiliation(s)
- Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yohei Kitamura
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Lopez Vazquez
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaldo Franco
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thijs A. van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Touraj Aligholipour Farzani
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toru Ichinose
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waleed Seddiq
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Genevieve Boland
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nusrat Jahan
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Fisher
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Patel AK, Dhanik A, Lim WK, Adler C, Ni M, Wei Y, Zhong M, Nguyen C, Zhong J, Lu YF, Thurston G, Macdonald L, Murphy A, Gurer C, Frleta D. Spontaneous tumor regression mediated by human T cells in a humanized immune system mouse model. Commun Biol 2023; 6:444. [PMID: 37087494 PMCID: PMC10122651 DOI: 10.1038/s42003-023-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Immunodeficient mice reconstituted with a human immune system (HIS mice) give rise to human T cells, which make them an attractive system to study human immune responses to tumors. However, such HIS mice typically exhibit sub-optimal responses to immune challenges as well as fail to develop antigen-specific B or T cell memory. Here we report HIS mice mediate spontaneous regression of human B cell lymphoma Raji. Tumor regression was dependent on CD4+ and CD8+ T cell responses and resulted in T cell memory. The T cell memory elicited was mainly Raji-specific, however some level of cross-protection was also elicited to a related B cell lymphoma cell line Ramos. Single-cell RNAseq analysis indicated activation of CD8+ T cells in regressing Raji tumors as well as clonal expansion of specific T cell receptors (TCRs). Cloning of TCRs from Raji-infiltrating T cells into a Jurkat reporter cell line showed reactivity specific for Raji tumor cells. Overall, we report a platform for studying in vivo human T cell tumor immunity by highlighting spontaneous Raji tumor regression, clonal TCR expansion, and T cell memory in HIS mice.
Collapse
Affiliation(s)
- A K Patel
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Ankur Dhanik
- Gritstone Bio, 40 Erie St., Cambridge, MA, 02139, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Maggie Zhong
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Cindy Nguyen
- Eli Lilly and Company, 450 E 29th St., New York, NY, 10016, USA
| | - Jun Zhong
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Yi-Fen Lu
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA
| | - Cagan Gurer
- TScan Therapuetics, 830 Winter St., Waltham, MA, 02451, USA
| | - Davor Frleta
- Regeneron Pharmaceuticals, Inc., 795 Old Saw Mill River River Road Tarrytown, Tarrytown, NY, 10591, USA.
| |
Collapse
|
19
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
20
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
21
|
Colas C, Volodina O, Béland K, Pham TNQ, Li Y, Dallaire F, Soulard C, Lemieux W, Colamartino ABL, Tremblay-Laganière C, Dicaire R, Guimond J, Vobecky S, Poirier N, Patey N, Cohen ÉA, Haddad E. Generation of functional human T cell development in NOD/SCID/IL2rγ null humanized mice without using fetal tissue: Application as a model of HIV infection and persistence. Stem Cell Reports 2023; 18:597-612. [PMID: 36736326 PMCID: PMC9969074 DOI: 10.1016/j.stemcr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
Humanization of mice with functional T cells currently relies on co-implantation of hematopoietic stem cells from fetal liver and autologous fetal thymic tissue (so-called BLT mouse model). Here, we show that NOD/SCID/IL2rγnull mice humanized with cord blood- derived CD34+ cells and implanted with allogeneic pediatric thymic tissues excised during cardiac surgeries (CCST) represent an alternative to BLT mice. CCST mice displayed a strong immune reconstitution, with functional T cells originating from CD34+ progenitor cells. They were equally susceptible to mucosal or intraperitoneal HIV infection and had significantly higher HIV-specific T cell responses. Antiretroviral therapy (ART) robustly suppressed viremia and reduced the frequencies of cells carrying integrated HIV DNA. As in BLT mice, we observed a complete viral rebound following ART interruption, suggesting the presence of HIV reservoirs. In conclusion, CCST mice represent a practical alternative to BLT mice, broadening the use of humanized mice for research.
Collapse
Affiliation(s)
- Chloé Colas
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Olga Volodina
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Kathie Béland
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Tram N Q Pham
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Yuanyi Li
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Frédéric Dallaire
- Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Clara Soulard
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - William Lemieux
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Aurélien B L Colamartino
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Camille Tremblay-Laganière
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Renée Dicaire
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Suzanne Vobecky
- Department of Cardiac Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Nancy Poirier
- Department of Cardiac Surgery, CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Natasha Patey
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Éric A Cohen
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada.
| | - Elie Haddad
- Department of Microbiology and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
22
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
23
|
Sun R, Zhao Z, Fu C, Wang Y, Guo Z, Zhang C, Liu L, Zhang C, Shu C, He J, Yang Y, Hua S, Gao Y, Hu Z. Humanized mice for investigating SARS-CoV-2 lung infection and associated human immune responses. Eur J Immunol 2022; 52:1640-1647. [PMID: 35976660 PMCID: PMC9538419 DOI: 10.1002/eji.202249804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
There is an urgent need for animal models of coronavirus disease 2019 to study immunopathogenesis and test therapeutic intervenes. In this study, we showed that NOD/SCID IL2rg-/- (NSG) mice engrafted with human lung (HL) tissue (NSG-L mice) could be infected efficiently by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and that live virus capable of infecting Vero cells was found in the HL grafts and multiple organs from infected NSG-L mice. RNA-Sequencing identified a series of differentially expressed genes, which are enriched in viral defense responses, chemotaxis, IFN stimulation and pulmonary fibrosis, between HL grafts from infected and control NSG-L mice. Furthermore, when infected with SARS-CoV-2, humanized mice with both human immune system (HIS) and autologous HL grafts (HISL mice) had bodyweight loss and hemorrhage and immune cell infiltration in HL grafts, which were not observed in immunodeficient NSG-L mice, indicating the development of anti-viral immune responses in these mice. In support of this possibility, the infected HISL mice showed bodyweight recovery and lack of detectable live virus at the later time. These results demonstrate that NSG-L and HISL mice are susceptible to SARS-CoV-2 infection, offering a useful in vivo model for studying SARS-CoV-2 infection and the associated immune response and immunopathology, and testing anti-SARS-CoV-2 therapies.
Collapse
Affiliation(s)
- Renren Sun
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Zongzheng Zhao
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Cong Fu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Yixin Wang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina,Department of RespirationThe First Hospital of Jilin UniversityChangchunChina
| | - Zhendong Guo
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Chunmao Zhang
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Lina Liu
- College of Veterinary MedicineJilin UniversityChangchunChina
| | - Cheng Zhang
- College of Veterinary MedicineHebei Agricultural UniversityBaodingChina
| | - Chang Shu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Yong‐Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| | - Shucheng Hua
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina,Department of RespirationThe First Hospital of Jilin UniversityChangchunChina
| | - Yuwei Gao
- Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Educationand National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
24
|
Tanaka T, Nishie R, Ueda S, Miyamoto S, Hashida S, Konishi H, Terada S, Kogata Y, Sasaki H, Tsunetoh S, Taniguchi K, Komura K, Ohmichi M. Endometrial Cancer Patient-Derived Xenograft Models: A Systematic Review. J Clin Med 2022; 11:2606. [PMID: 35566732 PMCID: PMC9100787 DOI: 10.3390/jcm11092606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Because patient-derived xenograft (PDX) models resemble the original tumors, they can be used as platforms to find target agents for precision medicine and to study characteristics of tumor biology such as clonal evolution and microenvironment interactions. The aim of this review was to identify articles on endometrial cancer PDXs (EC-PDXs) and verify the methodology and outcomes. METHODS We used PubMed to research and identify articles on EC-PDX. The data were analyzed descriptively. RESULTS Post literature review, eight studies were selected for the systematic review. Eighty-five EC-PDXs were established from 173 patients with EC, with a total success rate of 49.1%. A 1-10 mm3 fragment was usually implanted. Fresh-fragment implantation had higher success rates than using overnight-stored or frozen fragments. Primary tumors were successfully established with subcutaneous implantation, but metastasis rarely occurred; orthotopic implantation via minced tumor cell injection was better for metastatic models. The success rate did not correspond to immunodeficiency grades, and PDXs using nude mice reduced costs. The tumor growth period ranged from 2 weeks to 13 months. Similar characteristics were observed between primary tumors and PDXs, including pathological findings, gene mutations, and gene expression. CONCLUSION EC-PDXs are promising tools for translational research because they closely resemble the features of tumors in patients and retain molecular and histological features of the disease.
Collapse
Affiliation(s)
- Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Hiroshi Sasaki
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Satoshi Tsunetoh
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| | - Kohei Taniguchi
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Kazumasa Komura
- Translational Research Program, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan; (R.N.); (S.U.); (S.M.); (S.H.); (H.K.); (S.T.); (Y.K.); (H.S.); (S.T.); (M.O.)
| |
Collapse
|
25
|
Abstract
Multiple humanized mouse models have been produced for the study of HIV-1 infection and treatment. Humanized mice produced using the bone marrow, liver, thymus (BLT) method particularly have well-reconstituted and functional human immune systems, providing an excellent model for HIV-1 cure strategies that aim to harness the human immune system as part of the cure approach. The TKO-BLT humanized mouse model is especially useful for long-term studies as it is highly resistant to the wasting syndrome and graft-versus-host disease (GVHD ) that can limit the use of other BLT-models. Here we describe the methods used to induce latency in TKO-BLT mice, using both injectable and free-fed combination antiretroviral therapy (cART) regimens, for use in the study of HIV-1 latency and evaluation of HIV-1 cure interventions.
Collapse
Affiliation(s)
- Yunyun Di
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kerry J Lavender
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
26
|
Calvet-Mirabent M, Claiborne DT, Deruaz M, Tanno S, Serra C, Delgado-Arévalo C, Sánchez-Cerrillo I, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Allen TM, Buzón MJ, Balazs A, Vrbanac V, Martín-Gayo E. Poly I:C and STING agonist-primed DC increase lymphoid tissue polyfunctional HIV-1-specific CD8 + T cells and limit CD4 + T cell loss in BLT mice. Eur J Immunol 2021; 52:447-461. [PMID: 34935145 DOI: 10.1002/eji.202149502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Effective function of CD8+ T cells and enhanced innate activation of dendritic cells (DC) in response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire controller-like properties. Here, we evaluated the impact of the combination of 2´3´-c´diAM(PS)2 and Poly I:C as potential adjuvants capable of potentiating DC´s abilities to induce polyfunctional HIV-1 specific CD8+ T cell responses in vitro and in vivo using a humanized BLT mouse model. Adjuvant combination enhanced TBK-1 phosphorylation and IL-12 and IFNβ expression on DC and increased their ability to activate polyfunctional HIV-1-specific CD8+ T cells in vitro. Moreover, higher proportions of hBLT mice vaccinated with ADJ-DC exhibited less severe CD4+ T cell depletion following HIV-1 infection compared to control groups. This was associated with infiltration of CD8+ T cells in the white pulp from the spleen, reduced spread of infected p24+ cells to lymph node and with preserved abilities of CD8+ T cells from the spleen and blood of vaccinated animals to induce specific polyfunctional responses upon antigen stimulation. Therefore, priming of DC with Poly I:C and STING agonists might be useful for future HIV-1 vaccine studies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | | | - Maud Deruaz
- Human Immune System Mouse Program from Massachusetts General Hospital, Boston.,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Serah Tanno
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Carla Serra
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain
| | | | - Maria J Buzón
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona
| | - Alejandro Balazs
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Vladimir Vrbanac
- Ragon Institute of MGH, MIT and Harvard.,Human Immune System Mouse Program from Massachusetts General Hospital, Boston
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación Sanitaria Princesa.,Universidad Autónoma of Madrid, Medicine Department Spain
| |
Collapse
|
27
|
Ducret A, Ackaert C, Bessa J, Bunce C, Hickling T, Jawa V, Kroenke MA, Lamberth K, Manin A, Penny HL, Smith N, Terszowski G, Tourdot S, Spindeldreher S. Assay format diversity in pre-clinical immunogenicity risk assessment: Toward a possible harmonization of antigenicity assays. MAbs 2021; 14:1993522. [PMID: 34923896 PMCID: PMC8726688 DOI: 10.1080/19420862.2021.1993522] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A major impediment to successful use of therapeutic protein drugs is their ability to induce anti-drug antibodies (ADA) that can alter treatment efficacy and safety in a significant number of patients. To this aim, in silico, in vitro, and in vivo tools have been developed to assess sequence and other liabilities contributing to ADA development at different stages of the immune response. However, variability exists between similar assays developed by different investigators due to the complexity of assays, a degree of uncertainty about the underlying science, and their intended use. The impact of protocol variations on the outcome of the assays, i.e., on the immunogenicity risk assigned to a given drug candidate, cannot always be precisely assessed. Here, the Non-Clinical Immunogenicity Risk Assessment working group of the European Immunogenicity Platform (EIP) reviews currently used assays and protocols and discusses feasibility and next steps toward harmonization and standardization.
Collapse
Affiliation(s)
- Axel Ducret
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Chloé Ackaert
- ImmunXperts SA (A Nexelis Group Company), Gosselies, Belgium
| | - Juliana Bessa
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Timothy Hickling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Vibha Jawa
- Biotherapeutics and Bioanalysis Non-Clinical Development, Bristol Myers Squibb, Princeton, NJ, USA
| | - Mark A Kroenke
- Clinical Immunology-Translational Medicine, Amgen Inc, Thousand Oaks, CA, USA
| | - Kasper Lamberth
- Analysis & Characterisation, Global Research Technologies, Novo Nordisk A/S, Måløv, Denmark
| | - Anaïs Manin
- Abzena, Babraham Research Campus, Cambridge, UK
| | - Hweixian L Penny
- Clinical Immunology-Translational Medicine, Amgen Inc, Thousand Oaks, CA, USA
| | - Noel Smith
- Lonza Biologics, Chesterford Research Park, Saffron Walden, UK
| | - Grzegorz Terszowski
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
28
|
Vollmann EH, Rattay K, Barreiro O, Thiriot A, Fuhlbrigge RA, Vrbanac V, Kim KW, Jung S, Tager AM, von Andrian UH. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat Commun 2021; 12:6230. [PMID: 34711828 PMCID: PMC8553756 DOI: 10.1038/s41467-021-26446-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi. This pathway depends on a subset of thymus-resident DCs, distinct from both parenchymal and circulating migratory DCs, that are positioned in immediate proximity to thymic microvessels where they extend cellular processes across the endothelial barrier into the blood stream. Transendothelial positioning of DCs depends on DC-expressed CX3CR1 and its endothelial ligand, CX3CL1, and disrupting this chemokine pathway prevents thymic acquisition of circulating proteins and compromises negative selection of Ag-reactive thymocytes. Thus, transendothelial DCs represent a mechanism by which the thymus can actively acquire blood-borne Ags to induce and maintain central tolerance.
Collapse
Affiliation(s)
- Elisabeth H Vollmann
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Merck Research Laboratories, Boston, MA, 02115, USA
| | - Kristin Rattay
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, Marburg, Germany
| | - Olga Barreiro
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Aude Thiriot
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca A Fuhlbrigge
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Vladimir Vrbanac
- Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Humanized Immune System Mouse Program (HISMP), Boston, MA, 02114, USA
| | - Ki-Wook Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ulrich H von Andrian
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
29
|
Ratnapriya S, Harris M, Chov A, Herbert ZT, Vrbanac V, Deruaz M, Achuthan V, Engelman AN, Sodroski J, Herschhorn A. Intra- and extra-cellular environments contribute to the fate of HIV-1 infection. Cell Rep 2021; 36:109622. [PMID: 34469717 PMCID: PMC8463096 DOI: 10.1016/j.celrep.2021.109622] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/07/2021] [Accepted: 08/06/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 entry into host cells leads to one of the following three alternative fates: (1) HIV-1 elimination by restriction factors, (2) establishment of HIV-1 latency, or (3) active viral replication in target cells. Here, we report the development of an improved system for monitoring HIV-1 fate at single-cell and population levels and show the diverse applications of this system to study specific aspects of HIV-1 fate in different cell types and under different environments. An analysis of the transcriptome of infected, primary CD4+ T cells that support alternative fates of HIV-1 identifies differential gene expression signatures in these cells. Small molecules are able to selectively target cells that support viral replication with no significant effect on viral latency. In addition, HIV-1 fate varies in different tissues following infection of humanized mice in vivo. Altogether, these studies indicate that intra- and extra-cellular environments contribute to the fate of HIV-1 infection.
Collapse
Affiliation(s)
- Sneha Ratnapriya
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Miranda Harris
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Chov
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Vladimir Vrbanac
- Humanized Immune System Mouse Program, Ragon Institute of MGH, MIT and Harvard, and Center for Immunology and Inflammatory Disease, Cambridge, MA 02139, USA
| | - Maud Deruaz
- Humanized Immune System Mouse Program, Ragon Institute of MGH, MIT and Harvard, and Center for Immunology and Inflammatory Disease, Cambridge, MA 02139, USA
| | - Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alon Herschhorn
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
30
|
Garcia-Beltran WF, Claiborne DT, Maldini CR, Phelps M, Vrbanac V, Karpel ME, Krupp KL, Power KA, Boutwell CL, Balazs AB, Tager AM, Altfeld M, Allen TM. Innate Immune Reconstitution in Humanized Bone Marrow-Liver-Thymus (HuBLT) Mice Governs Adaptive Cellular Immune Function and Responses to HIV-1 Infection. Front Immunol 2021; 12:667393. [PMID: 34122425 PMCID: PMC8189152 DOI: 10.3389/fimmu.2021.667393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/28/2021] [Indexed: 01/11/2023] Open
Abstract
Humanized bone marrow-liver-thymus (HuBLT) mice are a revolutionary small-animal model that has facilitated the study of human immune function and human-restricted pathogens, including human immunodeficiency virus type 1 (HIV-1). These mice recapitulate many aspects of acute and chronic HIV-1 infection, but exhibit weak and variable T-cell responses when challenged with HIV-1, hindering our ability to confidently detect HIV-1-specific responses or vaccine effects. To identify the cause of this, we comprehensively analyzed T-cell development, diversity, and function in HuBLT mice. We found that virtually all HuBLT were well-reconstituted with T cells and had intact TCRβ sequence diversity, thymic development, and differentiation to memory and effector cells. However, there was poor CD4+ and CD8+ T-cell responsiveness to physiologic stimuli and decreased TH1 polarization that correlated with deficient reconstitution of innate immune cells, in particular monocytes. HIV-1 infection of HuBLT mice showed that mice with higher monocyte reconstitution exhibited greater CD8+ T cells responses and HIV-1 viral evolution within predicted HLA-restricted epitopes. Thus, T-cell responses to immune challenges are blunted in HuBLT mice due to a deficiency of innate immune cells, and future efforts to improve the model for HIV-1 immune response and vaccine studies need to be aimed at restoring innate immune reconstitution.
Collapse
Affiliation(s)
| | - Daniel T. Claiborne
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Colby R. Maldini
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Meredith Phelps
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Vladimir Vrbanac
- Human Immune System Mouse Program, Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Marshall E. Karpel
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
- Division of Medical Sciences, Harvard University, Boston, MA, United States
| | - Katharine L. Krupp
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Karen A. Power
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Christian L. Boutwell
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Alejandro B. Balazs
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
| | - Marcus Altfeld
- Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Todd M. Allen
- Ragon Institute of MGH, MIT and Harvard, Massachusetts General Hospital, Cambridge, MA, United States
| |
Collapse
|
31
|
Terahara K, Iwabuchi R, Tsunetsugu-Yokota Y. Perspectives on Non-BLT Humanized Mouse Models for Studying HIV Pathogenesis and Therapy. Viruses 2021; 13:v13050776. [PMID: 33924786 PMCID: PMC8145733 DOI: 10.3390/v13050776] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
A variety of humanized mice, which are reconstituted only with human hematopoietic stem cells (HSC) or with fetal thymus and HSCs, have been developed and widely utilized as in vivo animal models of HIV-1 infection. The models represent some aspects of HIV-mediated pathogenesis in humans and are useful for the evaluation of therapeutic regimens. However, there are several limitations in these models, including their incomplete immune responses and poor distribution of human cells to the secondary lymphoid tissues. These limitations are common in many humanized mouse models and are critical issues that need to be addressed. As distinct defects exist in each model, we need to be cautious about the experimental design and interpretation of the outcomes obtained using humanized mice. Considering this point, we mainly characterize the current conventional humanized mouse reconstituted only with HSCs and describe past achievements in this area, as well as the potential contributions of the humanized mouse models for the study of HIV pathogenesis and therapy. We also discuss the use of various technologies to solve the current problems. Humanized mice will contribute not only to the pre-clinical evaluation of anti-HIV regimens, but also to a deeper understanding of basic aspects of HIV biology.
Collapse
Affiliation(s)
- Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
| | - Ryutaro Iwabuchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo 162-8480, Japan
| | - Yasuko Tsunetsugu-Yokota
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.T.); (R.I.)
- Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo 144-8535, Japan
- Correspondence: or ; Tel.: +81-3-6424-2223
| |
Collapse
|
32
|
Abeynaike S, Paust S. Humanized Mice for the Evaluation of Novel HIV-1 Therapies. Front Immunol 2021; 12:636775. [PMID: 33868262 PMCID: PMC8047330 DOI: 10.3389/fimmu.2021.636775] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
With the discovery of antiretroviral therapy, HIV-1 infection has transitioned into a manageable but chronic illness, which requires lifelong treatment. Nevertheless, complete eradication of the virus has still eluded us. This is partly due to the virus’s ability to remain in a dormant state in tissue reservoirs, ‘hidden’ from the host’s immune system. Also, the high mutation rate of HIV-1 results in escape mutations in response to many therapeutics. Regardless, the development of novel cures for HIV-1 continues to move forward with a range of approaches from immunotherapy to gene editing. However, to evaluate in vivo pathogenesis and the efficacy and safety of therapeutic approaches, a suitable animal model is necessary. To this end, the humanized mouse was developed by McCune in 1988 and has continued to be improved on over the past 30 years. Here, we review the variety of humanized mouse models that have been utilized through the years and describe their specific contribution in translating HIV-1 cure strategies to the clinic.
Collapse
Affiliation(s)
- Shawn Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
33
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
34
|
Guil-Luna S, Sedlik C, Piaggio E. Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-050520-100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy is at the forefront of cancer treatment. The advent of numerous novel approaches to cancer immunotherapy, including immune checkpoint antibodies, adoptive transfer of CAR (chimeric antigen receptor) T cells and TCR (T cell receptor) T cells, NK (natural killer) cells, T cell engagers, oncolytic viruses, and vaccines, is revolutionizing the treatment for different tumor types. Some are already in the clinic, and many others are underway. However, not all patients respond, resistance develops, and as available therapies multiply there is a need to further understand how they work, how to prioritize their clinical evaluation, and how to combine them. For this, animal models have been highly instrumental, and humanized mice models (i.e., immunodeficient mice engrafted with human immune and cancer cells) represent a step forward, although they have several limitations. Here, we review the different humanized models available today, the approaches to overcome their flaws, their use for the evaluation of cancer immunotherapies, and their anticipated evolution as tools to help personalized clinical decision-making.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Christine Sedlik
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| | - Eliane Piaggio
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| |
Collapse
|
35
|
Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, Olsen TM, Shobaki N, Rongvaux A. Building the Next Generation of Humanized Hemato-Lymphoid System Mice. Front Immunol 2021; 12:643852. [PMID: 33692812 PMCID: PMC7938325 DOI: 10.3389/fimmu.2021.643852] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Since the late 1980s, mice have been repopulated with human hematopoietic cells to study the fundamental biology of human hematopoiesis and immunity, as well as a broad range of human diseases in vivo. Multiple mouse recipient strains have been developed and protocols optimized to efficiently generate these “humanized” mice. Here, we review three guiding principles that have been applied to the development of the currently available models: (1) establishing tolerance of the mouse host for the human graft; (2) opening hematopoietic niches so that they can be occupied by human cells; and (3) providing necessary support for human hematopoiesis. We then discuss four remaining challenges: (1) human hematopoietic lineages that poorly develop in mice; (2) limited antigen-specific adaptive immunity; (3) absent tolerance of the human immune system for its mouse host; and (4) sub-functional interactions between human immune effectors and target mouse tissues. While major advances are still needed, the current models can already be used to answer specific, clinically-relevant questions and hopefully inform the development of new, life-saving therapies.
Collapse
Affiliation(s)
- Tijana Martinov
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kelly M McKenna
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, United States.,Medical Scientist Training Program, University of Washington, Seattle, WA, United States
| | - Wei Hong Tan
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Emily J Collins
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Allie R Kehret
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jonathan D Linton
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Tayla M Olsen
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Nour Shobaki
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Anthony Rongvaux
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
36
|
Wen J, Wang L, Ren J, Kranz E, Chen S, Wu D, Kanazawa T, Chen I, Lu Y, Kamata M. Nanoencapsulated rituximab mediates superior cellular immunity against metastatic B-cell lymphoma in a complement competent humanized mouse model. J Immunother Cancer 2021; 9:jitc-2020-001524. [PMID: 33593826 PMCID: PMC7888328 DOI: 10.1136/jitc-2020-001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite the numerous applications of monoclonal antibodies (mAbs) in cancer therapeutics, animal models available to test the therapeutic efficacy of new mAbs are limited. NOD.Cg-Prkdcscid Il2rg tm1Wjl /SzJ (NSG) mice are one of the most highly immunodeficient strains and are universally used as a model for testing cancer-targeting mAbs. However, this strain lacks several factors necessary to fully support antibody-mediated effector functions-including antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement-dependent cytotoxicity (CDC)-due to the absence of immune cells as well as a mutation in the Hc gene, which is needed for a functional complement system. METHODS We have developed a humanized mouse model using a novel NSG strain, NOD.Cg-Hc1 Prkdcscid Il2rgtm1Wjl/SzJ (NSG-Hc1), which contains the corrected mutation in the Hc gene to support CDC in addition to other mechanisms endowed by humanization. With this model, we reevaluated the anticancer efficacies of nanoencapsulated rituximab after xenograft of the human Burkitt lymphoma cell line 2F7-BR44. RESULTS As expected, xenografted humanized NSG-Hc1 mice supported superior lymphoma clearance of native rituximab compared with the parental NSG strain. Nanoencapsulated rituximab with CXCL13 conjugation as a targeting ligand for lymphomas further enhanced antilymphoma activity in NSG-Hc1 mice and, more importantly, mediated antilymphoma cellular responses. CONCLUSIONS These results indicate that NSG-Hc1 mice can serve as a feasible model for both studying antitumor treatment using cancer targeting as well as understanding induction mechanisms of antitumor cellular immune response.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Emiko Kranz
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Shilin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Toshio Kanazawa
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Irvin Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.,UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Masakazu Kamata
- Microbiology, University of Alabama at Birmingham School of Arts and Humanities, Birmingham, Alabama, USA
| |
Collapse
|
37
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
38
|
Mian SA, Anjos-Afonso F, Bonnet D. Advances in Human Immune System Mouse Models for Studying Human Hematopoiesis and Cancer Immunotherapy. Front Immunol 2021; 11:619236. [PMID: 33603749 PMCID: PMC7884350 DOI: 10.3389/fimmu.2020.619236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy has established itself as a promising tool for cancer treatment. There are many challenges that remain including lack of targets and some patients across various cancers who have not shown robust clinical response. One of the major problems that have hindered the progress in the field is the dearth of appropriate mouse models that can reliably recapitulate the complexity of human immune-microenvironment as well as the malignancy itself. Immunodeficient mice reconstituted with human immune cells offer a unique opportunity to comprehensively evaluate immunotherapeutic strategies. These immunosuppressed and genetically modified mice, with some overexpressing human growth factors, have improved human hematopoietic engraftment as well as created more functional immune cell development in primary and secondary lymphoid tissues in these mice. In addition, several new approaches to modify or to add human niche elements to further humanize these immunodeficient mice have allowed a more precise characterization of human hematopoiesis. These important refinements have opened the possibility to evaluate not only human immune responses to different tumor cells but also to investigate how malignant cells interact with their niche and most importantly to test immunotherapies in a more preclinically relevant setting, which can ultimately lead to better success of these drugs in clinical trials.
Collapse
Affiliation(s)
- Syed A Mian
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom.,Department of Haematology, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Signalling Group, European Cancer Stem Cell Institute, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
39
|
Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ. Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 2020; 10:4568-4584. [PMID: 33415020 PMCID: PMC7783739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023] Open
Abstract
Due to the refractory and partial sensitive treatments to malignant cancers, immunotherapy has increasingly become a hotspot in effective anti-tumor research. However, at present, existing animal models could not accurately describe the interaction between human tissue and tumor cells for preclinical trials. Furthermore, it is a tough obstacle to reconstitute the immune system and microenvironment in a mouse model identical to humans due to species differences. In the establishment of the humanized mouse model, the co-transplantation of human immunocytes with/without tissues and tumor cells is the key breakthrough to solve this problem. The compelling progress has been investigated in the preclinical drug test for diverse tumor types. This review mainly summarized the development of immunodeficient mice, and the construction and practicability of the humanized mouse model. Furthermore, the investigators also highlight the pros and cons, and recent progress in immunotherapy research for advanced utility of human cancer diseases.
Collapse
Affiliation(s)
- Ling Yin
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xue-Jing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - De-Xi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Jun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Beijing Youan Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
40
|
Sun L, Jin CH, Tan S, Liu W, Yang YG. Human Immune System Mice With Autologous Tumor for Modeling Cancer Immunotherapies. Front Immunol 2020; 11:591669. [PMID: 33133105 PMCID: PMC7578411 DOI: 10.3389/fimmu.2020.591669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mouse models are the most commonly used in vivo system for biomedical research, in which immune-related diseases and therapies can be investigated in syngeneic and immunologically intact hosts. However, because there are significant differences between rodent and human, most findings from conventional mouse models cannot be applied to humans. The humanized mouse with a functional human immune system, also referred to as human immune system (HIS) mouse, is the only model available to date for in vivo studies in real-time of human immune function under physiological and pathological conditions. HIS mice with human tumor xenografts are considered an emerging and promising in vivo model for modeling human cancer immunotherapy. In this review, we briefly discuss the protocols to construct HIS mice and elaborate their pros and cons. Particular attention is given to HIS mouse models with human tumor that is autologous or genetically identical to the human immune system, which are discussed with examples of their usefulness in modeling human cancer immunotherapies.
Collapse
Affiliation(s)
- Liguang Sun
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Chun-Hui Jin
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Shulian Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
41
|
Tian H, Lyu Y, Yang YG, Hu Z. Humanized Rodent Models for Cancer Research. Front Oncol 2020; 10:1696. [PMID: 33042811 PMCID: PMC7518015 DOI: 10.3389/fonc.2020.01696] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022] Open
Abstract
As one of the most popular laboratory animal models, rodents have been playing crucial roles in mechanistic investigations of oncogenesis as well as anticancer drug or regimen discoveries. However, rodent tumors show different or no responses to therapies against human cancers, and thus, in recent years, increased attention has been given to mouse models with xenografted or spontaneous human cancer cells. By combining with the human immune system (HIS) mice, these models have become more sophisticated and robust, enabling in vivo exploration of human cancer immunology and immunotherapy. In this review, we summarize the pros and cons of these humanized mouse models, with a focus on their potential as an in vivo platform for human cancer research. We also discuss the strategies for further improving these models.
Collapse
Affiliation(s)
- Huimin Tian
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
42
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
43
|
Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo. Nat Med 2020; 26:1776-1787. [PMID: 32868878 PMCID: PMC9422086 DOI: 10.1038/s41591-020-1039-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
An effective strategy to cure HIV will likely require a potent and sustained antiviral T cell response. Here we explored the utility of chimeric antigen receptor (CAR) T cells, expressing the CD4 ectodomain to confer specificity for the HIV envelope, to mitigate HIV-induced pathogenesis in bone marrow, liver, thymus (BLT) humanized mice. CAR T cells expressing the 4-1BB/CD3-ζ endodomain were insufficient to prevent viral rebound and CD4+ T cell loss after the discontinuation of antiretroviral therapy. Through iterative improvements to the CAR T cell product, we developed Dual-CAR T cells that simultaneously expressed both 4-1BB/CD3-ζ and CD28/CD3-ζ endodomains. Dual-CAR T cells exhibited expansion kinetics that exceeded 4-1BB-, CD28- and third-generation costimulated CAR T cells, elicited effector functions equivalent to CD28-costimulated CAR T cells and prevented HIV-induced CD4+ T cell loss despite persistent viremia. Moreover, when Dual-CAR T cells were protected from HIV infection through expression of the C34-CXCR4 fusion inhibitor, these cells significantly reduced acute-phase viremia, as well as accelerated HIV suppression in the presence of antiretroviral therapy and reduced tissue viral burden. Collectively, these studies demonstrate the enhanced therapeutic potency of a novel Dual-CAR T cell product with the potential to effectively treat HIV infection.
Collapse
|
44
|
Nikzad R, Angelo LS, Aviles-Padilla K, Le DT, Singh VK, Bimler L, Vukmanovic-Stejic M, Vendrame E, Ranganath T, Simpson L, Haigwood NL, Blish CA, Akbar AN, Paust S. Human natural killer cells mediate adaptive immunity to viral antigens. Sci Immunol 2020; 4:4/35/eaat8116. [PMID: 31076527 DOI: 10.1126/sciimmunol.aat8116] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Adaptive immune responses are defined as antigen sensitization-dependent and antigen-specific responses leading to establishment of long-lived immunological memory. Although natural killer (NK) cells have traditionally been considered cells of the innate immune system, mounting evidence in mice and nonhuman primates warrants reconsideration of the existing paradigm that B and T cells are the sole mediators of adaptive immunity. However, it is currently unknown whether human NK cells can exhibit adaptive immune responses. We therefore tested whether human NK cells mediate adaptive immunity to virally encoded antigens using humanized mice and human volunteers. We found that human NK cells displayed vaccination-dependent, antigen-specific recall responses in vitro, when isolated from livers of humanized mice previously vaccinated with HIV-encoded envelope protein. Furthermore, we discovered that large numbers of cytotoxic NK cells with a tissue-resident phenotype were recruited to sites of varicella-zoster virus (VZV) skin test antigen challenge in VZV-experienced human volunteers. These NK-mediated recall responses in humans occurred decades after initial VZV exposure, demonstrating that NK memory in humans is long-lived. Our data demonstrate that human NK cells exhibit adaptive immune responses upon vaccination or infection. The existence of human memory NK cells may allow for the development of vaccination-based approaches capable of establishing potent NK-mediated memory functions contributing to host protection.
Collapse
Affiliation(s)
- Rana Nikzad
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.,Translational Biology and Molecular Medicine Graduate Program at Baylor College of Medicine, Houston, TX, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Laura S Angelo
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Kevin Aviles-Padilla
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.,Integrative Molecular and Biomedical Sciences Graduate Program at Baylor College of Medicine, Houston, TX, USA
| | - Duy T Le
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.,Graduate Program in Immunology at Baylor College of Medicine, Houston, TX, USA
| | - Vipul K Singh
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Lynn Bimler
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA.,Graduate Program in Immunology at Baylor College of Medicine, Houston, TX, USA
| | | | - Elena Vendrame
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Simpson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Arne N Akbar
- Division of Infection and Immunity, University College London, UK
| | - Silke Paust
- Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA. .,Translational Biology and Molecular Medicine Graduate Program at Baylor College of Medicine, Houston, TX, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA.,Integrative Molecular and Biomedical Sciences Graduate Program at Baylor College of Medicine, Houston, TX, USA.,Graduate Program in Immunology at Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
45
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
46
|
Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, Bility MT. Moving beyond the mousetrap: current and emerging humanized mouse and rat models for investigating prevention and cure strategies against HIV infection and associated pathologies. Retrovirology 2020; 17:8. [PMID: 32276640 PMCID: PMC7149862 DOI: 10.1186/s12977-020-00515-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Melody
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Moses Turkle Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Bobardt M, Kuo J, Chatterji U, Wiedemann N, Vuagniaux G, Gallay P. The inhibitor of apoptosis proteins antagonist Debio 1143 promotes the PD-1 blockade-mediated HIV load reduction in blood and tissues of humanized mice. PLoS One 2020; 15:e0227715. [PMID: 31978106 PMCID: PMC6980394 DOI: 10.1371/journal.pone.0227715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
The immune checkpoint programmed cell death protein 1 (PD-1) plays a major role in T cell exhaustion in cancer and chronic HIV infection. The inhibitor of apoptosis protein antagonist Debio 1143 (D1143) enhances tumor cell death and synergizes with anti-PD-1 agents to promote tumor immunity and displayed HIV latency reversal activity in vitro. We asked in this study whether D1143 would stimulate the potency of an anti-human PD-1 monoclonal antibody (mAb) to reduce HIV loads in humanized mice. Anti-PD-1 mAb treatment decreased PD-1+ CD8+ cell population by 32.3% after interruption of four weeks treatment, and D1143 co-treatment further reduced it from 32.3 to 73%. Anti-PD-1 mAb administration reduced HIV load in blood by 94%, and addition of D1143 further enhanced this reduction from 94 to 97%. D1143 also more profoundly promoted with the anti-PD-1-mediated reduction of HIV loads in all tissues analyzed including spleen (71 to 96.4%), lymph nodes (64.3 to 80%), liver (64.2 to 94.4), lung (64.3 to 80.1%) and thymic organoid (78.2 to 98.2%), achieving a >5 log reduction of HIV loads in CD4+ cells isolated from tissues 2 weeks after drug treatment interruption. Ex vivo anti-CD3/CD28 stimulation increased the ability to activate exhausted CD8+ T cells in infected mice having received in vivo anti-PD-1 treatment by 7.9-fold (5 to 39.6%), and an additional increase by 1.7-fold upon D1143 co-treatment (39.6 to 67.3%). These findings demonstrate for the first time that an inhibitor of apoptosis protein antagonist enhances in a statistically manner the effects of an immune check point inhibitor on antiviral immunity and on HIV load reduction in tissues of humanized mice, suggesting that the combination of two distinct classes of immunomodulatory agents constitutes a promising anti-HIV immunotherapeutic approach.
Collapse
Affiliation(s)
- Michael Bobardt
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Joseph Kuo
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Udayan Chatterji
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | | | | - Philippe Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
O’Connell AK, Douam F. Humanized Mice for Live-Attenuated Vaccine Research: From Unmet Potential to New Promises. Vaccines (Basel) 2020; 8:E36. [PMID: 31973073 PMCID: PMC7157703 DOI: 10.3390/vaccines8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/24/2023] Open
Abstract
Live-attenuated vaccines (LAV) represent one of the most important medical innovations in human history. In the past three centuries, LAV have saved hundreds of millions of lives, and will continue to do so for many decades to come. Interestingly, the most successful LAVs, such as the smallpox vaccine, the measles vaccine, and the yellow fever vaccine, have been isolated and/or developed in a purely empirical manner without any understanding of the immunological mechanisms they trigger. Today, the mechanisms governing potent LAV immunogenicity and long-term induced protective immunity continue to be elusive, and therefore hamper the rational design of innovative vaccine strategies. A serious roadblock to understanding LAV-induced immunity has been the lack of suitable and cost-effective animal models that can accurately mimic human immune responses. In the last two decades, human-immune system mice (HIS mice), i.e., mice engrafted with components of the human immune system, have been instrumental in investigating the life-cycle and immune responses to multiple human-tropic pathogens. However, their use in LAV research has remained limited. Here, we discuss the strong potential of LAVs as tools to enhance our understanding of human immunity and review the past, current and future contributions of HIS mice to this endeavor.
Collapse
Affiliation(s)
| | - Florian Douam
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA;
| |
Collapse
|
49
|
The Establishment of an In Vivo HIV-1 Infection Model in Humanized B-NSG Mice. Virol Sin 2019; 35:417-425. [PMID: 31863357 DOI: 10.1007/s12250-019-00181-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Suitable animal models for human immunodeficiency virus type 1 (HIV-1) infection are important for elucidating viral pathogenesis and evaluating antiviral strategies in vivo. The B-NSG (NOD-PrkdcscidIl2rgtm1/Bcge) mice that have severe immune defect phenotype are examined for the suitability of such a model in this study. Human peripheral blood mononuclear cells (PBMCs) were engrafted into B-NSG mice via mouse tail vein injection, and the repopulated human T-lymphocytes were observed at as early as 3-weeks post-transplantation in mouse peripheral blood and several tissues. The humanized mice could be infected by HIV-1, and the infection recapitulated features of T-lymphocyte dynamic observed in HIV-1 infected humans, meanwhile the administration of combination antiretroviral therapy (cART) suppressed viral replication and restored T lymphocyte abnormalities. The establishment of HIV-1 infected humanized B-NSG mice not only provides a model to study virus and T cell interplays, but also can be a useful tool to evaluate antiviral strategies.
Collapse
|
50
|
Curran M, Mairesse M, Matas-Céspedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K. Recent Advancements and Applications of Human Immune System Mice in Preclinical Immuno-Oncology. Toxicol Pathol 2019; 48:302-316. [PMID: 31847725 DOI: 10.1177/0192623319886304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant advances in immunotherapies have resulted in the increasing need of predictive preclinical models to improve immunotherapeutic drug development, treatment combination, and to prevent or minimize toxicity in clinical trials. Immunodeficient mice reconstituted with human immune system (HIS), termed humanized mice or HIS mice, permit detailed analysis of human immune biology, development, and function. Although this model constitutes a great translational model, some aspects need to be improved as the incomplete engraftment of immune cells, graft versus host disease and the lack of human cytokines and growth factors. In this review, we discuss current HIS platforms, their pathology, and recent advances in their development to improve the quality of human immune cell reconstitution. We also highlight new technologies that can be used to better understand these models and how improved characterization is needed for their application in immuno-oncology safety, efficacy, and new modalities therapy development.
Collapse
Affiliation(s)
- Michelle Curran
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Maelle Mairesse
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alba Matas-Céspedes
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom.,Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bethany Bareham
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ardi Liaunardy
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Edward Powell
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Rebecca Sargeant
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Emanuela Cuomo
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard Stebbings
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J Betts
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|