1
|
Heffner AL, Rouault TA. A Comparison of Conserved Features in the Human Coronavirus Family Shows That Studies of Viruses Less Pathogenic than SARS-CoV-2, Such as HCoV-OC43, Are Good Model Systems for Elucidating Basic Mechanisms of Infection and Replication in Standard Laboratories. Viruses 2025; 17:256. [PMID: 40007010 PMCID: PMC11860170 DOI: 10.3390/v17020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
In 2021, at the height of the COVID-19 pandemic, coronavirus research spiked, with over 83,000 original research articles related to the word "coronavirus" added to the online resource PubMed. Just 2 years later, in 2023, only 30,900 original research articles related to the word "coronavirus" were added. While, irrefutably, the funding of coronavirus research drastically decreased, a possible explanation for the decrease in interest in coronavirus research is that projects on SARS-CoV-2, the causative agent of COVID-19, halted due to the challenge of establishing a good cellular or animal model system. Most laboratories do not have the capabilities to culture SARS-CoV-2 'in house' as this requires a Biosafety Level (BSL) 3 laboratory. Until recently, BSL 2 laboratory research on endemic coronaviruses was arduous due to the low cytopathic effect in isolated cell culture infection models and the lack of means to quantify viral loads. The purpose of this review article is to compare the human coronaviruses and provide an assessment of the latest techniques that use the endemic coronaviruses-HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1-as lower-biosafety-risk models for the more pathogenic coronaviruses-SARS-CoV-2, SARS-CoV, and MERS-CoV.
Collapse
Affiliation(s)
- Audrey L. Heffner
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tracey A. Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Zhang X, Chen Y, Liu M, Long X, Guo C. Intervention strategies targeting virus and host factors against porcine reproductive and respiratory syndrome virus: A systematic review. Int J Biol Macromol 2024; 279:135403. [PMID: 39245101 DOI: 10.1016/j.ijbiomac.2024.135403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by porcine reproductive and respiratory syndrome virus (PRRSV) causes considerable economic losses to the global swine industry every year and seriously hinders the healthy development of this industry. Although tremendous efforts have been made over the past 30 years toward the development of prevention and control strategies against PRRSV infection, to date, treatments with proven efficacy have yet to be available due to our incomplete understanding of the molecular basis and complexity of the infection machinery. This review systematically discusses recent advances in the research and development of anti-PRRSV therapies targeting different stages of the viral life cycle. Furthermore, this review puts forward novel intervention targets and research approaches based on our in-depth exploration of virus-host interactions and the latest biological technologies, which have the potential to complement or transform current anti-PRRSV strategies and become breakthrough points for the control of PRRS in the future.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yongjie Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Min Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xiaoqin Long
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Zhang R, Li H, Xie H, Wang P, Yu C, Li J, Yang Z, Zeshan B, Cao A, Wang X. Transcriptional kinetics of NADC34-like porcine reproductive and respiratory syndrome virus during cellular infection. Arch Virol 2024; 169:186. [PMID: 39180681 DOI: 10.1007/s00705-024-06113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/05/2024] [Indexed: 08/26/2024]
Abstract
NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) employs complex strategies to synthesize subgenomic RNAs (sgRNAs); however, their plasticity and temporal dynamics remain largely unexplored. Using next-generation sequencing (NGS), we examined the high-resolution landscape of the PRRSV subgenome, highlighting considerable heterogeneity in temporal kinetics and transcriptional control and revealing extensive coordination between TRSL-dependent and TRSL-independent sgRNAs. In addition, a comprehensive re-annotation of transcription regulatory sequence (TRS) locations was conducted, clarifying that their usage involved canonical, alternative, and non-canonical splicing events for annotated genes. These insights emphasize that the coding of genetic material in PRRSV is far more intricate than previously anticipated. Collectively, the altered sgRNA phenotype offers distinctive insights into PRRSV transcription and gives additional impetus for mining the functional short- and long-range RNA-RNA interactome at active viral replication sites.
Collapse
Affiliation(s)
- Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Honglin Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Peixin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Chenfei Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junda Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Basit Zeshan
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore, 54000, Pakistan
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, 518000, Guangdong, People's Republic of China
| | - Aiqiao Cao
- Department of Microbiology, Faculty of Life Sciences, University of Central Punjab, Johar Town, Lahore, 54000, Pakistan.
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Wang X, Chen Y, Qi C, Li F, Zhang Y, Zhou J, Wu H, Zhang T, Qi A, Ouyang H, Xie Z, Pang D. Mechanism, structural and functional insights into nidovirus-induced double-membrane vesicles. Front Immunol 2024; 15:1340332. [PMID: 38919631 PMCID: PMC11196420 DOI: 10.3389/fimmu.2024.1340332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
During infection, positive-stranded RNA causes a rearrangement of the host cell membrane, resulting in specialized membrane structure formation aiding viral genome replication. Double-membrane vesicles (DMVs), typical structures produced by virus-induced membrane rearrangements, are platforms for viral replication. Nidoviruses, one of the most complex positive-strand RNA viruses, have the ability to infect not only mammals and a few birds but also invertebrates. Nidoviruses possess a distinctive replication mechanism, wherein their nonstructural proteins (nsps) play a crucial role in DMV biogenesis. With the participation of host factors related to autophagy and lipid synthesis pathways, several viral nsps hijack the membrane rearrangement process of host endoplasmic reticulum (ER), Golgi apparatus, and other organelles to induce DMV formation. An understanding of the mechanisms of DMV formation and its structure and function in the infectious cycle of nidovirus may be essential for the development of new and effective antiviral strategies in the future.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
5
|
Hu Y, Wu X, Tian Y, Jiang D, Ren J, Li Z, Ding X, Zhang Q, Yoo D, Miller LC, Lee C, Cong X, Li J, Du Y, Qi J. GTPase activity of porcine Mx1 plays a dominant role in inhibiting the N-Nsp9 interaction and thus inhibiting PRRSV replication. J Virol 2024; 98:e0184423. [PMID: 38436247 PMCID: PMC11019876 DOI: 10.1128/jvi.01844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/08/2024] [Indexed: 03/05/2024] Open
Abstract
Porcine Mx1 is a type of interferon-induced GTPase that inhibits the replication of certain RNA viruses. However, the antiviral effects and the underlying mechanism of porcine Mx1 for porcine reproductive and respiratory syndrome virus (PRRSV) remain unknown. In this study, we demonstrated that porcine Mx1 could significantly inhibit PRRSV replication in MARC-145 cells. By Mx1 segment analysis, it was indicated that the GTPase domain (68-341aa) was the functional area to inhibit PRRSV replication and that Mx1 interacted with the PRRSV-N protein through the GTPase domain (68-341aa) in the cytoplasm. Amino acid residues K295 and K299 in the G domain of Mx1 were the key sites for Mx1-N interaction while mutant proteins Mx1(K295A) and Mx1(K299A) still partially inhibited PRRSV replication. Furthermore, we found that the GTPase activity of Mx1 was dominant for Mx1 to inhibit PRRSV replication but was not essential for Mx1-N interaction. Finally, mechanistic studies demonstrated that the GTPase activity of Mx1 played a dominant role in inhibiting the N-Nsp9 interaction and that the interaction between Mx1 and N partially inhibited the N-Nsp9 interaction. We propose that the complete anti-PRRSV mechanism of porcine Mx1 contains a two-step process: Mx1 binds to the PRRSV-N protein and subsequently disrupts the N-Nsp9 interaction by a process requiring the GTPase activity of Mx1. Taken together, the results of our experiments describe for the first time a novel mechanism by which porcine Mx1 evolves to inhibit PRRSV replication. IMPORTANCE Mx1 protein is a key mediator of the interferon-induced antiviral response against a wide range of viruses. How porcine Mx1 affects the replication of porcine reproductive and respiratory syndrome virus (PRRSV) and its biological function has not been studied. Here, we show that Mx1 protein inhibits PRRSV replication by interfering with N-Nsp9 interaction. Furthermore, the GTPase activity of porcine Mx1 plays a dominant role and the Mx1-N interaction plays an assistant role in this interference process. This study uncovers a novel mechanism evolved by porcine Mx1 to exert anti-PRRSV activities.
Collapse
Affiliation(s)
- Yue Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiangju Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yunfei Tian
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dandan Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jinrui Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Ziyong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiuliang Ding
- Animal Nutrition Institute, Chongqing Academy of Animal Sciences, Chongqing, China
| | - Quanfang Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Laura C. Miller
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Xiaoyan Cong
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Juntong Li
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jing Qi
- Shandong Key Laboratory of Animal Disease Control and Breeding/Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Marongiu L, Burkard M, Helling T, Biendl M, Venturelli S. Modulation of the replication of positive-sense RNA viruses by the natural plant metabolite xanthohumol and its derivatives. Crit Rev Food Sci Nutr 2023; 65:429-443. [PMID: 37942943 DOI: 10.1080/10408398.2023.2275169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The COVID-19 pandemic has highlighted the importance of identifying new potent antiviral agents. Nutrients as well as plant-derived substances are promising candidates because they are usually well tolerated by the human body and readily available in nature, and consequently mostly cheap to produce. A variety of antiviral effects have recently been described for the hop chalcone xanthohumol (XN), and to a lesser extent for its derivatives, making these hop compounds particularly attractive for further investigation. Noteworthy, mounting evidence indicated that XN can suppress a wide range of viruses belonging to several virus families, all of which share a common reproductive cycle. As a result, the purpose of this review is to summarize the most recent research on the antiviral properties of XN and its derivatives, with a particular emphasis on the positive-sense RNA viruses human hepatitis C virus (HCV), porcine reproductive and respiratory syndrome virus (PRRSV), and severe acute respiratory syndrome corona virus (SARS-CoV-2).
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Thomas Helling
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Martin Biendl
- HHV Hallertauer Hopfenveredelungsgesellschaft m.b.H, Mainburg, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Wang Q, Yi H, Guo Y, Sun Y, Yu Z, Lu L, Ye R, Xie E, Wu Q, Qiu Y, Quan W, Zhang G, Wang H. PCNA promotes PRRSV replication by increasing the synthesis of viral genome. Vet Microbiol 2023; 281:109741. [PMID: 37087878 DOI: 10.1016/j.vetmic.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus belonging to the Arteriviridae family. Currently, the strain has undergone numerous mutations, bringing massive losses to the swine industry worldwide. Despite several studies had been conducted on PRRSV, the molecular mechanisms by which it causes infection remain unclear. Proliferating cell nuclear antigen (PCNA) is a sign of DNA damage and it participates in DNA replication and repair. Therefore, in this study, we investigated the potential role of PCNA in PRRSV infection. We observed that PCNA expression was stable after PRRSV infection in vitro; however, PCNA was translocated from the nucleus to the cytoplasm. Notably, we found the redistribution of PCNA from the nucleus to the cytoplasm in cells transfected with the N protein. PCNA silencing inhibited PRRSV replication and the synthesis of PRRSV shorter subgenomic RNA (sgmRNA) and genomic RNA (gRNA), while PCNA overexpression promoted virus replication and PRRSV shorter sgmRNA and gRNA synthesis. By performing immunoprecipitation and immunofluorescence colocalization, we confirmed that PCNA interacted with replication-related proteins, namely NSP9, NSP12, and N, but not with NSP10 and NSP11. Domain III of the N protein (41-72 aa) interacted with the IDCL domain of PCNA (118-135 aa). Therefore, we propose cytoplasmic transport of PCNA and its subsequent influence on PRRSV RNA synthesis could be a viral strategy for manipulating cell function, thus PCNA is a potential target to prevent and control PRRSV infection.
Collapse
Affiliation(s)
- Qiumei Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Heyou Yi
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yanchen Guo
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yankuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqing Yu
- Key Laboratory of Veterinary Bioproduction and Chemical Medicine of the Ministry of Agriculture, Engineering and Technology Research Center for Beijing Veterinary Peptide Vaccine Design and Preparation, Zhong mu Institutes of China Animal Husbandry Industry Co. Ltd., Beijing, China
| | - Lechen Lu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ruirui Ye
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Ermin Xie
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Qianwen Wu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Yingwu Qiu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Weipeng Quan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Li Z, Zheng M, He Z, Qin Y, Chen M. Morphogenesis and functional organization of viral inclusion bodies. CELL INSIGHT 2023; 2:100103. [PMID: 37193093 PMCID: PMC10164783 DOI: 10.1016/j.cellin.2023.100103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/18/2023]
Abstract
Eukaryotic viruses are obligate intracellular parasites that rely on the host cell machinery to carry out their replication cycle. This complex process involves a series of steps, starting with virus entry, followed by genome replication, and ending with virion assembly and release. Negative strand RNA and some DNA viruses have evolved to alter the organization of the host cell interior to create a specialized environment for genome replication, known as IBs, which are precisely orchestrated to ensure efficient viral replication. The biogenesis of IBs requires the cooperation of both viral and host factors. These structures serve multiple functions during infection, including sequestering viral nucleic acids and proteins from innate immune responses, increasing the local concentration of viral and host factors, and spatially coordinating consecutive replication cycle steps. While ultrastructural and functional studies have improved our understanding of IBs, much remains to be learned about the precise mechanisms of IB formation and function. This review aims to summarize the current understanding of how IBs are formed, describe the morphology of these structures, and highlight the mechanism of their functions. Given that the formation of IBs involves complex interactions between the virus and the host cell, the role of both viral and cellular organelles in this process is also discussed.
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Miaomiao Zheng
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Zhicheng He
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan, 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
9
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Cable J, Denison MR, Kielian M, Jackson WT, Bartenschlager R, Ahola T, Mukhopadhyay S, Fremont DH, Kuhn RJ, Shannon A, Frazier MN, Yuen KY, Coyne CB, Wolthers KC, Ming GL, Guenther CS, Moshiri J, Best SM, Schoggins JW, Jurado KA, Ebel GD, Schäfer A, Ng LFP, Kikkert M, Sette A, Harris E, Wing PAC, Eggenberger J, Krishnamurthy SR, Mah MG, Meganck RM, Chung D, Maurer-Stroh S, Andino R, Korber B, Perlman S, Shi PY, Bárcena M, Aicher SM, Vu MN, Kenney DJ, Lindenbach BD, Nishida Y, Rénia L, Williams EP. Positive-strand RNA viruses-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1521:46-66. [PMID: 36697369 PMCID: PMC10347887 DOI: 10.1111/nyas.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.
Collapse
Affiliation(s)
| | - Mark R Denison
- Department of Pediatrics and Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; and Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, Tennessee, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Cancer Research Center (DKFZ), Research Division Virus-associated Carcinogenesis, Heidelberg, Germany
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | | | - Daved H Fremont
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Ashleigh Shannon
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix Marseille Université, Marseille, France
| | - Meredith N Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, People's Republic of China
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Katja C Wolthers
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam and Amsterdam Institute for Infection and Immunity, OrganoVIR Labs, Amsterdam, The Netherlands
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jasmine Moshiri
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kellie Ann Jurado
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory D Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lisa F P Ng
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California, USA
| | - Peter A C Wing
- Nuffield Department of Medicine and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Julie Eggenberger
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology and NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore City, Singapore
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donghoon Chung
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Maurer-Stroh
- Yong Loo Lin School of Medicine and Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore City, Singapore
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, and Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie-Marie Aicher
- Institut Pasteurgrid, Université de Paris Cité, Virus Sensing and Signaling Unit, Paris, France
| | - Michelle N Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Devin J Kenney
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Brett D Lindenbach
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yukiko Nishida
- Chugai Pharmaceutical, Co., Tokyo, Japan
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore City, Singapore
| | - Laurent Rénia
- ASTAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science Technology and Research (A*STAR), Singapore City, Singapore
| | - Evan P Williams
- Department of Microbiology, Immunology, and Biochemistry, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
11
|
Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses 2023; 15:v15020359. [PMID: 36851573 PMCID: PMC9958687 DOI: 10.3390/v15020359] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a member of the alphacoronavirus genus, which has caused huge threats and losses to pig husbandry with a 100% mortality in infected piglets. TGEV is observed to be recombining and evolving unstoppably in recent years, with some of these recombinant strains spreading across species, which makes the detection and prevention of TGEV more complex. This paper reviews and discusses the basic biological properties of TGEV, factors affecting virulence, viral receptors, and the latest research advances in TGEV infection-induced apoptosis and autophagy to improve understanding of the current status of TGEV and related research processes. We also highlight a possible risk of TGEV being zoonotic, which could be evidenced by the detection of CCoV-HuPn-2018 in humans.
Collapse
Affiliation(s)
- Yiwu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Yuanzhu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lerong Ma
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Jianing Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lin Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
- Correspondence: (H.Y.); (D.P.); Tel.: +86-431-8783-6175 (D.P.)
| |
Collapse
|
12
|
Ultrastructural Characterization of Human Bronchial Epithelial Cells during SARS-CoV-2 Infection: Morphological Comparison of Wild-Type and CFTR-Modified Cells. Int J Mol Sci 2022; 23:ijms23179724. [PMID: 36077122 PMCID: PMC9455986 DOI: 10.3390/ijms23179724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.
Collapse
|
13
|
Roingeard P, Eymieux S, Burlaud-Gaillard J, Hourioux C, Patient R, Blanchard E. The double-membrane vesicle (DMV): a virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. Cell Mol Life Sci 2022; 79:425. [PMID: 35841484 PMCID: PMC9287701 DOI: 10.1007/s00018-022-04469-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/30/2022] [Indexed: 12/18/2022]
Abstract
Positive single-strand RNA (+ RNA) viruses can remodel host cell membranes to induce a replication organelle (RO) isolating the replication of their genome from innate immunity mechanisms. Some of these viruses, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), induce double-membrane vesicles (DMVs) for this purpose. Viral non-structural proteins are essential for DMV biogenesis, but they cannot form without an original membrane from a host cell organelle and a significant supply of lipids. The endoplasmic reticulum (ER) and the initial mechanisms of autophagic processes have been shown to be essential for the biogenesis of SARS-CoV-2 DMVs. However, by analogy with other DMV-inducing viruses, it seems likely that the Golgi apparatus, mitochondria and lipid droplets are also involved. As for hepatitis C virus (HCV), pores crossing both membranes of SARS-CoV-2-induced DMVs have been identified. These pores presumably allow the supply of metabolites essential for viral replication within the DMV, together with the export of the newly synthesized viral RNA to form the genome of future virions. It remains unknown whether, as for HCV, DMVs with open pores can coexist with the fully sealed DMVs required for the storage of large amounts of viral RNA. Interestingly, recent studies have revealed many similarities in the mechanisms of DMV biogenesis and morphology between these two phylogenetically distant viruses. An understanding of the mechanisms of DMV formation and their role in the infectious cycle of SARS-CoV-2 may be essential for the development of new antiviral approaches against this pathogen or other coronaviruses that may emerge in the future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France. .,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France.
| | - Sébastien Eymieux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Julien Burlaud-Gaillard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Romuald Patient
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- INSERM U1259, Faculté de Médecine, Université François Rabelais de Tours and CHRU de Tours, 10 boulevard Tonnellé, 37032, Tours Cedex, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
14
|
Chen D, Zhao YG, Zhang H. Endomembrane remodeling in SARS-CoV-2 infection. CELL INSIGHT 2022; 1:100031. [PMID: 37193051 PMCID: PMC9112566 DOI: 10.1016/j.cellin.2022.100031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/18/2022]
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the viral proteins intimately interact with host factors to remodel the endomembrane system at various steps of the viral lifecycle. The entry of SARS-CoV-2 can be mediated by endocytosis-mediated internalization. Virus-containing endosomes then fuse with lysosomes, in which the viral S protein is cleaved to trigger membrane fusion. Double-membrane vesicles generated from the ER serve as platforms for viral replication and transcription. Virions are assembled at the ER-Golgi intermediate compartment and released through the secretory pathway and/or lysosome-mediated exocytosis. In this review, we will focus on how SARS-CoV-2 viral proteins collaborate with host factors to remodel the endomembrane system for viral entry, replication, assembly and egress. We will also describe how viral proteins hijack the host cell surveillance system-the autophagic degradation pathway-to evade destruction and benefit virus production. Finally, potential antiviral therapies targeting the host cell endomembrane system will be discussed.
Collapse
Affiliation(s)
- Di Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan G. Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Paraoxonase-1 Facilitates PRRSV Replication by Interacting with Viral Nonstructural Protein-9 and Inhibiting Type I Interferon Pathway. Viruses 2022; 14:v14061203. [PMID: 35746674 PMCID: PMC9230610 DOI: 10.3390/v14061203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Paraoxonase-1 (PON1), an esterase with specifically paraoxonase activity, has been proven to be involved in inflammation and infection. Porcine reproductive and respiratory syndrome virus (PRRSV) is still a major concern in pigs and causes severe economic losses to the swine industry worldwide. In this study, the role of PON1 was investigated in porcine alveolar macrophages (PAMs) during PRRSV infection. The results showed that PRRSV replication downregulated PON1, and the knockdown of PON1 significantly decreased PRRSV replication. Similarly, PON1 overexpression could enhance PRRSV replication. Interestingly, we observed that PON1 interacted with PRRSV nonstructural protein 9 (Nsp9), the RNA-dependent RNA polymerase, and the knockdown of PON1 lowered the RNA binding ability of Nsp9, suggesting that PON1 can facilitate Nsp9 function in viral replication. In addition, the knockdown of PON1 expression led to the amplification of type I interferon (IFN) genes and vice versa. In summary, our data demonstrate that PON1 facilitates PRRSV replication by interacting with Nsp9 and inhibiting the type I IFN signaling pathway. Hence, PON1 may be an additional component of the anti-PRRSV defenses.
Collapse
|
16
|
Mamatis JE, Pellizzari-Delano IE, Gallardo-Flores CE, Colpitts CC. Emerging Roles of Cyclophilin A in Regulating Viral Cloaking. Front Microbiol 2022; 13:828078. [PMID: 35242122 PMCID: PMC8886124 DOI: 10.3389/fmicb.2022.828078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular cyclophilins (Cyps) such as cyclophilin A (CypA) have emerged as key players at the virus-host interface. As host factors required for the replication of many unrelated viruses, including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and coronaviruses (CoVs), Cyps are attractive targets for antiviral therapy. However, a clear understanding of how these viruses exploit Cyps to promote their replication has yet to be elucidated. Recent findings suggest that CypA contributes to cloaking of viral replication intermediates, an evasion strategy that prevents detection of viral nucleic acid by innate immune sensors. Furthermore, Cyps are emerging to have roles in regulation of cellular antiviral signaling pathways. Recruitment of Cyps by viral proteins may interfere with their ability to regulate these signaling factors. Consistent with disruption of viral cloaking and innate immune evasion, treatment with Cyp inhibitors such as cyclosporine A (CsA) restores antiviral innate immunity and induces expression of a subset of antiviral genes that restrict viral infection, which may help to explain the broad antiviral spectrum of CsA. In this review, we provide an overview of the roles of CypA in viral cloaking and evasion of innate immunity, focusing on the underlying mechanisms and new perspectives for antiviral therapies.
Collapse
Affiliation(s)
- John E Mamatis
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Isabella E Pellizzari-Delano
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Carla E Gallardo-Flores
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
17
|
Cook GM, Brown K, Shang P, Li Y, Soday L, Dinan AM, Tumescheit C, Mockett APA, Fang Y, Firth AE, Brierley I. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 2022; 11:e75668. [PMID: 35226596 PMCID: PMC9000960 DOI: 10.7554/elife.75668] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/26/2022] [Indexed: 11/13/2022] Open
Abstract
The arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses to the swine industry worldwide. Here we apply ribosome profiling (RiboSeq) and parallel RNA sequencing (RNASeq) to characterise the transcriptome and translatome of both species of PRRSV and to analyse the host response to infection. We calculated programmed ribosomal frameshift (PRF) efficiency at both sites on the viral genome. This revealed the nsp2 PRF site as the second known example where temporally regulated frameshifting occurs, with increasing -2 PRF efficiency likely facilitated by accumulation of the PRF-stimulatory viral protein, nsp1β. Surprisingly, we find that PRF efficiency at the canonical ORF1ab frameshift site also increases over time, in contradiction of the common assumption that RNA structure-directed frameshift sites operate at a fixed efficiency. This has potential implications for the numerous other viruses with canonical PRF sites. Furthermore, we discovered several highly translated additional viral ORFs, the translation of which may be facilitated by multiple novel viral transcripts. For example, we found a highly expressed 125-codon ORF overlapping nsp12, which is likely translated from novel subgenomic RNA transcripts that overlap the 3' end of ORF1b. Similar transcripts were discovered for both PRRSV-1 and PRRSV-2, suggesting a potential conserved mechanism for temporally regulating expression of the 3'-proximal region of ORF1b. We also identified a highly translated, short upstream ORF in the 5' UTR, the presence of which is highly conserved amongst PRRSV-2 isolates. These findings reveal hidden complexity in the gene expression programmes of these important nidoviruses.
Collapse
Affiliation(s)
- Georgia M Cook
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Katherine Brown
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Pengcheng Shang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Lior Soday
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Adam M Dinan
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | | | | | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, Kansas State UniversityManhattanUnited States
| | - Andrew E Firth
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| | - Ian Brierley
- Department of Pathology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
18
|
Ullah MF, Ali Y, Khan MR, Khan IU, Yan B, Ijaz Khan M, Malik M. A review of COVID-19: Treatment strategies and CRISPR/Cas9 gene editing technology approaches to the coronavirus disease. Saudi J Biol Sci 2022; 29:860-871. [PMID: 34658640 PMCID: PMC8511869 DOI: 10.1016/j.sjbs.2021.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/12/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The new coronavirus SARS-CoV-2 pandemic has put the world on lockdown for the first time in decades. This has wreaked havoc on the global economy, put additional burden on local and global public health resources, and, most importantly, jeopardised human health. CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats, and the CRISPR associated (Cas) protein (CRISPR/Cas) was identified to have structures in E. coli. The most modern of these systems is CRISPR/Cas. Editing the genomes of plants and animals took several years and cost hundreds of thousands of dollars until the CRISPR approach was discovered in 2012. As a result, CRISPR/Cas has piqued the scientific community's attention, particularly for disease diagnosis and treatment, because it is faster, less expensive, and more precise than previous genome editing technologies. Data from gene mutations in specific patients gathered using CRISPR/Cas can aid in the identification of the best treatment strategy for each patient, as well as other research domains such as coronavirus replication in cell culture, such as SARS-CoV2. The implications of the most prevalent driver mutations, on the other hand, are often unknown, making treatment interpretation difficult. For detecting a wide range of target genes, the CRISPR/Cas categories provide highly sensitive and selective tools. Genome-wide association studies are a relatively new strategy to discovering genes involved in human disease when it comes to the next steps in genomic research. Furthermore, CRISPR/Cas provides a method for modifying non-coding portions of the genome, which will help advance whole genome libraries by speeding up the analysis of these poorly defined parts of the genome.
Collapse
Affiliation(s)
- Muhammad Farhat Ullah
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Yasir Ali
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- Genome Editing & Sequencing Lab, National Centre for Bioinformatics, Quaid-i-Azam University Islamabad, Pakistan
| | - Inam Ullah Khan
- University of Sheffield, Department of Chemical and Biological Engineering, Arts Tower Western Bank, Sheffield, S102TN, The University of Sheffield, Manchester, UK
| | - Bing Yan
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, Huzhou 313000, PR China
| | - M. Ijaz Khan
- Department of Mathematics and Statistics, Riphah International University, I-14, Islamabad 44000, Pakistan
| | - M.Y. Malik
- Department of Mathematics, College of Sciences, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
19
|
Schneider WM, Hoffmann HH. Flavivirus-host interactions: an expanding network of proviral and antiviral factors. Curr Opin Virol 2022; 52:71-77. [PMID: 34896863 PMCID: PMC8655497 DOI: 10.1016/j.coviro.2021.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Flaviviruses are zoonotic pathogens transmitted by the bite of infected mosquitos and ticks and represent a constant burden to human health. Here we review recent literature aimed at uncovering how flaviviruses interact with the cells that they infect. A better understanding of these interactions may ultimately lead to novel therapeutic targets. We highlight several studies that employed low-biased methods to discover new protein-protein, protein-RNA, and genetic interactions, and spotlight recent work characterizing the host protein, TMEM41B, which has been shown to be critical for infection by diverse flaviviruses and coronaviruses.
Collapse
Affiliation(s)
- William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Shang C, Liu Z, Zhu Y, Lu J, Ge C, Zhang C, Li N, Jin N, Li Y, Tian M, Li X. SARS-CoV-2 Causes Mitochondrial Dysfunction and Mitophagy Impairment. Front Microbiol 2022; 12:780768. [PMID: 35069483 PMCID: PMC8770829 DOI: 10.3389/fmicb.2021.780768] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria, which is essential for adequate innate immune response, energy metabolism and mitochondria reactive oxygen species (ROS) production, might be in the cross fire of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and host cell defense. However, little is known about interactions between mitochondria and SARS-CoV-2. We performed fluorescent microscopy and found an enrichment of SARS-CoV-2 replication products double stranded RNA (dsRNA) within mitochondria. The entry process of dsRNA might be mediated by Tom20 as observed by reduced mitochondrial localization of SARS-CoV-2 dsRNA in Tom20 knockdown cells. Importantly, decreased mitochondrial localization of dsRNA, as well as mitochondrial membrane stabilizers mdivi-1 and cyclosporin A, inhibited viral load in cells. Next, we detected mitochondrial dysfunction caused by SARS-CoV-2 infection, including mitochondrial membrane depolarization, mitochondrial permeability transition pore opening and increased ROS release. In response to mitochondrial damage, we observed an increase in expression and mitochondrial accumulation of Pink1 and Parkin proteins, as well as Pink-1-mediated recruitment of P62 to mitochondria, suggesting initiated mitophagy for mitochondrial quality control and virus clearance. Nevertheless, we observed that mitophagy was inhibited and stayed in early stage with an unchanged Hsp60 expression post SARS-CoV-2 infection. This might be one of the anti-autophagy strategies of SARS-CoV-2 and we used co-immunoprecipitation to found that SARS-CoV-2 infection inhibited P62 and LC3 binding which plays a critical role in selective envelopment of substrates into autophagosomes. Our results suggest that mitochondria are closely involved in SARS-CoV-2 replication and mitochondrial homeostasis is disrupted by SARS-CoV-2 in the virus-cell confrontation.
Collapse
Affiliation(s)
- Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China
| | - Zirui Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Agricultural College, Yanbian University, Yanji, China
| | - Chenchen Ge
- Agricultural College, Yanbian University, Yanji, China
| | - Cuiling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China
| | - Nan Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China.,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China
| | - Mingyao Tian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CASS), Changchun, China.,Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, China.,Agricultural College, Yanbian University, Yanji, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
Ávila-Pérez G, Rejas MT, Chichón FJ, Guerra M, Fernández JJ, Rodríguez D. Architecture of torovirus replicative organelles. Mol Microbiol 2021; 117:837-850. [PMID: 34967475 DOI: 10.1111/mmi.14875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
Plus-stranded RNA viruses replicate in the cytosol of infected cells, in membrane-bound replication complexes. We previously identified double membrane vesicles (DMVs) in the cytoplasm of cells infected with Berne virus (BEV), the prototype member of Torovirus genus (Nidovirales Order). Our previous analysis by transmission electron microscopy suggested that the DMVs form a reticulovesicular network (RVN) analogous those described for the related severe acute respiratory syndrome coronavirus (SARS-CoV-1). Here, we used serial sectioning and electron tomography to characterize the architecture of torovirus replication organelles, and to learn about their biogenesis and dynamics during the infection. The formation of a RVN in BEV infected cells was confirmed, where the outer membranes of the DMVs are interconnected with each other and with the ER. Paired or zippered ER membranes connected with the DMVs were also observed, and likely represent early structures that evolve to give rise to DMVs. Also, paired membranes forming small spherule-like invaginations were observed at late time post-infection. Although resembling in size, the tomographic analysis show that these structures are clearly different from the true spherules described previously for coronaviruses. Hence, BEV shows important similarities, but also some differences, in the architecture of the replication organelles with other nidoviruses.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - María Teresa Rejas
- Servicio de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Francisco Javier Chichón
- Servicio de Criomicroscopía Electrónica (cryoEM-CSIC) and Department of Macromolecular Structures, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049, Madrid, Spain
| | - Milagros Guerra
- Servicio de Microscopía Electrónica, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| | - José Jesús Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), CINN-CSIC, Av Hospital Universitario s/n, 33011, Oviedo, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro de Biología Molecular Severo Ochoa, CSIC, C/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
22
|
Chhajer H, Rizvi VA, Roy R. Life cycle process dependencies of positive-sense RNA viruses suggest strategies for inhibiting productive cellular infection. J R Soc Interface 2021; 18:20210401. [PMID: 34753308 PMCID: PMC8580453 DOI: 10.1098/rsif.2021.0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Life cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus. Stochastic simulations demonstrate infection extinction if all seeding (inoculating) viral RNA degrade before establishing robust replication critical for infection. The probability of this productive cellular infection, 'cellular infectivity', is affected by virus-host processes and defined by early life cycle events and viral seeding. An increase in cytoplasmic RNA degradation and delay in vesicular compartment formation reduces infectivity, more so when combined. Synergy among these parameters in limiting (+)RNA virus infection as predicted by our model suggests new avenues for inhibiting infections by targeting the early life cycle bottlenecks.
Collapse
Affiliation(s)
- Harsh Chhajer
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Vaseef A. Rizvi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rahul Roy
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
23
|
Abstract
Viruses have evolved precise mechanisms for using the cellular physiological pathways for their perpetuation. These virus-driven biochemical events must be separated in space and time from those of the host cell. In recent years, granular structures, known for over a century for rabies virus, were shown to host viral gene function and were named using terms such as viroplasms, replication sites, inclusion bodies, or viral factories (VFs). More recently, these VFs were shown to be liquid-like, sharing properties with membrane-less organelles driven by liquid–liquid phase separation (LLPS) in a process widely referred to as biomolecular condensation. Some of the best described examples of these structures come from negative stranded RNA viruses, where micrometer size VFs are formed toward the end of the infectious cycle. We here discuss some basic principles of LLPS in connection with several examples of VFs and propose a view, which integrates viral replication mechanisms with the biochemistry underlying liquid-like organelles. In this view, viral protein and RNA components gradually accumulate up to a critical point during infection where phase separation is triggered. This yields an increase in transcription that leads in turn to increased translation and a consequent growth of initially formed condensates. According to chemical principles behind phase separation, an increase in the concentration of components increases the size of the condensate. A positive feedback cycle would thus generate in which crucial components, in particular nucleoproteins and viral polymerases, reach their highest levels required for genome replication. Progress in understanding viral biomolecular condensation leads to exploration of novel therapeutics. Furthermore, it provides insights into the fundamentals of phase separation in the regulation of cellular gene function given that virus replication and transcription, in particular those requiring host polymerases, are governed by the same biochemical principles.
Collapse
|
24
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
25
|
Saad MH, Badierah R, Redwan EM, El-Fakharany EM. A Comprehensive Insight into the Role of Exosomes in Viral Infection: Dual Faces Bearing Different Functions. Pharmaceutics 2021; 13:1405. [PMID: 34575480 PMCID: PMC8466084 DOI: 10.3390/pharmaceutics13091405] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) subtype, exosome is an extracellular nano-vesicle that sheds from cells' surface and originates as intraluminal vesicles during endocytosis. Firstly, it was thought to be a way for the cell to get rid of unwanted materials as it loaded selectively with a variety of cellular molecules, including RNAs, proteins, and lipids. However, it has been found to play a crucial role in several biological processes such as immune modulation, cellular communication, and their role as vehicles to transport biologically active molecules. The latest discoveries have revealed that many viruses export their viral elements within cellular factors using exosomes. Hijacking the exosomal pathway by viruses influences downstream processes such as viral propagation and cellular immunity and modulates the cellular microenvironment. In this manuscript, we reviewed exosomes biogenesis and their role in the immune response to viral infection. In addition, we provided a summary of how some pathogenic viruses hijacked this normal physiological process. Viral components are harbored in exosomes and the role of these exosomes in viral infection is discussed. Understanding the nature of exosomes and their role in viral infections is fundamental for future development for them to be used as a vaccine or as a non-classical therapeutic strategy to control several viral infections.
Collapse
Affiliation(s)
- Mabroka H. Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
| | - Raied Badierah
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Medical Laboratory, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Esmail M. El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), The City of Scientific Research and Technological Applications (SRTA-City), New Borg EL Arab, Alexandria 21934, Egypt; (M.H.S.); (E.M.R.)
| |
Collapse
|
26
|
Elmasri Z, Nasal BL, Jose J. Alphavirus-Induced Membrane Rearrangements during Replication, Assembly, and Budding. Pathogens 2021; 10:984. [PMID: 34451448 PMCID: PMC8399458 DOI: 10.3390/pathogens10080984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/01/2023] Open
Abstract
Alphaviruses are arthropod-borne viruses mainly transmitted by hematophagous insects that cause moderate to fatal disease in humans and other animals. Currently, there are no approved vaccines or antivirals to mitigate alphavirus infections. In this review, we summarize the current knowledge of alphavirus-induced structures and their functions in infected cells. Throughout their lifecycle, alphaviruses induce several structural modifications, including replication spherules, type I and type II cytopathic vacuoles, and filopodial extensions. Type I cytopathic vacuoles are replication-induced structures containing replication spherules that are sites of RNA replication on the endosomal and lysosomal limiting membrane. Type II cytopathic vacuoles are assembly induced structures that originate from the Golgi apparatus. Filopodial extensions are induced at the plasma membrane and are involved in budding and cell-to-cell transport of virions. This review provides an overview of the viral and host factors involved in the biogenesis and function of these virus-induced structures. Understanding virus-host interactions in infected cells will lead to the identification of new targets for antiviral discovery.
Collapse
Affiliation(s)
- Zeinab Elmasri
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Benjamin L. Nasal
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biochemistry & Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
27
|
Zheng XX, Li R, Qiao S, Chen XX, Zhang L, Lu Q, Xing G, Zhou EM, Zhang G. Vimentin rearrangement by phosphorylation is beneficial for porcine reproductive and respiratory syndrome virus replication in vitro. Vet Microbiol 2021; 259:109133. [PMID: 34087674 DOI: 10.1016/j.vetmic.2021.109133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Vimentin, a member of intermediate filaments, has been documented to be involved in viral infections. Despite several studies focusing on its involvement in porcine reproductive and respiratory syndrome virus (PRRSV) infection, the detailed mechanisms by which vimentin takes effect remain to be fully elucidated. In the present study, we identified a previously unrecognized role of vimentin rearrangement in PRRSV replication. We monitored that PRRSV infection induced vimentin reorganization during post-entry stage, which was beneficial for viral replication. In detail, the serine residue of vimentin was phosphorylated at position 38 (Ser38) by calcium calmodulin-dependent protein kinase II gamma (CaMKIIγ), and vimentin filaments reorganized into cage-like structures enwrapping PRRSV replication complex (RC) at the perinuclear location. Taken together, these results expand the knowledge of PRRSV replication, and provide novel targets for prevention and control of PRRSV.
Collapse
Affiliation(s)
- Xin-Xian Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Longxiang Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
28
|
Atkins JF, O’Connor KM, Bhatt PR, Loughran G. From Recoding to Peptides for MHC Class I Immune Display: Enriching Viral Expression, Virus Vulnerability and Virus Evasion. Viruses 2021; 13:1251. [PMID: 34199077 PMCID: PMC8310308 DOI: 10.3390/v13071251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 01/02/2023] Open
Abstract
Many viruses, especially RNA viruses, utilize programmed ribosomal frameshifting and/or stop codon readthrough in their expression, and in the decoding of a few a UGA is dynamically redefined to specify selenocysteine. This recoding can effectively increase viral coding capacity and generate a set ratio of products with the same N-terminal domain(s) but different C-terminal domains. Recoding can also be regulatory or generate a product with the non-universal 21st directly encoded amino acid. Selection for translation speed in the expression of many viruses at the expense of fidelity creates host immune defensive opportunities. In contrast to host opportunism, certain viruses, including some persistent viruses, utilize recoding or adventitious frameshifting as part of their strategy to evade an immune response or specific drugs. Several instances of recoding in small intensively studied viruses escaped detection for many years and their identification resolved dilemmas. The fundamental importance of ribosome ratcheting is consistent with the initial strong view of invariant triplet decoding which however did not foresee the possibility of transitory anticodon:codon dissociation. Deep level dynamics and structural understanding of recoding is underway, and a high level structure relevant to the frameshifting required for expression of the SARS CoV-2 genome has just been determined.
Collapse
Affiliation(s)
- John F. Atkins
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Kate M. O’Connor
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| | - Pramod R. Bhatt
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Gary Loughran
- Schools of Biochemistry and Microbiology, University College Cork, T12 XF62 Cork, Ireland; (K.M.O.); (P.R.B.); (G.L.)
| |
Collapse
|
29
|
The Significance of Phenotyping and Quantification of Plasma Extracellular Vesicles Levels Using High-Sensitivity Flow Cytometry during COVID-19 Treatment. Viruses 2021; 13:v13050767. [PMID: 33925492 PMCID: PMC8146052 DOI: 10.3390/v13050767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
New investigation results point to the potential participation of extracellular vesicles (EVs) in the pathogenesis of coronavirus infection, its progression, and mechanisms of the therapy effectiveness. This dictates the necessity to transfer scientific testing technologies to medical practice. Here, we demonstrated the method of phenotyping and quantitative analysis of plasma EVs based on differential centrifugation, immunostaining, and high-sensitivity multicolor flow cytometry. We used EV markers that were potentially associated with SARS-CoV-2 dissemination via vesicles and cell-origination markers, characterizing objects from different cell types that could influence clinical manifestation of COVID-19. Plasma levels of CD235a+ and CD14+ EVs in patients with moderate infection were significantly increased while CD8+ and CD19+ EVs were decreased comparing with HD. Patients with severe infection had lower levels of CD4+, CD19+, and CD146+ EVs than HD. These findings demonstrate that EV concentrations in COVID-19 are severity related. Moreover, the three-point dynamic assessment demonstrated significant loss of CD63+ and CD147+ plasma EVs. The used method can be a convenient tool for vital infection pathogenesis investigation and for COVID-19 diagnostics.
Collapse
|
30
|
A swine arterivirus deubiquitinase stabilizes two major envelope proteins and promotes production of viral progeny. PLoS Pathog 2021; 17:e1009403. [PMID: 33735221 PMCID: PMC7971519 DOI: 10.1371/journal.ppat.1009403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
Arteriviruses are enveloped positive-strand RNA viruses that assemble and egress using the host cell’s exocytic pathway. In previous studies, we demonstrated that most arteriviruses use a unique -2 ribosomal frameshifting mechanism to produce a C-terminally modified variant of their nonstructural protein 2 (nsp2). Like full-length nsp2, the N-terminal domain of this frameshift product, nsp2TF, contains a papain-like protease (PLP2) that has deubiquitinating (DUB) activity, in addition to its role in proteolytic processing of replicase polyproteins. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nsp2TF localizes to compartments of the exocytic pathway, specifically endoplasmic reticulum-Golgi intermediate compartment (ERGIC) and Golgi complex. Here, we show that nsp2TF interacts with the two major viral envelope proteins, the GP5 glycoprotein and membrane (M) protein, which drive the key process of arterivirus assembly and budding. The PRRSV GP5 and M proteins were found to be poly-ubiquitinated, both in an expression system and in cells infected with an nsp2TF-deficient mutant virus. In contrast, ubiquitinated GP5 and M proteins did not accumulate in cells infected with the wild-type, nsp2TF-expressing virus. Further analysis implicated the DUB activity of the nsp2TF PLP2 domain in deconjugation of ubiquitin from GP5/M proteins, thus antagonizing proteasomal degradation of these key viral structural proteins. Our findings suggest that nsp2TF is targeted to the exocytic pathway to reduce proteasome-driven turnover of GP5/M proteins, thus promoting the formation of GP5-M dimers that are critical for arterivirus assembly. Arteriviruses are a rapidly expanding family of positive-stranded RNA viruses, which includes economically important veterinary pathogens like equine arteritis virus (EAV) and two species of porcine reproductive and respiratory syndrome virus (PRRSV-1 and PRRSV-2). In our previous studies, we uncovered an unprecedented arterivirus gene expression mechanism: a highly efficient -2 programmed ribosomal frameshift (PRF) that is controlled by an interaction of viral protein nsp1ß with specific RNA sequences and host poly(C) binding proteins. It is used by PRRSVs, and most other arteriviruses, to efficiently produce a previously unknown nonstructural protein variant, nsp2TF. In this study, we demonstrate that PRRSV nsp2TF interacts with the two major arteriviral envelope proteins, GP5 and M, whose heterodimerization in the secretory pathway is a key step in envelope protein trafficking and virus assembly. Our findings suggest that nsp2TF promotes arterivirus assembly by antagonizing the ubiquitination-dependent proteasomal degradation of GP5 and M proteins. This mechanism is based on the DUB activity of the PLP2 protease domain located within the N-terminal region of nsp2TF. To our knowledge, this is the first study to demonstrate that viruses can express a DUB that functions specifically to counteract the ubiquitination and degradation of key viral structural proteins.
Collapse
|
31
|
RNA Helicase A Regulates the Replication of RNA Viruses. Viruses 2021; 13:v13030361. [PMID: 33668948 PMCID: PMC7996507 DOI: 10.3390/v13030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023] Open
Abstract
The RNA helicase A (RHA) is a member of DExH-box helicases and characterized by two double-stranded RNA binding domains at the N-terminus. RHA unwinds double-stranded RNA in vitro and is involved in RNA metabolisms in the cell. RHA is also hijacked by a variety of RNA viruses to facilitate virus replication. Herein, this review will provide an overview of the role of RHA in the replication of RNA viruses.
Collapse
|
32
|
Abstract
The ongoing pandemic of the new severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused more than one million deaths, overwhelmed many public health systems, and led to a worldwide economic recession. This has raised an unprecedented need to develop antiviral drugs and vaccines, which requires profound knowledge of the fundamental pathology of the virus, including its entry, replication, and release from host cells. The genome of coronaviruses comprises around 30 kb of positive single-stranded RNA, representing one of the largest RNA genomes of viruses. The 5′ part of the genome encodes a large polyprotein, PP1ab, which gives rise to 16 non-structural proteins (nsp1– nsp16). Two proteases encoded in nsp3 and nsp5 cleave the polyprotein into individual proteins. Most nsps belong to the viral replicase complex that promotes replication of the viral genome and translation of structural proteins by producing subgenomic mRNAs. The replicase complexes are found on double-membrane vesicles (DMVs) that contain viral double-stranded RNA. Expression of a small subset of viral proteins, including nsp3 and nsp4, is sufficient to induce formation of these DMVs in human cells, suggesting that both proteins deform host membranes into such structures. We will discuss the formation of DMVs and provide an overview of other membrane remodeling processes that are induced by coronaviruses.
Collapse
Affiliation(s)
- Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, UMR3691 CNRS, F-75015, Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, UMR3691 CNRS, F-75015, Paris, France
| |
Collapse
|
33
|
Multiscale Electron Microscopy for the Study of Viral Replication Organelles. Viruses 2021; 13:v13020197. [PMID: 33525547 PMCID: PMC7912242 DOI: 10.3390/v13020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
During infection with positive-strand RNA viruses, viral RNA synthesis associates with modified intracellular membranes that form unique and captivating structures in the cytoplasm of the infected cell. These viral replication organelles (ROs) play a key role in the replicative cycle of important human pathogens like coronaviruses, enteroviruses, or flaviviruses. From their discovery to date, progress in our understanding of viral ROs has closely followed new developments in electron microscopy (EM). This review gives a chronological account of this progress and an introduction to the different EM techniques that enabled it. With an ample repertoire of imaging modalities, EM is nowadays a versatile technique that provides structural and functional information at a wide range of scales. Together with well-established approaches like electron tomography or labeling methods, we examine more recent developments, such as volume scanning electron microscopy (SEM) and in situ cryotomography, which are only beginning to be applied to the study of viral ROs. We also highlight the first cryotomography analyses of viral ROs, which have led to the discovery of macromolecular complexes that may serve as RO channels that control the export of newly-made viral RNA. These studies are key first steps towards elucidating the macromolecular complexity of viral ROs.
Collapse
|
34
|
Iserman C, Roden CA, Boerneke MA, Sealfon RSG, McLaughlin GA, Jungreis I, Fritch EJ, Hou YJ, Ekena J, Weidmann CA, Theesfeld CL, Kellis M, Troyanskaya OG, Baric RS, Sheahan TP, Weeks KM, Gladfelter AS. Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Mol Cell 2020; 80:1078-1091.e6. [PMID: 33290746 PMCID: PMC7691212 DOI: 10.1016/j.molcel.2020.11.041] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
We report that the SARS-CoV-2 nucleocapsid protein (N-protein) undergoes liquid-liquid phase separation (LLPS) with viral RNA. N-protein condenses with specific RNA genomic elements under physiological buffer conditions and condensation is enhanced at human body temperatures (33°C and 37°C) and reduced at room temperature (22°C). RNA sequence and structure in specific genomic regions regulate N-protein condensation while other genomic regions promote condensate dissolution, potentially preventing aggregation of the large genome. At low concentrations, N-protein preferentially crosslinks to specific regions characterized by single-stranded RNA flanked by structured elements and these features specify the location, number, and strength of N-protein binding sites (valency). Liquid-like N-protein condensates form in mammalian cells in a concentration-dependent manner and can be altered by small molecules. Condensation of N-protein is RNA sequence and structure specific, sensitive to human body temperature, and manipulatable with small molecules, and therefore presents a screenable process for identifying antiviral compounds effective against SARS-CoV-2.
Collapse
Affiliation(s)
- Christiane Iserman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christine A Roden
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark A Boerneke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Grace A McLaughlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ethan J Fritch
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Ekena
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chase A Weidmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chandra L Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Olga G Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Department of Computer Science, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Martins SDT, Alves LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin? Front Cell Infect Microbiol 2020; 10:593170. [PMID: 33335862 PMCID: PMC7736630 DOI: 10.3389/fcimb.2020.593170] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are small membrane structures containing proteins and nucleic acids that are gaining a lot of attention lately. They are produced by most cells and can be detected in several body fluids, having a huge potential in therapeutic and diagnostic approaches. EVs produced by infected cells usually have a molecular signature that is very distinct from healthy cells. For intracellular pathogens like viruses, EVs can have an even more complex function, since the viral biogenesis pathway can overlap with EV pathways in several ways, generating a continuum of particles, like naked virions, EVs containing infective viral genomes and quasi-enveloped viruses, besides the classical complete viral particles that are secreted to the extracellular space. Those particles can act in recipient cells in different ways. Besides being directly infective, they also can prime neighbor cells rendering them more susceptible to infection, block antiviral responses and deliver isolated viral molecules. On the other hand, they can trigger antiviral responses and cytokine secretion even in uninfected cells near the infection site, helping to fight the infection and protect other cells from the virus. This protective response can also backfire, when a massive inflammation facilitated by those EVs can be responsible for bad clinical outcomes. EVs can help or harm the antiviral response, and sometimes both mechanisms are observed in infections by the same virus. Since those pathways are intrinsically interlinked, understand the role of EVs during viral infections is crucial to comprehend viral mechanisms and respond better to emerging viral diseases.
Collapse
Affiliation(s)
- Sharon de Toledo Martins
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil.,Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Lysangela Ronalte Alves
- Gene Expression Regulation Laboratory, Carlos Chagas Institute, ICC-Fiocruz, Curitiba, Brazil
| |
Collapse
|
36
|
Perrotta I. ER-phagy in human atherosclerosis: an exploratory ultrastructural study. Ultrastruct Pathol 2020; 44:489-495. [PMID: 33118423 DOI: 10.1080/01913123.2020.1840468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Autophagy is a vacuolar self-digesting mechanism responsible for the removal of damaged organelles, indigestible aggregates, and nonfunctional long-lived proteins by lysosome. Autophagy is dynamically connected to the endoplasmic reticulum (ER) in several ways. It is capable to counteract the possible harmful effects linked to the impairment of protein folding in the ER; the ER has been proposed as the source for autophagosomal membranes. Also, the ER itself can undergo a selective form of autophagy (called ER-phagy) which ensures the maintenance of ER's morphology and function. Autophagy has been widely investigated in the cardiovascular system however there is no evidence to date regarding the occurrence of ER-phagy into the blood vessel wall. This study has been undertaken to explore the existence of this selective control mechanism in the cells of human atherosclerotic plaques. Transmission Electron Microscopy (TEM) analysis revealed that in the plaque cells the smooth ER profiles reorganized into concentric whorls and closely packed membranes arranged in curved and parallel arrays. Circular, often ring-shaped, ER membranes studded with ribosomes and enclosed in a sequestering vesicle have been also frequently observed. This preliminary study demonstrates the existence of a distinct machinery for the specific turnover of ER membranes in human atherosclerosis and provides the first ultrastructural description of ER-phagy in the diseased vascular tissue. These results may open new perspectives for future investigation in the cardiovascular field.
Collapse
Affiliation(s)
- Ida Perrotta
- Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory - Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria , Cosenza, Italy
| |
Collapse
|
37
|
Li Z, Guo D, Qin Y, Chen M. PI4KB on Inclusion Bodies Formed by ER Membrane Remodeling Facilitates Replication of Human Parainfluenza Virus Type 3. Cell Rep 2020; 29:2229-2242.e4. [PMID: 31747597 PMCID: PMC7104050 DOI: 10.1016/j.celrep.2019.10.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/21/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
Many positive-strand RNA viruses remodel the endomembrane to form specialized replication organelles. However, knowledge regarding whether negative-strand RNA viruses take advantage of intracellular membranes for replication is limited. Here we show that a negative-strand RNA virus, human parainfluenza virus type 3 (HPIV3), remodels the endoplasmic reticulum (ER) membrane to form inclusion bodies (IBs), whereby the phosphoprotein (P) of HPIV3 recruits phosphatidylinositol 4-kinase beta (PI4KB) to IBs to generate PI4P, creating a PI4P-enriched microenvironment to promote HPIV3 replication. In addition, we find that human respiratory syncytial virus (HRSV) also takes advantage of the ER to form IBs and that these IBs are also enriched with PI4P. The nucleoprotein of HRSV recruits PI4KB to IBs. These results suggest that paramyxoviruses also exploit the host endomembrane to form IBs and that PI4KB is recruited by viral proteins to enrich IBs with PI4P to facilitate viral replication. Inclusion bodies (IBs) of HPIV3 induce membrane rearrangement of ER PI4P generated by PI4KB on IBs facilitates replication of HPIV3 PI4KB is recruited to IBs via interaction with the HPIV3 phosphoprotein, P Remodeling ER is a general mechanism for IBs of negative-strand RNA viruses
Collapse
Affiliation(s)
- Zhifei Li
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan 430072, China
| | - Dong Guo
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan 430072, China
| | - Yali Qin
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan 430072, China.
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, LuoJia Hill, Wuhan 430072, China.
| |
Collapse
|
38
|
Li X, Wang M, Cheng A, Wen X, Ou X, Mao S, Gao Q, Sun D, Jia R, Yang Q, Wu Y, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X. Enterovirus Replication Organelles and Inhibitors of Their Formation. Front Microbiol 2020; 11:1817. [PMID: 32973693 PMCID: PMC7468505 DOI: 10.3389/fmicb.2020.01817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
Enteroviral replication reorganizes the cellular membrane. Upon infection, viral proteins and hijacked host factors generate unique structures called replication organelles (ROs) to replicate their viral genomes. ROs promote efficient viral genome replication, coordinate the steps of the viral replication cycle, and protect viral RNA from host immune responses. More recent researches have focused on the ultrastructure structures, formation mechanism, and functions in the virus life cycle of ROs. Dynamic model of enterovirus ROs structure is proposed, and the secretory pathway, the autophagy pathway, and lipid metabolism are found to be associated in the formation of ROs. With deeper understanding of ROs, some compounds have been found to show inhibitory effects on viral replication by targeting key proteins in the process of ROs formation. Here, we review the recent findings concerning the role, morphology, biogenesis, formation mechanism, and inhibitors of enterovirus ROs.
Collapse
Affiliation(s)
- Xinhong Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
39
|
Elrashdy F, Aljaddawi AA, Redwan EM, Uversky VN. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J Biomol Struct Dyn 2020; 39:5831-5842. [PMID: 32643586 PMCID: PMC7441802 DOI: 10.1080/07391102.2020.1790426] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We propose here that one of the potential mechanisms for the relapse of the COVID-19 infection could be a cellular transport pathway associated with the release of the SARS-CoV-2-loaded exosomes and other extracellular vesicles. It is possible that this “Trojan horse” strategy represents possible explanation for the re-appearance of the viral RNA in the recovered COVID-19 patients 7–14 day post discharge, suggesting that viral material was hidden within such exosomes or extracellular vesicles during this “silence” time period and then started to re-spread again. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Fatma Elrashdy
- Department of Endemic Medicine and Hepatogastroenterology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Abdullah A Aljaddawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| |
Collapse
|
40
|
Wolff G, Melia CE, Snijder EJ, Bárcena M. Double-Membrane Vesicles as Platforms for Viral Replication. Trends Microbiol 2020; 28:1022-1033. [PMID: 32536523 PMCID: PMC7289118 DOI: 10.1016/j.tim.2020.05.009] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Viruses, as obligate intracellular parasites, exploit cellular pathways and resources in a variety of fascinating ways. A striking example of this is the remodelling of intracellular membranes into specialized structures that support the replication of positive-sense ssRNA (+RNA) viruses infecting eukaryotes. These distinct forms of virus-induced structures include double-membrane vesicles (DMVs), found during viral infections as diverse and notorious as those of coronaviruses, enteroviruses, noroviruses, or hepatitis C virus. Our understanding of these DMVs has evolved over the past 15 years thanks to advances in imaging techniques and modern molecular biology tools. In this article, we review contemporary understanding of the biogenesis, structure, and function of virus-induced DMVs as well as the open questions posed by these intriguing structures.
Collapse
Affiliation(s)
- Georg Wolff
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte E Melia
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
41
|
Snijder EJ, Limpens RWAL, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC, Maier HJ, Faas FFGA, Koster AJ, Bárcena M. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biol 2020; 18:e3000715. [PMID: 32511245 PMCID: PMC7302735 DOI: 10.1371/journal.pbio.3000715] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Zoonotic coronavirus (CoV) infections, such as those responsible for the current severe acute respiratory syndrome-CoV 2 (SARS-CoV-2) pandemic, cause grave international public health concern. In infected cells, the CoV RNA-synthesizing machinery associates with modified endoplasmic reticulum membranes that are transformed into the viral replication organelle (RO). Although double-membrane vesicles (DMVs) appear to be a pan-CoV RO element, studies to date describe an assortment of additional CoV-induced membrane structures. Despite much speculation, it remains unclear which RO element(s) accommodate viral RNA synthesis. Here we provide detailed 2D and 3D analyses of CoV ROs and show that diverse CoVs essentially induce the same membrane modifications, including the small open double-membrane spherules (DMSs) previously thought to be restricted to gamma- and delta-CoV infections and proposed as sites of replication. Metabolic labeling of newly synthesized viral RNA followed by quantitative electron microscopy (EM) autoradiography revealed abundant viral RNA synthesis associated with DMVs in cells infected with the beta-CoVs Middle East respiratory syndrome-CoV (MERS-CoV) and SARS-CoV and the gamma-CoV infectious bronchitis virus. RNA synthesis could not be linked to DMSs or any other cellular or virus-induced structure. Our results provide a unifying model of the CoV RO and clearly establish DMVs as the central hub for viral RNA synthesis and a potential drug target in CoV infection.
Collapse
Affiliation(s)
- Eric J. Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ronald W. A. L. Limpens
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Adriaan H. de Wilde
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anja W. M. de Jong
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jessika C. Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Frank F. G. A. Faas
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Abraham J. Koster
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Montserrat Bárcena
- Section Electron Microscopy, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
42
|
Ren S, Ding C, Sun Y. Morphology Remodeling and Selective Autophagy of Intracellular Organelles during Viral Infections. Int J Mol Sci 2020; 21:ijms21103689. [PMID: 32456258 PMCID: PMC7279407 DOI: 10.3390/ijms21103689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Viruses have evolved different strategies to hijack subcellular organelles during their life cycle to produce robust infectious progeny. Successful viral reproduction requires the precise assembly of progeny virions from viral genomes, structural proteins, and membrane components. Such spatial and temporal separation of assembly reactions depends on accurate coordination among intracellular compartmentalization in multiple organelles. Here, we overview the rearrangement and morphology remodeling of virus-triggered intracellular organelles. Focus is given to the quality control of intracellular organelles, the hijacking of the modified organelle membranes by viruses, morphology remodeling for viral replication, and degradation of intracellular organelles by virus-triggered selective autophagy. Understanding the functional reprogram and morphological remodeling in the virus-organelle interplay can provide new insights into the development of broad-spectrum antiviral strategies.
Collapse
Affiliation(s)
- Shanhui Ren
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai 200241, China;
- Correspondence: (C.D.); (Y.S.); Tel.: +86-21-34293441 (C.D. & Y.S.); Fax: +86-21-54081818 (C.D. & Y.S.)
| |
Collapse
|
43
|
Surfeit 4 Contributes to the Replication of Hepatitis C Virus Using Double-Membrane Vesicles. J Virol 2020; 94:JVI.00858-19. [PMID: 31645450 DOI: 10.1128/jvi.00858-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a "membranous web" structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication.IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.
Collapse
|
44
|
Bagchi P. Endoplasmic reticulum in viral infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 350:265-284. [PMID: 32138901 DOI: 10.1016/bs.ircmb.2019.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virus exploits host cellular machinery to replicate and form new viral progeny and endoplasmic reticulum (ER) plays central role in the interplay between virus and host cell. Here I will discuss how cellular functions of ER being utilized by viruses from different families during different stages of pathogenesis. Flow of knowledge related to this area of research based on interdisciplinary approach, using biochemical and cell biological assays coupled with advanced microscopy strategies, is pushing our understanding of the virus-ER interaction during infection to the next level.
Collapse
Affiliation(s)
- Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
45
|
The Porcine Deltacoronavirus Replication Organelle Comprises Double-Membrane Vesicles and Zippered Endoplasmic Reticulum with Double-Membrane Spherules. Viruses 2019; 11:v11111030. [PMID: 31694296 PMCID: PMC6893519 DOI: 10.3390/v11111030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) was first identified in Hong Kong in 2012 from samples taken from pigs in 2009. PDCoV was subsequently identified in the USA in 2014 in pigs with a history of severe diarrhea. The virus has now been detected in pigs in several countries around the world. Following the development of tissue culture adapted strains of PDCoV, it is now possible to address questions regarding virus-host cell interactions for this genera of coronavirus. Here, we presented a detailed study of PDCoV-induced replication organelles. All positive-strand RNA viruses induce the rearrangement of cellular membranes during virus replication to support viral RNA synthesis, forming the replication organelle. Replication organelles for the Alpha-, Beta-, and Gammacoronavirus genera have been characterized. All coronavirus genera induced the formation of double-membrane vesicles (DMVs). In addition, Alpha- and Betacoronaviruses induce the formation of convoluted membranes, while Gammacoronaviruses induce the formation of zippered endoplasmic reticulum (ER) with tethered double-membrane spherules. However, the structures induced by Deltacoronaviruses, particularly the presence of convoluted membranes or double-membrane spherules, are unknown. Initially, the dynamics of PDCoV strain OH-FD22 replication were assessed with the onset of viral RNA synthesis, protein synthesis, and progeny particle release determined. Subsequently, virus-induced membrane rearrangements were identified in infected cells by electron microscopy. As has been observed for all other coronaviruses studied to date, PDCoV replication was found to induce the formation of double-membrane vesicles. Significantly, however, PDCoV replication was also found to induce the formation of regions of zippered endoplasmic reticulum, small associated tethered vesicles, and double-membrane spherules. These structures strongly resemble the replication organelle induced by avian Gammacoronavirus infectious bronchitis virus.
Collapse
|
46
|
Adaptive Mutations in Replicase Transmembrane Subunits Can Counteract Inhibition of Equine Arteritis Virus RNA Synthesis by Cyclophilin Inhibitors. J Virol 2019; 93:JVI.00490-19. [PMID: 31243130 DOI: 10.1128/jvi.00490-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse RNA viruses, including arteriviruses and coronaviruses, which both belong to the order Nidovirales In this study, we aimed to identify arterivirus proteins involved in the mode of action of cyclophilin inhibitors and to investigate how these compounds inhibit arterivirus RNA synthesis in the infected cell. Repeated passaging of the arterivirus prototype equine arteritis virus (EAV) in the presence of CsA revealed that reduced drug sensitivity is associated with the emergence of adaptive mutations in nonstructural protein 5 (nsp5), one of the transmembrane subunits of the arterivirus replicase polyprotein. Introduction of singular nsp5 mutations (nsp5 Q21R, Y113H, or A134V) led to an ∼2-fold decrease in sensitivity to CsA treatment, whereas combinations of mutations further increased EAV's CsA resistance. The detailed experimental characterization of engineered EAV mutants harboring CsA resistance mutations implicated nsp5 in arterivirus RNA synthesis. Particularly, in an in vitro assay, EAV RNA synthesis was far less sensitive to CsA treatment when nsp5 contained the adaptive mutations mentioned above. Interestingly, for increased sensitivity to the closely related drug ALV, CsA-resistant nsp5 mutants required the incorporation of an additional adaptive mutation, which resided in nsp2 (H114R), another transmembrane subunit of the arterivirus replicase. Our study provides the first evidence for the involvement of nsp2 and nsp5 in the mechanism underlying the inhibition of arterivirus replication by cyclophilin inhibitors.IMPORTANCE Currently, no approved treatments are available to combat infections with nidoviruses, a group of positive-stranded RNA viruses, including important zoonotic and veterinary pathogens. Previously, the cyclophilin inhibitors cyclosporine (CsA) and alisporivir (ALV) were shown to inhibit the replication of diverse nidoviruses (both arteriviruses and coronaviruses), and they may thus represent a class of pan-nidovirus inhibitors. In this study, using the arterivirus prototype equine arteritis virus, we have established that resistance to CsA and ALV treatment is associated with adaptive mutations in two transmembrane subunits of the viral replication machinery, nonstructural proteins 2 and 5. This is the first evidence for the involvement of specific replicase subunits of arteriviruses in the mechanism underlying the inhibition of their replication by cyclophilin inhibitors. Understanding this mechanism of action is of major importance to guide future drug design, both for nidoviruses and for other RNA viruses inhibited by these compounds.
Collapse
|
47
|
Ávila-Pérez G, Diaz-Beneitez E, Cubas-Gaona LL, Nieves-Molina G, Rodríguez JR, Rodríguez JF, Rodríguez D. Activation of the autophagy pathway by Torovirus infection is irrelevant for virus replication. PLoS One 2019; 14:e0219428. [PMID: 31306441 PMCID: PMC6629058 DOI: 10.1371/journal.pone.0219428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/24/2019] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a conserved eukaryotic process that mediates lysosomal degradation of cytoplasmic macromolecules and damaged organelles, also exerting an important role in the elimination of intracellular pathogens. Despite the antiviral role of autophagy, many studies suggest that some positive-stranded RNA viruses exploit this pathway to facilitate their own replication. In this study, we demonstrate that the equine torovirus Berne virus (BEV), the prototype member of the Torovirus genus (Coronaviridae Family, Nidovirales Order), induces autophagy at late times post-infection. Conversion of microtubule associated protein 1B light chain 3 (LC3) from cytosolic (LC3 I) to the membrane associated form (LC3 II), a canonical marker of autophagosome formation, is enhanced in BEV infected cells. However, neither autophagy induction, via starvation, nor pharmacological blockade significantly affect BEV replication. Similarly, BEV infection is not altered in autophagy deficient cells lacking either Beclin 1 or LC3B protein expression. Unexpectedly, the cargo receptor p62, a selective autophagy receptor, aggregates within the region where the BEV main protease (Mpro) localizes. This finding, coupled with observation that BEV replication also induces ER stress at the time when selective autophagy is taking place, suggests that the autophagy pathway is activated in response to the hefty accumulation of virus-encoded polypeptides during the late phase of BEV infection.
Collapse
Affiliation(s)
- Ginés Ávila-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Elisabet Diaz-Beneitez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Liliana L. Cubas-Gaona
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Gliselle Nieves-Molina
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | | | - José F. Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| | - Dolores Rodríguez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CSIC, C/Darwin, Madrid, Spain
| |
Collapse
|
48
|
Qin P, Du EZ, Luo WT, Yang YL, Zhang YQ, Wang B, Huang YW. Characteristics of the Life Cycle of Porcine Deltacoronavirus (PDCoV) In Vitro: Replication Kinetics, Cellular Ultrastructure and Virion Morphology, and Evidence of Inducing Autophagy. Viruses 2019; 11:v11050455. [PMID: 31109068 PMCID: PMC6563515 DOI: 10.3390/v11050455] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes severe diarrhea and vomiting in affected piglets. The aim of this study was to establish the basic, in vitro characteristics of the life cycle such as replication kinetics, cellular ultrastructure, virion morphology, and induction of autophagy of PDCoV. Time-course analysis of viral subgenomic and genomic RNA loads and infectious titers indicated that one replication cycle of PDCoV takes 5 to 6 h. Electron microscopy showed that PDCoV infection induced the membrane rearrangements with double-membrane vesicles and large virion-containing vacuoles. The convoluted membranes structures described in alpha- and beta-coronavirus were not observed. PDCoV infection also increased the number of autophagosome-like vesicles in the cytoplasm of cells, and the autophagy response was detected by LC3 I/II and p62 Western blot analysis. For the first time, this study presents the picture of the PDCoV infection cycle, which is crucial to help elucidate the molecular mechanism of deltacoronavirus replication.
Collapse
Affiliation(s)
- Pan Qin
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - En-Zhong Du
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- YEBIO Bioengineering Co., Ltd. of Qingdao, Qingdao 266114, China.
| | - Wen-Ting Luo
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yong-Le Yang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yu-Qi Zhang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Bin Wang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Medicine and Key Laboratory of Animal Virology of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
ZAP, a CCCH-Type Zinc Finger Protein, Inhibits Porcine Reproductive and Respiratory Syndrome Virus Replication and Interacts with Viral Nsp9. J Virol 2019; 93:JVI.00001-19. [PMID: 30867303 DOI: 10.1128/jvi.00001-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens affecting many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. PRRSV infection can cleave mitochondrial antiviral signaling protein (MAVS) and inhibit the induction of type I interferon. The antiviral effector molecules that are involved in host protective responses to PRRSV infection are not fully understood. Here, by using transcriptome sequencing, we found that a zinc finger antiviral protein, ZAP, is upregulated in MAVS-transfected Marc-145 cells and that ZAP suppresses PRRSV infection at the early stage of replication. We also found that the viral protein Nsp9, an RNA-dependent RNA polymerase (RdRp), interacts with ZAP. The interacting locations were mapped to the zinc finger domain of ZAP and N-terminal amino acids 150 to 160 of Nsp9. These findings suggest that ZAP is an effective antiviral factor for suppressing PRRSV infection, and they shed light on virus-host interaction.IMPORTANCE PRRSV continues to adversely impact the global swine industry. It is important to understand the various antiviral factors against PRRSV infection. Here, a zinc finger protein, termed ZAP, was screened from MAVS-induced antiviral genes by transcriptome sequencing, and it was found to remarkably suppress PRRSV replication and interact with PRRSV Nsp9. The zinc finger domain of ZAP and amino acids 150 to 160 of Nsp9 are responsible for the interaction. These findings expand the antiviral spectrum of ZAP and provide a better understanding of ZAP antiviral mechanisms, as well as virus-host interactions.
Collapse
|
50
|
Cowpea chlorotic mottle bromovirus replication proteins support template-selective RNA replication in Saccharomyces cerevisiae. PLoS One 2018; 13:e0208743. [PMID: 30586378 PMCID: PMC6306254 DOI: 10.1371/journal.pone.0208743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022] Open
Abstract
Positive-strand RNA viruses generally assemble RNA replication complexes on rearranged host membranes. Alphaviruses, other members of the alpha-like virus superfamily, and many other positive-strand RNA viruses invaginate host membrane into vesicular RNA replication compartments, known as spherules, whose interior is connected to the cytoplasm. Brome mosaic virus (BMV) and its close relative, cowpea chlorotic mottle virus (CCMV), form spherules along the endoplasmic reticulum. BMV spherule formation and RNA replication can be fully reconstituted in S. cerevisiae, enabling many studies identifying host factors and viral interactions essential for these processes. To better define and understand the conserved, core pathways of bromovirus RNA replication, we tested the ability of CCMV to similarly support spherule formation and RNA replication in yeast. Paralleling BMV, we found that CCMV RNA replication protein 1a was the only viral factor necessary to induce spherule membrane rearrangements and to recruit the viral 2a polymerase (2apol) to the endoplasmic reticulum. CCMV 1a and 2apol also replicated CCMV and BMV genomic RNA2, demonstrating core functionality of CCMV 1a and 2apol in yeast. However, while BMV and CCMV 1a/2apol strongly replicate each others’ genomic RNA3 in plants, neither supported detectable CCMV RNA3 replication in yeast. Moreover, in contrast to plant cells, in yeast CCMV 1a/2apol supported only limited replication of BMV RNA3 (<5% of that by BMV 1a/2apol). In keeping with this, we found that in yeast CCMV 1a was significantly impaired in recruiting BMV or CCMV RNA3 to the replication complex. Overall, we show that many 1a and 2apol functions essential for replication complex assembly, and their ability to be reconstituted in yeast, are conserved between BMV and CCMV. However, restrictions of CCMV RNA replication in yeast reveal previously unknown 1a-linked, RNA-selective host contributions to the essential early process of recruiting viral RNA templates to the replication complex.
Collapse
|