1
|
Faraci G, Park SY, Dubé MP, Lee HY. Full-spectrum HIV drug resistance mutation detection by high-resolution complete pol gene sequencing. J Clin Virol 2023; 164:105491. [PMID: 37182384 PMCID: PMC10330399 DOI: 10.1016/j.jcv.2023.105491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/15/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Drug resistance mutation testing is a key element for HIV clinical management, informing effective treatment regimens. However, resistance screening in current clinical practice is limited in reporting linked cross-class resistance mutations and minority variants, both of which may increase the risk of virological failure. METHODS To address these limitations, we obtained 358 full-length pol gene sequences from 52 specimens of 20 HIV infected individuals by combining microdroplet amplification, unique molecular identifier (UMI) labeling, and long-read high-throughput sequencing. RESULTS We conducted a rigorous assessment of the accuracy of our pipeline for precision drug resistance mutation detection, verifying that a sequencing depth of 35 high-throughput reads achieved complete, error-free pol gene sequencing. We detected 26 distinct drug resistance mutations to Protease Inhibitors (PIs), Nucleoside Reverse Transcriptase Inhibitors (NRTIs), Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), and Integrase Strand Transfer Inhibitors (INSTIs). We detected linked cross-class drug resistance mutations (PI+NRTI, PI+NNRTI, and NRTI+NNRTI) that confer cross-resistance to multiple drugs in different classes. Fourteen different types of minority mutations were also detected with frequencies ranging from 3.2% to 19%, and the presence of these mutations was verified by Sanger reference sequencing. We detected a putative transmitted drug resistance mutation (TDRM) in one individual that persisted for over seven months from the first sample collected at the acute stage of infection prior to seroconversion. CONCLUSIONS Our comprehensive drug resistance mutation profiling can advance clinical practice by reporting mutation linkage and minority variants to better guide antiretroviral therapy options.
Collapse
Affiliation(s)
- Gina Faraci
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| | - Sung Yong Park
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| | - Michael P Dubé
- Department of Medicine and Division of Infectious Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ha Youn Lee
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States.
| |
Collapse
|
2
|
Fu H, Zhang C, Wang Y, Chen G. Advances in multiplex molecular detection technologies for harmful algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43745-43757. [PMID: 35449333 DOI: 10.1007/s11356-022-20269-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
As the eutrophication of natural water bodies becomes more and more serious, the frequency of outbreaks of harmful algal blooms (HABs) mainly formed by harmful algae also increases. HABs have become a global ecological problem that poses a serious threat to human health and food safety. Therefore, it is extremely important to establish methods that can rapidly detect harmful algal species for early warning of HABs. The traditional morphology-based identification method is inefficient and inaccurate. In recent years, the rapid development of molecular biology techniques has provided new ideas for the detection of harmful algae and has become a research hotspot. The current molecular detection methods for harmful algal species mainly include fluorescence in situ hybridization, sandwich hybridization, and quantitative PCR (qPCR), but all of these methods can only detect single harmful algal species at a time. The establishment of methods for the simultaneous detection of multiple harmful algal species has become a new trend in the development of molecular detection technology because various harmful algal species may coexist in the natural water environment. The established molecular techniques for multiple detections of harmful algae mainly include gene chip, multiplex PCR, multiplex qPCR, massively parallel sequencing, antibody chip, and multiple isothermal amplification. This review mainly focuses on the principles, advantages and disadvantages, application progress, and application prospects of these multiple detection technologies, aiming at providing effective references not only for the fisheries but also for economic activities, environment, and human health.
Collapse
Affiliation(s)
- Hanyu Fu
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, People's Republic of China.
- School of Environment, Harbin Institute of Technology, Harbin, 150009, People's Republic of China.
| |
Collapse
|
3
|
Application of next generation sequencing in HIV drug resistance studies in Africa, 2005–2019: A systematic review. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Obasa AE, Ambikan AT, Gupta S, Neogi U, Jacobs GB. Increased acquired protease inhibitor drug resistance mutations in minor HIV-1 quasispecies from infected patients suspected of failing on national second-line therapy in South Africa. BMC Infect Dis 2021; 21:214. [PMID: 33632139 PMCID: PMC7908688 DOI: 10.1186/s12879-021-05905-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND HIV-1C has been shown to have a greater risk of virological failure and reduced susceptibility towards boosted protease inhibitors (bPIs), a component of second-line combination antiretroviral therapy (cART) in South Africa. This study entailed an evaluation of HIV-1 drug resistance-associated mutations (RAMs) among minor viral populations through high-throughput sequencing genotypic resistance testing (HTS-GRT) in patients on the South African national second-line cART regimen receiving bPIs. METHODS During 2017 and 2018, 67 patient samples were sequenced using high-throughput sequencing (HTS), of which 56 samples were included in the final analysis because the patient's treatment regimen was available at the time of sampling. All patients were receiving bPIs as part of their cART. Viral RNA was extracted, and complete pol genes were amplified and sequenced using Illumina HiSeq2500, followed by bioinformatics analysis to quantify the RAMs according to the Stanford HIV Drug Resistance Database. RESULTS Statistically significantly higher PI RAMs were observed in minor viral quasispecies (25%; 14/56) compared to non-nucleoside reverse transcriptase inhibitors (9%; 5/56; p = 0.042) and integrase inhibitor RAM (4%; 2/56; p = 0.002). The majority of the drug resistance mutations in the minor viral quasispecies were observed in the V82A mutation (n = 13) in protease and K65R (n = 5), K103N (n = 7) and M184V (n = 5) in reverse transcriptase. CONCLUSIONS HTS-GRT improved the identification of PI and reverse transcriptase inhibitor (RTI) RAMs in second-line cART patients from South Africa compared to the conventional GRT with ≥20% used in Sanger-based sequencing. Several RTI RAMs, such as K65R, M184V or K103N and PI RAM V82A, were identified in < 20% of the population. Deep sequencing could be of greater value in detecting acquired resistance mutations early.
Collapse
Affiliation(s)
- Adetayo Emmanuel Obasa
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa.
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden.
| | - Anoop T Ambikan
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Soham Gupta
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Department of Pathology, Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
| |
Collapse
|
5
|
Rodriguez C, Nere ML, Demontant V, Charreau I, Mercier-Darty M, Delagreverie H, Salmona M, de Castro N, Chaix ML, Molina JM, Delaugerre C. Ultra-deep sequencing improves the detection of drug resistance in cellular DNA from HIV-infected patients on ART with suppressed viraemia. J Antimicrob Chemother 2019; 73:3122-3128. [PMID: 30137335 DOI: 10.1093/jac/dky315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Background Standard genotypic tests performed on HIV DNA from patients on suppressive ART, with previous resistance-associated mutations (RAMs) detected in their plasma, underestimate resistance. We thus compared ultra-deep sequencing (UDS) with bulk sequencing of DNA to detect RAMs previously identified in plasma. Methods We sequenced the DNA of 169 highly treatment experienced patients with suppressed viraemia (ANRS 138-EASIER trial). Protease (PR) and reverse transcriptase (RT) genes from HIV DNA were sequenced by bulk sequencing and UDS, comparing 1% and 20% as thresholds of detection for UDS. Results Patients were highly treatment experienced (13.6 years). UDS of DNA was successful for the RT and PR genes in 133 (79%) and 137 (81%) patients, respectively. The detection of RAMs was similar by bulk sequencing and UDS with a 20% cut-off. However, the detection of RAMs by UDS with a 1% cut-off was significantly higher than that of bulk sequencing for RT codons D67N (65.4% versus 52.3%), M184V (66.2% versus 52.3%), L210W (48.9% versus 36.4%) and T215Y (57.9% versus 42.1%) and PR codons M46I (46% versus 26%), I54L (12.4% versus 3.9%), V82A (44.5% versus 29.9%) and L90M (57.7% versus 42.5%). Conclusions Genotypic resistance testing of cellular HIV DNA of well-controlled patients should use UDS technology with a sensitivity threshold of 1% to improve the detection of the resistant reservoir.
Collapse
Affiliation(s)
- Christophe Rodriguez
- Laboratoire de Virologie, Hôpital Henri Mondor, APHP, Créteil, France
- Université Paris Est Créteil, UPEC, U955 Inserm, Créteil, France
| | - Marie Laure Nere
- Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
- Université Paris Diderot, Inserm U941, Paris, France
| | - Vanessa Demontant
- Laboratoire de Virologie, Hôpital Henri Mondor, APHP, Créteil, France
- Université Paris Est Créteil, UPEC, U955 Inserm, Créteil, France
| | | | - Mélanie Mercier-Darty
- Laboratoire de Virologie, Hôpital Henri Mondor, APHP, Créteil, France
- Université Paris Est Créteil, UPEC, U955 Inserm, Créteil, France
| | - Héloïse Delagreverie
- Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
- Université Paris Diderot, Inserm U941, Paris, France
| | - Maud Salmona
- Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
- Université Paris Diderot, Inserm U941, Paris, France
| | | | - Marie Laure Chaix
- Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
- Université Paris Diderot, Inserm U941, Paris, France
| | - Jean Michel Molina
- Université Paris Diderot, Inserm U941, Paris, France
- Maladies infectieuses, Hôpital Saint-Louis, APHP, Paris, France
| | - Constance Delaugerre
- Laboratoire de Virologie, Hôpital Saint-Louis, APHP, Paris, France
- Université Paris Diderot, Inserm U941, Paris, France
| |
Collapse
|
6
|
Limited Marginal Utility of Deep Sequencing for HIV Drug Resistance Testing in the Age of Integrase Inhibitors. J Clin Microbiol 2018; 56:JCM.01443-18. [PMID: 30305383 PMCID: PMC6258839 DOI: 10.1128/jcm.01443-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 02/02/2023] Open
Abstract
HIV drug resistance genotyping is a critical tool in the clinical management of HIV infections. Although resistance genotyping has traditionally been conducted using Sanger sequencing, next-generation sequencing (NGS) is emerging as a powerful tool due to its ability to detect low-frequency alleles. HIV drug resistance genotyping is a critical tool in the clinical management of HIV infections. Although resistance genotyping has traditionally been conducted using Sanger sequencing, next-generation sequencing (NGS) is emerging as a powerful tool due to its ability to detect low-frequency alleles. However, the clinical value added from NGS approaches to antiviral resistance testing remains to be demonstrated. We compared the variant detection capacity of NGS versus Sanger sequencing methods for resistance genotyping in 144 drug resistance tests (105 protease-reverse transcriptase tests and 39 integrase tests) submitted to our clinical virology laboratory over a four-month period in 2016 for Sanger-based HIV drug resistance testing. NGS detected all true high-frequency drug resistance mutations (>20% frequency) found by Sanger sequencing, with greater accuracy in one instance of a Sanger-detected false positive. Freely available online NGS variant callers HyDRA and PASeq were superior to Sanger methods for interpretations of allele linkage and automated variant calling. NGS additionally detected low-frequency mutations (1 to 20% frequency) associated with higher levels of drug resistance in 30/105 (29%) protease-reverse transcriptase tests and 4/39 (10%) integrase tests. In clinical follow-up of 69 individuals for a median of 674 days, we did not find a difference in rates of virological failure between individuals with and without low-frequency mutations, although rates of virological failure were higher for individuals with drug-relevant low-frequency mutations. However, all 27 individuals who experienced virological failure reported poor adherence to their drug regimen during the preceding follow-up time, and all 19 who subsequently improved their adherence achieved viral suppression at later time points, consistent with a lack of clinical resistance. In conclusion, in a population with low antiviral resistance emergence, NGS methods detected numerous instances of minor alleles that did not result in subsequent bona fide virological failure due to antiviral resistance.
Collapse
|
7
|
HIV-1 second-line failure and drug resistance at high-level and low-level viremia in Western Kenya. AIDS 2018; 32:2485-2496. [PMID: 30134290 DOI: 10.1097/qad.0000000000001964] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Characterize failure and resistance above and below guidelines-recommended 1000 copies/ml virologic threshold, upon second-line failure. DESIGN Cross-sectional study. METHODS Kenyan adults on lopinavir/ritonavir-based second-line were enrolled at AMPATH (Academic Model Providing Access to Healthcare). Charts were reviewed for demographic/clinical characteristics and CD4/viral load were obtained. Participants with detectable viral load had a second visit and pol genotyping was attempted in both visits. Accumulated resistance was defined as mutations in the second, not the first visit. Low-level viremia (LLV) was detectable viral load less than 1000 copies/ml. Failure and resistance associations were evaluated using logistic and Poisson regression, Fisher Exact and t-tests. RESULTS Of 394 participants (median age 42, 60% women, median 1.9 years on second-line) 48% had detectable viral load; 21% had viral load more than 1000 copies/ml, associated with younger age, tuberculosis treatment, shorter time on second-line, lower CD4count/percentage, longer first-line treatment interruption and pregnancy. In 105 sequences from the first visit (35 with LLV), 79% had resistance (57% dual-class, 7% triple-class; 46% with intermediate-to-high-level resistance to ≥1 future drug option). LLV was associated with more overall and NRTI-associated mutations and with predicted resistance to more next-regimen drugs. In 48 second-visit sequences (after median 55 days; IQR 28-33), 40% accumulated resistance and LLV was associated with more mutation accumulation. CONCLUSION High resistance upon second-line failure exists at levels above and below guideline-recommended virologic-failure threshold, impacting future treatment options. Optimization of care should include increased viral load monitoring, resistance testing and third-line ART access, and consideration of lowering the virologic failure threshold, though this demands further investigation.
Collapse
|
8
|
Silver N, Paynter M, McAllister G, Atchley M, Sayir C, Short J, Winner D, Alouani DJ, Sharkey FH, Bergefall K, Templeton K, Carrington D, Quiñones-Mateu ME. Characterization of minority HIV-1 drug resistant variants in the United Kingdom following the verification of a deep sequencing-based HIV-1 genotyping and tropism assay. AIDS Res Ther 2018; 15:18. [PMID: 30409215 PMCID: PMC6223033 DOI: 10.1186/s12981-018-0206-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The widespread global access to antiretroviral drugs has led to considerable reductions in morbidity and mortality but, unfortunately, the risk of virologic failure increases with the emergence, and potential transmission, of drug resistant viruses. Detecting and quantifying HIV-1 drug resistance has therefore become the standard of care when designing new antiretroviral regimens. The sensitivity of Sanger sequencing-based HIV-1 genotypic assays is limited by its inability to identify minority members of the quasispecies, i.e., it only detects variants present above ~ 20% of the viral population, thus, failing to detect minority variants below this threshold. It is clear that deep sequencing-based HIV-1 genotyping assays are an important step change towards accurately monitoring HIV-infected individuals. METHODS We implemented and verified a clinically validated HIV-1 genotyping assay based on deep sequencing (DEEPGEN™) in two clinical laboratories in the United Kingdom: St. George's University Hospitals Healthcare NHS Foundation Trust (London) and at NHS Lothian (Edinburgh), to characterize minority HIV-1 variants in 109 plasma samples from ART-naïve or -experienced individuals. RESULTS Although subtype B HIV-1 strains were highly prevalent (44%, 48/109), most individuals were infected with non-B subtype viruses (i.e., A1, A2, C, D, F1, G, CRF02_AG, and CRF01_AE). DEEPGEN™ was able to accurately detect drug resistance-associated mutations not identified using standard Sanger sequencing-based tests, which correlated significantly with patient's antiretroviral treatment histories. A higher proportion of minority PI-, NRTI-, and NNRTI-resistance mutations was detected in NHS Lothian patients compared to individuals from St. George's, mainly M46I/L and I50 V (associated with PIs), D67 N, K65R, L74I, M184 V/I, and K219Q (NRTIs), and L100I (NNRTIs). Interestingly, we observed an inverse correlation between intra-patient HIV-1 diversity and CD4+ T cell counts in the NHS Lothian patients. CONCLUSIONS This is the first study evaluating the transition, training, and implementation of DEEPGEN™ between three clinical laboratories in two different countries. More importantly, we were able to characterize the HIV-1 drug resistance profile (including minority variants), coreceptor tropism, subtyping, and intra-patient viral diversity in patients from the United Kingdom, providing a rigorous foundation for basing clinical decisions on highly sensitive and cost-effective deep sequencing-based HIV-1 genotyping assays in the country.
Collapse
|
9
|
Parreira R. Laboratory Methods in Molecular Epidemiology: Viral Infections. Microbiol Spectr 2018; 6:10.1128/microbiolspec.ame-0003-2018. [PMID: 30387412 PMCID: PMC11633636 DOI: 10.1128/microbiolspec.ame-0003-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 01/05/2023] Open
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ricardo Parreira
- Unidade de Microbiologia Médica/Global Health and Tropical Medicine (GHTM) Research Centre, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
| |
Collapse
|
10
|
Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, Shomron N, Vignuzzi M, van der Werf S. Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Front Microbiol 2018; 9:2596. [PMID: 30429836 PMCID: PMC6220372 DOI: 10.3389/fmicb.2018.02596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo.
Collapse
Affiliation(s)
- Cyril Barbezange
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Louis Jones
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, The Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
11
|
Sanger and Next Generation Sequencing Approaches to Evaluate HIV-1 Virus in Blood Compartments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081697. [PMID: 30096879 PMCID: PMC6122037 DOI: 10.3390/ijerph15081697] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023]
Abstract
The implementation of antiretroviral treatment combined with the monitoring of drug resistance mutations improves the quality of life of HIV-1 positive patients. The drug resistance mutation patterns and viral genotypes are currently analyzed by DNA sequencing of the virus in the plasma of patients. However, the virus compartmentalizes, and different T cell subsets may harbor distinct viral subsets. In this study, we compared the patterns of HIV distribution in cell-free (blood plasma) and cell-associated viruses (peripheral blood mononuclear cells, PBMCs) derived from ART-treated patients by using Sanger sequencing- and Next-Generation sequencing-based HIV assay. CD4+CD45RA−RO+ memory T-cells were isolated from PBMCs using a BD FACSAria instrument. HIV pol (protease and reverse transcriptase) was RT-PCR or PCR amplified from the plasma and the T-cell subset, respectively. Sequences were obtained using Sanger sequencing and Next-Generation Sequencing (NGS). Sanger sequences were aligned and edited using RECall software (beta v3.03). The Stanford HIV database was used to evaluate drug resistance mutations. Illumina MiSeq platform and HyDRA Web were used to generate and analyze NGS data, respectively. Our results show a high correlation between Sanger sequencing and NGS results. However, some major and minor drug resistance mutations were only observed by NGS, albeit at different frequencies. Analysis of low-frequency drugs resistance mutations and virus distribution in the blood compartments may provide information to allow a more sustainable response to therapy and better disease management.
Collapse
|
12
|
Evaluating the accuracy and sensitivity of detecting minority HIV-1 populations by Illumina next-generation sequencing. J Virol Methods 2018; 261:40-45. [PMID: 30086382 DOI: 10.1016/j.jviromet.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/25/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
Abstract
The accuracy and sensitivity of deep sequencing were assessed using viral standards (pNL4-3 and pLAI.2) of both DNA and RNA. The sequencing accuracy did not depend on the type of nucleic acid, but critically depended on the number of reads and threshold of sensitivity to minor viral populations. With coverage of more than 236 reads, the accuracy of viral RNA sequencing was equal to or exceeded 99.9%, with a sensitivity threshold to minor nucleotides of 20%. When the sensitivity threshold was below 1%, reduced accuracy dynamics were clearly visible even when the coverage was massive (more than 9.000 reads). It was found that the floating sensitivity threshold allowed the sequencing accuracy to be maintained at an acceptable level in cases of low coverage (less than 1.500-2.000) of reads. These results indicate the quality that can be expected with a specific number of reads and sensitivity threshold. Deep sequencing is a very powerful tool that can significantly improve the value of study results, but despite its superior performance, it should be used with caution regarding its sensitivity to minor populations below 1%.
Collapse
|
13
|
Perrier M, Désiré N, Storto A, Todesco E, Rodriguez C, Bertine M, Le Hingrat Q, Visseaux B, Calvez V, Descamps D, Marcelin AG, Charpentier C. Evaluation of different analysis pipelines for the detection of HIV-1 minority resistant variants. PLoS One 2018; 13:e0198334. [PMID: 29856864 PMCID: PMC5983569 DOI: 10.1371/journal.pone.0198334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Reliable detection of HIV minority resistant variants (MRVs) requires bioinformatics analysis with specific algorithms to obtain good quality alignments. The aim of this study was to analyze ultra-deep sequencing (UDS) data using different analysis pipelines. METHODS HIV-1 protease, reverse transcriptase (RT) and integrase sequences from antiretroviral-naïve patients were obtained using GS-Junior® (Roche) and MiSeq® (Illumina) platforms. MRVs were defined as variants harbouring resistance-mutation present at a frequency of 1%-20%. Reads were analyzed using different alignment algorithms: Amplicon Variant Analyzer®, Geneious® compared to SmartGene® NGS HIV-1 module. RESULTS 101 protease and 51 RT MRVs identified in 139 protease and 124 RT sequences generated with a GS-Junior® platform were analyzed using AVA® and SmartGene® software. The correlation coefficients for the MRVs were R2 = 0.974 for protease and R2 = 0.972 for RT. Discordances (n = 13 in protease and n = 15 in RT) mainly concerned low-level MRVs (i.e., with frequencies of 1%-2%, n = 18/28) and they were located in homopolymeric regions (n = 10/15). Geneious® and SmartGene® software were used to analyze 143 protease, 45 RT and 26 integrase MRVs identified in 172 protease, 69 RT, and 72 integrase sequences generated with a MiSeq® platform. The correlation coefficients for the MRVs were R2 = 0.987 for protease, R2 = 0.995 for RT and R2 = 0.993 for integrase. Discordances (n = 9 in protease, n = 3 in RT, and n = 3 in integrase) mainly concerned low-level MRVs (n = 13/15). CONCLUSION We found an excellent correlation between the various UDS analysis pipelines that we tested. However, our results indicate that specific attention should be paid to low-level MRVs, for which the use of two different analysis pipelines and visual inspection of sequences alignments might be beneficial. Thus, our results argue for use of a 2% threshold for MRV detection, rather than the 1% threshold, to minimize misalignments and time-consuming sight reading steps essential to ensure accurate results for MRV frequencies below 2%.
Collapse
Affiliation(s)
- Marine Perrier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Nathalie Désiré
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Alexandre Storto
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Eve Todesco
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Christophe Rodriguez
- Département de Microbiologie, Next-Generation Sequencing Platform pACT, IMRB Créteil, Créteil, France
- Institut Mondor de Recherche Biomédicale U955, Créteil, France
| | - Mélanie Bertine
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Quentin Le Hingrat
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Benoit Visseaux
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Vincent Calvez
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Diane Descamps
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne University, UPMC Univ Paris 06, INSERM, Institut Pierre Louis d'épidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Hôpital Pitié Salpêtrière, Laboratoire de Virologie, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
14
|
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet 2018; 19:269-285. [PMID: 29576615 PMCID: PMC6485430 DOI: 10.1038/nrg.2017.117] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.
Collapse
Affiliation(s)
- Jesse J Salk
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Michael W Schmitt
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, Divisions of Hematology and Medical Oncology, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Lawrence A Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
15
|
Kinyua JG, Lihana RW, Kiptoo M, Muasya T, Odera I, Muiruri P, Songok EM. Antiretroviral resistance among HIV-1 patients on first-line therapy attending a comprehensive care clinic in Kenyatta National Hospital, Kenya: a retrospective analysis. Pan Afr Med J 2018; 29:186. [PMID: 30061964 PMCID: PMC6061825 DOI: 10.11604/pamj.2018.29.186.10796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 08/16/2017] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Antiretroviral therapy plays a major role in reducing the impact of Human Immunodeficiency Virus/Acquired Immune Disease Syndrome, especially in resource-limited settings. However, without proper infrastructure, it has resulted in emergence of drug resistance mutations in infected populations. To determine drug resistance mutations among patients attending a comprehensive care facility in Nairobi, 65 blood samples were successfully sequenced. METHODS Whole blood samples were also tested for CD4+T-cell count and plasma HIV-1 RNA Viral load. Drug-resistance testing targeting the HIV-1 RT gene was determined. Patients were on first line ART that consisted of two NRTIs, and one NNRTI. RESULTS Females were younger (mean 42) than males (mean 45) and lower median CD4+ counts (139 cells/μl) than males (152 cells/μl). The prevalence of drug resistance mutations (any major mutation) in this population was 23.1% (15/65). Major NRTI mutations were detected in 11 patient samples, which included M184V (n = 6), M41L (n=3), D67N (n=2), K219Q (n=3) and T215F (n=2). Major NNRTI mutations were detected in 14 patient samples. They included K103N (n = 10), G190A (n = 1), Y181C (n = 1) and Y188L (n = 1). CONCLUSION Presence of major mutations in this study calls for proper laboratory infrastructure to monitor treatment as well as regular appraisals of available regimens.
Collapse
Affiliation(s)
| | | | - Michael Kiptoo
- Kenya Medical Research Institute, Nairobi, Kenya
- School of Health Sciences, South Eastern Kenya University, Kenya
| | | | - Irene Odera
- Kenya Medical Research Institute, Nairobi, Kenya
| | | | | |
Collapse
|
16
|
Stella-Ascariz N, Arribas JR, Paredes R, Li JZ. The Role of HIV-1 Drug-Resistant Minority Variants in Treatment Failure. J Infect Dis 2017; 216:S847-S850. [PMID: 29207001 DOI: 10.1093/infdis/jix430] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) drug resistance genotyping is recommended to help in the selection of antiretroviral therapy and to prevent virologic failure. There are several ultrasensitive assays able to detect HIV-1 drug-resistance minority variants (DRMVs) not detectable by standard population sequencing-based HIV genotyping assays. Presence of these DRMVs has been shown to be clinically relevant, but its impact does not appear to be uniform across drug classes. In this review, we summarize key evidence for the clinical impact of DRMVs across drug classes for both antiretroviral treatment-naive and antiretroviral treatment-experienced patients, and highlight areas where more supporting evidence is needed.
Collapse
Affiliation(s)
| | - José Ramón Arribas
- HIV Unit, Internal Medicine Service, Hospital Universitario La Paz-IdiPAZ
| | - Roger Paredes
- HIV Unit and irsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona and Universitat de Vic-UCC, Spain
| | - Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
17
|
Pessôa R, Sanabani SS. High prevalence of HIV-1 transmitted drug-resistance mutations from proviral DNA massively parallel sequencing data of therapy-naïve chronically infected Brazilian blood donors. PLoS One 2017; 12:e0185559. [PMID: 28953964 PMCID: PMC5617215 DOI: 10.1371/journal.pone.0185559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND An improved understanding of the prevalence of low-abundance transmitted drug-resistance mutations (TDRM) in therapy-naïve HIV-1-infected patients may help determine which patients are the best candidates for therapy. In this study, we aimed to obtain a comprehensive picture of the evolving HIV-1 TDRM across the massive parallel sequences (MPS) of the viral entire proviral genome in a well-characterized Brazilian blood donor naïve to antiretroviral drugs. MATERIALS AND METHODS The MPS data from 128 samples used in the analysis were sourced from Brazilian blood donors and were previously classified by less-sensitive (LS) or "detuned" enzyme immunoassay as non-recent or longstanding HIV-1 infections. The Stanford HIV Resistance Database (HIVDBv 6.2) and IAS-USA mutation lists were used to interpret the pattern of drug resistance. The minority variants with TDRM were identified using a threshold of ≥ 1.0% and ≤ 20% of the reads sequenced. The rate of TDRM in the MPS data of the proviral genome were compared with the corresponding published consensus sequences of their plasma viruses. RESULTS No TDRM were detected in the integrase or envelope regions. The overall prevalence of TDRM in the protease (PR) and reverse transcriptase (RT) regions of the HIV-1 pol gene was 44.5% (57/128), including any mutations to the nucleoside analogue reverse transcriptase inhibitors (NRTI) and non-nucleoside analogue reverse transcriptase inhibitors (NNRTI). Of the 57 subjects, 43 (75.4%) harbored a minority variant containing at least one clinically relevant TDRM. Among the 43 subjects, 33 (76.7%) had detectable minority resistant variants to NRTIs, 6 (13.9%) to NNRTIs, and 16 (37.2%) to PR inhibitors. The comparison of viral sequences in both sources, plasma and cells, would have detected 48 DNA provirus disclosed TDRM by MPS previously missed by plasma bulk analysis. CONCLUSION Our findings revealed a high prevalence of TDRM found in this group, as the use of MPS drastically increased the detection of these mutations. Sequencing proviral DNA provided additional information about TDRM, which may impact treatment decisions. The overall results emphasize the importance of continuous monitoring.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Sabri S. Sanabani
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo, São Paulo, Brazil
- Clinical Laboratory, Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Moscona R, Ram D, Wax M, Bucris E, Levy I, Mendelson E, Mor O. Comparison between next-generation and Sanger-based sequencing for the detection of transmitted drug-resistance mutations among recently infected HIV-1 patients in Israel, 2000-2014. J Int AIDS Soc 2017; 20:21846. [PMID: 28799325 PMCID: PMC5577736 DOI: 10.7448/ias.20.1.21846] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Transmitted drug-resistance mutations (TDRM) may hamper successful anti-HIV-1 therapy and impact future control of the HIV-1 epidemic. Recently infected, therapy-naïve individuals are best suited for surveillance of such TDRM. In this study, TDRM, detected by next-generation sequencing (NGS) were compared to those identified by Sanger-based population sequencing (SBS) in recently infected HIV-1 patients. METHODS Historical samples from 80 recently infected HIV-1 patients, diagnosed between 2000 and 2014, were analysed by MiSeq (NGS) and ABI (SBS). DeepChek-HIV (ABL) was used for interpretation of the results. RESULTS Most patients were males (80%); Men who have sex with men (MSM) was the major transmission group (58.8%). Overall, TDRM were detected in 31.3% of patients by NGS and 8.8% by SBS, with SBS TDRM restricted to persons infected with subtype B. All SBS-detected TDRM were identified by NGS. The prevalence of TDRM impacting protease inhibitors (PI), nucleoside reverse transcriptase inhibitors (NRTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) was 11.3, 26.2 7.5%, respectively, in NGS analyses and 0, 3.8 and 5%, respectively, in SBS analyses. More patients with NGS and SBS TDRM were identified in 2008-2014 (37.2% or 13.9%, respectively) compared to 2000-2007 (24.3% or 2.7%, respectively), and a significantly greater number of these patients had multiple NGS TDRM. The most abundant, albeit, minor-frequency RT TDRM, were the K65R and D67N, while K103N, M184V and T215S were high-frequency mutations. Minor TDRM did not become a major variant in later samples and did not hinder successful treatment. CONCLUSIONS NGS can replace SBS for mutation detection and allows for the detection of low-frequency TDRM not identified by SBS. Although rates of TDRM in Israel continued to increase from 2000 to 2014, minor TDRM did not become major species. The need for ongoing surveillance of low-frequency TDRM should be revisited in a larger study.
Collapse
Affiliation(s)
- Roy Moscona
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Daniela Ram
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Marina Wax
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Efrat Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat-Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
- School of Public Health, Tel Aviv University, Ramat-Aviv, Israel
| | - Orna Mor
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat-Gan, Israel
| |
Collapse
|
19
|
Trabaud MA, Icard V, Ramière C, Tardy JC, Scholtes C, André P. Comparison of HIV-1 drug-resistance genotyping by ultra-deep sequencing and sanger sequencing using clinical samples. J Med Virol 2017; 89:1912-1919. [PMID: 28590068 DOI: 10.1002/jmv.24872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022]
Abstract
Sanger population sequencing (SPS) is the reference technique to monitor HIV-1-infected patients' therapy. Ultra-deep sequencing (UDS), which allows quantitative detection of drug resistance mutations, may be an alternative method. The study aimed to compare reproducibility and predictions of UDS versus SPS in a routine setting. A control containing low-abundance variants was repeatedly tested and clinical plasma samples from 100 patients were prospectively assayed by SPS and UDS using the Roche 454 system. Complete analysis by UDS was available for 88% of samples with various viral loads and subtypes. Comparison of detection thresholds found that SPS sensitivity was variable. Variations found by UDS between 5% to >20% were detected by SPS in 25% to more than 80% of samples. At the 5% cut-off, disagreements were rare and in most cases UDS detected an additional protease secondary mutation, suggesting a possible resistance to a protease inhibitor according to the 2015 ANRS algorithm. Mutations found on reverse transcriptase by only UDS were often explained by previous therapy. UDS with a variant detection threshold at 5% might allow therapy management with minimal differences compared to population sequencing while providing additional information for further determination of pertinent cutoff values for specific resistance mutations.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Vinca Icard
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Christophe Ramière
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Jean-Claude Tardy
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France
| | - Caroline Scholtes
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| | - Patrice André
- Laboratoire de Virologie, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69004, France.,Centre International de Recherche en Infectiologie (CIRI) (Inserm U1111, CNRS UMR 5308), Lyon, F-69007, France.,Ecole Normale Supérieure de Lyon, Lyon, F-69007, France.,Université Claude Bernard Lyon 1, Villeurbanne, F-69100, France
| |
Collapse
|
20
|
Currier JS, Britto P, Hoffman RM, Brummel S, Masheto G, Joao E, Santos B, Aurpibul L, Losso M, Pierre MF, Weinberg A, Gnanashanmugam D, Chakhtoura N, Klingman K, Browning R, Coletti A, Mofenson L, Shapiro D, Pilotto J, for the 1077HS PROMISE Team. Randomized trial of stopping or continuing ART among postpartum women with pre-ART CD4 ≥ 400 cells/mm3. PLoS One 2017; 12:e0176009. [PMID: 28489856 PMCID: PMC5425014 DOI: 10.1371/journal.pone.0176009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/03/2017] [Indexed: 11/24/2022] Open
Abstract
Background Health benefits of postpartum antiretroviral therapy (ART) for human immunodeficiency virus (HIV) positive women with high CD4+ T-counts have not been assessed in randomized trials. Methods Asymptomatic, HIV-positive, non-breastfeeding women with pre-ART CD4+ T-cell counts ≥ 400 cells/mm3 started on ART during pregnancy were randomized up to 42 days after delivery to continue or discontinue ART. Lopinavir/ritonavir plus tenofovir/emtricitabine was the preferred ART regimen. The sample size was selected to provide 88% power to detect a 50% reduction from an annualized primary event rate of 2.07%. A post-hoc analysis evaluated HIV/AIDS-related and World Health Organization (WHO) Stage 2 and 3 events. All analyses were intent to treat. Results 1652 women from 52 sites in Argentina, Botswana, Brazil, China, Haiti, Peru, Thailand and the US were enrolled (1/2010-11/2014). Median age was 28 years and major racial categories were Black African (28%), Asian (25%) White (15%). Median entry CD4 count was 696 cells/mm3 (IQR 575–869), median ART exposure prior to delivery was 19 weeks (IQR 13–24) and 94% had entry HIV-1 RNA < 1000 copies/ml. After a median follow-up of 2.3 years, the primary composite endpoint rate was significantly lower than expected, and not significantly different between arms (continue arm 0.21 /100 person years(py); discontinue 0.31/100 py, Hazard ratio (HR) 0.68, 95% CI: 0.19, 2.40). WHO Stage 2 and 3 events were significantly reduced with continued ART (2.08/100 py vs. 4.36/100 py in the discontinue arm; HR 0.48, 95%CI: 0.33, 0.70). Toxicity rates did not differ significantly between arms. Among women randomized to continue ART, 189/827 (23%) had virologic failure; of the 155 with resistance testing, 103 (66%) failed without resistance to their current regimen, suggesting non-adherence. Conclusions Overall, serious clinical events were rare among young HIV-positive post-partum women with high CD4 cell counts. Continued ART was safe and was associated with a halving of the rate of WHO 2/3 conditions. Virologic failure rates were high, underscoring the urgent need to improve adherence in this population. Trial registration ClinicalTrials.gov NCT00955968
Collapse
Affiliation(s)
- Judith S. Currier
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Paula Britto
- Center for Biostatistics in AIDS Research, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusettes, United States of America
| | - Risa M. Hoffman
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sean Brummel
- Center for Biostatistics in AIDS Research, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusettes, United States of America
| | | | - Esau Joao
- Hospital Federal dos Servidores do Estado, Rio de Janeiro, Brazil
| | | | - Linda Aurpibul
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Marcelo Losso
- HIV Unit, Hospital J.M. Ramos Meija, Buenos Aires, Argentina
| | | | - Adriana Weinberg
- University of Colorado Denver, Aurora, Colorado, United States of America
| | | | | | | | | | - Anne Coletti
- Science Facilitation, FHI360, Durham, North Carolina, United States
| | - Lynne Mofenson
- Elizabeth Glaser Pediatric AIDS Foundation, Washington, D.C., United States of America
| | - David Shapiro
- Center for Biostatistics in AIDS Research, T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusettes, United States of America
| | - Jose Pilotto
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Hayashida T, Tsuchiya K, Kikuchi Y, Oka S, Gatanaga H. Emergence of CXCR4-tropic HIV-1 variants followed by rapid disease progression in hemophiliac slow progressors. PLoS One 2017; 12:e0177033. [PMID: 28472121 PMCID: PMC5417636 DOI: 10.1371/journal.pone.0177033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The association between emergence of CXCR4-tropic HIV-1 variants (X4 variants) and disease progression of HIV-1 infection has been reported. However, it is not known whether the emergence of X4 variants is the cause or result of HIV-1 disease progression. We tried to answer this question. DESIGN HIV-1 env sequences around the V3 region were analyzed in serially stocked samples in order to determine whether X4 variants emerged before or after the fall in CD4+ T-cell count. METHODS The study subjects were five HIV-1-infected hemophiliac slow progressors. Deep sequencing around the HIV-1 env V3 region was conducted in duplicate. Tropism was predicted by geno2pheno [coreceptor] 2.5 with cutoff value of false positive ratio at <5%. When X4 variant was identified in the latest stocked sample before the introduction of antiretroviral therapy, we checked viral genotype in previously stocked samples to determine the time of emergence of X4 variants. RESULTS Emergence of X4 variants was noted in two of the five patients when their CD4+ T-cell counts were still high. The rate of decrease of CD4+ T-cell count or of rise of HIV-1 load accelerated significantly after the emergence of X4 variants in these two cases. Phylogenetic analysis showed that these X4 variants emerged from CCR5-tropic HIV-1 viruses with several amino acid changes in the V3 region. CONCLUSIONS The emergence of X4 variants preceded HIV-1 disease progression in two hemophiliac slow progressors.
Collapse
Affiliation(s)
- Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yoshimi Kikuchi
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Onywera H, Maman D, Inzaule S, Auma E, Were K, Fredrick H, Owiti P, Opollo V, Etard JF, Mukui I, Kim AA, Zeh C. Surveillance of HIV-1 pol transmitted drug resistance in acutely and recently infected antiretroviral drug-naïve persons in rural western Kenya. PLoS One 2017; 12:e0171124. [PMID: 28178281 PMCID: PMC5298248 DOI: 10.1371/journal.pone.0171124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
Abstract
HIV-1 transmitted drug resistance (TDR) is of increasing public health concern in sub-Saharan Africa with the rollout of antiretroviral (ARV) therapy. Such data are, however, limited in Kenya, where HIV-1 drug resistance testing is not routinely performed. From a population-based household survey conducted between September and November 2012 in rural western Kenya, we retrospectively assessed HIV-1 TDR baseline rates, its determinants, and genetic diversity among drug-naïve persons aged 15–59 years with acute HIV-1 infections (AHI) and recent HIV-1 infections (RHI) as determined by nucleic acid amplification test and both Limiting Antigen and BioRad avidity immunoassays, respectively. HIV-1 pol sequences were scored for drug resistance mutations using Stanford HIVdb and WHO 2009 mutation guidelines. HIV-1 subtyping was computed in MEGA6. Eighty seven (93.5%) of the eligible samples were successfully sequenced. Of these, 8 had at least one TDR mutation, resulting in a TDR prevalence of 9.2% (95% CI 4.7–17.1). No TDR was observed among persons with AHI (n = 7). TDR prevalence was 4.6% (95% CI 1.8–11.2) for nucleoside reverse transcriptase inhibitors (NRTIs), 6.9% (95% CI 3.2–14.2) for non- nucleoside reverse transcriptase inhibitors (NNRTIs), and 1.2% (95% CI 0.2–6.2) for protease inhibitors. Three (3.4% 95% CI 0.8–10.1) persons had dual-class NRTI/NNRTI resistance. Predominant TDR mutations in the reverse transcriptase included K103N/S (4.6%) and M184V (2.3%); only M46I/L (1.1%) occurred in the protease. All the eight persons were predicted to have different grades of resistance to the ARV regimens, ranging from potential low-level to high-level resistance. HIV-1 subtype distribution was heterogeneous: A (57.5%), C (6.9%), D (21.8%), G (2.3%), and circulating recombinant forms (11.5%). Only low CD4 count was associated with TDR (p = 0.0145). Our findings warrant the need for enhanced HIV-1 TDR monitoring in order to inform on population-based therapeutic guidelines and public health interventions.
Collapse
Affiliation(s)
- Harris Onywera
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
- * E-mail: (CZ); (HO)
| | - David Maman
- Epicentre, Médecins Sans Frontières (MSF), Paris, France
| | - Seth Inzaule
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Erick Auma
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Kennedy Were
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Harrison Fredrick
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Prestone Owiti
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Valarie Opollo
- Center for Global Health Research (CGHR), Kenya Medical Research Institute (KEMRI), Kisumu, Kenya
| | - Jean-François Etard
- TransVIHMI IRD UMI 233 –INSERM U 1175 –Université de Montpellier, Montpellier, France
| | - Irene Mukui
- National AIDS and STI Control Programme (NASCOP), Ministry of Health, Nairobi, Kenya
| | - Andrea A. Kim
- US Centers for Disease Control and Prevention (CDC), Nairobi, Kenya
| | - Clement Zeh
- US Centers for Disease Control and Prevention (CDC), Kisumu, Kenya
- * E-mail: (CZ); (HO)
| |
Collapse
|
23
|
Characterization of the Drug Resistance Profiles of Patients Infected with CRF07_BC Using Phenotypic Assay and Ultra-Deep Pyrosequencing. PLoS One 2017; 12:e0170420. [PMID: 28107423 PMCID: PMC5249062 DOI: 10.1371/journal.pone.0170420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
The usefulness of ultra-deep pyrosequencing (UDPS) for the diagnosis of HIV-1 drug resistance (DR) remains to be determined. Previously, we reported an explosive outbreak of HIV-1 circulating recombinant form (CRF) 07_BC among injection drug users (IDUs) in Taiwan in 2004. The goal of this study was to characterize the DR of CRF07_BC strains using different assays including UDPS. Seven CRF07_BC isolates including 4 from early epidemic (collected in 2004–2005) and 3 from late epidemic (collected in 2008) were obtained from treatment-naïve patient’s peripheral blood mononuclear cells. Viral RNA was extracted directly from patient’s plasma or from cultural supernatant and the pol sequences were determined using RT-PCR sequencing or UDPS. For comparison, phenotypic drug susceptibility assay using MAGIC-5 cells (in-house phenotypic assay) and Antivirogram were performed. In-house phenotypic assay showed that all the early epidemic and none of the late epidemic CRF07_BC isolates were resistant to most protease inhibitors (PIs) (4.4–47.3 fold). Neither genotypic assay nor Antivirogram detected any DR mutations. UDPS showed that early epidemic isolates contained 0.01–0.08% of PI DR major mutations. Furthermore, the combinations of major and accessory PI DR mutations significantly correlated with the phenotypic DR. The in-house phenotypic assay is superior to other conventional phenotypic assays in the detection of DR variants with a frequency as low as 0.01%.
Collapse
|
24
|
Watanabe SM, Simon V, Durham ND, Kemp BR, Machihara S, Kemal KS, Shi B, Foley B, Li H, Chen BK, Weiser B, Burger H, Anastos K, Chen C, Carter CA. The HIV-1 late domain-2 S40A polymorphism in antiretroviral (or ART)-exposed individuals influences protease inhibitor susceptibility. Retrovirology 2016; 13:64. [PMID: 27600154 PMCID: PMC5011916 DOI: 10.1186/s12977-016-0298-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background The p6 region of the HIV-1 structural precursor polyprotein, Gag, contains two motifs, P7TAP11 and L35YPLXSL41, designated as late (L) domain-1 and -2, respectively. These motifs bind the ESCRT-I factor Tsg101 and the ESCRT adaptor Alix, respectively, and are critical for efficient budding of virus particles from the plasma membrane. L domain-2 is thought to be functionally redundant to PTAP. To identify possible other functions of L domain-2, we examined this motif in dominant viruses that emerged in a group of 14 women who had detectable levels of HIV-1 in both plasma and genital tract despite a history of current or previous antiretroviral therapy. Results Remarkably, variants possessing mutations or rare polymorphisms in the highly conserved L domain-2 were identified in seven of these women. A mutation in a conserved residue (S40A) that does not reduce Gag interaction with Alix and therefore did not reduce budding efficiency was further investigated. This mutation causes a simultaneous change in the Pol reading frame but exhibits little deficiency in Gag processing and virion maturation. Whether introduced into the HIV-1 NL4-3 strain genome or a model protease (PR) precursor, S40A reduced production of mature PR. This same mutation also led to high level detection of two extended forms of PR that were fairly stable compared to the WT in the presence of IDV at various concentrations; one of the extended forms was effective in trans processing even at micromolar IDV. Conclusions Our results indicate that L domain-2, considered redundant in vitro, can undergo mutations in vivo that significantly alter PR function. These may contribute fitness benefits in both the absence and presence of PR inhibitor. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Susan M Watanabe
- Department of Molecular Genetics and Microbiology, Stony Brook University, Life Sciences Bldg., Stony Brook, NY, 11794-5222, USA
| | - Viviana Simon
- Department of Microbiology, Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha D Durham
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittney R Kemp
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Satoshi Machihara
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | | | - Binshan Shi
- Department of Health Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Brian Foley
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hongru Li
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K Chen
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Weiser
- Department of Medicine, University of California Davis, Davis, CA, USA.,Department of Medicine, Sacramento VA Medical Center, Cordova, CA, USA
| | - Harold Burger
- Department of Medicine, University of California Davis, Davis, CA, USA.,Department of Medicine, Sacramento VA Medical Center, Cordova, CA, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaoping Chen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA.
| | - Carol A Carter
- Department of Molecular Genetics and Microbiology, Stony Brook University, Life Sciences Bldg., Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
25
|
WASITYASTUTI WIDYA, YANO YOSHIHIKO, WIDASARI DEWIYANIINDAH, YAMANI LAURANAVIKA, RATNASARI NENENG, HERIYANTO DIDIKSETYO, OKADA RINA, TANAHASHI TOSHIHITO, MURAKAMI YOSHIKI, AZUMA TAKESHI, HAYASHI YOSHITAKE. Different Variants in Reverse Transcriptase Domain Determined by Ultra-deep Sequencing in Treatment-naïve and Treated Indonesian Patients Infected with Hepatitis B Virus. THE KOBE JOURNAL OF MEDICAL SCIENCES 2016; 62:E1-E8. [PMID: 27492206 PMCID: PMC5433726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/07/2016] [Indexed: 06/06/2023]
Abstract
A nucleos(t)ide analog (NA) is the common antiviral drug available for directly treating hepatitis B virus (HBV) infection. However, its application has led to the emergence of NA-resistant mutations mostly in a conserved region of the reverse transcriptase domain of HBV polymerase. Harboring NA-resistant mutations decreases drug effectiveness and increases the frequency of end-stage liver disease. The invention of next-generation sequencing that can generate thousands of sequences from viral complex mixtures provides opportunities to detect minor changes and early viral evolution under drug stress. The present study used ultra-deep sequencing to evaluate discrepant quasispecies in the reverse transcriptase domain of HBV including NA-resistant hotspots between seven treatment-naïve Indonesian patients infected with HBV and five at the early phase of treatment. The most common sub-genotype was HBV B3 (83.34%). The substitution rate of variants determined among amino acids with a ratio of ≥ 1% changes was higher among the population in conserved regions (23.19% vs. 4.59%, P = 0.001) and in the inter-reverse transcriptase domain (23.95% vs. 2.94%, P = 0.002) in treatment naïve, than in treated patients. Nine hotspots of antiviral resistance were identified in both groups, and the mean frequency of changes in all patients was < 1%. The known rtM204I mutation was the most frequent in both groups. The lower rate of variants in HBV quasispecies in patients undergoing treatment could be associated with virus elimination and the extinction of sensitive species by NA therapy. The present findings imply that HBV quasispecies dynamically change during treatment.
Collapse
Affiliation(s)
- WIDYA WASITYASTUTI
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Physiology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - YOSHIHIKO YANO
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - DEWIYANI INDAH WIDASARI
- Department of Anatomical Pathology, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - LAURA NAVIKA YAMANI
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - NENENG RATNASARI
- Subdivision of Gastroenterohepatology, Department of Internal Medicine, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - DIDIK SETYO HERIYANTO
- Department of Anatomical Pathology, Dr. Sardjito Hospital, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - RINA OKADA
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TOSHIHITO TANAHASHI
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - YOSHIKI MURAKAMI
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - TAKESHI AZUMA
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHITAKE HAYASHI
- Division of Infectious Disease Pathology, Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
26
|
HIV Drug Resistance Mutations (DRMs) Detected by Deep Sequencing in Virologic Failure Subjects on Therapy from Hunan Province, China. PLoS One 2016; 11:e0149215. [PMID: 26895182 PMCID: PMC4760947 DOI: 10.1371/journal.pone.0149215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/28/2016] [Indexed: 11/19/2022] Open
Abstract
Objective Determine HIV drug resistance mutations (DRMs) prevalence at low and high levels in ART-experienced patients experiencing virologic failure (VF). Methods 29 subjects from 18 counties in Hunan Province that experienced VF were evaluated for the prevalence of DRMs (Stanford DRMs with an algorithm value ≥15, include low-, intermediate and high-level resistance) by both Sanger sequencing (SS) and deep sequencing (DS) to 1% frequency levels. Results DS was performed on samples from 29 ART-experienced subjects; the median viral load 4.95×104 c/ml; 82.76% subtype CRF01_AE. 58 DRMs were detected by DS. 18 DRMs were detected by SS. Of the 58 mutations detected by DS, 40 were at levels <20% frequency (26 NNRTI, 12 NRTI and 2 PI) and the majority of these 95.00% (38/40) were not detected by standard genotyping. Of these 40 low-level DRMs, 16 (40%) were detected at frequency levels of 1–4% and 24 (60%) at levels of 5–19%. SS detected 15 of 17 (88.24%) DRMs at levels ≥ 20% that were detected by DS. The only variable associated with the detection of DRMs by DS was ART adherence (missed doses in the prior 7 days); all patients that reported missing a dose in the last 7 days had DRMs detected by DS. Conclusions DS of VF samples from treatment experienced subjects infected with primarily AE subtype frequently identified Stanford HIVdb NRTI and NNRTI resistance mutations with an algorithm value 15. Low frequency level resistant variants detected by DS were frequently missed by standard genotyping in VF specimens from antiretroviral-experienced subjects.
Collapse
|
27
|
Making the Leap from Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 2015; 6:e01888-15. [PMID: 26646014 PMCID: PMC4669390 DOI: 10.1128/mbio.01888-15] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Next-generation DNA sequencing (NGS) has progressed enormously over the past decade, transforming genomic analysis and opening up many new opportunities for applications in clinical microbiology laboratories. The impact of NGS on microbiology has been revolutionary, with new microbial genomic sequences being generated daily, leading to the development of large databases of genomes and gene sequences. The ability to analyze microbial communities without culturing organisms has created the ever-growing field of metagenomics and microbiome analysis and has generated significant new insights into the relation between host and microbe. The medical literature contains many examples of how this new technology can be used for infectious disease diagnostics and pathogen analysis. The implementation of NGS in medical practice has been a slow process due to various challenges such as clinical trials, lack of applicable regulatory guidelines, and the adaptation of the technology to the clinical environment. In April 2015, the American Academy of Microbiology (AAM) convened a colloquium to begin to define these issues, and in this document, we present some of the concepts that were generated from these discussions.
Collapse
|
28
|
Thys K, Verhasselt P, Reumers J, Verbist BMP, Maes B, Aerssens J. Performance assessment of the Illumina massively parallel sequencing platform for deep sequencing analysis of viral minority variants. J Virol Methods 2015; 221:29-38. [PMID: 25917877 DOI: 10.1016/j.jviromet.2015.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/21/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
Abstract
Massively parallel sequencing (MPS) technology has opened new avenues to study viral dynamics and treatment-induced resistance mechanisms of infections such as human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Whereas the Roche/454 platform has been used widely for the detection of low-frequent drug resistant variants, more recently developed short-read MPS technologies have the advantage of delivering a higher sequencing depth at a lower cost per sequenced base. This study assesses the performance characteristics of Illumina MPS technology for the characterization of genetic variability in viral populations by deep sequencing. The reported results from MPS experiments comprising HIV and HCV plasmids demonstrate that a 0.5-1% lower limit of detection can be achieved readily with Illumina MPS while retaining good accuracy also at low frequencies. Deep sequencing of a set of clinical samples (12 HIV and 9 HCV patients), designed at a similar budget for both MPS platforms, reveals a comparable lower limit of detection for Illumina and Roche/454. Finally, this study shows the possibility to apply Illumina's paired-end sequencing as a strategy to assess linkage between different mutations identified in individual viral subspecies. These results support the use of Illumina as another MPS platform of choice for deep sequencing of viral minority species.
Collapse
Affiliation(s)
- Kim Thys
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Peter Verhasselt
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Joke Reumers
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Bie M P Verbist
- Department of Mathematical Modeling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Bart Maes
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Jeroen Aerssens
- Discovery Sciences, Janssen Research & Development, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
29
|
A general method to eliminate laboratory induced recombinants during massive, parallel sequencing of cDNA library. Virol J 2015; 12:55. [PMID: 25879746 PMCID: PMC4403950 DOI: 10.1186/s12985-015-0280-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/16/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. METHOD Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. RESULTS We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. CONCLUSIONS Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.
Collapse
|
30
|
Dengue Virus Evolution under a Host-Targeted Antiviral. J Virol 2015; 89:5592-601. [PMID: 25762732 DOI: 10.1128/jvi.00028-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/02/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED The host-targeted antiviral drug UV-4B reduces viral replication and promotes survival in a mouse model of experimental dengue virus (DENV) infection. UV-4B is an iminosugar that inhibits the α-glucosidase family of enzymes and subsequently the folding of glycosylated proteins, both viral and host. Here, we utilized next-generation sequencing to investigate evolution of a flavivirus under selective pressure by a host-targeted antiviral in vivo. In viral populations recovered from UV-4B-treated mice, there was a significant increase in the number of single-nucleotide polymorphisms (SNPs) and the ratio of nonsynonymous to synonymous SNPs compared to findings in viral populations from vehicle-treated mice. The strongest evidence of positive selection was in the glycosylated membrane protein, thereby providing in vivo validation of the mechanism of action of an iminosugar. In addition, mutations in glycosylated proteins were present only in drug-treated mice after a single passage. However, the bulk of the other mutations were present in both populations, indicating nonspecific selective pressure. Together with the continued control of viremia by UV-4B, these findings are consistent with the previously predicted high genetic barrier to escape mutations in host-targeted antivirals. IMPORTANCE Although hundreds of millions of people are infected with DENV every year, there is currently no approved vaccine or antiviral therapy. UV-4B has demonstrated antiviral activity against DENV and is expected to enter clinical trials soon. Therefore, it is important to understand the mechanisms of DENV resistance to UV-4B. Host-targeted antivirals are thought to have a higher genetic barrier to escape mutants than directly acting antivirals, yet there are very few published studies of viral evolution under host-targeted antivirals. No study to date has described flavivirus evolution in vivo under selective pressure by a host-based antiviral drug. We present the first in vivo study of the sequential progression of viral evolution under selective pressure by a host-targeted antiviral compound. This study bolsters support for the clinical development of UV-4B as an antiviral drug against DENV, and it provides a framework to compare how treatment with other host-targeted antiflaviviral drugs in humans and different animal models influence viral genetic diversity.
Collapse
|
31
|
Charpentier C, Lee GQ, Rodriguez C, Visseaux B, Storto A, Fagard C, Molina JM, Katlama C, Yazdanpanah Y, Harrigan PR, Descamps D. Highly frequent HIV-1 minority resistant variants at baseline of the ANRS 139 TRIO trial had a limited impact on virological response. J Antimicrob Chemother 2015; 70:2090-6. [PMID: 25755001 DOI: 10.1093/jac/dkv048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/06/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To assess the prevalence of minority resistant variants (MRVs) at baseline and their impact on the virological response. The ANRS 139 TRIO trial evaluated the combination of raltegravir, etravirine and darunavir, plus an optimized background therapy, in 87% of cases. Patients were highly experienced and harboured multiresistant viruses, but were naive to the three drugs, and showed a high level of virological suppression. METHODS Ultra-deep sequencing of reverse transcriptase, protease and integrase regions was performed at the trial baseline, and sequences were interpreted according to the ANRS algorithm. MRVs were assessed using MiSeq and 454 technologies (limit of detection 1%). RESULTS At baseline, minority variants with at least one NRTI, one NNRTI, one PI, one major PI or an integrase inhibitor resistance-associated mutation were present in 46%, 45%, 68%, 24% and 13% of patients, respectively. When minority variants are taken into account, the prevalence of resistance to etravirine, darunavir and raltegravir at baseline was 29%, 40% and 9%, respectively. No difference was observed in the prevalence of MRVs between patients with virological failure and those with virological success, except a trend for patients exhibiting baseline etravirine MRVs (50% versus 26%, P = 0.09). CONCLUSIONS We have shown a high level of MRVs at baseline in highly pre-treated patients harbouring multiresistant viruses. However, these MRVs were not associated with an increased risk of virological failure, except for a trend for etravirine MRVs.
Collapse
Affiliation(s)
- Charlotte Charpentier
- INSERM, IAME, UMR 1137, F-75018 Paris, France Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - Guinevere Q Lee
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada University of British Columbia, Vancouver, BC, Canada
| | - Christophe Rodriguez
- Department of Virology, Hôpital Henri Mondor, Université Paris-Est, Créteil, France INSERM U955 Team 18, Créteil, France
| | - Benoit Visseaux
- INSERM, IAME, UMR 1137, F-75018 Paris, France Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - Alexandre Storto
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| | - Catherine Fagard
- INSERM, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France Université Bordeaux, ISPED, Centre INSERM U897-Epidemiologie-Biostatistique, F-33000 Bordeaux, France
| | - Jean-Michel Molina
- AP-HP, Hôpital Saint-Louis, Service de Maladies Infectieuses et Tropicales, INSERM U941, Université Paris Diderot, Paris, France
| | - Christine Katlama
- AP-HP, Hôpital de la Pitié-Salpétrière, Service de Maladies Infectieuses et Tropicales, F-75013 Paris, France
| | - Yazdan Yazdanpanah
- INSERM, IAME, UMR 1137, F-75018 Paris, France Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada University of British Columbia, Vancouver, BC, Canada
| | - Diane Descamps
- INSERM, IAME, UMR 1137, F-75018 Paris, France Université Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, F-75018 Paris, France
| |
Collapse
|
32
|
Yoshida S, Hattori J, Matsuda M, Okada K, Kazuyama Y, Hashimoto O, Ibe S, Fujisawa SI, Chiba H, Tatsumi M, Kato S, Sugiura W. Japanese external quality assessment program to standardize HIV-1 drug-resistance testing (JEQS2010 program) using in vitro transcribed RNA as reference material. AIDS Res Hum Retroviruses 2015; 31:318-25. [PMID: 25469535 DOI: 10.1089/aid.2014.0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To design appropriate antiretroviral therapy regimens and avoid the emergence of human immunodeficiency virus (HIV)-1 variants with reduced susceptibility to antiretroviral drugs, genotypic drug-resistance testing (HIV genotyping) is strongly recommended. To monitor the quality of HIV genotyping in Japan, we performed an external quality assessment (EQA), named the Japanese external quality assessment program, to standardize HIV genotyping (JEQS). To accurately evaluate the quality of HIV genotyping, we employed as reference material (RM) a well-characterized sample, in vitro transcribed RNA (trRNA) that includes the HIV gag-pol sequence, and created a JEQS2010 panel consisting of three single variant and three mixed trRNA samples. All 11 participating laboratories showed high concordance rates (>96%) for the single variant samples. Eight laboratories also showed good rates of detecting minor variants, but three laboratories failed to detect the variants comprising one-half of the sample. These three laboratories used a common primer that had four internal mismatches to the minor trRNA clone. This program showed the usefulness of trRNA as RM, the high quality of HIV genotyping, and extensive interlaboratory variation in the ability to detect minor variants. These results suggest that improving the quality of HIV genotyping in Japan requires regularly implementing the EQA program and improving the HIV genotyping protocol in each laboratory.
Collapse
Affiliation(s)
- Shigeru Yoshida
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Junko Hattori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kiyomi Okada
- Kitasato Otsuka Biomedical Assay Laboratories Co., Ltd., Kanagawa, Japan
| | - Yukumasa Kazuyama
- Kitasato Otsuka Biomedical Assay Laboratories Co., Ltd., Kanagawa, Japan
| | - Osamu Hashimoto
- Mitsubishi Chemical Medience Corporation Central Laboratory, Tokyo, Japan
| | - Shiro Ibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Shin-ichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Shingo Kato
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
33
|
Ram D, Leshkowitz D, Gonzalez D, Forer R, Levy I, Chowers M, Lorber M, Hindiyeh M, Mendelson E, Mor O. Evaluation of GS Junior and MiSeq next-generation sequencing technologies as an alternative to Trugene population sequencing in the clinical HIV laboratory. J Virol Methods 2014; 212:12-6. [PMID: 25445792 DOI: 10.1016/j.jviromet.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 01/20/2023]
Abstract
Population HIV-1 sequencing is currently the method of choice for the identification and follow-up of HIV-1 antiretroviral drug resistance. It has limited sensitivity and results in a consensus sequence showing the most prevalent nucleotide per position. Moreover concomitant sequencing and interpretation of the results for several samples together is laborious and time consuming. In this study, the practical use of GS Junior and MiSeq bench-top next generation sequencing (NGS) platforms as an alternative to Trugene Sanger-based population sequencing in the clinical HIV laboratory was assessed. DeepChek(®)-HIV TherapyEdge software was used for processing all the protease and reverse transcriptase sequences and for resistance interpretation. Plasma samples from nine HIV-1 carriers, representing the major HIV-1 subtypes in Israel, were compared. The total number of amino acid substitutions identified in the nine samples by GS Junior (232 substitutions) and MiSeq (243 substitutions) was similar and higher than Trugene (181 substitutions), emphasizing the advantage of deep sequencing on population sequencing. More than 80% of the identified substitutions were identical between the GS Junior and MiSeq platforms, most of which (184 of 199) at similar frequency. Low abundance substitutions accounted for 20.9% of the MiSeq and 21.9% of the GS Junior output, the majority of which were not detected by Trugene. More drug resistance mutations were identified by both the NGS platforms, primarily, but not only, at low abundance. In conclusion, in combination with DeepChek, both GS Junior and MiSeq were found to be more sensitive than Trugene and adequate for HIV-1 resistance analysis in the clinical HIV laboratory.
Collapse
Affiliation(s)
- Daniela Ram
- National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel.
| | - Dena Leshkowitz
- Bioinformatics Unit, The Nancy and Stephen Grand National Center for Personalized Medicine, Weizmann Institute, Rehovot, Israel.
| | | | | | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| | - Michal Chowers
- Infectious Disease Unit, Meir Medical Center, Kfar Saba, Israel.
| | - Margalit Lorber
- Autoimmune Disease Unit, Rambam Medical Center, Haifa, Israel.
| | - Musa Hindiyeh
- National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel; Tel-Aviv University, Tel-Aviv, Israel.
| | - Ella Mendelson
- National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel; Tel-Aviv University, Tel-Aviv, Israel.
| | - Orna Mor
- National HIV Reference Laboratory, Central Virology Laboratory, Ministry of Health, Tel-Hashomer, Ramat-Gan, Israel.
| |
Collapse
|
34
|
Gallien S, Charreau I, Nere ML, Mahjoub N, Simon F, de Castro N, Aboulker JP, Molina JM, Delaugerre C. Archived HIV-1 DNA resistance mutations to rilpivirine and etravirine in successfully treated HIV-1-infected individuals pre-exposed to efavirenz or nevirapine. J Antimicrob Chemother 2014; 70:562-5. [PMID: 25344807 DOI: 10.1093/jac/dku395] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Efavirenz and nevirapine failure is associated with a rapid selection of resistance-associated mutations (RAMs), which may impact on etravirine or rilpivirine susceptibility. However, RAMs for rilpivirine and etravirine cannot be reported on previous resistance genotypes because these specific RAMs were not analyzed at that time. Therefore, our objective was to determine, in virologically suppressed HIV-1-infected individuals, the presence of RAMs to rilpivirine, etravirine and the combination of tenofovir/emtricitabine/rilpivirine in HIV-1 DNA from individuals previously exposed to efavirenz and/or nevirapine. METHODS The studied population included 169 treatment-experienced individuals enrolled in the ANRS 138-EASIER trial who previously failed on and/or were intolerant to efavirenz and/or nevirapine and who had plasma HIV-1 RNA<400 copies/mL. Resistance to rilpivirine, etravirine, tenofovir and emtricitabine by bulk sequencing was performed on extracted HIV-1 DNA from whole blood collected at the time of trial inclusion. RESULTS Reverse transcriptase gene amplification was successful in 128/169 (76%) individuals and 95% of HIV-1 were infected with subtype B. Rilpivirine RAMs were detected in 41 (32%) individuals, with highest frequency for the mutations Y181C/I/V (18%), K101E/P (7%) and E138A/G/K/Q/R/S (6%) and the association L100I+K103N/S (5%). Etravirine RAMs were detected in five (4%) individuals. Resistance to emtricitabine, tenofovir and at least one drug included in the combination of tenofovir/emtricitabine/rilpivirine were detected in 72 (56%), 12 (9%) and 88 (69%), respectively. CONCLUSIONS In individuals with suppressed viraemia under antiretroviral therapy (ART), but who had been previously exposed to an efavirenz and/or nevirapine-based regimen, rilpivirine RAMs are frequent and etravirine RAMs are rare. This finding suggests that the switch to a rilpivirine-based regimen should not be recommended.
Collapse
Affiliation(s)
- S Gallien
- Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis-APHP, Paris, France INSERM U941, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - M L Nere
- Laboratoire de Virologie, Hôpital Saint Louis-APHP, Paris, France
| | - N Mahjoub
- Laboratoire de Virologie, Hôpital Saint Louis-APHP, Paris, France
| | - F Simon
- INSERM U941, Université Paris Diderot, Sorbonne Paris Cité, Paris, France Laboratoire de Virologie, Hôpital Saint Louis-APHP, Paris, France
| | - N de Castro
- Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis-APHP, Paris, France
| | | | - J M Molina
- Service de Maladies Infectieuses et Tropicales, Hôpital Saint-Louis-APHP, Paris, France INSERM U941, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - C Delaugerre
- INSERM U941, Université Paris Diderot, Sorbonne Paris Cité, Paris, France Laboratoire de Virologie, Hôpital Saint Louis-APHP, Paris, France
| |
Collapse
|
35
|
Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules. J Mol Biol 2014; 426:4125-4138. [PMID: 25311857 PMCID: PMC4270444 DOI: 10.1016/j.jmb.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/21/2014] [Accepted: 10/02/2014] [Indexed: 12/16/2022]
Abstract
To carry out their activities, biological macromolecules balance different physical traits, such as stability, interaction affinity, and selectivity. How such often opposing traits are encoded in a macromolecular system is critical to our understanding of evolutionary processes and ability to design new molecules with desired functions. We present a framework for constraining design simulations to balance different physical characteristics. Each trait is represented by the equilibrium fractional occupancy of the desired state relative to its alternatives, ranging from none to full occupancy, and the different traits are combined using Boolean operators to effect a "fuzzy"-logic language for encoding any combination of traits. In another paper, we presented a new combinatorial backbone design algorithm AbDesign where the fuzzy-logic framework was used to optimize protein backbones and sequences for both stability and binding affinity in antibody-design simulation. We now extend this framework and find that fuzzy-logic design simulations reproduce sequence and structure design principles seen in nature to underlie exquisite specificity on the one hand and multispecificity on the other hand. The fuzzy-logic language is broadly applicable and could help define the space of tolerated and beneficial mutations in natural biomolecular systems and design artificial molecules that encode complex characteristics.
Collapse
Affiliation(s)
- Shira Warszawski
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ravit Netzer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dan S Tawfik
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sarel J Fleishman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
36
|
Contribution of human immunodeficiency virus type 1 minority variants to reduced drug susceptibility in patients on an integrase strand transfer inhibitor-based therapy. PLoS One 2014; 9:e104512. [PMID: 25110880 PMCID: PMC4128663 DOI: 10.1371/journal.pone.0104512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/09/2014] [Indexed: 12/13/2022] Open
Abstract
The role of HIV-1 minority variants on transmission, pathogenesis, and virologic failure to antiretroviral regimens has been explored; however, most studies of low-level HIV-1 drug-resistant variants have focused in single target regions. Here we used a novel HIV-1 genotypic assay based on deep sequencing, DEEPGEN (Gibson et al 2014 Antimicrob Agents Chemother 58∶2167) to simultaneously analyze the presence of minority variants carrying mutations associated with reduced susceptibility to protease (PR), reverse transcriptase (RT), and integrase strand transfer integrase inhibitors (INSTIs), as well as HIV-1 coreceptor tropism. gag-p2/NCp7/p1/p6/pol-PR/RT/INT and env/C2V3 PCR products were obtained from twelve heavily treatment-experienced patients experiencing virologic failure while participating in a 48-week dose-ranging study of elvitegravir (GS-US-183-0105). Deep sequencing results were compared with (i) virological response to treatment, (ii) genotyping based on population sequencing, (iii) phenotyping data using PhenoSense and VIRALARTS, and (iv) HIV-1 coreceptor tropism based on the phenotypic test VERITROP. Most patients failed the antiretroviral regimen with numerous pre-existing mutations in the PR and RT, and additionally newly acquired INSTI-resistance mutations as determined by population sequencing (mean 9.4, 5.3, and 1.4 PI- RTI-, and INSTI-resistance mutations, respectively). Interestingly, since DEEPGEN allows the accurate detection of amino acid substitutions at frequencies as low as 1% of the population, a series of additional drug resistance mutations were detected by deep sequencing (mean 2.5, 1.5, and 0.9, respectively). The presence of these low-abundance HIV-1 variants was associated with drug susceptibility, replicative fitness, and coreceptor tropism determined using sensitive phenotypic assays, enhancing the overall burden of resistance to all four antiretroviral drug classes. Further longitudinal studies based on deep sequencing tests will help to clarify (i) the potential impact of minority HIV-1 drug resistant variants in response to antiretroviral therapy and (ii) the importance of the detection of HIV minority variants in the clinical practice.
Collapse
|
37
|
Ekici H, Rao SD, Sönnerborg A, Ramprasad VL, Gupta R, Neogi U. Cost-efficient HIV-1 drug resistance surveillance using multiplexed high-throughput amplicon sequencing: implications for use in low- and middle-income countries. J Antimicrob Chemother 2014; 69:3349-55. [PMID: 25085657 DOI: 10.1093/jac/dku278] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Increased trends of primary drug resistance mutations (DRMs) among treatment-naive HIV-1-infected patients in low- and middle-income countries (LMICs) and the non-availability of pre-antiretroviral therapy (ART) genotypic resistance testing (GRT) may severely affect future therapeutic outcomes. The main objective of this study was therefore to develop a simplified, cost- and labour-efficient but high-throughput GRT protocol to be applied in the large-scale surveillance of DRMs in LMICs. PATIENTS AND METHODS Ninety-six therapy-naive HIV-1-infected patients belonging to three cohorts were included: Indian patients followed at St John's Medical College Hospital, Bangalore, India (n = 49); East Africans (n = 21), who had migrated to Sweden; and Caucasians (n = 26) living in Sweden. GRT by population sequencing (GRT-PS) on individual plasma samples and GRT by next-generation sequencing (GRT-NGS) on equimolar multiplexed samples (n = 24) using Illumina MiSeq were performed. RESULTS The multiplexing procedure was shown to be technically feasible and gave high-quality reads independent of whether HIV-1 subtype C or B was analysed. GRT-NGS detected all the DRMs found by GRT-PS. Additional clinically important low-abundance (<20% of the viral population) major DRMs (e.g. K101E, K103N, Y181C and M184V) were detected by GRT-NGS but not by GRT-PS. The frequency of low-abundance DRMs was higher among East African compared with Indian and Caucasian individuals. CONCLUSIONS Our high-throughput next-generation sequencing with a multiplexed amplicon is a cost-efficient and promising approach for the large-scale surveillance of primary DRMs in LMICs where routine pre-ART GRT is not the standard of care. This strategy may be useful in optimizing future therapeutic regimens in those settings.
Collapse
Affiliation(s)
- Halime Ekici
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shwetha D Rao
- Hematology Research Unit, Division of Molecular Medicine, St John's Research Institute, Bangalore, India
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Ravi Gupta
- SciGenom Labs Pvt. Ltd, Cochin, Kerala, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden Hematology Research Unit, Division of Molecular Medicine, St John's Research Institute, Bangalore, India
| |
Collapse
|
38
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
39
|
Abstract
Human immunodeficiency virus (HIV) exhibits remarkable diversity in its genomic makeup and exists in any given individual as a complex distribution of closely related but nonidentical genomes called a viral quasispecies, which is subject to genetic variation, competition, and selection. This viral diversity clinically manifests as a selection of mutant variants based on viral fitness in treatment-naive individuals and based on drug-selective pressure in those on antiretroviral therapy (ART). The current standard-of-care ART consists of a combination of antiretroviral agents, which ensures maximal viral suppression while preventing the emergence of drug-resistant HIV variants. Unfortunately, transmission of drug-resistant HIV does occur, affecting 5% to >20% of newly infected individuals. To optimize therapy, clinicians rely on viral genotypic information obtained from conventional population sequencing-based assays, which cannot reliably detect viral variants that constitute <20% of the circulating viral quasispecies. These low-frequency variants can be detected by highly sensitive genotyping methods collectively grouped under the moniker of deep sequencing. Low-frequency variants have been correlated to treatment failures and HIV transmission, and detection of these variants is helping to inform strategies for vaccine development. Here, we discuss the molecular virology of HIV, viral heterogeneity, drug-resistance mutations, and the application of deep sequencing technologies in research and the clinical care of HIV-infected individuals.
Collapse
Affiliation(s)
- Shiven B Chabria
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510; , ,
| | | | | |
Collapse
|
40
|
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use? Curr Infect Dis Rep 2014; 16:401. [DOI: 10.1007/s11908-014-0401-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob Agents Chemother 2014; 58:2167-85. [PMID: 24468782 DOI: 10.1128/aac.02710-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3' end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
Collapse
|
42
|
McElroy K, Thomas T, Luciani F. Deep sequencing of evolving pathogen populations: applications, errors, and bioinformatic solutions. MICROBIAL INFORMATICS AND EXPERIMENTATION 2014; 4:1. [PMID: 24428920 PMCID: PMC3902414 DOI: 10.1186/2042-5783-4-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
Deep sequencing harnesses the high throughput nature of next generation sequencing technologies to generate population samples, treating information contained in individual reads as meaningful. Here, we review applications of deep sequencing to pathogen evolution. Pioneering deep sequencing studies from the virology literature are discussed, such as whole genome Roche-454 sequencing analyses of the dynamics of the rapidly mutating pathogens hepatitis C virus and HIV. Extension of the deep sequencing approach to bacterial populations is then discussed, including the impacts of emerging sequencing technologies. While it is clear that deep sequencing has unprecedented potential for assessing the genetic structure and evolutionary history of pathogen populations, bioinformatic challenges remain. We summarise current approaches to overcoming these challenges, in particular methods for detecting low frequency variants in the context of sequencing error and reconstructing individual haplotypes from short reads.
Collapse
Affiliation(s)
- Kerensa McElroy
- Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Mohamed S, Ravet S, Camus C, Khiri H, Olive D, Halfon P. Clinical and analytical relevance of NNRTIs minority mutations on viral failure in HIV-1 infected patients. J Med Virol 2013; 86:394-403. [DOI: 10.1002/jmv.23853] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Sofiane Mohamed
- Laboratoire Alphabio; Marseille France
- Laboratoire d'Immunologie des Tumeurs et Centre INSERM de Recherche en Cancérologie, Institut Paoli Calmettes; Marseille France
| | | | | | | | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs et Centre INSERM de Recherche en Cancérologie, Institut Paoli Calmettes; Marseille France
| | - Philippe Halfon
- Laboratoire Alphabio; Marseille France
- Hôpital Européen; Marseille France
| |
Collapse
|
45
|
Detection of cytomegalovirus drug resistance mutations by next-generation sequencing. J Clin Microbiol 2013; 51:3700-10. [PMID: 23985916 DOI: 10.1128/jcm.01605-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Antiviral therapy for cytomegalovirus (CMV) plays an important role in the clinical management of solid organ and hematopoietic stem cell transplant recipients. However, CMV antiviral therapy can be complicated by drug resistance associated with mutations in the phosphotransferase UL97 and the DNA polymerase UL54. We have developed an amplicon-based high-throughput sequencing strategy for detecting CMV drug resistance mutations in clinical plasma specimens using a microfluidics PCR platform for multiplexed library preparation and a benchtop next-generation sequencing instrument. Plasmid clones of the UL97 and UL54 genes were used to demonstrate the low overall empirical error rate of the assay (0.189%) and to develop a statistical algorithm for identifying authentic low-abundance variants. The ability of the assay to detect resistance mutations was tested with mixes of wild-type and mutant plasmids, as well as clinical CMV isolates and plasma samples that were known to contain mutations that confer resistance. Finally, 48 clinical plasma specimens with a range of viral loads (394 to 2,191,011 copies/ml plasma) were sequenced using multiplexing of up to 24 specimens per run. This led to the identification of seven resistance mutations, three of which were present in <20% of the sequenced population. Thus, this assay offers more sensitive detection of minor variants and a higher multiplexing capacity than current methods for the genotypic detection of CMV drug resistance mutations.
Collapse
|
46
|
Abstract
Access to combination antiretroviral treatment (ART) has improved greatly over recent years. At the end of 2011, more than eight million HIV-infected people were receiving ART in low-income and middle-income countries. ART generally works well in keeping the virus suppressed and the patient healthy. However, treatment only works as long as the virus is not resistant against the drugs used. In the last decades, HIV treatments have become better and better at slowing down the evolution of drug resistance, so that some patients are treated for many years without having any resistance problems. However, for some patients, especially in low-income countries, drug resistance is still a serious threat to their health. This essay will review what is known about transmitted and acquired drug resistance, multi-class drug resistance, resistance to newer drugs, resistance due to treatment for the prevention of mother-to-child transmission, the role of minority variants (low-frequency drug-resistance mutations), and resistance due to pre-exposure prophylaxis.
Collapse
|
47
|
To SWC, Chen JHK, Yam WC. Current assays for HIV-1 diagnostics and antiretroviral therapy monitoring: challenges and possibilities. Future Virol 2013. [DOI: 10.2217/fvl.13.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In 2011, there were over 34 million people living with HIV infections, placing a heavy burden on public health sectors. HIV infection is a lifelong threat that cannot be prevented by vaccination or cured by antiretroviral drugs. The infected patients rely on daily antiretroviral therapy to suppress HIV viral replication. Hence, it is important to diagnose HIV infections as early as possible and to monitor the efficacy of antiretroviral therapy every 3–6 months. Different immunoassays detecting HIV antigens and antibodies have been modified to offer better sensitivity and more rapid diagnosis. Several clinical and virological parameters, including CD4+ cell counts, viral load and drug resistance mutations, are also used for treatment monitoring. Many molecular assay optimizations are now being utilized to improve patient care. This review will focus on the most updated HIV diagnostic assays, as well as discussing the upcoming possibilities of other advanced technologies.
Collapse
Affiliation(s)
- Sabrina Wai-Chi To
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
48
|
Abstract
Technologic advances in human immunodeficiency virus type 1 (HIV-1) sequencing have revolutionized the study of antiretroviral drug resistance and are increasingly moving from the laboratory to clinical practice. These techniques are able to detect HIV-1 drug resistance mutations present at low frequencies not detectable by current HIV-1 genotyping assays. For a number of commonly used antiretroviral medications, such as nonnucleoside reverse transcriptase inhibitors, the detection of these drug-resistant minority variants significantly increases the risk of treatment failure. The level of evidence, however, is insufficient to determine the impact of HIV-1 minority variants for several other classes of antiretroviral medications. Clinicians should be aware of the novel technologies that are moving into routine clinical use and the clinical implications of HIV-1 minority variants. Additional studies are needed to determine the optimal platform for clinical application of these new technologies and to provide guidance to clinicians on the type and frequency of clinically important HIV-1 minority variants.
Collapse
Affiliation(s)
- Jonathan Z Li
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
49
|
Evaluation of a benchtop HIV ultradeep pyrosequencing drug resistance assay in the clinical laboratory. J Clin Microbiol 2013; 51:880-6. [PMID: 23284027 DOI: 10.1128/jcm.02652-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Detection of low-abundance drug resistance mutations (DRMs) of HIV-1 is an evolving approach in clinical practice. Ultradeep pyrosequencing has shown to be effective in detecting such mutations. The lack of a standardized commercially based assay limits the wide use of this method in clinical settings. 454 Life Sciences (Roche) is developing an HIV ultradeep pyrosequencing assay for their benchtop sequencer. We assessed the prototype plate in the clinical laboratory. Plasma samples genotyped by the standardized TruGene kit were retrospectively tested by this assay. Drug-treated subjects failing therapy and drug-naive patients were included. DRM analysis was based on the International AIDS Society USA DRM list and the Stanford algorithm. The prototype assay detected all of the DRMs detected by TruGene and additional 50 low-abundance DRMs. Several patients had low-abundance D67N, K70R, and M184V reverse transcriptase inhibitor mutations that persisted long after discontinuation of the drug that elicited these mutations. Additional patient harbored low-abundance V32I major protease inhibitor mutation, which under darunavir selection evolved later to be detected by TruGene. Stanford analysis suggested that some of the low-abundance DRMs were likely to affect the resistance burden in these subjects. The prototype assay performs at least as well as TruGene and has the advantage of detecting low-abundance drug resistance mutations undetected by TruGene. Its ease of use and lab-scale platform will likely facilitate its use in the clinical laboratory. The extent to which the detection of low-abundance DRMs will affect patient management is still unknown, but it is hoped that use of such an assay in clinical practice will help resolve this important question.
Collapse
|
50
|
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:317-58. [PMID: 23886005 DOI: 10.1016/b978-0-12-405880-4.00009-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the drugs currently used for the treatment of HIV infections (AIDS) belong to either of the following three classes: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). At present, there are 7 NRTIs, 5 NNRTIs, and 10 PIs approved for clinical use. They are discussed from the following viewpoints: (i) chemical formulae; (ii) mechanism of action; (iii) drug combinations; (iv) clinical aspects; (v) preexposure prophylaxis; (vi) prevention of mother-to-child transmission; (vii) their use in children; (viii) toxicity; (ix) adherence (compliance); (x) resistance; (xi) new NRTIs, NNRTIs, or PIs in (pre)clinical development; and (xii) the prospects for a "cure" of the disease.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|