1
|
Castilha EP, Biondo R, Trugilo KP, Fortunato GM, Fenton TR, de Oliveira KB. APOBEC3 Proteins: From Antiviral Immunity to Oncogenic Drivers in HPV-Positive Cancers. Viruses 2025; 17:436. [PMID: 40143363 PMCID: PMC11946020 DOI: 10.3390/v17030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
The human APOBEC superfamily consists of eleven cytidine deaminase enzymes. Among them, APOBEC3 enzymes play a dual role in antiviral immunity and cancer development. APOBEC3 enzymes, including APOBEC3A (A3A) and APOBEC3B (A3B), induce mutations in viral DNA, effectively inhibiting viral replication but also promoting somatic mutations in the host genome, contributing to cancer development. A3A and A3B are linked to mutational signatures in over 50% of human cancers, with A3A being a potent mutagen. A3B, one of the first APOBEC3 enzymes linked to carcinogenesis, plays a significant role in HPV-associated cancers by driving somatic mutagenesis and tumor progression. The A3A_B deletion polymorphism results in a hybrid A3A_B gene, leading to increased A3A expression and enhanced mutagenic potential. Such polymorphism has been linked to an elevated risk of certain cancers, particularly in populations where it is more prevalent. This review explores the molecular mechanisms of APOBEC3 proteins, highlighting their dual roles in antiviral defense and tumorigenesis. We also discuss the clinical implications of genetic variants, such as the A3A_B polymorphism, mainly in HPV infection and associated cancers, providing a comprehensive understanding of their contributions to both viral restriction and cancer development.
Collapse
Affiliation(s)
- Eliza Pizarro Castilha
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Rosalba Biondo
- Leiden Academic Centre for Drug Research, Analytical Biosciences, Leiden University, P.O. Box 9502, 2311 EZ Leiden, The Netherlands;
| | - Kleber Paiva Trugilo
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Giulia Mariane Fortunato
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
| | - Timothy Robert Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK;
- Institute for Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Karen Brajão de Oliveira
- Laboratory of Molecular Genetics and Immunology, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (E.P.C.); (K.P.T.); (G.M.F.)
- Polymorphism Research Laboratory, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
2
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. EMBO J 2025; 44:1-29. [PMID: 39548236 PMCID: PMC11696371 DOI: 10.1038/s44318-024-00298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Two APOBEC DNA cytosine deaminase enzymes, APOBEC3A and APOBEC3B, generate somatic mutations in cancer, thereby driving tumour development and drug resistance. Here, we used single-cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell-cycle stage associated with APOBEC-mediated mutagenesis. In contrast, in squamous cell carcinoma we find that, there is expansion of GRHL3expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings suggest that APOBEC3A may play a functional role during keratinocyte differentiation, and offer a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Cell, Gene and RNA Therapies, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr, Foster City, CA, 94404, USA
| | - Michael A Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Gareth J Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Tim R Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
3
|
Lehle J, Soleimanpour M, Mokhtari S, Ebrahimi D. Viral infection, APOBEC3 dysregulation, and cancer. Front Genet 2024; 15:1489324. [PMID: 39764440 PMCID: PMC11701051 DOI: 10.3389/fgene.2024.1489324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 03/06/2025] Open
Abstract
Viral infection plays a significant role in the development and progression of many cancers. Certain viruses, such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV), and Hepatitis B and C viruses (HBV, HCV), are well-known for their oncogenic potential. These viruses can dysregulate specific molecular and cellular processes through complex interactions with host cellular mechanisms. One such interaction involves a family of DNA mutators known as APOBEC3 (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 3). The primary function of these cytidine deaminases is to provide protection against viral infections by inducing viral mutagenesis. However, induction and dysregulation of A3 enzymes, driven by viral infection, can inadvertently lead to cellular DNA tumorigenesis. This review focuses on the current knowledge regarding the interplay between viral infection, A3 dysregulation, and cancer, highlighting the molecular mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Jake Lehle
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mohadeseh Soleimanpour
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Samira Mokhtari
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Diako Ebrahimi
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Suzuki T, Yasui K, Komatsu Y, Kamiya H. Untargeted Mutation Triggered by Ribonucleoside Embedded in DNA. Int J Mol Sci 2024; 25:13708. [PMID: 39769470 PMCID: PMC11679520 DOI: 10.3390/ijms252413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
DNA polymerases frequently misincorporate ribonucleoside 5'-triphosphates into nascent DNA strands. This study examined the effects of an incorporated ribonucleoside on untargeted mutations in human cells. Riboguanosine (rG) was introduced into the downstream region of the supF gene to preferentially detect the untargeted mutations. The plasmid containing rG was transfected into U2OS cells and the replicated DNA was recovered after 48 h. The mutation analysis using the indicator Escherichia coli RF01 strain showed the frequent induction of untargeted base substitutions at the G bases of 5'-GpA-3' dinucleotides, similar to action-at-a-distance mutations induced by an oxidatively damaged base, 8-oxo-7,8-dihydroguanine, and an apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) cytosine deaminase. APOBEC3B was then knocked down by RNA interference and the plasmid bearing rG was introduced into the knockdown cells. The untargeted mutations at 5'-GpA-3' sites were reduced by ~80%. These results suggested that ribonucleosides embedded in DNA induce base substitution mutations at G bases in the same strand by an APOBEC3B-dependent mechanism, implying that ribonucleosides contribute to APOBEC3-dependent cancer initiation events.
Collapse
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| | - Kiyoharu Yasui
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| | - Yasuo Komatsu
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8560, Japan;
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (T.S.)
| |
Collapse
|
5
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
6
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ferré VM, Coppée R, Gbeasor-Komlanvi FA, Vacher S, Bridier-Nahmias A, Bucau M, Salou M, Lameiras S, Couvelard A, Dagnra AC, Bieche I, Descamps D, Ekouevi DK, Ghosn J, Charpentier C. Viral whole genome sequencing reveals high variations in APOBEC3 editing between HPV risk categories. J Med Virol 2024; 96:e70002. [PMID: 39400339 DOI: 10.1002/jmv.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
High-risk human papillomavirus (HPV) infections are responsible for cervical cancer. However, little is known about the differences between HPV types and risk categories regarding their genetic diversity and particularly APOBEC3-induced mutations - which contribute to the innate immune response to HPV. Using a capture-based next-generation sequencing, 156 HPV whole genome sequences covering 43 HPV types were generated from paired cervical and anal swabs of 30 Togolese female sex workers (FSWs) sampled in 2017. Genetic diversity and APOBEC3-induced mutations were assessed at the viral whole genome and gene levels. Thirty-four pairwise sequence comparisons covering 24 HPV types in cervical and anal swabs revealed identical infections in the two anatomical sites. Differences in genetic diversity among HPV types was observed between patients. The E6 gene was significantly less conserved in low-risk HPVs (lrHPVs) compared to high-risk HPVs (hrHPVs) (p = 0.009). APOBEC3-induced mutations were found to be more common in lrHPVs than in hrHPVs (p = 0.005), supported by our data and by using large HPV sequence collections from the GenBank database. Focusing on the most common lrHPVs 6 and 11 and hrHPVs 16 and 18, APOBEC3-induced mutations were predominantly found in the E4 and E6 genes in lrHPVs, but were almost absent in these genes in hrHPVs. The variable APOBEC3 mutational signatures could contribute to the different oncogenic potentials between HPVs. Further studies are needed to conclusively determine whether APOBEC3 editing levels are associated to the carcinogenic potential of HPVs at the type and sublineage scales.
Collapse
Affiliation(s)
- Valentine Marie Ferré
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Romain Coppée
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
| | - Fifonsi A Gbeasor-Komlanvi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- Centre Africain de Recherche en Epidémiologie et en Santé Publique (CARESP), Lomé, Togo
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Margot Bucau
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Mounerou Salou
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
| | - Sonia Lameiras
- Institut Curie, Genomics of Excellence (ICGex) Platform, PSL Research University, Paris, France
| | - Anne Couvelard
- Département de Pathologie, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
- Université de Paris, Centre of Research on Inflammation, Paris, INSERM U1149, France
| | - Anoumou Claver Dagnra
- Université de Lomé, Centre de Biologie Moléculaire et d'Immunologie, Lomé, Togo
- Programme national de lutte contre le sida et les infections sexuellement transmissibles, Lomé, Togo
| | - Ivan Bieche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- INSERM U1016, Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | - Diane Descamps
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| | - Didier K Ekouevi
- Département de Santé Publique, Université de Lomé, Faculté des Sciences de la Santé, Lomé, Togo
- ISPED, Université de Bordeaux & Centre INSERM U1219 - Bordeaux Population Health, Bordeaux, France
| | - Jade Ghosn
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Maladies Infectieuses et Tropicales, AP-HP, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| | - Charlotte Charpentier
- Université Paris Cité, Inserm IAME UMR 1137, Paris, F-75018, France
- Service de Virologie, AP-HP, Hôpital Bichat - Claude Bernard, Paris, F-75018, France
| |
Collapse
|
8
|
Pinheiro M, Wentzensen N, Dean M, Yeager M, Chen Z, Shastry A, Boland JF, Bass S, Burdett L, Lorey T, Mishra S, Castle PE, Schiffman M, Burk RD, Zhu B, Mirabello L. Somatic mutations in 3929 HPV positive cervical cells associated with infection outcome and HPV type. Nat Commun 2024; 15:7895. [PMID: 39266536 PMCID: PMC11393421 DOI: 10.1038/s41467-024-51713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/13/2024] [Indexed: 09/14/2024] Open
Abstract
Invasive cervical cancers (ICC), caused by HPV infections, have a heterogeneous molecular landscape. We investigate the detection, timing, and HPV type specificity of somatic mutations in 3929 HPV-positive exfoliated cervical cell samples from individuals undergoing cervical screening in the U.S. using deep targeted sequencing in ICC cases, precancers, and HPV-positive controls. We discover a subset of hotspot mutations rare in controls (2.6%) but significantly more prevalent in precancers, particularly glandular precancer lesions (10.2%), and cancers (25.7%), supporting their involvement in ICC carcinogenesis. Hotspot mutations differ by HPV type, and HPV18/45-positive ICC are more likely to have multiple hotspot mutations compared to HPV16-positive ICC. The proportion of cells containing hotspot mutations is higher (i.e., higher variant allele fraction) in ICC and mutations are detectable up to 6 years prior to cancer diagnosis. Our findings demonstrate the feasibility of using exfoliated cervical cells for detection of somatic mutations as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Department of Biology, Hood College, Frederick, MD, USA
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Amulya Shastry
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Joseph F Boland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Sara Bass
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Laurie Burdett
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Thomas Lorey
- Regional Laboratory and Women's Health Research Institute, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Sambit Mishra
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Philip E Castle
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark Schiffman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
9
|
Moss B. Understanding the biology of monkeypox virus to prevent future outbreaks. Nat Microbiol 2024; 9:1408-1416. [PMID: 38724757 DOI: 10.1038/s41564-024-01690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Historically, monkeypox (mpox) was a zoonotic disease endemic in Africa. However, in 2022, a global outbreak occurred following a substantial increase in cases in Africa, coupled with spread by international travellers to other continents. Between January 2022 and October 2023, about 91,000 confirmed cases from 115 countries were reported, leading the World Health Organization to declare a public health emergency. The basic biology of monkeypox virus (MPXV) can be inferred from other poxviruses, such as vaccinia virus, and confirmed by genome sequencing. Here the biology of MPXV is reviewed, together with a discussion of adaptive changes during MPXV evolution and implications for transmission. Studying MPXV biology is important to inform specific host interactions, to aid in ongoing outbreaks and to predict those in the future.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Mondal A, Sarkar A, Das D, Sengupta A, Kabiraj A, Mondal P, Nag R, Mukherjee S, Das C. Epigenetic orchestration of the DNA damage response: Insights into the regulatory mechanisms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:99-141. [PMID: 39179350 DOI: 10.1016/bs.ircmb.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
The DNA damage response (DDR) is a critical cellular mechanism that safeguards genome integrity and prevents the accumulation of harmful DNA lesions. Increasing evidence highlights the intersection between DDR signaling and epigenetic regulation, offering profound insights into various aspects of cellular function including oncogenesis. This comprehensive review explores the intricate relationship between the epigenetic modifications and DDR activation, with a specific focus on the impact of viral infections. Oncogenic viruses, such as human papillomavirus, hepatitis virus (HBV or HCV), and Epstein-Barr virus have been shown to activate the DDR. Consequently, these DNA damage events trigger a cascade of epigenetic alterations, including changes in DNA methylation patterns, histone modifications and the expression of noncoding RNAs. These epigenetic changes exert profound effects on chromatin structure, gene expression, and maintenance of genome stability. Importantly, elucidation of the viral-induced epigenetic alterations in the context of DDR holds significant implications for comprehending the complexity of cancer and provides potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | | | - Dipanwita Das
- Virus Unit [NICED-ICMR], ID and BG Hospital, Kolkata, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Rachayita Nag
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
11
|
Smith NJ, Reddin I, Policelli P, Oh S, Zainal N, Howes E, Jenkins B, Tracy I, Edmond M, Sharpe B, Amendra D, Zheng K, Egawa N, Doorbar J, Rao A, Mahadevan S, Carpenter MA, Harris RS, Ali S, Hanley C, Buisson R, King E, Thomas GJ, Fenton TR. Differentiation signals induce APOBEC3A expression via GRHL3 in squamous epithelia and squamous cell carcinoma. RESEARCH SQUARE 2024:rs.3.rs-3997426. [PMID: 38496447 PMCID: PMC10942551 DOI: 10.21203/rs.3.rs-3997426/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Two APOBEC (apolipoprotein-B mRNA editing enzyme catalytic polypeptide-like) DNA cytosine deaminase enzymes (APOBEC3A and APOBEC3B) generate somatic mutations in cancer, driving tumour development and drug resistance. Here we used single cell RNA sequencing to study APOBEC3A and APOBEC3B expression in healthy and malignant mucosal epithelia, validating key observations with immunohistochemistry, spatial transcriptomics and functional experiments. Whereas APOBEC3B is expressed in keratinocytes entering mitosis, we show that APOBEC3A expression is confined largely to terminally differentiating cells and requires Grainyhead-like transcription factor 3 (GRHL3). Thus, in normal tissue, neither deaminase appears to be expressed at high levels during DNA replication, the cell cycle stage associated with APOBEC-mediated mutagenesis. In contrast, we show that in squamous cell carcinoma tissues, there is expansion of GRHL3 expression and activity to a subset of cells undergoing DNA replication and concomitant extension of APOBEC3A expression to proliferating cells. These findings indicate a mechanism for acquisition of APOBEC3A mutagenic activity in tumours.
Collapse
Affiliation(s)
- Nicola J. Smith
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- School of Biosciences, University of Kent, UK
| | - Ian Reddin
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Bio-R Bioinformatics Research Facility, Faculty of Medicine, University of Southampton, UK
| | - Paige Policelli
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Nur Zainal
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Emma Howes
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Jenkins
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ian Tracy
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Mark Edmond
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Benjamin Sharpe
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Damian Amendra
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ke Zheng
- Department of Pathology, University of Cambridge, UK
| | | | - John Doorbar
- Department of Pathology, University of Cambridge, UK
| | - Anjali Rao
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Sangeetha Mahadevan
- Gilead Sciences, Research Department, 324 Lakeside Dr. Foster City, CA 94404, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Christopher Hanley
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Emma King
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Gareth J. Thomas
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| | - Tim R. Fenton
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, UK
- Institute for Life Sciences, University of Southampton, UK
| |
Collapse
|
12
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Lovšin N, Gangupam B, Bergant Marušič M. The Intricate Interplay between APOBEC3 Proteins and DNA Tumour Viruses. Pathogens 2024; 13:187. [PMID: 38535531 PMCID: PMC10974850 DOI: 10.3390/pathogens13030187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
APOBEC3 proteins are cytidine deaminases that play a crucial role in the innate immune response against viruses, including DNA viruses. Their main mechanism for restricting viral replication is the deamination of cytosine to uracil in viral DNA during replication. This process leads to hypermutation of the viral genome, resulting in loss of viral fitness and, in many cases, inactivation of the virus. APOBEC3 proteins inhibit the replication of a number of DNA tumour viruses, including herpesviruses, papillomaviruses and hepadnaviruses. Different APOBEC3s restrict the replication of different virus families in different ways and this restriction is not limited to one APOBEC3. Infection with DNA viruses often leads to the development and progression of cancer. APOBEC3 mutational signatures have been detected in various cancers, indicating the importance of APOBEC3s in carcinogenesis. Inhibition of DNA viruses by APOBEC3 proteins appears to play a dual role in this process. On the one hand, it is an essential component of the innate immune response to viral infections, and, on the other hand, it contributes to the pathogenesis of persistent viral infections and the progression of cancer. The current review examines the complex interplay between APOBEC3 proteins and DNA viruses and sheds light on the mechanisms of action, viral countermeasures and the impact on carcinogenesis. Deciphering the current issues in the interaction of APOBEC/DNA viruses should enable the development of new targeted cancer therapies.
Collapse
Affiliation(s)
- Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Bhavani Gangupam
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| | - Martina Bergant Marušič
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica, Slovenia;
| |
Collapse
|
14
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
15
|
Timmerman AL, Schönert ALM, van der Hoek L. Anelloviruses versus human immunity: how do we control these viruses? FEMS Microbiol Rev 2024; 48:fuae005. [PMID: 38337179 PMCID: PMC10883694 DOI: 10.1093/femsre/fuae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
One continuous companion and one of the major players in the human blood virome are members of the Anelloviridae family. Anelloviruses are probably found in all humans, infection occurs early in life and the composition (anellome) is thought to remain stable and personal during adulthood. The stable anellome implies a great balance between the host immune system and the virus. However, the lack of a robust culturing system hampers direct investigation of interactions between virus and host cells. Other techniques, however, including next generation sequencing, AnelloScan-antibody tests, evolution selection pressure analysis, and virus protein structures, do provide new insights into the interactions between anelloviruses and the host immune system. This review aims at providing an overview of the current knowledge on the immune mechanisms acting on anelloviruses and the countering viral mechanisms allowing immune evasion.
Collapse
Affiliation(s)
- Anne L Timmerman
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Antonia L M Schönert
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
- Amsterdam institute for Infection and Immunity, Postbus 22660, 1100 DD, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Timmerman AL, Commandeur L, Deijs M, Burggraaff MGJM, Lavell AHA, van der Straten K, Tejjani K, van Rijswijk J, van Gils MJ, Sikkens JJ, Bomers MK, van der Hoek L. The Impact of First-Time SARS-CoV-2 Infection on Human Anelloviruses. Viruses 2024; 16:99. [PMID: 38257799 PMCID: PMC10818381 DOI: 10.3390/v16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Lisanne Commandeur
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Maarten G. J. M. Burggraaff
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - A. H. Ayesha Lavell
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Khadija Tejjani
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jonne J. Sikkens
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marije K. Bomers
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| |
Collapse
|
17
|
Zhang K, Chen F, Shen HY, Zhang PP, Gao H, Peng H, Luo YS, Cheng ZS. Regulatory variants of APOBEC3 genes potentially associate with COVID-19 severity in populations with African ancestry. Sci Rep 2023; 13:22435. [PMID: 38105291 PMCID: PMC10725877 DOI: 10.1038/s41598-023-49791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Since November 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the worldwide pandemic of the coronavirus disease 2019 (COVID-19), the impact of which is huge to the lives of world populations. Many studies suggested that such situation will continue due to the endless mutations in SARS-CoV-2 genome that result in complexity of the efforts for the control of SARS-CoV-2, since the special enrichment of nucleotide substitution C>U in SARS-CoV-2 sequences were discovered mainly due to the editing by human host factors APOBEC3 genes. The observation of SARS-CoV-2 variants Beta (B.1.351) and Omicron (B.1.1.529) firstly spreading in South Africa promoted us to hypothesize that genetic variants of APOBEC3 special in African populations may be attributed to the higher mutation rate of SARS-CoV-2 variants in Africa. Current study was conducted to search for functional variants of APOBEC3 genes associate with COVID-19 hospitalization in African population. By integrating data from the 1000 Genomes Project, Genotype-Tissue Expression (GTEx), and Host Genetics Initiative (HGI) of COVID-19, we identified potential functional SNPs close to APOBEC3 genes that are associated with COVID-19 hospitalization in African but not with other populations. Our study provides new insights on the potential contribution of APOBEC3 genes on the evolution of SARS-CoV-2 mutations in African population, but further replication is needed to confirm our results.
Collapse
Affiliation(s)
- Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Fang Chen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Hu-Yan Shen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Ping-Ping Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Han Gao
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Hong Peng
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yu-Si Luo
- The Department of Emergency ICU, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- The Department of Emergency, Liupanshui Hospital of The Affiliated Hospital of Guizhou Medical University, Liupanshui, 553000, China.
| | - Zhong-Shan Cheng
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Hospital, MS1122, Memphis, TN, 38105, USA.
| |
Collapse
|
18
|
Aggarwal S, Agarwal P, Singh AK. Human papilloma virus vaccines: A comprehensive narrative review. Cancer Treat Res Commun 2023; 37:100780. [PMID: 38006748 DOI: 10.1016/j.ctarc.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Cervical cancer is one of the most common cancers in women aged 15-44 years in the world, with more than three-quarters of cases diagnosed at a locally advanced clinical stage with minor prospects of survival. Although only a small percentage of women with Human Papilloma Virus (HPV) develop cervical cancer and most of the HPV infections are cleared subsequently at primary stage itself, but seroconversion not always guarantees that the individual is immune to HPV. The advent of the cervical carcinoma vaccine has raised the expectations that eradication of cervical carcinoma might be possible in the near future as it exhibited remarkably high efficacy against the vaccine-specific types in naive women with no serious vaccine-related adverse events. Few prophylactic HPV vaccines are currently licensed in over 100 countries. It has also been suggested that vaccinating both men and women is more beneficial than vaccinating only females. Vaccination is a cost-effective strategy to reduce the incidence of cervical cancer and mortality compared to no vaccination based on the cost of cancer treatment. Well-coordinated vaccination strategy with focus on adolescent girls and if possible, boys can lead to dramatic impact on disease reduction around the world.
Collapse
Affiliation(s)
- Sumit Aggarwal
- Division of ECD, Indian Council of Medical Research, Ansari Nagar, New-Delhi, 110029, India.
| | - Pragati Agarwal
- Division of ECD, Indian Council of Medical Research, Ansari Nagar, New-Delhi, 110029, India
| | - Amit Kumar Singh
- National JALMA Institute of Leprosy And Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
19
|
Desingu PA, Rubeni TP, Nagarajan K, Sundaresan NR. Sign of APOBEC editing, purifying selection, frameshift, and in-frame nonsense mutations in the microevolution of lumpy skin disease virus. Front Microbiol 2023; 14:1214414. [PMID: 38033577 PMCID: PMC10682384 DOI: 10.3389/fmicb.2023.1214414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
The lumpy skin disease virus (LSDV), which mostly affects ruminants and causes huge-economic loss, was endemic in Africa, caused outbreaks in the Middle East, and was recently detected in Russia, Serbia, Greece, Bulgaria, Kazakhstan, China, Taiwan, Vietnam, Thailand, and India. However, the role of evolutionary drivers such as codon selection, negative/purifying selection, APOBEC editing, and genetic variations such as frameshift and in-frame nonsense mutations in the LSDVs, which cause outbreaks in cattle in various countries, are still largely unknown. In the present study, a frameshift mutation in LSDV035, LSDV019, LSDV134, and LSDV144 genes and in-frame non-sense mutations in LSDV026, LSDV086, LSDV087, LSDV114, LSDV130, LSDV131, LSDV145, LSDV154, LSDV155, LSDV057, and LSDV081 genes were revealed among different clusters. Based on the available complete genome sequences, the prototype wild-type cluster-1.2.1 virus has been found in other than Africa only in India, the wild-type cluster-1.2.2 virus found in Africa were spread outside Africa, and the recombinant viruses spreading only in Asia and Russia. Although LSD viruses circulating in different countries form a specific cluster, the viruses detected in each specific country are distinguished by frameshift and in-frame nonsense mutations. Furthermore, the present study has brought to light that the selection pressure for codons usage bias is mostly exerted by purifying selection, and this process is possibly caused by APOBEC editing. Overall, the present study sheds light on microevolutions in LSDV, expected to help in future studies towards disturbed ORFs, epidemiological diagnostics, attenuation/vaccine reverts, and predicting the evolutionary direction of LSDVs.
Collapse
Affiliation(s)
| | - T. P. Rubeni
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - K. Nagarajan
- Department of Veterinary Pathology, Madras Veterinary College, Chennai, India
- Veterinary and Animal Sciences University (TANUVAS), Chennai, India
| | | |
Collapse
|
20
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
21
|
Carpenter MA, Temiz NA, Ibrahim MA, Jarvis MC, Brown MR, Argyris PP, Brown WL, Starrett GJ, Yee D, Harris RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer. PLoS Genet 2023; 19:e1011043. [PMID: 38033156 PMCID: PMC10715669 DOI: 10.1371/journal.pgen.1011043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.
Collapse
Affiliation(s)
- Michael A. Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Mahmoud A. Ibrahim
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Matthew C. Jarvis
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret R. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gabriel J. Starrett
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
22
|
He H, Lu S, Lu N, Huang N, Xu M. Prognostic value of APOBEC3A in patients with cervical squamous cell carcinoma in a major urban center in China: a retrospective study. Transl Cancer Res 2023; 12:2673-2681. [PMID: 37969401 PMCID: PMC10643969 DOI: 10.21037/tcr-23-383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/19/2023] [Indexed: 11/17/2023]
Abstract
Background APOBEC3A (A3A) has been implicated to have vital prognostic value in several common cancers. This study aimed to investigate the prognostic value of A3A expression in cervical squamous cell carcinoma (CESC). Methods This retrospective study enrolled 59 patients with CESC or cervical squamous intraepithelial neoplasia from January 2014 to January 2017 in Changhai Hospital, Naval Medical University. Then, A3A histoscores (H-scores) using immunohistochemistry (IHC) were analyzed in formalin-fixed paraffin-embedded archival tissue blocks. Moreover, overall survival was analyzed by the Kaplan-Meier method. Results The H-score of A3A protein expression was relatively higher in CESC than in squamous intraepithelial neoplasia, and the relative expression level of normal cervical tissues was lower than that of cervical squamous intraepithelial neoplasia (P<0.001). Moreover, the H-score of poorly differentiated cases was 6, which was higher than that of moderately differentiated cases (H-score =3), while the H-score of well-differentiated cases was 2, which was lower than that of moderately differentiated cases. Moreover, patients in the A3A low expression group had higher overall survival rates by prognostic analysis (P=0.027). Conclusions A3A protein expression was increased during CESC progression. Moreover, A3A expression was tightly related to poor prognosis in CESC. Thus, these results showed that A3A overexpression may provide a marker for poor prognosis in CESC.
Collapse
Affiliation(s)
- Haiwei He
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shenglian Lu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Nan Lu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Nian Huang
- Department of Integrative Medicine, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Chai JW, Hu XW, Zhang MM, Dong YN. Seven chromatin regulators as immune cell infiltration characteristics, potential diagnostic biomarkers and drugs prediction in hepatocellular carcinoma. Sci Rep 2023; 13:18643. [PMID: 37903974 PMCID: PMC10616163 DOI: 10.1038/s41598-023-46107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Treatment is challenging due to the heterogeneity of hepatocellular carcinoma (HCC). Chromatin regulators (CRs) are important in epigenetics and are closely associated with HCC. We obtained HCC-related expression data and relevant clinical data from The Cancer Genome Atlas (TCGA) databases. Then, we crossed the differentially expressed genes (DEGs), immune-related genes and CRs to obtain immune-related chromatin regulators differentially expressed genes (IRCR DEGs). Least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to select the prognostic gene and construct a risk model for predicting prognosis in HCC, followed by a correlation analysis of risk scores with clinical characteristics. Finally, we also carried out immune microenvironment analysis and drug sensitivity analysis, the correlation between risk score and clinical characteristics was analyzed. In addition, we carried out immune microenvironment analysis and drug sensitivity analysis. Functional analysis suggested that IRCR DEGs was mainly enriched in chromatin-related biological processes. We identified and validated PPARGC1A, DUSP1, APOBEC3A, AIRE, HDAC11, HMGB2 and APOBEC3B as prognostic biomarkers for the risk model construction. The model was also related to immune cell infiltration, and the expression of CD48, CTLA4, HHLA2, TNFSF9 and TNFSF15 was higher in high-risk group. HCC patients in the high-risk group were more sensitive to Axitinib, Docetaxel, Erlotinib, and Metformin. In this study, we construct a prognostic model of immune-associated chromatin regulators, which provides new ideas and research directions for the accurate treatment of HCC.
Collapse
Affiliation(s)
- Jin-Wen Chai
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Xi-Wen Hu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Miao-Miao Zhang
- Department of Oncology, Laizhou Traditional Chinese Medicine Hospital, Laizhou, Shandong, China
| | - Yu-Na Dong
- Department of Gastroenterology, Laizhou People's Hospital, No.1718 Wuli Street, Laizhou, Shandong, China.
| |
Collapse
|
24
|
Li Z, He H, Ren X, Chen Y, Liu W, Pu R, Fang L, Shi Y, Liu D, Zhao J, Niu Z, Xu M, Cao G. APOBEC3A suppresses cervical cancer via apoptosis. J Cancer 2023; 14:3429-3443. [PMID: 38021159 PMCID: PMC10647198 DOI: 10.7150/jca.89044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Family members of Apolipoprotein B mRNA-editing enzyme catalytic 3 (APOBEC3) play critical roles in cancer evolution and development. However, the role of APOBEC3A in cervical cancer remains to be clarified. Methods: We used bioinformatics to investigate APOBEC3A expression and outcomes using The Cancer Genome Atlas (TCGA)-cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) dataset, GTEx, and GSE7803. Immunohistochemistry was then used to identify APOBEC3A's expression pattern. We performed Cell Counting Kit-8, wound-healing, Transwell, and flow cytometry assays to measure proliferation, migration, invasion, and apoptosis, respectively, using the SiHa and HeLa cell lines transfected with APOBEC3A. BALB/c nude mice were used to investigate the effects of APOBEC3A in vivo. The phosphorylated gamma-H2AX staining assay was applied to measure DNA damage. RNA sequencing (RNA-Seq) was applied to explore APOBEC3A-related signaling pathways. Results: APOBEC3A was more significantly expressed in cancer tissues than in adjacent normal tissues. Higher expression of APOBEC3A was associated with better outcomes in TCGA-CESC and GTEx. Immunohistochemistry showed that the expression of APOBEC3A was significantly higher in cancer tissues than in normal tissues. Transfection experiments showed that APOBEC3A inhibited proliferation, upregulated S-phase cells, inhibited migration and invasion, induced DNA damage, and promoted apoptosis. Overexpression of APOBEC3A inhibited tumor formation in the mouse model. RNA-seq analysis showed that ectopic expression of APOBEC3A inhibited several cancer-associated signaling pathways. Conclusions: APOBEC3A is significantly upregulated in cervical cancer, and higher expression of APOBEC3A is associated with better outcomes. APOBEC3A is a tumor suppressor whose overexpression induces apoptosis in cervical cancer.
Collapse
Affiliation(s)
- Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Haiwei He
- Department of Obstetrics and Gynecology, the 1st Affiliated Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiangyu Ren
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Yifan Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Letian Fang
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Yiwei Shi
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Donghong Liu
- Department of Hepatic Surgery, the 3rd Affiliated Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jiayi Zhao
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| | - Zheyun Niu
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine Tongji University, Shanghai 200120, China
| | - Mingjuan Xu
- Department of Obstetrics and Gynecology, the 1st Affiliated Hospital, Second Military Medical University, Shanghai 200433, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Medical Bioprotection, Shanghai, 200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai, 200433, China
| |
Collapse
|
25
|
Liu WJ, Li HJ, Zou X, Liu Q, Ma F, Zhang CY. Deamination-triggered exponential signal amplification for chemiluminescent detection of cytosine deaminase at the single-cell level. Chem Commun (Camb) 2023; 59:11807-11810. [PMID: 37721021 DOI: 10.1039/d3cc04035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We construct a sensitive chemiluminescent biosensor for sensitive detection of cytosine deaminase APOBEC3A based on deamination-triggered exponential signal amplification. This biosensor displays good specificity and high sensitivity, and it can screen APOBEC3A inhibitors and measure endogenous APOBEC3A at the single-cell level, with prospective applications in disease diagnostics and therapy.
Collapse
Affiliation(s)
- Wen-Jing Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Hai-Juan Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qian Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
26
|
Wick C, Moghadasi SA, Becker JT, Fanunza E, Oh S, Bournique E, Buisson R, Harris RS. Mitochondrial double-stranded RNA triggers induction of the antiviral DNA deaminase APOBEC3A and nuclear DNA damage. J Biol Chem 2023; 299:105073. [PMID: 37474103 PMCID: PMC10457583 DOI: 10.1016/j.jbc.2023.105073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
APOBEC3A is an antiviral DNA deaminase often induced by virus infection. APOBEC3A is also a source of cancer mutation in viral and nonviral tumor types. It is therefore critical to identify factors responsible for APOBEC3A upregulation. Here, we test the hypothesis that leaked mitochondrial (mt) double-stranded (ds)RNA is recognized as foreign nucleic acid, which triggers innate immune signaling, APOBEC3A upregulation, and DNA damage. Knockdown of an enzyme responsible for degrading mtdsRNA, the exoribonuclease polynucleotide phosphorylase, results in mtdsRNA leakage into the cytosol and induction of APOBEC3A expression. APOBEC3A upregulation by cytoplasmic mtdsRNA requires RIG-I, MAVS, and STAT2 and is likely part of a broader type I interferon response. Importantly, although mtdsRNA-induced APOBEC3A appears cytoplasmic by subcellular fractionation experiments, its induction triggers an overt DNA damage response characterized by elevated nuclear γ-H2AX staining. Thus, mtdsRNA dysregulation may induce APOBEC3A and contribute to observed genomic instability and mutation signatures in cancer.
Collapse
Affiliation(s)
- Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elisa Fanunza
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA; Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
27
|
Göttig L, Weiß C, Stubbe M, Hanrieder L, Hofmann S, Grodziecki A, Stadler D, Carpentier A, Protzer U, Schreiner S. Apobec3A Deamination Functions Are Involved in Antagonizing Efficient Human Adenovirus Replication and Gene Expression. mBio 2023:e0347822. [PMID: 37154747 DOI: 10.1128/mbio.03478-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Weiß
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Hanrieder
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Alessandro Grodziecki
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
28
|
Fan R, Xu L, Cui B, Li D, Sun X, Qi Y, Rao J, Wang K, Wang C, Zhao K, Zhao Y, Dai J, Chen W, Shen H, Liu Y, Yu D. Genomic Characterization Revealed PM 2.5-Associated Mutational Signatures in Lung Cancer Including Activation of APOBEC3B. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6854-6864. [PMID: 37071573 DOI: 10.1021/acs.est.2c08092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.
Collapse
Affiliation(s)
- Rongrong Fan
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xueying Sun
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kai Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fuzhou 350000, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
29
|
Sarkar MK, Uppala R, Zeng C, Billi AC, Tsoi LC, Kidder A, Xing X, Perez White BE, Shao S, Plazyo O, Sirobhushanam S, Xing E, Jiang Y, Gallagher KA, Voorhees JJ, Kahlenberg JM, Gudjonsson JE. Keratinocytes sense and eliminate CRISPR DNA through STING/IFN-κ activation and APOBEC3G induction. J Clin Invest 2023; 133:e159393. [PMID: 36928117 PMCID: PMC10145927 DOI: 10.1172/jci159393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
CRISPR/Cas9 has been proposed as a treatment for genetically inherited skin disorders. Here we report that CRISPR transfection activates STING-dependent antiviral responses in keratinocytes, resulting in heightened endogenous interferon (IFN) responses through induction of IFN-κ, leading to decreased plasmid stability secondary to induction of the cytidine deaminase gene APOBEC3G. Notably, CRISPR-generated KO keratinocytes had permanent suppression of IFN-κ and IFN-stimulated gene (ISG) expression, secondary to hypermethylation of the IFNK promoter region by the DNA methyltransferase DNMT3B. JAK inhibition via baricitinib prior to CRISPR transfection increased transfection efficiency, prevented IFNK promoter hypermethylation, and restored normal IFN-κ activity and ISG responses. This work shows that CRISPR-mediated gene correction alters antiviral responses in keratinocytes, has implications for future gene therapies for inherited skin diseases using CRISPR technology, and suggests pharmacologic JAK inhibition as a tool for facilitating and attenuating inadvertent selection effects in CRISPR/Cas9 therapeutic approaches.
Collapse
Affiliation(s)
| | - Ranjitha Uppala
- Department of Dermatology, and
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | - Shuai Shao
- Department of Dermatology, and
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | | | - Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Yanyun Jiang
- Department of Dermatology, and
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, and
| | | | - J. Michelle Kahlenberg
- Department of Dermatology, and
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, and
- Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Forni D, Cagliani R, Pozzoli U, Sironi M. An APOBEC3 Mutational Signature in the Genomes of Human-Infecting Orthopoxviruses. mSphere 2023; 8:e0006223. [PMID: 36920219 PMCID: PMC10117092 DOI: 10.1128/msphere.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The ongoing worldwide monkeypox outbreak is caused by viral lineages (globally referred to as hMPXV1) that are related to but distinct from clade IIb MPXV viruses transmitted within Nigeria. Analysis of the genetic differences has indicated that APOBEC-mediated editing might be responsible for the unexpectedly high number of mutations observed in hMPXV1 genomes. Here, using 1,624 publicly available hMPXV1 sequences, we analyzed the mutations that accrued between 2017 and the emergence of the current predominant variant (B.1), as well as those that that have been accumulating during the 2022 outbreak. We confirmed an overwhelming prevalence of C-to-T and G-to-A mutations, with a sequence context (5'-TC-3') consistent with the preferences of several human APOBEC3 enzymes. We also found that mutations preferentially occur in highly expressed viral genes, although no transcriptional asymmetry was observed. A comparison of the mutation spectrum and context was also performed against the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV), as well as fowlpox virus (FWPV). The results indicated that in VARV genomes, C-to-T and G-to-A changes were more common than the opposite substitutions, although the effect was less marked than for hMPXV1. Conversely, no preference toward C-to-T and G-to-A changes was observed in CPXV and FWPV. Consistently, the sequence context of C-to-T changes confirmed a preference for a T in the -1 position for VARV, but not for CPXV or FWPV. Overall, our results strongly support the view that, irrespective of the transmission route, orthopoxviruses infecting humans are edited by the host APOBEC3 enzymes. IMPORTANCE Analysis of the viral lineages responsible for the 2022 monkeypox outbreak suggested that APOBEC enzymes are driving hMPXV1 evolution. Using 1,624 public sequences, we analyzed the mutations that accumulated between 2017 and the emergence of the predominant variant and those that characterize the last outbreak. We found that the mutation spectrum of hMPXV1 has been dominated by TC-to-TT and GA-to-AA changes, consistent with the editing activity of human APOBEC3 proteins. We also found that mutations preferentially affect highly expressed viral genes, possibly because transcription exposes single-stranded DNA (ssDNA), a target of APOBEC3 editing. Notably, analysis of the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV) indicated that in VARV genomes, TC-to-TT and GA-to-AA changes are likewise extremely frequent. Conversely, no preference toward TC-to-TT and GA-to-AA changes is observed in CPXV. These results suggest that APOBEC3 proteins have an impact on the evolution of different human-infecting orthopoxviruses.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Uberto Pozzoli
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
31
|
Starrett GJ, Yu K, Golubeva Y, Lenz P, Piaskowski ML, Petersen D, Dean M, Israni A, Hernandez BY, Tucker TC, Cheng I, Gonsalves L, Morris CR, Hussain SK, Lynch CF, Harris RS, Prokunina-Olsson L, Meltzer PS, Buck CB, Engels EA. Evidence for virus-mediated oncogenesis in bladder cancers arising in solid organ transplant recipients. eLife 2023; 12:e82690. [PMID: 36961501 PMCID: PMC10446826 DOI: 10.7554/elife.82690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/22/2023] [Indexed: 03/25/2023] Open
Abstract
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have an overall poorer outcomes, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of the tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases, with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with an antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.
Collapse
Affiliation(s)
| | - Kelly Yu
- DCEG, NCI, NIHRockvilleUnited States
| | | | - Petra Lenz
- Leidos Biomedical Research IncFrederickUnited States
| | | | | | | | - Ajay Israni
- Department of Medicine, Nephrology Division, Hennepin Healthcare System, University of MinnesotaMinneapolisUnited States
| | | | - Thomas C Tucker
- The Kentucky Cancer Registry, University of KentuckyLexingtonUnited States
| | - Iona Cheng
- Department of Epidemiology and Biostatistics,and Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoFremontUnited States
| | - Lou Gonsalves
- Connecticut Tumor Registry, Connecticut Department of Public HealthHartfordUnited States
| | - Cyllene R Morris
- California Cancer Reporting and Epidemiologic Surveillance Program, University of California, DavisDavisUnited States
| | - Shehnaz K Hussain
- Cedars-Sinai Cancer and Department of Medicine, Cedars-Sinai Medical CenterLos AngelesUnited States
| | - Charles F Lynch
- The Iowa Cancer Registry, University of IowaIowa CityUnited States
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of MinnesotaMinneapolisUnited States
| | | | | | | | | |
Collapse
|
32
|
Jones KM, Shehata M, Carpenter MA, Amaro RE, Harki DA. APOBEC3A Catalytic Inactivity Mutation Induces Tertiary Structure Destabilization. ACS Med Chem Lett 2023; 14:338-343. [PMID: 36923917 PMCID: PMC10009786 DOI: 10.1021/acsmedchemlett.2c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
APOBEC3A (A3A)-catalyzed DNA cytosine deamination is implicated in virus and cancer mutagenesis, and A3A is a target for small molecule drug discovery. The catalytic glutamic acid (E72) is frequently mutated in biochemical studies to characterize deamination-dependent versus deamination-independent A3A functions. Additionally, catalytically active A3A is toxic in bacterial expression systems, which adversely affects yield during recombinant A3A expression. Here, we demonstrate that mutating the catalytic glutamic acid to an isosteric glutamine (E72Q) significantly decreases the thermal stability of the protein, compared to the alanine-inactivating mutation (E72A). Differential scanning fluorimetry and mass spectrometry reveal that A3A E72Q is less thermally stable than A3A E72A or wild-type A3A. Strikingly, A3A E72Q is partially denatured at 37 °C and binds single-stranded DNA with significantly poorer affinity compared to A3A E72A. This study constitutes an important cautionary note on A3A protein design and informs that A3A E72A is the preferred catalytic inactivation mutation for most applications.
Collapse
Affiliation(s)
- Katherine
F. M. Jones
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mohamed Shehata
- Department
of Chemistry and Biochemistry, University
of California − San Diego, La Jolla, California 92093, United States
| | - Michael A. Carpenter
- Department
of Biochemistry & Structural Biology, University of Texas Health Science Center San Antonio, San Antonio, Texas 78229, United States
| | - Rommie E. Amaro
- Department
of Chemistry and Biochemistry, University
of California − San Diego, La Jolla, California 92093, United States
| | - Daniel A. Harki
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC, Pyeon D. HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog 2023; 19:e1011171. [PMID: 36867660 PMCID: PMC10016708 DOI: 10.1371/journal.ppat.1011171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
The membrane-associated RING-CH-type finger ubiquitin ligase MARCHF8 is a human homolog of the viral ubiquitin ligases Kaposi's sarcoma herpesvirus K3 and K5 that promote host immune evasion. Previous studies have shown that MARCHF8 ubiquitinates several immune receptors, such as the major histocompatibility complex II and CD86. While human papillomavirus (HPV) does not encode any ubiquitin ligase, the viral oncoproteins E6 and E7 are known to regulate host ubiquitin ligases. Here, we report that MARCHF8 expression is upregulated in HPV-positive head and neck cancer (HNC) patients but not in HPV-negative HNC patients compared to normal individuals. The MARCHF8 promoter is highly activated by HPV oncoprotein E6-induced MYC/MAX transcriptional activation. The knockdown of MARCHF8 expression in human HPV-positive HNC cells restores cell surface expression of the tumor necrosis factor receptor superfamily (TNFRSF) death receptors, FAS, TRAIL-R1, and TRAIL-R2, and enhances apoptosis. MARCHF8 protein directly interacts with and ubiquitinates the TNFRSF death receptors. Further, MARCHF8 knockout in mouse oral cancer cells expressing HPV16 E6 and E7 augments cancer cell apoptosis and suppresses tumor growth in vivo. Our findings suggest that HPV inhibits host cell apoptosis by upregulating MARCHF8 and degrading TNFRSF death receptors in HPV-positive HNC cells.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Craig Welbon
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Argyris PP, Saavedra F, Malz C, Stone IA, Wei Y, Boyle WS, Johnstone KF, Khammanivong A, Herzberg MC. Intracellular calprotectin (S100A8/A9) facilitates DNA damage responses and promotes apoptosis in head and neck squamous cell carcinoma. Oral Oncol 2023; 137:106304. [PMID: 36608459 PMCID: PMC9877195 DOI: 10.1016/j.oraloncology.2022.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.
Collapse
Affiliation(s)
- Prokopios P Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA; Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| | - Flávia Saavedra
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Chris Malz
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ian A Stone
- Department of Immunology, Microbiology and Virology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Yuping Wei
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - William S Boyle
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Karen F Johnstone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Ali Khammanivong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
35
|
Chen G, Iwata T, Sugawara M, Nishio H, Katoh Y, Kukimoto I, Aoki D. Evaluation of CD4 + cells infiltration as a prognostic factor in cervical intraepithelial neoplasia 2. J Gynecol Oncol 2023; 34:e2. [PMID: 36245223 DOI: 10.3802/jgo.2023.34.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To identify candidate predictors for the prognosis of cervical intraepithelial neoplasia 2 (CIN2) lesions and evaluate the prognostic value of the local immune response. METHODS One hundred fifteen CIN2 patients were enrolled. The percentage of p16-, minichromosome maintenance complex component 2- or apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G)-positive cells was determined immunohistochemically. Tumor-infiltrating lymphocytes (TILs) in intertumoral lesions were scored using an automated system. CIN3 disease progression and regression rates were estimated by the Kaplan-Meier method. A case-control study was conducted to screen CIN2 prognostic factors in 10 regression and 10 progression patients. Selected factors were examined in a cohort study to determine their prognostic value for CIN2. RESULTS Among all participants, the cumulative progression and regression rates at 60 months were 0.477 and 0.510, respectively. In the case-control study, p16- and APOBEC3G-positive cells were higher in the progression group (p=0.043, p=0.023). Additionally, CD4+ cell infiltration was enhanced in the regression group (p=0.023). The cohort study revealed a significantly increased progression rate in patients with elevated p16-positive cells (p<0.001), and increased CD4+ TIL infiltration was associated with better regression (p=0.011). Kaplan-Meier analysis according to human papillomavirus (HPV) positivity revealed a greater CIN3 development risk in HPV16-positive patients than in HPV16-negative cases. Finally, multivariate analysis identified HPV16 infection and CD4+ TIL infiltration as independent prognostic factors in CIN2 regression. CONCLUSION CD4+ TIL infiltration in intertumoral lesions was related with CIN2 regression. Our findings suggest CD4+ TIL infiltration may be useful for the triage of CIN2 patients.
Collapse
Affiliation(s)
- Guanliang Chen
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.
| | - Masaki Sugawara
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishio
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Katoh
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.,Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Timmerman AL, Kaczorowska J, Deijs M, Bakker M, van der Hoek L. Control of Human Anelloviruses by Cytosine to Uracil Genome Editing. mSphere 2022; 7:e0050622. [PMID: 36374042 PMCID: PMC9769745 DOI: 10.1128/msphere.00506-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Anelloviruses are the most common viruses infecting humans. Every human carries a nonpathogenic personal anellovirus virome (anellome), yet it is unknown which mechanisms contribute to its stability. Here, we assessed the dynamics and impact of a host antiviral defense mechanism-cytidine deaminase activity leading to C to U editing in anelloviruses-on the stability of the anellome. We investigated anellome sequence data obtained from serum samples collected every 6 months from two healthy subjects followed for more than 30 years. The subjects were infected by a total of 64 anellovirus lineages. Minus-stranded C to U editing was observed in lineages belonging to the Alpha-, Beta-, and Gammatorquevirus genera. The edited genomes were present within virus particles, therefore editing must have occurred at the late stages of the virus life cycle. Editing was favored by 5'-TC contexts in the virus genome, indicating that apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like, catalytic subunit 3 or A3 (APOBEC3) proteins are involved. Within a lineage, mutational dynamics varied over time and few fixations of mutations were detected, indicating that C to U editing is a dead end for a virus genome. We detected an editing coldspot in the GC-rich regions, suggesting that the GC-rich region is crucial for genome packaging, since only packaged virus particles were included in the analysis. Finally, we noticed a lineage-specific reduced concentration after an editing event, yet no clearance. In conclusion, cytidine deaminase activity does not clear anelloviruses, nor does it play a major role in virus evolution, but it does contribute to the stability of the anellome. IMPORTANCE Despite significant attention on anellovirus research, the interaction between the anellovirus virome and the human host remains unknown. We show the dynamics of APOBEC3-mediated cytidine deaminase activity on anelloviruses during a 30-year period of chronic infection and postulate that this antiviral mechanism controls anelloviruses. These results expand our knowledge of anellovirus-host interactions, which may be important for the design of gene therapies.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Joanna Kaczorowska
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Martin Deijs
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lia van der Hoek
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
37
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
38
|
Løvestad AH, Repesa A, Costanzi JM, Lagström S, Christiansen IK, Rounge TB, Ambur OH. Differences in integration frequencies and APOBEC3 profiles of five high-risk HPV types adheres to phylogeny. Tumour Virus Res 2022; 14:200247. [PMID: 36100161 PMCID: PMC9485212 DOI: 10.1016/j.tvr.2022.200247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent infection with Human Papillomavirus (HPV) is responsible for almost all cases of cervical cancers, and HPV16 and HPV18 associated with the majority of these. These types differ in the proportion of viral minor nucleotide variants (MNVs) caused by APOBEC3 mutagenesis as well as integration frequencies. Whether these traits extend to other types remains uncertain. This study aimed to investigate and compare genomic variability and chromosomal integration in the two phylogenetically distinct Alpha-7 and Alpha-9 clades of carcinogenic HPV types. The TaME-seq protocol was employed to sequence cervical cell samples positive for HPV31, HPV33 or HPV45 and combine these with data from a previous study on HPV16 and HPV18. APOBEC3 mutation signatures were found in Alpha-9 (HPV16/31/33) but not in Alpha-7 (HPV18/45). HPV45 had significantly more MNVs compared to the other types. Alpha-7 had higher integration frequency compared to Alpha-9. An increase in integration frequency with increased diagnostic severity was found for Alpha-7. The results highlight important differences and broaden our understanding of the molecular mechanisms behind cervical cancer induced by high-risk HPV types from the Alpha-7 and Alpha-9 clades.
Collapse
Affiliation(s)
- Alexander Hesselberg Løvestad
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Adina Repesa
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Jean-Marc Costanzi
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Sonja Lagström
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Research, Cancer Registry of Norway, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Irene Kraus Christiansen
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Trine B Rounge
- Department of Research, Cancer Registry of Norway, Oslo, Norway; Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
39
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
40
|
High APOBEC3B mRNA Expression Is Associated with Human Papillomavirus Type 18 Infection in Cervical Cancer. Viruses 2022; 14:v14122653. [PMID: 36560657 PMCID: PMC9784603 DOI: 10.3390/v14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The APOBEC3 (A3) proteins are cytidine deaminases that exhibit the ability to insert mutations in DNA and/or RNA sequences. APOBEC3B (A3B) has been evidenced as a DNA mutagen with consistent high expression in several cancer types. Data concerning the A3B influence on HPV infection and cervical cancer are limited and controversial. We investigated the role of A3B expression levels in cervical cancer in affected women positive for infection by different HPV types. Tumor biopsies from cancerous uterine cervix were collected from 216 women registered at Hospital do Câncer II of Instituto Nacional de Câncer, and infecting HPV was typed. A3B expression levels were quantified from RNA samples extracted from cervical biopsies using real-time quantitative PCR. Median A3B expression levels were higher among HPV18+ samples when compared to HPV16+ counterparts and were also increased compared to samples positive for other HPV types. In squamous cell carcinoma, HPV18+ samples also showed increased median A3B expression when compared to HPV Alpha-9 species or only to HPV16+ samples. Our findings suggest that A3B expression is differentially upregulated in cervical cancer samples infected with HPV18. A3B could be potentially used as a biomarker for HPV infection and as a prognostic tool for clinical outcomes in the context of cervical cancer.
Collapse
|
41
|
Maiti A, Hedger AK, Myint W, Balachandran V, Watts JK, Schiffer CA, Matsuo H. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state. Nat Commun 2022; 13:7117. [PMID: 36402773 PMCID: PMC9675756 DOI: 10.1038/s41467-022-34752-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
APOBEC3 proteins (A3s) are enzymes that catalyze the deamination of cytidine to uridine in single-stranded DNA (ssDNA) substrates, thus playing a key role in innate antiviral immunity. However, the APOBEC3 family has also been linked to many mutational signatures in cancer cells, which has led to an intense interest to develop inhibitors of A3's catalytic activity as therapeutics as well as tools to study A3's biochemistry, structure, and cellular function. Recent studies have shown that ssDNA containing 2'-deoxy-zebularine (dZ-ssDNA) is an inhibitor of A3s such as A3A, A3B, and A3G, although the atomic determinants of this activity have remained unknown. To fill this knowledge gap, we determined a 1.5 Å resolution structure of a dZ-ssDNA inhibitor bound to active A3G. The crystal structure revealed that the activated dZ-H2O mimics the transition state by coordinating the active site Zn2+ and engaging in additional stabilizing interactions, such as the one with the catalytic residue E259. Therefore, this structure allowed us to capture a snapshot of the A3's transition state and suggests that developing transition-state mimicking inhibitors may provide a new opportunity to design more targeted molecules for A3s in the future.
Collapse
Affiliation(s)
- Atanu Maiti
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Adam K. Hedger
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Wazo Myint
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Vanivilasini Balachandran
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Jonathan K. Watts
- grid.168645.80000 0001 0742 0364RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Celia A. Schiffer
- grid.168645.80000 0001 0742 0364Institute for Drug Resistance, University of Massachusetts Chan Medical School, Worcester, MA USA ,grid.168645.80000 0001 0742 0364Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Hiroshi Matsuo
- grid.418021.e0000 0004 0535 8394Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| |
Collapse
|
42
|
Abstract
Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Mario L Santiago
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
43
|
Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel) 2022; 14:4623. [PMID: 36230545 PMCID: PMC9564061 DOI: 10.3390/cancers14194623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Human papillomavirus (HPV) is the causative driver of cervical cancer and a contributing risk factor of head and neck cancer and several anogenital cancers. HPV's ability to induce genome instability contributes to its oncogenicity. HPV genes can induce genome instability in several ways, including modulating the cell cycle to favour proliferation, interacting with DNA damage repair pathways to bring high-fidelity repair pathways to viral episomes and away from the host genome, inducing DNA-damaging oxidative stress, and altering the length of telomeres. In addition, the presence of a chronic viral infection can lead to immune responses that also cause genome instability of the infected tissue. The HPV genome can become integrated into the host genome during HPV-induced tumorigenesis. Viral integration requires double-stranded breaks on the DNA; therefore, regions around the integration event are prone to structural alterations and themselves are targets of genome instability. In this review, we present the mechanisms by which HPV-dependent and -independent genome instability is initiated and maintained in HPV-driven cancers, both across the genome and at regions of HPV integration.
Collapse
Affiliation(s)
- Vanessa L. Porter
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
44
|
Trimmel B, Oszwald A, Diemand C, Ertl IE, Lemberger U, Bruchbacher A, Brettner R, Korn S, Resch I, Comperat E, Shariat SF, Hassler MR. Evaluation of APOBEC3 expression as prognostic marker in squamous cell carcinoma of the penis. Sci Rep 2022; 12:12911. [PMID: 35902635 PMCID: PMC9334367 DOI: 10.1038/s41598-022-17056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Squamous cell carcinoma of the penis (PSC) is a rare disease with limited information on the molecular events leading to malignant transformation. In a third of PSC cases, presence of human papilloma virus (HPV) is found. The APOBEC3 family of proteins is known to play a significant role in defense against HPV infection, but their role in PSC is largely unknown. In this study, we aim to assess mRNA expression levels of APOBEC3 family members in HPV+ and HPV− PSC to get insight into their association with clinicopathological features and to evaluate their prognostic impact. Expression levels of six APOBEC3 family members in tissue from 50 patients with PSC were determined by RT-PCR and correlated with clinical and histopathological features. Lower expression of APOBEC3A, APOBEC3B, and APOBEC3C was observed in advanced PSC stages. Except for APOBEC3D, HPV+ samples showed higher expression of APOBEC3s compared to HPV− samples. In univariate analyses, APOBEC3A and APOBEC3C expression tended to be associated with disease-free survival and APOBEC3A expression with overall survival; however, multivariable analyses failed to confirm these associations with outcome. More extensive external validation and functional laboratory studies are needed to evaluate further their role in PSC development and progression.
Collapse
Affiliation(s)
- Bettina Trimmel
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andre Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christoph Diemand
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Iris E Ertl
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Lemberger
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Andreas Bruchbacher
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Robert Brettner
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Stephan Korn
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Irene Resch
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Eva Comperat
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Melanie R Hassler
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
45
|
Deep Sequencing of HPV16 E6 Region Reveals Unique Mutation Pattern of HPV16 and Predicts Cervical Cancer. Microbiol Spectr 2022; 10:e0140122. [PMID: 35735983 PMCID: PMC9430801 DOI: 10.1128/spectrum.01401-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of human papillomavirus (HPV) 16 within cervical cells and tissue is usually associated with persistent virus infection and precancerous lesions. To explore the HPV16 mutation patterns contributing to the cervical cancer (CC) progression, a total of 199 DNA samples from HPV16-positive cervical specimens were collected and divided into high‐grade squamous intraepithelial lesion (HSIL) and the non‐HSIL(NHSIL) groups. The HPV16 E6 region (nt 7125-7566) was sequenced using next-generation sequencing. Based on HPV16 E6 amino acid mutation features selected by Lasso algorithm, four machine learning approaches were used to establish HSIL prediction models. The receiver operating characteristic was used to evaluate the model performance in both training and validation cohorts. Western blot was used to detect the degradation of p53 by the E6 variants. Based on the 13 significant mutation features, the logistic regression (LR) model demonstrated the best predictive performance in the training cohort (AUC = 0.944, 95% CI: 0.913–0.976), and also achieved a high discriminative ability in the independent validation cohort (AUC = 0.802, 95% CI: 0.601–1.000). Among these features, the E6 D32E and H85Y variants have higher ability to degrade p53 compared to the E6 wildtype (P < 0.05). In conclusion, our study provides evidence for the first time that HPV16 E6 sequences contain vital mutation features in predicting HSIL. Moreover, the D32E and H85Y variants of E6 exhibited a significantly higher ability to degrade p53, which may play a vital role in the development of CC. IMPORTANCE The study provides evidence for the first time that HPV16 E6 sequences contain vital mutation features in predicting the high‐grade squamous intraepithelial lesion and can reduce even more unneeded colposcopies without a loss of sensitivity to detect cervical cancer. Moreover, the D32E and H85Y variants of E6 exhibited a significantly higher ability to degrade p53, which may play a vital role in the development of cervical cancer.
Collapse
|
46
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
47
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
48
|
Abstract
The AID/APOBEC polynucleotide cytidine deaminases have historically been classified as either DNA mutators or RNA editors based on their first identified nucleic acid substrate preference. DNA mutators can generate functional diversity at antibody genes but also cause genomic instability in cancer. RNA editors can generate informational diversity in the transcriptome of innate immune cells, and of cancer cells. Members of both classes can act as antiviral restriction factors. Recent structural work has illuminated differences and similarities between AID/APOBEC enzymes that can catalyse DNA mutation, RNA editing or both, suggesting that the strict functional classification of members of this family should be reconsidered. As many of these enzymes have been employed for targeted genome (or transcriptome) editing, a more holistic understanding will help improve the design of therapeutically relevant programmable base editors. In this Perspective, Pecori et al. provide an overview of the AID/APOBEC cytidine deaminase family, discussing key structural features, how they contribute to viral and tumour evolution and how they can be harnessed for (potentially therapeutic) base-editing purposes.
Collapse
|
49
|
Liu Y, Lan W, Wang C, Cao C. Two different kinds of interaction modes of deaminase APOBEC3A with single-stranded DNA in solution detected by nuclear magnetic resonance. Protein Sci 2022; 31:443-453. [PMID: 34792260 PMCID: PMC8819843 DOI: 10.1002/pro.4242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
APOBEC3A (A3A) deaminates deoxycytidine in target motif TC in a single-stranded DNA (we termed it as TC DNA), which mortally mutates viral pathogens and immunoglobulins, and leads to the diversification and lethality of cancers. The crystal structure of A3A-DNA revealed a unique U-shaped recognition mode of target base dC0 . However, when TC DNA was titrated into 15 N-labeled A3A solution, we observed two sets of 1 H-15 N cross-peaks of A3A in HSQC spectra, and two sets of 1 H-1 H cross-peaks of DNA in two-dimensional 13 C,15 N-filtered TOCSY spectra, indicating two different kinds of conformers of either A3A or TC DNA existing in solution. Here, mainly by NMR, we demonstrated that one DNA conformer interacted with one A3A conformer, forming a specific complex A3AS -DNAS in a way almost similar to that observed in the reported crystal A3A-DNA structure, where dC0 inserted into zinc ion binding center. While the other DNA conformer bound with another A3A conformer, but dC0 did not extend into the zinc-binding pocket, forming a nonspecific A3ANS -DNANS complex. The NMR solution structure implied three sites Asn61 , His182 and Arg189 were necessary to DNA recognition. These observations indicate a distinctive way from that reported in X-ray crystal structure, suggesting an unexpected mode of deaminase APOBEC3A to identify target motif TC in DNA in solution.
Collapse
Affiliation(s)
- Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product ChemistryCenter for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
50
|
Crane J, Shi Q, Xi Y, Lai J, Pham K, Wang H. Emerging Trends in the Pathological Research of Human Papillomavirus-positive Oropharyngeal Squamous Cell Carcinoma. JOURNAL OF CLINICAL AND TRANSLATIONAL PATHOLOGY 2022; 2:31-36. [PMID: 36275841 PMCID: PMC9585478 DOI: 10.14218/jctp.2022.00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oropharyngeal squamous cell carcinomas (OPSCCs) have shown an alarming rate of increase in incidence over the past several decades, markedly in men. In the United States, transcriptionally-active human papillomavirus (HPV), particularly HPV 16, has become the highest contributive agent of OPSCCs, affecting approximately 16,000 people a year. Compared to patients with HPV-negative OPSCCs, patients with HPV-positive OPSCCs exhibit better health responses to chemoradiotherapy and an overall increase in long-term survival. Despite promising treatment options, many OPSCCs are discovered at an advanced stage, and ~20% of cases will recur after definitive treatment. Therefore, extensive research is ongoing to identify new targets for precision treatment and to stratify tumor prognosis. The aim of this review is to capture the most updated research on HPV-positive OPSCCs, emphasizing their relevance as potential new targets for precision medicine and survival prognosis.
Collapse
Affiliation(s)
- Joshua Crane
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Yibo Xi
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kien Pham
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - He Wang
- Department of Laboratory Medicine and Pathology, Yale University School of Medicine, New Haven, CT, USA
- Correspondence to: He Wang, Department of Laboratory Medicine and Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA. Tel: +1-203-214-2786, Fax: +1-203-214-2764,
| |
Collapse
|