1
|
Fischer F, Mücke J, Werny L, Gerrer K, Mihatsch L, Zehetmaier S, Riedel I, Geisperger J, Bodenhausen M, Schulte-Hillen L, Hoffmann D, Protzer U, Mautner J, Behrends U, Bauer T, Körber N. Evaluation of novel Epstein-Barr virus-derived antigen formulations for monitoring virus-specific T cells in pediatric patients with infectious mononucleosis. Virol J 2024; 21:139. [PMID: 38877590 PMCID: PMC11179387 DOI: 10.1186/s12985-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.
Collapse
Affiliation(s)
- Franziska Fischer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Mücke
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Louisa Werny
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Katrin Gerrer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lorenz Mihatsch
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Zehetmaier
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
| | - Isa Riedel
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jonas Geisperger
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Bodenhausen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lina Schulte-Hillen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Josef Mautner
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Nina Körber
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
2
|
Cai J, Zhang B, Li Y, Zhu W, Akihisa T, Li W, Kikuchi T, Liu W, Feng F, Zhang J. Prophylactic and Therapeutic EBV Vaccines: Major Scientific Obstacles, Historical Progress, and Future Direction. Vaccines (Basel) 2021; 9:vaccines9111290. [PMID: 34835222 PMCID: PMC8623587 DOI: 10.3390/vaccines9111290] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) infects more than 95% of adults worldwide and is associated with various malignant tumors and immune diseases, imparting a huge disease burden on the human population. Available EBV vaccines are imminent. Prophylactic vaccines can effectively prevent the spread of infection, whereas therapeutic vaccines mainly stimulate cell-mediated immunity and kill infected cells, thus curbing the development of malignant tumors. Nevertheless, there are still no approved EBV vaccines after decades of effort. The complexity of the EBV life cycle, the lack of appropriate animal models, and the limited reports on adjuvant selection and immune responses are gravely impeding progress in EBV vaccines. The soluble gp350 vaccine could reduce the incidence of infectious mononucleosis (IM), which seemed to offer hope, but could not prevent EBV infection. Continuous research and vaccine trials provide deep insights into the structural biology of viruses, the designs for immunogenicity, and the evolving vaccine platforms. Moreover, the new vaccine candidates are expected to achieve further success via combined immunization to elicit both a dual protection of B cells and epithelial cells, and sustainable immunization against infected cells at several phases of infection.
Collapse
Affiliation(s)
- Jing Cai
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Bodou Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Yuqi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
| | - Wanfang Zhu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Toshihiro Akihisa
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Research Institute for Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Takashi Kikuchi
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan; (W.L.); (T.K.)
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (W.Z.); (W.L.)
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (J.C.); (B.Z.); (Y.L.); (T.A.); (F.F.)
- Jiangsu Food and Pharmaceutical Science College, Huaian 223003, China
- Correspondence:
| |
Collapse
|
3
|
Rühl J, Leung CS, Münz C. Vaccination against the Epstein-Barr virus. Cell Mol Life Sci 2020; 77:4315-4324. [PMID: 32367191 PMCID: PMC7223886 DOI: 10.1007/s00018-020-03538-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus being discovered and remains to date the only human pathogen that can transform cells in vitro. 55 years of EBV research have now brought us to the brink of an EBV vaccine. For this purpose, recombinant viral vectors and their heterologous prime-boost vaccinations, EBV-derived virus-like particles and viral envelope glycoprotein formulations are explored and are discussed in this review. Even so, cell-mediated immune control by cytotoxic lymphocytes protects healthy virus carriers from EBV-associated malignancies, antibodies might be able to prevent symptomatic primary infection, the most likely EBV-associated pathology against which EBV vaccines will be initially tested. Thus, the variety of EBV vaccines reflects the sophisticated life cycle of this human tumor virus and only vaccination in humans will finally be able to reveal the efficacy of these candidates. Nevertheless, the recently renewed efforts to develop an EBV vaccine and the long history of safe adoptive T cell transfer to treat EBV-associated malignancies suggest that this oncogenic γ-herpesvirus can be targeted by immunotherapies. Such vaccination should ideally implement the very same immune control that protects healthy EBV carriers.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Carol S Leung
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland.
| |
Collapse
|
4
|
The Epstein-Barr Virus Major Tegument Protein BNRF1 Is a Common Target of Cytotoxic CD4 + T Cells. J Virol 2020; 94:JVI.00284-20. [PMID: 32461311 DOI: 10.1128/jvi.00284-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 01/14/2023] Open
Abstract
Cellular immunotherapy is a proven approach against Epstein-Barr virus (EBV)-driven lymphoproliferation in recipients of hematopoietic stem cells. Extending the applicability and improving the response rates of such therapy demands improving the knowledge base. We studied 23 healthy donors for specific CD4+ T cell responses against the viral tegument protein BNRF1 and found such T cells in all seropositive donors, establishing BNRF1 as an important immune target in EBV. We identified 18 novel immune epitopes from BNRF1, all of them generated by natural processing of the full-length protein from virus-transformed lymphoblastoid cell lines (LCL). BNRF1-specific CD4+ T cells were measured directly ex vivo by a cytokine-based method, thus providing a tool to study the interaction between immunity and infection in health and disease. T cells of the cytotoxic Th1 type inhibited the proliferation of autologous LCL as well as virus-driven transformation. We infer that they are important in limiting reactivations to subclinical levels during health and reducing virus propagation during disease. The information obtained from this work will feed into data sets that are indispensable in the design of patient-tailored immunotherapeutic approaches, thereby enabling the stride toward broader application of T cell therapy and improving clinical response rates.IMPORTANCE Epstein-Barr virus is carried by most humans and can cause life-threatening diseases. Virus-specific T cells have been used in different clinical settings with variable success rates. One way to improve immunotherapy is to better suit T cell generation protocols to viral targets available in different diseases. BNRF1 is present in viral particles and therefore likely available as a target for T cells in diseases with virus amplification. Here, we studied healthy Epstein-Barr virus (EBV) carriers for BNRF1 immunogenicity and report our results indicating BNRF1 to be a dominant target of the EBV-specific CD4+ T cell response. BNRF1-specific CD4+ T cells were found to be cytotoxic and capable of limiting EBV-driven B cell transformation in vitro The findings of this work contribute to forwarding our understanding of host-virus interactions during health and disease and are expected to find direct application in the generation of specific T cells for immunotherapy.
Collapse
|
5
|
van Zyl DG, Mautner J, Delecluse HJ. Progress in EBV Vaccines. Front Oncol 2019; 9:104. [PMID: 30859093 PMCID: PMC6398348 DOI: 10.3389/fonc.2019.00104] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/04/2019] [Indexed: 12/26/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous pathogen that imparts a significant burden of disease on the human population. EBV is the primary cause of infectious mononucleosis and is etiologically linked to the development of numerous malignancies. In recent years, evidence has also been amassed that strongly implicate EBV in the development of several autoimmune diseases, including multiple sclerosis. Prophylactic and therapeutic vaccination has been touted as a possible means of preventing EBV infection and controlling EBV-associated diseases. However, despite several decades of research, no licensed EBV vaccine is available. The majority of EBV vaccination studies over the last two decades have focused on the major envelope protein gp350, culminating in a phase II clinical trial that showed soluble gp350 reduced the incidence of IM, although it was unable to protect against EBV infection. Recently, novel vaccine candidates with increased structural complexity and antigenic content have been developed. The ability of next generation vaccines to safeguard against B-cell and epithelial cell infection, as well as to target infected cells during all phases of infection, is likely to decrease the negative impact of EBV infection on the human population.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Heidelberg, Germany
- Children's Hospital, Technische Universität München, and Helmholtz Zentrum München, Bavaria, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| |
Collapse
|
6
|
van Zyl DG, Tsai MH, Shumilov A, Schneidt V, Poirey R, Schlehe B, Fluhr H, Mautner J, Delecluse HJ. Immunogenic particles with a broad antigenic spectrum stimulate cytolytic T cells and offer increased protection against EBV infection ex vivo and in mice. PLoS Pathog 2018; 14:e1007464. [PMID: 30521644 PMCID: PMC6298685 DOI: 10.1371/journal.ppat.1007464] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/18/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
The ubiquitous Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and is etiologically linked to the development of several malignancies and autoimmune diseases. EBV has a multifaceted life cycle that comprises virus lytic replication and latency programs. Considering EBV infection holistically, we rationalized that prophylactic EBV vaccines should ideally prime the immune system against lytic and latent proteins. To this end, we generated highly immunogenic particles that contain antigens from both these cycles. In addition to stimulating EBV-specific T cells that recognize lytic or latent proteins, we show that the immunogenic particles enable the ex vivo expansion of cytolytic EBV-specific T cells that efficiently control EBV-infected B cells, preventing their outgrowth. Lastly, we show that immunogenic particles containing the latent protein EBNA1 afford significant protection against wild-type EBV in a humanized mouse model. Vaccines that include antigens which predominate throughout the EBV life cycle are likely to enhance their ability to protect against EBV infection. Human herpesviruses are tremendously successful pathogens that establish lifelong infection in a substantial proportion of the population. The oncogenic γ-herpesvirus EBV, like other herpesviruses, expresses a plethora of open-reading frames throughout its multifaceted life cycle. We have developed a prophylactic vaccine candidate in the form of immunogenic particles that contain several EBV antigens. This is in stark contrast to the vast majority of EBV vaccines candidates that contain only one or two EBV antigens. Our immunogenic particles were shown capable of stimulating several EBV-specific T-cell clones in vitro. The immunogenic particles were also capable of expanding cytolytic EBV-specific T cells ex vivo and provided a protective benefit in vivo when used as a prophylactic vaccine.
Collapse
Affiliation(s)
- Dwain G. van Zyl
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Ming-Han Tsai
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anatoliy Shumilov
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Viktor Schneidt
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Rémy Poirey
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Bettina Schlehe
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Frauenklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Josef Mautner
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Children’s Hospital, Technische Universität München, & Helmholtz Zentrum München, Munich, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Center (DKFZ) Unit F100, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit U1074, Heidelberg, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
- * E-mail:
| |
Collapse
|
7
|
Perez EM, Foley J, Tison T, Silva R, Ogembo JG. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice. Oncotarget 2017; 8:19255-19273. [PMID: 27926486 PMCID: PMC5386682 DOI: 10.18632/oncotarget.13770] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/07/2016] [Indexed: 01/02/2023] Open
Abstract
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that EBV glycoprotein(s)-based VLPs have excellent immunogenicity, and represent a potentially safe vaccine that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.
Collapse
Affiliation(s)
- Elizabeth M Perez
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joslyn Foley
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Timelia Tison
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rute Silva
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Javier Gordon Ogembo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
8
|
Muraro E, Merlo A, Martorelli D, Cangemi M, Dalla Santa S, Dolcetti R, Rosato A. Fighting Viral Infections and Virus-Driven Tumors with Cytotoxic CD4 + T Cells. Front Immunol 2017; 8:197. [PMID: 28289418 PMCID: PMC5327441 DOI: 10.3389/fimmu.2017.00197] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CD4+ T cells have been and are still largely regarded as the orchestrators of immune responses, being able to differentiate into distinct T helper cell populations based on differentiation signals, transcription factor expression, cytokine secretion, and specific functions. Nonetheless, a growing body of evidence indicates that CD4+ T cells can also exert a direct effector activity, which depends on intrinsic cytotoxic properties acquired and carried out along with the evolution of several pathogenic infections. The relevant role of CD4+ T cell lytic features in the control of such infectious conditions also leads to their exploitation as a new immunotherapeutic approach. This review aims at summarizing currently available data about functional and therapeutic relevance of cytotoxic CD4+ T cells in the context of viral infections and virus-driven tumors.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Anna Merlo
- Department of Immunology and Blood Transfusions, San Bortolo Hospital, Vicenza, Italy
| | - Debora Martorelli
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | - Michela Cangemi
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
| | | | - Riccardo Dolcetti
- Immunopathology and Cancer Biomarkers, Traslational Research Department, IRCCS, C.R.O. National Cancer Institute, Aviano, Pordenone, Italy
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Yu F, Tan WJ, Lu Y, MacAry PA, Loh KS. The other side of the coin: Leveraging Epstein-Barr virus in research and therapy. Oral Oncol 2016; 60:112-7. [PMID: 27531881 PMCID: PMC7108324 DOI: 10.1016/j.oraloncology.2016.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/09/2016] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus is (EBV) a ubiquitous virus prevalent in 90% of the human population. Transmitted through infected saliva, EBV is the causative agent of infectious mononucleosis (IM) and is further implicated in malignancies of lymphoid and epithelial origins. In the past few decades, research efforts primarily focused on dissecting the mechanism of EBV-induced oncogenesis. Here, we present an alternate facet of the oncovirus EBV, on its applications in research and therapy. Finally, discussions on the prospective utilization of EBV in nasopharyngeal carcinoma (NPC) diagnosis and therapy will also be presented.
Collapse
Affiliation(s)
- Fenggang Yu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Wei Jian Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yanan Lu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul A MacAry
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University Health System, Singapore
| |
Collapse
|
10
|
Antsiferova O, Müller A, Rämer PC, Chijioke O, Chatterjee B, Raykova A, Planas R, Sospedra M, Shumilov A, Tsai MH, Delecluse HJ, Münz C. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog 2014; 10:e1004333. [PMID: 25165855 PMCID: PMC4148450 DOI: 10.1371/journal.ppat.1004333] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/11/2014] [Indexed: 01/29/2023] Open
Abstract
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development. Epstein Barr virus persistently infects more than 90% of the human adult population. While fortunately carried as an asymptomatic chronic infection in most individuals, it causes B cell lymphomas and carcinomas in some patients. Symptomatic primary EBV infection, called infectious mononucleosis, predisposes for some of these malignancies and is characterized by massive expansions of cytotoxic T cells, which are mostly directed against lytic EBV antigens that are expressed during virus particle production. Therefore, we investigated the protective role of lytic EBV antigen specific T cells during EBV infection and the contribution of lytic EBV infection to virus-associated tumor formation. We found that lytic EBV antigen specific T cells kill B cells with lytic virus replication and might thereby transiently control EBV infection in mice with human immune system components. Furthermore, we observed that EBV associated B cell tumors outside secondary lymphoid organs may require lytic replication for efficient formation. Thus, we suggest that lytic EBV antigens should be explored for vaccination against symptomatic EBV infection and EBV associated extra-lymphoid tumors.
Collapse
Affiliation(s)
- Olga Antsiferova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Anne Müller
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Patrick C. Rämer
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Bithi Chatterjee
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ana Raykova
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Raquel Planas
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| | - Anatoliy Shumilov
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ming-Han Tsai
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Henri-Jacques Delecluse
- Division of Pathogenesis of Virus Associated Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Linnerbauer S, Behrends U, Adhikary D, Witter K, Bornkamm GW, Mautner J. Virus and autoantigen-specific CD4+ T cells are key effectors in a SCID mouse model of EBV-associated post-transplant lymphoproliferative disorders. PLoS Pathog 2014; 10:e1004068. [PMID: 24853673 PMCID: PMC4031221 DOI: 10.1371/journal.ppat.1004068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 02/28/2014] [Indexed: 11/18/2022] Open
Abstract
Polyclonal Epstein-Barr virus (EBV)-infected B cell line (lymphoblastoid cell lines; LCL)-stimulated T-cell preparations have been successfully used to treat EBV-positive post-transplant lymphoproliferative disorders (PTLD) in transplant recipients, but function and specificity of the CD4+ component are still poorly defined. Here, we assessed the tumor-protective potential of different CD4+ T-cell specificities in a PTLD-SCID mouse model. Injection of different virus-specific CD4+ T-cell clones showed that single specificities were capable of prolonging mouse survival and that the degree of tumor protection directly correlated with recognition of target cells in vitro. Surprisingly, some CD4+ T-cell clones promoted tumor development, suggesting that besides antigen recognition, still elusive functional differences exist among virus-specific T cells. Of several EBV-specific CD4+ T-cell clones tested, those directed against virion antigens proved most tumor-protective. However, enriching these specificities in LCL-stimulated preparations conferred no additional survival benefit. Instead, CD4+ T cells specific for unknown, probably self-antigens were identified as principal antitumoral effectors in LCL-stimulated T-cell lines. These results indicate that virion and still unidentified cellular antigens are crucial targets of the CD4+ T-cell response in this preclinical PTLD-model and that enriching the corresponding T-cell specificities in therapeutic preparations may enhance their clinical efficacy. Moreover, the expression in several EBV-negative B-cell lymphoma cell lines implies that these putative autoantigen(s) might also qualify as targets for T-cell-based immunotherapy of virus-negative B cell malignancies.
Collapse
Affiliation(s)
- Stefanie Linnerbauer
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Uta Behrends
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Dinesh Adhikary
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Josef Mautner
- Clinical Cooperation Group Pediatric Tumor Immunology, Children's Hospital, Technische Universität München, Munich, Germany
- Helmholtz Zentrum München, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
- * E-mail:
| |
Collapse
|
12
|
Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014; 88:1703-13. [PMID: 24257606 PMCID: PMC3911611 DOI: 10.1128/jvi.02209-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023] Open
Abstract
The chromatin regulatory factors CTCF and cohesin have been implicated in the coordinated control of multiple gene loci in Epstein-Barr virus (EBV) latency. We have found that CTCF and cohesin are highly enriched at the convergent and partially overlapping transcripts for the LMP1 and LMP2A genes, but it is not yet known how CTCF and cohesin may coordinately regulate these transcripts. We now show that genetic disruption of this CTCF binding site (EBVΔCTCF166) leads to a deregulation of LMP1, LMP2A, and LMP2B transcription in EBV-immortalized B lymphocytes. EBVΔCTCF166 virus-immortalized primary B lymphocytes showed a decrease in LMP1 and LMP2A mRNA and a corresponding increase in LMP2B mRNA. The reduction of LMP1 and LMP2A correlated with a loss of euchromatic histone modification H3K9ac and a corresponding increase in heterochromatic histone modification H3K9me3 at the LMP2A promoter region in EBVΔCTCF166. Chromosome conformation capture (3C) revealed that DNA loop formation with the origin of plasmid replication (OriP) enhancer was eliminated in EBVΔCTCF166. We also observed that the EBV episome copy number was elevated in EBVΔCTCF166 and that this was not due to increased lytic cycle activity. These findings suggest that a single CTCF binding site controls LMP2A and LMP1 promoter selection, chromatin boundary function, DNA loop formation, and episome copy number control during EBV latency.
Collapse
Affiliation(s)
| | - Kayla A. Martin
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lena N. Lupey
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Italo Tempera
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Posttransplant lymphoproliferative disease after pediatric solid organ transplantation. Clin Dev Immunol 2013; 2013:814973. [PMID: 24174972 PMCID: PMC3794558 DOI: 10.1155/2013/814973] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 02/06/2023]
Abstract
Patients after solid organ transplantation (SOT) carry a substantially increased risk to develop malignant lymphomas. This is in part due to the immunosuppression required to maintain the function of the organ graft. Depending on the transplanted organ, up to 15% of pediatric transplant recipients acquire posttransplant lymphoproliferative disease (PTLD), and eventually 20% of those succumb to the disease. Early diagnosis of PTLD is often hampered by the unspecific symptoms and the difficult differential diagnosis, which includes atypical infections as well as graft rejection. Treatment of PTLD is limited by the high vulnerability towards antineoplastic chemotherapy in transplanted children. However, new treatment strategies and especially the introduction of the monoclonal anti-CD20 antibody rituximab have dramatically improved outcomes of PTLD. This review discusses risk factors for the development of PTLD in children, summarizes current approaches to therapy, and gives an outlook on developing new treatment modalities like targeted therapy with virus-specific T cells. Finally, monitoring strategies are evaluated.
Collapse
|
14
|
An Epstein-Barr virus mutant produces immunogenic defective particles devoid of viral DNA. J Virol 2012; 87:2011-22. [PMID: 23236073 DOI: 10.1128/jvi.02533-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) from hepatitis B and human papillomaviruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists of producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4(+) T-cell response that was indistinguishable from the one obtained with wild-type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.
Collapse
|
15
|
Abstract
Epstein-Barr Virus (EBV) is an ubiquitous human herpesvirus which can lead to infectious mononucleosis and different cancers. In immunocompromised individuals, this virus is a major cause for morbidity and mortality. Transplant patients who did not encounter EBV prior to immunosuppression frequently develop EBV-associated malignancies, but a prophylactic EBV vaccination might reduce this risk considerably. Virus-like particles (VLPs) mimic the structure of the parental virus but lack the viral genome. Therefore, VLPs are considered safe and efficient vaccine candidates. We engineered a dedicated producer cell line for EBV-derived VLPs. This cell line contains a genetically modified EBV genome which is devoid of all potential viral oncogenes but provides viral proteins essential for the assembly and release of VLPs via the endosomal sorting complex required for transport (ESCRT). Human B cells readily take up EBV-based VLPs and present viral epitopes in association with HLA molecules to T cells. Consequently, EBV-based VLPs are highly immunogenic and elicit humoral and strong CD8+ and CD4+ T cell responses in vitro and in a preclinical murine model in vivo. Our findings suggest that VLP formulations might be attractive candidates to develop a safe and effective polyvalent vaccine against EBV.
Collapse
|
16
|
Ruiss R, Jochum S, Mocikat R, Hammerschmidt W, Zeidler R. EBV-gp350 confers B-cell tropism to tailored exosomes and is a neo-antigen in normal and malignant B cells--a new option for the treatment of B-CLL. PLoS One 2011; 6:e25294. [PMID: 22022385 PMCID: PMC3189918 DOI: 10.1371/journal.pone.0025294] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/31/2011] [Indexed: 01/10/2023] Open
Abstract
gp350, the major envelope protein of Epstein-Barr-Virus, confers B-cell tropism to the virus by interacting with the B lineage marker CD21. Here we utilize gp350 to generate tailored exosomes with an identical tropism. These exosomes can be used for the targeted co-transfer of functional proteins to normal and malignant human B cells. We demonstrate here the co-transfer of functional CD154 protein on tailored gp350+ exosomes to malignant B blasts from patients with B chronic lymphocytic leukemia (B-CLL), rendering B blasts immunogenic to tumor-reactive autologous T cells. Intriguingly, engulfment of gp350+ exosomes by B-CLL cells and presentation of gp350-derived peptides also re-stimulated EBV-specific T cells and redirected the strong antiviral cellular immune response in patients to leukemic B cells. In essence, we show that gp350 alone confers B-cell tropism to exosomes and that these exosomes can be further engineered to simultaneously trigger virus- and tumor-specific immune responses. The simultaneous exploitation of gp350 as a tropism molecule for tailored exosomes and as a neo-antigen in malignant B cells provides a novel attractive strategy for immunotherapy of B-CLL and other B-cell malignancies.
Collapse
MESH Headings
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B-Lymphocytes/virology
- CD4-Positive T-Lymphocytes/immunology
- CD40 Ligand/metabolism
- Exosomes/metabolism
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphocyte Activation/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Tropism/immunology
- Viral Matrix Proteins/metabolism
- Virus Assembly
Collapse
Affiliation(s)
- Romana Ruiss
- Department of Gene Vectors, Helmholtz-Zentrum, Munich, Germany
| | - Simon Jochum
- Department of Gene Vectors, Helmholtz-Zentrum, Munich, Germany
| | - Ralph Mocikat
- Institut für Molekulare Immunologie, Helmholtz-Zentrum, Munich, Germany
| | | | - Reinhard Zeidler
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| |
Collapse
|
17
|
Long HM, Leese AM, Chagoury OL, Connerty SR, Quarcoopome J, Quinn LL, Shannon-Lowe C, Rickinson AB. Cytotoxic CD4+ T cell responses to EBV contrast with CD8 responses in breadth of lytic cycle antigen choice and in lytic cycle recognition. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:92-101. [PMID: 21622860 PMCID: PMC3154640 DOI: 10.4049/jimmunol.1100590] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
EBV, a B lymphotropic herpesvirus, encodes two immediate early (IE)-, >30 early (E)-, and >30 late (L)-phase proteins during its replication (lytic) cycle. Despite this, lytic Ag-induced CD8 responses are strongly skewed toward IE and a few E proteins only, all expressed before HLA I presentation is blocked in lytically infected cells. For comparison, we examined CD4(+) T cell responses to eight IE, E, or L proteins, screening 14 virus-immune donors to overlapping peptide pools in IFN-γ ELISPOT assays, and established CD4(+) T cell clones against 12 defined epitopes for target-recognition assays. We found that the lytic Ag-specific CD4(+) T cell response differs radically from its CD8 counterpart in that it is widely distributed across IE, E, and L Ag targets, often with multiple reactivities detectable per donor and with IE, E, or L epitope responses being numerically dominant, and that all CD4(+) T cell clones, whether IE, E, or L epitope-specific, show strong recognition of EBV-transformed B cell lines, despite the lines containing only a small fraction of lytically infected cells. Efficient recognition occurs because lytic Ags are released into the culture and are acquired and processed by neighboring latently infected cells. These findings suggested that lytic Ag-specific CD4 responses are driven by a different route of Ag display than drives CD8 responses and that such CD4 effectors could be therapeutically useful against EBV-driven lymphoproliferative disease lesions, which contain similarly small fractions of EBV-transformed cells entering the lytic cycle.
Collapse
Affiliation(s)
- Heather M. Long
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison M. Leese
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Odette L. Chagoury
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Shawn R. Connerty
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jared Quarcoopome
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura L. Quinn
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Shannon-Lowe
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alan B. Rickinson
- School of Cancer Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
18
|
Mautner J, Bornkamm GW. The role of virus-specific CD4+ T cells in the control of Epstein-Barr virus infection. Eur J Cell Biol 2011; 91:31-5. [PMID: 21458882 DOI: 10.1016/j.ejcb.2011.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/22/2011] [Indexed: 11/15/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes lifelong persistent infections in humans and has been implicated in the pathogenesis of several human malignancies. Protective immunity against EBV is mediated by T cells, as indicated by an increased incidence of EBV-associated malignancies in immunocompromised patients, and by the successful treatment of EBV-associated post-transplant lymphoproliferative disease (PTLD) in transplant recipients by the infusion of polyclonal EBV-specific T cell lines. To implement this treatment modality as a conventional therapeutic option, and to extend this protocol to other EBV-associated diseases, generic and more direct approaches for the generation of EBV-specific T cell lines enriched in disease-relevant specificities need to be developed. To this aim, we studied the poorly defined EBV-specific CD4+ T cell response during acute and chronic infection.
Collapse
Affiliation(s)
- Josef Mautner
- Clinical Cooperation Group, Pediatric Tumor Immunology, Helmholtz-Zentrum München, Marchioninistrasse 25, Munich, Germany.
| | | |
Collapse
|
19
|
Feederle R, Bartlett EJ, Delecluse HJ. Epstein-Barr virus genetics: talking about the BAC generation. HERPESVIRIDAE 2010; 1:6. [PMID: 21429237 PMCID: PMC3063228 DOI: 10.1186/2042-4280-1-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/07/2010] [Indexed: 01/29/2023]
Abstract
Genetic mutant organisms pervade all areas of Biology. Early on, herpesviruses (HV) were found to be amenable to genetic analysis using homologous recombination techniques in eukaryotic cells. More recently, HV genomes cloned onto a bacterial artificial chromosome (BAC) have become available. HV BACs can be easily modified in E.coli and reintroduced in eukaryotic cells to produce infectious viruses. Mutants derived from HV BACs have been used both to understand the functions of all types of genetic elements present on the virus genome, but also to generate mutants with potentially medically relevant properties such as preventative vaccines. Here we retrace the development of the BAC technology applied to the Epstein-Barr virus (EBV) and review the strategies available for the construction of mutants. We expand on the appropriate controls required for proper use of the EBV BACs, and on the technical hurdles researchers face in working with these recombinants. We then discuss how further technological developments might successfully overcome these difficulties. Finally, we catalog the EBV BAC mutants that are currently available and illustrate their contributions to the field using a few representative examples.
Collapse
Affiliation(s)
- Regina Feederle
- German Cancer Research Centre, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
20
|
Porta C, Riboldi E, Sica A. Mechanisms linking pathogens-associated inflammation and cancer. Cancer Lett 2010; 305:250-62. [PMID: 21093147 DOI: 10.1016/j.canlet.2010.10.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/29/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023]
Abstract
It has been estimated that chronic infections with viruses, bacteria and parasites are the causative agents of 8-17% of global cancers burden. Carcinogenesis associated with infections is a complex process, often mediated by chronic inflammatory conditions and accumulating evidence indicate that a smouldering inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Selected infectious agents promote a cascade of events culminating in chronic inflammatory responses, thus predisposing target tissues to increased cancer susceptibility. A causal link also exists between an inflammatory microenvironment, consisting of inflammatory cells and mediators, and tumor progression. Tumor-Associated Macrophages (TAM) represent the major inflammatory population present in tumors, orchestrating various aspects of cancer, including: diversion and skewing of adaptive responses; cell growth; angiogenesis; matrix deposition and remodelling; construction of a metastatic niche and actual metastasis; response to hormones and chemotherapeutic agents. Recent studies on human and murine tumors indicate that TAM show a remarkable degree of plasticity and functional heterogeneity, during tumour development. In established tumors, TAM acquire an M2 polarized phenotype are engaged in immunosuppression and the promotion of tumor angiogenesis and metastasis. Being a first line of the innate defence mechanisms, macrophages are also equipped with pathogen-recognition receptors, to sense the presence of danger signals, including onco-pathogens. Here we discuss the evidence suggesting a causal relationship between selected infectious agents and the pro-tumoral reprogramming of inflammatory cells, as well as its significance in tumor development. Finally, we discuss the implications of this phenomenon for both cancer prevention and therapy.
Collapse
Affiliation(s)
- Chiara Porta
- DISCAFF, University of Piemonte Orientale A. Avogadro, via Bovio 6, Novara, Italy
| | | | | |
Collapse
|
21
|
Hanafi LA, Bolduc M, Gagné MEL, Dufour F, Langelier Y, Boulassel MR, Routy JP, Leclerc D, Lapointe R. Two distinct chimeric potexviruses share antigenic cross-presentation properties of MHC class I epitopes. Vaccine 2010; 28:5617-26. [PMID: 20600515 DOI: 10.1016/j.vaccine.2010.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 06/07/2010] [Indexed: 11/29/2022]
Abstract
Chimeric VLPs made of papaya mosaic virus (PapMV) trigger a CTL response through antigenic presentation of epitopes on MHC class I. Here, a chimeric VLP composed of malva mosaic virus (MaMV) was shown to share similar properties. We demonstrated the capacity of both VLPs to enter human APCs. The chimeric constructions were cross-presented in CD40-activated B lymphocytes leading to in vitro expansion of antigen-specific T lymphocytes. We showed that high concentrations of chimeric MaMV induced cell death, suggesting that some modifications can trigger collateral effects in vitro. Results suggest that potexvirus VLPs are an attractive vaccine platform for inducing a CTL response.
Collapse
Affiliation(s)
- Laïla-Aïcha Hanafi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM) - Hôpital Notre-Dame, Université de Montréal and Institut du Cancer de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Merlo A, Turrini R, Bobisse S, Zamarchi R, Alaggio R, Dolcetti R, Mautner J, Zanovello P, Amadori A, Rosato A. Virus-specific cytotoxic CD4+ T cells for the treatment of EBV-related tumors. THE JOURNAL OF IMMUNOLOGY 2010; 184:5895-902. [PMID: 20385879 DOI: 10.4049/jimmunol.0902850] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although adoptive immunotherapy with CD8(+) CTL is providing clinically relevant results against EBV-driven malignancies, the effector role of CD4(+) T cells has been poorly investigated. We addressed this issue in a lymphoblastoid cell line-induced mouse model of posttransplant lymphoproliferative disease (PTLD) by comparing the therapeutic efficacy of EBV-specific CD4(+) and CD8(+) T cell lines upon adoptive transfer. CD4(+) T cells disclosed a long-lasting and stronger proliferative potential than CD8(+) T cells, had a similar activation and differentiation marker profile, efficiently killed their targets in a MHC class II-restricted manner, and displayed a lytic machinery comparable to that of cognate CD8(+) T cells. A detailed analysis of Ag specificity revealed that CD4(+) T cells potentially target EBV early lytic cycle proteins. Nonetheless, when assessed for the relative therapeutic impact after in vivo transfer, CD4(+) T cells showed a reduced activity compared with the CD8(+) CTL counterpart. This feature was apparently due to a strong and selective downmodulation of MHC class II expression on the tumor cells surface, a phenomenon that could be reverted by the demethylating agent 5-aza-2'-deoxycytidine, thus leading to restoration of lymphoblastoid cell line recognition and killing by CD4(+) T cells, as well as to a more pronounced therapeutic activity. Conversely, immunohistochemical analysis disclosed that HLA-II expression is fully retained in human PTLD samples. Our data indicate that EBV-specific cytotoxic CD4(+) T cells are therapeutic in mice bearing PTLD-like tumors, even in the absence of CD8(+) T cells. These findings pave the way to use cultures of pure CD4(+) T cells in immunotherapeutic approaches for EBV-related malignancies.
Collapse
Affiliation(s)
- Anna Merlo
- Department of Oncology and Surgical Sciences, University of Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Infektionen und Immuntherapie. Monatsschr Kinderheilkd 2010. [DOI: 10.1007/s00112-009-2142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Toll-like receptor agonists synergistically increase proliferation and activation of B cells by epstein-barr virus. J Virol 2010; 84:3612-23. [PMID: 20089650 DOI: 10.1128/jvi.01400-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) efficiently drives proliferation of human primary B cells in vitro, a process relevant for human diseases such as infectious mononucleosis and posttransplant lymphoproliferative disease. Human B-cell proliferation is also driven by ligands of Toll-like receptors (TLRs), notably viral or bacterial DNA containing unmethylated CpG dinucleotides, which triggers TLR9. Here we quantitatively investigated how TLR stimuli influence EBV-driven B-cell proliferation and expression of effector molecules. CpG DNA synergistically increased EBV-driven proliferation and transformation, T-cell costimulatory molecules, and early production of interleukin-6. CpG DNA alone activated only memory B cells, but CpG DNA enhanced EBV-mediated transformation of both memory and naive B cells. Ligands for TLR2 or TLR7/8 or whole bacteria had a weaker but still superadditive effect on B-cell transformation. Additionally, CpG DNA facilitated the release of transforming virus by established EBV-infected lymphoblastoid cell lines. These results suggest that the proliferation of EBV-infected B cells and their capability to interact with immune effector cells may be directly influenced by components of bacteria or other microbes present at the site of infection.
Collapse
|
26
|
Abstract
It has been estimated that viruses are etiological agents in approximately 12% of human cancers. Most of these cancers can be attributed to infections by human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus (KSHV). Prophylactic vaccines against other pathogenic viruses have an excellent record as public health interventions in terms of safety, effectiveness, and ability to reach economically disadvantaged populations. These considerations should prompt efforts to develop and implement vaccines against oncoviruses. Safe and effective HBV and HPV vaccines, based on virus-like particles, are commercially available, and the major focus is now on vaccine delivery, especially to low-resource settings. HCV and EBV vaccines are under active development, but few clinical trials have been conducted, and none of the candidate vaccines has proven to be sufficiently effective to warrant commercialization. Efforts to develop KSHV vaccines have been more limited.
Collapse
Affiliation(s)
- John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
27
|
Delecluse HJ, Feederle R, Behrends U, Mautner J. Contribution of viral recombinants to the study of the immune response against the Epstein-Barr virus. Semin Cancer Biol 2008; 18:409-15. [DOI: 10.1016/j.semcancer.2008.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 09/23/2008] [Indexed: 12/26/2022]
|