1
|
Beaud G, Costa F, Klonjkowski B, Piumi F, Coulpier M, Drillien R, Monsion B, Mohd Jaafar F, Attoui H. Vaccinia Virus Defective Particles Lacking the F17 Protein Do Not Inhibit Protein Synthesis: F17, a Double-Edged Sword for Protein Synthesis? Int J Mol Sci 2024; 25:1382. [PMID: 38338659 PMCID: PMC10855608 DOI: 10.3390/ijms25031382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Vaccinia virus (Orthopoxvirus) F17 protein is a major virion structural phosphoprotein having a molecular weight of 11 kDa. Recently, it was shown that F17 synthesised in infected cells interacts with mTOR subunits to evade cell immunity and stimulate late viral protein synthesis. Several years back, we purified an 11 kDa protein that inhibited protein synthesis in reticulocyte lysate from virions, and that possesses all physico-chemical properties of F17 protein. To investigate this discrepancy, we used defective vaccinia virus particles devoid of the F17 protein (designated iF17- particles) to assess their ability to inhibit protein synthesis. To this aim, we purified iF17- particles from cells infected with a vaccinia virus mutant which expresses F17 only in the presence of IPTG. The SDS-PAGE protein profiles of iF17- particles or derived particles, obtained by solubilisation of the viral membrane, were similar to that of infectious iF17 particles. As expected, the profiles of full iF17- particles and those lacking the viral membrane were missing the 11 kDa F17 band. The iF17- particles did attach to cells and injected their viral DNA into the cytoplasm. Co-infection of the non-permissive BSC40 cells with a modified vaccinia Ankara (MVA) virus, expressing an mCherry protein, and iF17- particles, induced a strong mCherry fluorescence. Altogether, these experiments confirmed that the iF17- particles can inject their content into cells. We measured the rate of protein synthesis as a function of the multiplicity of infection (MOI), in the presence of puromycin as a label. We showed that iF17- particles did not inhibit protein synthesis at high MOI, by contrast to the infectious iF17 mutant. Furthermore, the measured efficiency to inhibit protein synthesis by the iF17 mutant virus generated in the presence of IPTG, was threefold to eightfold lower than that of the wild-type WR virus. The iF17 mutant contained about threefold less F17 protein than wild-type WR. Altogether these results strongly suggest that virion-associated F17 protein is essential to mediate a stoichiometric inhibition of protein synthesis, in contrast to the late synthesised F17. It is possible that this discrepancy is due to different phosphorylation states of the free and virion-associated F17 protein.
Collapse
Affiliation(s)
- Georges Beaud
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Fleur Costa
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Bernard Klonjkowski
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - François Piumi
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Muriel Coulpier
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Robert Drillien
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596/CNRS-UMR7104, Université Louis Pasteur, F-67404 Strasbourg, France;
| | - Baptiste Monsion
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Fauziah Mohd Jaafar
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| | - Houssam Attoui
- INRAE, ANSES, Ecole Nationale Vétérinaire d’Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (F.C.); (B.K.); (F.P.); (M.C.); (B.M.); (F.M.J.)
| |
Collapse
|
2
|
Bottini A, Pacheco DRDCG, Forti FL, Bottini N. Revisiting VH1 phosphatase at the time of monkeypox: back to the spotlight. Biochem Soc Trans 2023; 51:1419-1427. [PMID: 37409507 DOI: 10.1042/bst20200408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
Vaccinia virus is a poxvirus that has been successfully leveraged to develop vaccines for smallpox, which is caused by the closely related Variola virus. Smallpox has been declared as 'eradicated' by the WHO in 1980; however, it still poses a potential bioterrorism threat. More recently, the spreading of monkeypox (MPox) in non-endemic countries has further highlighted the importance of continuing the exploration for druggable targets for poxvirus infections. The vaccinia H1 (VH1) phosphatase is the first reported dual specificity phosphatase (DUSP) able to hydrolyze both phosphotyrosine and phosphoserine/phosphotheonine residues. VH1 is a 20 kDa protein that forms a stable dimer and can dephosphorylate both viral and cellular substrates to regulate the viral replication cycle and host immune response. VH1 dimers adopt a domain swap mechanism with the first 20 amino acids of each monomer involved in dense electrostatic interaction and salt bridge formations while hydrophobic interactions between the N-terminal and C-terminal helices further stabilize the dimer. VH1 appears to be an ideal candidate for discovery of novel anti-poxvirus agents because it is highly conserved within the poxviridae family and is a virulence factor, yet it displays significant divergence in sequence and dimerization mechanism from its human closest ortholog vaccinia H1-related (VHR) phosphatase, encoded by the DUSP3 gene. As the dimeric quaternary structure of VH1 is essential for its phosphatase activity, strategies leading to disruption of the dimer structure might aid in VH1 inhibitor development.
Collapse
Affiliation(s)
- Angel Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| | - Diana R D C G Pacheco
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Nunzio Bottini
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, U.S.A
| |
Collapse
|
3
|
Bidgood SR, Samolej J, Novy K, Collopy A, Albrecht D, Krause M, Burden JJ, Wollscheid B, Mercer J. Poxviruses package viral redox proteins in lateral bodies and modulate the host oxidative response. PLoS Pathog 2022; 18:e1010614. [PMID: 35834477 PMCID: PMC9282662 DOI: 10.1371/journal.ppat.1010614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 05/24/2022] [Indexed: 01/23/2023] Open
Abstract
All poxviruses contain a set of proteinaceous structures termed lateral bodies (LB) that deliver viral effector proteins into the host cytosol during virus entry. To date, the spatial proteotype of LBs remains unknown. Using the prototypic poxvirus, vaccinia virus (VACV), we employed a quantitative comparative mass spectrometry strategy to determine the poxvirus LB proteome. We identified a large population of candidate cellular proteins, the majority being mitochondrial, and 15 candidate viral LB proteins. Strikingly, one-third of these are VACV redox proteins whose LB residency could be confirmed using super-resolution microscopy. We show that VACV infection exerts an anti-oxidative effect on host cells and that artificial induction of oxidative stress impacts early and late gene expression as well as virion production. Using targeted repression and/or deletion viruses we found that deletion of individual LB-redox proteins was insufficient for host redox modulation suggesting there may be functional redundancy. In addition to defining the spatial proteotype of VACV LBs, these findings implicate poxvirus redox proteins as potential modulators of host oxidative anti-viral responses and provide a solid starting point for future investigations into the role of LB resident proteins in host immunomodulation.
Collapse
Affiliation(s)
- Susanna R. Bidgood
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jerzy Samolej
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Karel Novy
- Swiss Federal Institute of Technology (ETH Zürich), Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), Zürich, Switzerland
| | - Abigail Collopy
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - David Albrecht
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Jemima J. Burden
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Bernd Wollscheid
- Swiss Federal Institute of Technology (ETH Zürich), Department of Health Sciences and Technology (D-HEST), Institute of Translational Medicine (ITM), Zürich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Wood JJ, White IJ, Samolej J, Mercer J. Acrylamide inhibits vaccinia virus through vimentin-independent anti-viral granule formation. Cell Microbiol 2021; 23:e13334. [PMID: 33792166 PMCID: PMC11478914 DOI: 10.1111/cmi.13334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The replication and assembly of vaccinia virus (VACV), the prototypic poxvirus, occurs exclusively in the cytoplasm of host cells. While the role of cellular cytoskeletal components in these processes remains poorly understood, vimentin-a type III intermediate filament-has been shown to associate with viral replication sites and to be incorporated into mature VACV virions. Here, we employed chemical and genetic approaches to further investigate the role of vimentin during the VACV lifecycle. The collapse of vimentin filaments, using acrylamide, was found to inhibit VACV infection at the level of genome replication, intermediate- and late-gene expression. However, we found that CRISPR-mediated knockout of vimentin did not impact VACV replication. Combining these tools, we demonstrate that acrylamide treatment results in the formation of anti-viral granules (AVGs) known to mediate translational inhibition of many viruses. We conclude that vimentin is dispensable for poxvirus replication and assembly and that acrylamide, as a potent inducer of AVGs during VACV infection, serves to bolster cell's anti-viral response to poxvirus infection.
Collapse
Affiliation(s)
- Jennifer J. Wood
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Ian J. White
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Jerzy Samolej
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
5
|
VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci Rep 2016; 6:29132. [PMID: 27374400 PMCID: PMC4931586 DOI: 10.1038/srep29132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/15/2016] [Indexed: 11/15/2022] Open
Abstract
The nanoscale molecular assembly of mammalian viruses during their infectious life cycle remains poorly understood. Their small dimensions, generally bellow the 300nm diffraction limit of light microscopes, has limited most imaging studies to electron microscopy. The recent development of super-resolution (SR) light microscopy now allows the visualisation of viral structures at resolutions of tens of nanometers. In addition, these techniques provide the added benefit of molecular specific labelling and the capacity to investigate viral structural dynamics using live-cell microscopy. However, there is a lack of robust analytical tools that allow for precise mapping of viral structure within the setting of infection. Here we present an open-source analytical framework that combines super-resolution imaging and naïve single-particle analysis to generate unbiased molecular models. This tool, VirusMapper, is a high-throughput, user-friendly, ImageJ-based software package allowing for automatic statistical mapping of conserved multi-molecular structures, such as viral substructures or intact viruses. We demonstrate the usability of VirusMapper by applying it to SIM and STED images of vaccinia virus in isolation and when engaged with host cells. VirusMapper allows for the generation of accurate, high-content, molecular specific virion models and detection of nanoscale changes in viral architecture.
Collapse
|
6
|
Bidgood SR, Mercer J. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses 2015; 7:4800-25. [PMID: 26308043 PMCID: PMC4576205 DOI: 10.3390/v7082844] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs.
Collapse
Affiliation(s)
- Susanna R Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
7
|
The vaccinia virus E6 protein influences virion protein localization during virus assembly. Virology 2015; 482:147-56. [PMID: 25863879 DOI: 10.1016/j.virol.2015.02.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 11/22/2022]
Abstract
Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a "pre-nucleocapsid", and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly.
Collapse
|
8
|
Jesus DM, Moussatche N, McFadden BBD, Nielsen CP, D'Costa SM, Condit RC. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4. Virology 2015; 481:1-12. [PMID: 25765002 DOI: 10.1016/j.virol.2015.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
Abstract
Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid.
Collapse
Affiliation(s)
- Desyree Murta Jesus
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Baron B D McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Casey Paulasue Nielsen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Susan M D'Costa
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Moussatche N, Condit RC. Fine structure of the vaccinia virion determined by controlled degradation and immunolocalization. Virology 2014; 475:204-18. [PMID: 25486587 DOI: 10.1016/j.virol.2014.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The vaccinia virion is a membraned, slightly flattened, barrel-shaped particle, with a complex internal structure featuring a biconcave core flanked by lateral bodies. Although the architecture of the purified mature virion has been intensely characterized by electron microscopy, the distribution of the proteins within the virion has been examined primarily using biochemical procedures. Thus, it has been shown that non-ionic and ionic detergents combined or not with a sulfhydryl reagent can be used to disrupt virions and, to a limited degree, separate the constituent proteins in different fractions. Applying a controlled degradation technique to virions adsorbed on EM grids, we were able to immuno-localize viral proteins within the virion particle. Our results show after NP40 and DTT treatment, membrane proteins are removed from the virion surface revealing proteins that are associated with the lateral bodies and the outer layer of the core wall. Combined treatment using high salt and high DTT removed lateral body proteins and exposed proteins of the internal core wall. Cores treated with proteases could be disrupted and the internal components were exposed. Cts8, a mutant in the A3 protein, produces aberrant virus that, when treated with NP-40 and DTT, releases to the exterior the virus DNA associated with other internal core proteins. With these results, we are able to propose a model for the structure the vaccinia virion.
Collapse
Affiliation(s)
- Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA.
| | - Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Vaccinia virus mutations in the L4R gene encoding a virion structural protein produce abnormal mature particles lacking a nucleocapsid. J Virol 2014; 88:14017-29. [PMID: 25253347 DOI: 10.1128/jvi.02126-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the mechanisms of vaccinia virus core-directed transcription. The present study represents our second attempt to understand the structure and biological significance of the nucleocapsid. We demonstrate the importance of the protein L4 for the formation of the nucleocapsid and reveal in addition that the nucleocapsid and the core wall may be associated, suggesting a higher level of complexity of the nucleocapsid than predicted. In addition, we prove the utility of high-pressure freezing in preserving the vaccinia virus nucleocapsid.
Collapse
|
11
|
Schmidt F, Bleck C, Reh L, Novy K, Wollscheid B, Helenius A, Stahlberg H, Mercer J. Vaccinia Virus Entry Is Followed by Core Activation and Proteasome-Mediated Release of the Immunomodulatory Effector VH1 from Lateral Bodies. Cell Rep 2013; 4:464-76. [DOI: 10.1016/j.celrep.2013.06.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022] Open
|
12
|
RNAi Screening Reveals Proteasome- and Cullin3-Dependent Stages in Vaccinia Virus Infection. Cell Rep 2012; 2:1036-47. [DOI: 10.1016/j.celrep.2012.09.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
|
13
|
Boyd O, Strahl AL, Rodeffer C, Condit RC, Moussatche N. Temperature-sensitive mutant in the vaccinia virus E6 protein produce virions that are transcriptionally inactive. Virology 2010; 399:221-30. [PMID: 20116822 PMCID: PMC2830351 DOI: 10.1016/j.virol.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 11/18/2022]
Abstract
The vaccinia virus E6R gene encodes a late protein that is packaged into virion cores. A temperature-sensitive mutant was used to study the role of this protein in viral replicative cycle. Cts52 has a P226L missense mutation in the E6R gene, shows a two-log reduction in plaque formation, but displays normal patterns of gene expression, late protein processing and DNA replication during infection. Mutant virions produced at 40 degrees C were similar in their morphology to wt virions grown at 40 degrees C. The particle to infectivity ratio was 50 times higher in purified Cts52 grown at 40 degrees C when compared to the mutant grown at permissive temperature. In vitro characterization of Cts-52 particles grown at 40 degrees C revealed no differences in protein composition or in DNA content and the mutant virions could bind and enter cells. However, core particles prepared from Cts52 grown at 40 degrees C failed to transcribe in vitro. Our results show that E6 in the virion has either a direct or an indirect role in viral transcription.
Collapse
Affiliation(s)
- Olga Boyd
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Audra L. Strahl
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Carson Rodeffer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Richard C. Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Nissin Moussatche
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
14
|
Cerutti M, Devauchelle G. Characterization and localization of CIV polypeptides. Virology 2008; 145:123-31. [PMID: 18640546 PMCID: PMC7131272 DOI: 10.1016/0042-6822(85)90207-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/1984] [Accepted: 04/25/1985] [Indexed: 11/12/2022]
Abstract
In order to detect the structural proteins linked with disulfide bonds, CIV was solubilized and electrophoresed under nonreducing conditions in the first dimension and then under reducing conditions in the second dimension. The viral polypeptides linked originally with disulfide bonds were separated into subunits. The complexes were trimers (P′50) or dimers (P60 and P10). The apparent molecular weights of P81, P53, and P49 changed significantly according to the composition of the lysis buffer used, suggesting that the differences in their molecular weights were due to conformational changes produced by reduction of their intramolecular disulfide bonds. Sulfhydryl-containing polypeptides (P′50-P50, P60, P100, and P33) were detected by N-[14C]ethylmaleimide, and the accessibility of these residues was analyzed after successive stripping of the CIV particle. Radioiodination of external polypeptides by [125I]iodosulfanilic acid shows only one intensively labeled spot corresponding to the P50 polypeptide, whereas P′50 was only slightly labeled. Six viral polypeptides P81, P60, P31, P17, P13, and P10 were revealed to possess high affinity for CIV DNA. A structural model of CIV is proposed and discussed.
Collapse
Affiliation(s)
- M Cerutti
- Centre de Recherches de Biochimie et Physiologie cellulaires, Equipe de Virologie, UA 203, Université de Rouen, Mont Saint Aignan, France
| | | |
Collapse
|
15
|
Abstract
Vaccinia virus was treated in a controlled manner with various combinations of nonionic detergents, reducing agents, and proteolytic enzymes, and successive products of the reactions were visualized using atomic force microscopy (AFM). Following removal of the outer lipid/protein membrane, a layer 20 to 40 nm in thickness was encountered that was composed of fibrous elements which, under reducing conditions, rapidly decomposed into individual monomers on the substrate. Beneath this layer was the virus core and its prominent lateral bodies, which could be dissociated or degraded with proteases. The core, in addition to the lateral bodies, was composed of a thick, multilayered shell of proteins of diverse sizes and shapes. The shell, which was readily etched with proteases, was thoroughly permeated with pores, or channels. Prolonged exposure to proteases and reductants produced disgorgement of the viral DNA from the remainders of the cores and also left residual, flattened, protease-resistant sacs on the imaging substrate. The DNA was readily visualized by AFM, which revealed some regions to be "soldered" by proteins, others to be heavily complexed with protein, and yet other parts to apparently exist as bundled, naked DNA. Prolonged exposure to proteases deproteinized the DNA, leaving masses of extended, free DNA. Estimates of the interior core volume suggest moderate but not extreme compaction of the genome.
Collapse
|
16
|
Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 2008; 320:531-5. [PMID: 18436786 DOI: 10.1126/science.1155164] [Citation(s) in RCA: 617] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses employ many different strategies to enter host cells. Vaccinia virus, a prototype poxvirus, enters cells in a pH-dependent fashion. Live cell imaging showed that fluorescent virus particles associated with and moved along filopodia to the cell body, where they were internalized after inducing the extrusion of large transient membrane blebs. p21-activated kinase 1 (PAK1) was activated by the virus, and the endocytic process had the general characteristics of macropinocytosis. The induction of blebs, the endocytic event, and infection were all critically dependent on the presence of exposed phosphatidylserine in the viral membrane, which suggests that vaccinia virus uses apoptotic mimicry to enter cells.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zurich, Institute of Biochemistry, Schafmattstrasse 18, ETH Hönggerberg HPM E6.3 Zurich, Switzerland
| | | |
Collapse
|
17
|
Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B. Protein composition of the vaccinia virus mature virion. Virology 2006; 358:233-47. [PMID: 17005230 DOI: 10.1016/j.virol.2006.08.025] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugations and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the virion mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins and proteins involved in translation.
Collapse
Affiliation(s)
- Wolfgang Resch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | | | |
Collapse
|
18
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
19
|
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 2006; 80:2127-40. [PMID: 16474121 PMCID: PMC1395410 DOI: 10.1128/jvi.80.5.2127-2140.2006] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/05/2005] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus is a large enveloped poxvirus with more than 200 genes in its genome. Although many poxvirus genomes have been sequenced, knowledge of the host and viral protein components of the virions remains incomplete. In this study, we used gel-free liquid chromatography and tandem mass spectroscopy to identify the viral and host proteins in purified vaccinia intracellular mature virions (IMV). Analysis of the proteins in the IMV showed that it contains 75 viral proteins, including structural proteins, enzymes, transcription factors, and predicted viral proteins not known to be expressed or present in the IMV. We also determined the relative abundances of the individual protein components in the IMV. Finally, 23 IMV-associated host proteins were also identified. This study provides the first comprehensive structural analysis of the infectious vaccinia virus IMV.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Kato SEM, Strahl AL, Moussatche N, Condit RC. Temperature-sensitive mutants in the vaccinia virus 4b virion structural protein assemble malformed, transcriptionally inactive intracellular mature virions. Virology 2005; 330:127-46. [PMID: 15527840 DOI: 10.1016/j.virol.2004.08.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 07/30/2004] [Accepted: 08/20/2004] [Indexed: 11/23/2022]
Abstract
Two noncomplementing vaccinia virus temperature-sensitive mutants, Cts8 and Cts26, were mapped to the A3L gene, which encodes the major virion structural protein, 4b. The two ts mutants display normal patterns of gene expression, DNA replication, telomere resolution, and protein processing during infection. Morphogenesis during mutant infections is normal through formation of immature virions with nucleoids (IVN) but appears to be defective in the transition from IVN to intracellular mature virus (IMV). In mutant infections, aberrant particles that have the appearance of malformed IMV accumulate. The mutant particles are wrapped in Golgi-derived membranes and exported from cells. Purified mutant particles are indistinguishable from wt particles in protein and DNA composition; however, they are defective in a permeabilized-virion-directed transcription reaction despite containing significant (Cts8) or even normal (Cts26) levels of specific transcription enzymes. These results indicate that the 4b protein is required for proper metamorphosis of IMV from IVN and that proper organization of the IMV structure is required to produce a transcriptionally active virion particle.
Collapse
Affiliation(s)
- Sayuri E M Kato
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
21
|
Unger B, Traktman P. Vaccinia virus morphogenesis: a13 phosphoprotein is required for assembly of mature virions. J Virol 2004; 78:8885-901. [PMID: 15280497 PMCID: PMC479082 DOI: 10.1128/jvi.78.16.8885-8901.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 70-amino-acid A13L protein is a component of the vaccinia virus membrane. We demonstrate here that the protein is expressed at late times of infection, undergoes phosphorylation at a serine residue(s), and becomes encapsidated in a monomeric form. Phosphorylation is dependent on Ser40, which lies within the proline-rich motif SPPP. Because phosphorylation of the A13 protein is only minimally affected by disruption of the viral F10 kinase or H1 phosphatase, a cellular kinase is likely to be involved. We generated an inducible recombinant in which A13 protein expression is dependent upon the inclusion of tetracycline in the culture medium. Repression of the A13L protein spares the biochemical progression of the viral life cycle but arrests virion morphogenesis. Virion assembly progresses through the formation of immature virions (IVs); however, these virions do not acquire nucleoids, and DNA crystalloids accumulate in the cytoplasm. Further development into intracellular mature virions is blocked, causing a 1,000-fold decrease in the infectious virus yield relative to that obtained in the presence of the inducer. We also determined that the temperature-sensitive phenotype of the viral mutant Cts40 is due to a nucleotide transition within the A13L gene that causes a Thr(48)-->Ile substitution. This substitution disrupts the function of the A13 protein but does not cause thermolability of the protein; at the nonpermissive temperature, virion morphogenesis arrests at the stage of IV formation. The A13L protein, therefore, is part of a newly recognized group of membrane proteins that are dispensable for the early biogenesis of the virion membrane but are essential for virion maturation.
Collapse
Affiliation(s)
- Bethany Unger
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226, USA
| | | |
Collapse
|
22
|
Mercer J, Traktman P. Investigation of structural and functional motifs within the vaccinia virus A14 phosphoprotein, an essential component of the virion membrane. J Virol 2003; 77:8857-71. [PMID: 12885904 PMCID: PMC167248 DOI: 10.1128/jvi.77.16.8857-8871.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the construction and characterization of an inducible recombinant virus in which expression of the vaccinia virus membrane protein A14 is experimentally regulated using the tetracycline operator-repressor system. Repression of A14, which results in a 1,000-fold reduction in viral yield, leads to an early block in viral morphogenesis characterized by the accumulation of large virosomes, empty "crescents" that fail to contact these virosomes, and, most strikingly, large numbers of aberrant 25-nm vesicles. Here we report the establishment of a transient-complementation system for the structure-function analysis of A14. We have constructed numerous mutant alleles of A14 designed to identify and test the importance of key structural and sequence motifs within A14, including sites of posttranslational modification, such as glycosylation, phosphorylation, and dimerization. From these studies we have determined that robust complementation ability requires an intact N terminus and two regions flanking the first membrane-spanning domain of A14. We show that A14 is modified by N-linked glycosylation both in vitro and in vivo. However, only a minority of A14 molecules are glycosylated in vivo and these are not encapsidated. In this report we also identify the sole phosphorylated serine residue of A14 as lying within the NHS(85) motif that undergoes glycosylation. Additionally, we show that the Cys(71) residue is required for intermolecular disulfide bond formation and describe the properties of a virus expressing an allele of A14 that cannot form disulfide-linked dimers.
Collapse
Affiliation(s)
- Jason Mercer
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
23
|
Malkin AJ, McPherson A, Gershon PD. Structure of intracellular mature vaccinia virus visualized by in situ atomic force microscopy. J Virol 2003; 77:6332-40. [PMID: 12743290 PMCID: PMC155008 DOI: 10.1128/jvi.77.11.6332-6340.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Accepted: 03/04/2003] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus, the basis of the smallpox vaccine, is one of the largest viruses to replicate in humans. We have used in situ atomic force microscopy (AFM) to directly visualize fully hydrated, intact intracellular mature vaccinia virus (IMV) virions and chemical and enzymatic treatment products thereof. The latter included virion cores, core-enveloping coats, and core substructures. The isolated coats appeared to be composed of a highly cross-linked protein array. AFM imaging of core substructures indicated association of the linear viral DNA genome with a segmented protein sheath forming an extended approximately 16-nm-diameter filament with helical surface topography; enclosure of this filament within a 30- to 40-nm-diameter tubule which also shows helical topography; and enclosure of the folded, condensed 30- to 40-nm-diameter tubule within the core by a wall covered with peg-like projections. Proteins observed attached to the 30- to 40-nm-diameter tubules may mediate folding and/or compaction of the tubules and/or represent vestiges of the core wall and/or pegs. An accessory "satellite domain" was observed protruding from the intact core. This corresponded in size to isolated 70- to 100-nm-diameter particles that were imaged independently and might represent detached accessory domains. AFM imaging of intact virions indicated that IMV underwent a reversible shrinkage upon dehydration (as much as 2.2- to 2.5-fold in the height dimension), accompanied by topological and topographical changes, including protrusion of the satellite domain. As shown here, the chemical and enzymatic dissection of large, asymmetrical virus particles in combination with in situ AFM provides an informative complement to other structure determination techniques.
Collapse
Affiliation(s)
- A J Malkin
- BioSecurity and NanoSciences Laboratory, Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, California 94551, USA.
| | | | | |
Collapse
|
24
|
Sodeik B, Krijnse-Locker J. Assembly of vaccinia virus revisited: de novo membrane synthesis or acquisition from the host? Trends Microbiol 2002; 10:15-24. [PMID: 11755081 DOI: 10.1016/s0966-842x(01)02256-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In 1968 it was proposed that the first membrane structures that assemble in vaccinia virus-infected cells, the crescents, are formed by a unique viral mechanism in which a single membrane bilayer is synthesized de novo. 25 years later it was suggested that the vaccinia membranes are derived from an organelle that is part of the host cell's secretory pathway, the intermediate compartment (IC), and that the viral crescents are made of two tightly apposed membranes rather than a single bilayer. Several independent studies have subsequently shown that membrane proteins of the intracellular mature virus (IMV) insert co-translationally into endoplasmic reticulum (ER) membranes, and are targeted to and retained in the IC, the compartment from which the virus acquires its membranes. Furthermore, a recent study on the entry of both the IMV and extracellular enveloped virus (EEV) suggests that these viruses do not enter by a simple fusion mechanism, consistent with the idea that both are surrounded by more than one lipid bilayer.
Collapse
Affiliation(s)
- Beate Sodeik
- Institute of Biochemistry, Hannover Medical School, OE 4310, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | |
Collapse
|
25
|
Griffiths G, Wepf R, Wendt T, Locker JK, Cyrklaff M, Roos N. Structure and assembly of intracellular mature vaccinia virus: isolated-particle analysis. J Virol 2001; 75:11034-55. [PMID: 11602744 PMCID: PMC114684 DOI: 10.1128/jvi.75.22.11034-11055.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2001] [Accepted: 08/21/2001] [Indexed: 11/20/2022] Open
Abstract
In a series of papers, we have provided evidence that during its assembly vaccinia virus is enveloped by a membrane cisterna that originates from a specialized, virally modified, smooth-membraned domain of the endoplasmic reticulum (ER). Recently, however, Hollinshead et al. (M. Hollinshead, A. Vanderplasschen, G. I. Smith, and D. J. Vaux, J. Virol. 73:1503-1517, 1999) argued against this hypothesis, based on their interpretations of thin-sectioned material. The present article is the first in a series of papers that describe a comprehensive electron microscopy (EM) analysis of the vaccinia Intracellular Mature Virus (IMV) and the process of its assembly in HeLa cells. In this first study, we analyzed the IMV by on-grid staining, cryo-scanning EM (SEM), and cryo-transmission EM. We focused on the structure of the IMV particle, both after isolation and in the context of viral entry. For the latter, we used high-resolution cryo-SEM combined with cryofixation, as well as a novel approach we developed for investigating vaccinia IMV bound to plasma membrane fragments adsorbed onto EM grids. Our analysis revealed that the IMV is made up of interconnected cisternal and tubular domains that fold upon themselves via a complex topology that includes an S-shaped fold. The viral tubules appear to be eviscerated from the particle during viral infection. Since the structure of the IMV is the result of a complex assembly process, we also provide a working model to explain how a specialized smooth-ER domain can be modulated to form the IMV. We also present theoretical arguments for why it is highly unlikely that the IMV is surrounded by only a single membrane.
Collapse
Affiliation(s)
- G Griffiths
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Pedersen K, Snijder EJ, Schleich S, Roos N, Griffiths G, Locker JK. Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. J Virol 2000; 74:3525-36. [PMID: 10729126 PMCID: PMC111860 DOI: 10.1128/jvi.74.8.3525-3536.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The entry of vaccinia virus (VV) into the host cell results in the delivery of the double-stranded DNA genome-containing core into the cytoplasm. The core is disassembled, releasing the viral DNA in order to initiate VV cytoplasmic transcription and DNA replication. Core disassembly can be prevented using the VV early transcription inhibitor actinomycin D (actD), since early VV protein synthesis is required for core uncoating. In this study, VV intracellular cores were accumulated in the presence of actD and isolated from infected cells. The content of these cores was analyzed by negative staining EM and by Western blotting using a collection of antibodies to VV core and membrane proteins. By Western blot analyses, intracellular actD cores, as well as cores prepared by NP-40-dithiothreitol treatment of purified virions (NP-40/DTT cores), contained the core proteins p25 (encoded by L4R), 4a (A10L), 4b (A3L), and p39 (A4L) as well as small amounts of the VV membrane proteins p32 (D8L) and p35 (H3L). While NP-40/DTT cores contained the major putative DNA-binding protein p11 (F17R), actD cores entirely lacked this protein. Labeled cryosections of cells infected for different periods of time in the presence or absence of actD were subsequently used to follow the fate of VV core proteins by EM. These EM images confirmed that p11 was lost at the plasma membrane upon core penetration. The cores that accumulated in the presence of actD were labeled with antibodies to 4a, p39, p25, and DNA at all times examined. In the absence of the drug the cores gradually lost their electron-dense inner part, concomitant with the loss of p25 and DNA labeling. The remaining core shell still labeled with antibodies to p39 and 4a/4b, implying that these proteins are part of this structure. These combined data are discussed with respect to the structure of VV as well as core disassembly.
Collapse
Affiliation(s)
- K Pedersen
- European Molecular Biology Laboratory, Cell Biology Programme, 69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Traktman P, Liu K, DeMasi J, Rollins R, Jesty S, Unger B. Elucidating the essential role of the A14 phosphoprotein in vaccinia virus morphogenesis: construction and characterization of a tetracycline-inducible recombinant. J Virol 2000; 74:3682-95. [PMID: 10729144 PMCID: PMC111878 DOI: 10.1128/jvi.74.8.3682-3695.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the construction and characterization of vindH1, an inducible recombinant in which expression of the vaccinia virus H1 phosphatase is regulated experimentally by IPTG (isopropyl-beta-D-thiogalactopyranoside) (35). In the absence of H1 expression, the transcriptional competence and infectivity of nascent virions are severely compromised. We have sought to identify H1 substrates by characterizing proteins that are hyperphosphorylated in H1-deficient virions. Here, we demonstrate that the A14 protein, a component of the virion membrane, is indeed an H1 phosphatase substrate in vivo and in vitro. A14 is hyperphosphorylated on serine residues in the absence of H1 expression. To enable a genetic analysis of A14's function during the viral life cycle, we have adopted the regulatory components of the tetracycline (TET) operon and created new reagents for the construction of TET-inducible vaccinia virus recombinants. In the context of a virus expressing the TET repressor (tetR), insertion of the TET operator between the transcriptional and translational start sites of a late viral gene enables its expression to be tightly regulated by TET. We constructed a TET-inducible recombinant for the A14 gene, vindA14. In the absence of TET, vindA14 fails to form plaques and the 24-h yield of infectious progeny is reduced by 3 orders of magnitude. The infection arrests early during viral morphogenesis, with the accumulation of large numbers of vesicles and the appearance of "empty" crescents that appear to adhere only loosely to virosomes. This phenotype corresponds closely to that observed for an IPTG-inducible A14 recombinant whose construction and characterization were reported while our work was ongoing (47). The consistency in the phenotypes seen for the IPTG- and TET-inducible recombinants confirms the efficacy of the TET-inducible system and reinforces the value of having a second, independent system available for generating inducible recombinants.
Collapse
Affiliation(s)
- P Traktman
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Locker JK, Griffiths G. An unconventional role for cytoplasmic disulfide bonds in vaccinia virus proteins. J Cell Biol 1999; 144:267-79. [PMID: 9922453 PMCID: PMC2132897 DOI: 10.1083/jcb.144.2.267] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/1998] [Revised: 12/02/1998] [Indexed: 01/20/2023] Open
Abstract
Previous data have shown that reducing agents disrupt the structure of vaccinia virus (vv). Here, we have analyzed the disulfide bonding of vv proteins in detail. In vv-infected cells cytoplasmically synthesized vv core proteins became disulfide bonded in the newly assembled intracellular mature viruses (IMVs). vv membrane proteins also assembled disulfide bonds, but independent of IMV formation and to a large extent on their cytoplasmic domains. If disulfide bonding was prevented, virus assembly was only partially impaired as shown by electron microscopy as well as a biochemical assay of IMV formation. Under these conditions, however, the membranes around the isolated particles appeared less stable and detached from the underlying core. During the viral infection process the membrane proteins remained disulfide bonded, whereas the core proteins were reduced, concomitant with delivery of the cores into the cytoplasm. Our data show that vv has evolved an unique system for the assembly of cytoplasmic disulfide bonds that are localized both on the exterior and interior parts of the IMV.
Collapse
Affiliation(s)
- J K Locker
- European Molecular Biology Laboratory, Cell Biology Programme, 69117 Heidelberg, Germany.
| | | |
Collapse
|
29
|
Klemperer N, Ward J, Evans E, Traktman P. The vaccinia virus I1 protein is essential for the assembly of mature virions. J Virol 1997; 71:9285-94. [PMID: 9371587 PMCID: PMC230231 DOI: 10.1128/jvi.71.12.9285-9294.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The product of the vaccinia virus I1 gene was characterized biochemically and genetically. This 35-kDa protein is conserved in diverse members of the poxvirus family but shows no homology to nonviral proteins. We show that recombinant I1 binds to both single-stranded and double-stranded DNA in a sequence-nonspecific manner in an electrophoretic mobility shift assay. The protein is expressed at late times during infection, and approximately 700 copies are encapsidated within the virion core. To determine the role of the I1 protein during the viral life cycle, a inducible viral recombinant in which the I1 gene was placed under the regulation of the Escherichia coli lac operator/repressor was constructed. In the absence of isopropyl-beta-D-thiogalactopyranoside, plaque formation was abolished and yields of infectious, intracellular virus were dramatically reduced. Although all phases of gene expression and DNA replication proceeded normally during nonpermissive infections, no mature virions were produced. Electron microscopic analysis confirmed the absence of mature virion assembly but revealed that apparently normal immature virions accumulated. Thus, I1 is an encapsidated DNA-binding protein required for the latest stages of vaccinia virion morphogenesis.
Collapse
Affiliation(s)
- N Klemperer
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
30
|
Bayliss CD, Smith GL. Vaccinia virion protein VP8, the 25 kDa product of the L4R gene, binds single-stranded DNA and RNA with similar affinity. Nucleic Acids Res 1997; 25:3984-90. [PMID: 9321647 PMCID: PMC147007 DOI: 10.1093/nar/25.20.3984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vaccinia virus protein VP8 is a 25 kDa product of the L4R gene and is an abundant virion protein that binds single-stranded (ss) and double-stranded (ds) DNA. Binding of ssDNA is preferred at high salt concentrations. Using a recombinant 25 kDa L4R (rL4R) protein and a gel mobility shift assay with radiolabelled oligonucleotides, the Kd for a 45mer oligonucleotide was determined to be 2 nM. The Kd was unaltered by 50 mM KCl but was reduced 35-fold by 100 mM KCl. Multiple rL4R molecules bound to a single 45mer oligonucleotide, and using oligonucleotides of different lengths it was calculated that one rL4R molecule bound every 17 nt. Binding to ssDNA was competed by both deoxyribo- and ribo-polynucleotides. RNA binding was observed for both rL4R and native VP8, purified from virions, using a gel mobility shift with a radiolabelled ssRNA of 130 nt. The Kd of rL4R for this ssRNA substrate was 3 nM in the absence of salt and binding was positively cooperative. The potential roles of L4R protein in vaccinia virus early transcription are discussed.
Collapse
Affiliation(s)
- C D Bayliss
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
31
|
Martinez-Pomares L, Simon-Mateo C, Lopez-Otin C, Viñuela E. Characterization of the African swine fever virus structural protein p14.5: a DNA binding protein. Virology 1997; 229:201-11. [PMID: 9123862 DOI: 10.1006/viro.1996.8434] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene encoding the structural protein p14.5 of African swine fever virus (ASFV) has been mapped and sequenced. This gene, designated E120R, is located in the Sa/l H/EcoRl E restriction fragment of the ASFV genome and is predicted to encode a protein of 120 amino acids with a molecular weight of 13.4 kDa. Northern-blot analysis showed that E120R is transcribed at late times during the viral replication cycle. The E120R gene product has been expressed in Escherichia coli, purified, and used as an antigen for antibody production. The antiserum anti-pE120R recognized a protein in infected cell extracts with an apparent molecular mass of 14.5 kDa, named p14.5. This antiserum also detected protein p14.5 in purified virus particles. Protein p14.5 is synthesized late in infection and is located in viral factories. Immunoprecipitation analysis and binding-assay experiments have shown that protein p14.5 interacts with a protein that could correspond to the major structural protein p72. Purified protein p14.5 interacts with DNA in a sequence-independent manner. It binds to both single-stranded and double-stranded DNA. A possible role of protein p14.5 in the encapsidation of ASFV DNA is suggested.
Collapse
Affiliation(s)
- L Martinez-Pomares
- Centro de Biología Molecular Sevoro Ochoa (CSIC-UAM), Facultad de Ciencias, Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Masternak K, Wittek R. cis- and trans-acting elements involved in reactivation of vaccinia virus early transcription. J Virol 1996; 70:8737-46. [PMID: 8971001 PMCID: PMC190969 DOI: 10.1128/jvi.70.12.8737-8746.1996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that transcription from the vaccinia virus 7.5K early promoter is reactivated late in infection (J. Garcés, K. Masternak, B. Kunz, and R. Wittek, J. Virol. 67:5394-5401, 1993). To identify the sequence elements mediating reactivation, we constructed recombinant viruses harboring deletions, substitutions, or insertions in the 7.5K promoter or its flanking regions. The analysis of these viruses showed that sequences both upstream as well as downstream of the transcription initiation site contribute to reactivation of the 7.5K promoter. We tested whether reactivation could be explained by a high affinity of vaccinia virus early transcription factor to reactivated promoters. Bandshift experiments using purified protein showed that promoters which bind the factor with high affinity in general also have high early transcriptional activity. However, no correlation was found between affinity of the factor and reactivation. Interestingly, overexpression of recombinant early transcription factor in vaccinia virus-infected cells resulted in a shutdown of late transcription and in reactivation of promoters, which are normally not reactivated.
Collapse
Affiliation(s)
- K Masternak
- Institut de Biologie animale, Bâtiment de Biologie, Lausanne, Switzerland
| | | |
Collapse
|
33
|
Jensen ON, Houthaeve T, Shevchenko A, Cudmore S, Ashford T, Mann M, Griffiths G, Krijnse Locker J. Identification of the major membrane and core proteins of vaccinia virus by two-dimensional electrophoresis. J Virol 1996; 70:7485-97. [PMID: 8892867 PMCID: PMC190816 DOI: 10.1128/jvi.70.11.7485-7497.1996] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus assembly has been well studied at the ultrastructural level, but little is known about the molecular events that occur during that process. Towards this goal, we have identified the major membrane and core proteins of the intracellular mature virus (IMV). Pure IMV preparations were subjected to Nonidet P-40 (NP-40) and dithiothreitol (DTT) treatment to separate the core proteins from the membrane proteins. These proteins were subsequently separated by two-dimensional (2D) gel electrophoresis, and the major polypeptide spots, as detected by silver staining and 35S labeling, were identified by either matrix-assisted laser desorption/ionization mass spectrometry, N-terminal amino acid sequencing, or immunoprecipitation with defined antibodies. Sixteen major spots that partitioned into the NP-40-DTT-soluble fraction were identified; 11 of these were previously described virally encoded proteins and 5 were cellular proteins, mostly of mitochondrial origin. The core fraction revealed four major spots of previously described core proteins, two of which were also detected in the membrane fraction. Subsequently, the NP-40-DTT-soluble and -insoluble fractions from purified virus preparations, separated by 2D gels, were compared with postnuclear supernatants of infected cells that had been metabolically labeled at late times (6 to 8 h) postinfection. This relatively short labeling period as well as the apparent shutoff of host protein synthesis allowed the selective detection in such postnuclear supernatants of virus-encoded proteins. These postnuclear supernatants were subsequently treated with Triton X-114 or with sodium carbonate to distinguish the membrane proteins from the soluble proteins. We have identified the major late membrane and nonmembrane proteins of the IMV as they occur in the virus as well as in infected cells. This 2D gel map should provide an important reference for future molecular studies of vaccinia virus morphogenesis.
Collapse
Affiliation(s)
- O N Jensen
- Protein and Peptide Group, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
When synthesis of the 25-kDa vaccinia virus core protein VP8 is repressed, mature virus particles of normal appearance are produced to approximately 80% of wild-type levels but these particles are over 100-fold less infectious than wild-type particles (D. Wilcock and G. L. Smith, Virology 202:294-304, 1994). Here we show that virions which lack VP8 can bind to and enter cells but the levels of steady-state RNA are greatly reduced in comparison with those for wild-type infections. In vitro assays using permeabilized virions demonstrated that VP8-deficient virions had drastically reduced rates of transcription (RNA synthesis was decreased by 80 to 96%) and that the extrusion of RNA transcripts from these virions was also decreased. Low concentrations of sodium deoxycholate extracted proteins more efficiently from VP8-deficient virions than from wild-type virions. The increased fragility of VP8-deficient virions and their slower RNA extrusion rates suggest that VP8 may be required for the correct formation of the core. Virions which lack VP8 were shown to contain a full complement of transcription enzymes, and soluble extracts from these virions were active in transcription assays using either single-stranded M13 DNA or exogenous plasmid template containing a vaccinia virus early promoter. Thus, the defect in transcription is due not to a lack of specific transcriptional enzymes within virions but rather to the inability of these enzymes to efficiently transcribe the DNA genome packaged within VP8-deficient virions. These results suggest that VP8 is required for the correct packaging of the viral DNA genome and/or for the efficient transcription of packaged virion DNA, which has a higher degree of structural complexity than plasmid templates. Possible roles for VP8 in these processes are discussed.
Collapse
Affiliation(s)
- D Wilcock
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | |
Collapse
|
35
|
Ericsson M, Cudmore S, Shuman S, Condit RC, Griffiths G, Locker JK. Characterization of ts 16, a temperature-sensitive mutant of vaccinia virus. J Virol 1995; 69:7072-86. [PMID: 7474127 PMCID: PMC189627 DOI: 10.1128/jvi.69.11.7072-7086.1995] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have characterized a temperature-sensitive mutant of vaccinia virus, ts16, originally isolated by Condit et al. (Virology 128:429-443, 1983), at the permissive and nonpermissive temperatures. In a previous study by Kane and Shuman (J. Virol 67:2689-2698, 1993), the mutation of ts16 was mapped to the I7 gene, encoding a 47-kDa protein that shows partial homology to the type II topoisomerase of Saccharomyces cerevisiae. The present study extends previous electron microscopy analysis, showing that in BSC40 cells infected with ts16 at the restrictive temperature (40 degrees C), the assembly was arrested at a stage between the spherical immature virus and the intracellular mature virus (IMV). In thawed cryosections, a number of the major proteins normally found in the IMV were subsequently localized to these mutant particles. By using sucrose density gradients, the ts16 particles were purified from cells infected at the permissive and nonpermissive temperatures. These were analyzed by immunogold labelling and negative-staining electron microscopy, and their protein composition was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. While the ts16 virus particles made at the permissive temperature appeared to have a protein pattern identical to that of wild-type IMV, in the mutant particles the three core proteins, p4a, p4b, and 28K, were not proteolytically processed. Consistent with previous data the sucrose-purified particles could be labelled with [3H]thymidine. In addition, anti-DNA labelling on thawed cryosections suggested that most of the mutant particles had taken up DNA. On thawed cryosections of cells infected at the permissive temperature, antibodies to I7 labelled the virus factories, the immature viruses, and the IMVs, while under restrictive conditions these structures were labelled much less, if at all. Surprisingly, however, by Western blotting (immunoblotting) the I7 protein was present in similar amounts in the defective particles and in the IMVs isolated at the permissive temperature. Finally, our data suggest that at the nonpermissive temperature the assembly of ts16 is irreversibly arrested in a stage at which the DNA is in the process of entering but before the particle has completely sealed, as monitored by protease experiments.
Collapse
Affiliation(s)
- M Ericsson
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Harauz G, Evans DH, Beniac DR, Arsenault AL, Rutherford B, Ottensmeyer FP. Electron spectroscopic imaging of encapsidated DNA in vaccinia virus. Can J Microbiol 1995; 41:889-94. [PMID: 8590404 DOI: 10.1139/m95-122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have used electron spectroscopic imaging to locate the phosphorus in vaccinia DNA in situ in unstained, ultrathin sections of virions. The phosphorus of the DNA backbone appeared to form a halo on the core periphery surrounding a phosphorus-impoverished central element. These results constrain models for how DNA could be packaged into mature vaccinia particles.
Collapse
Affiliation(s)
- G Harauz
- Department of Molecular Biology and Genetics, University of Guelph, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Sodeik B, Cudmore S, Ericsson M, Esteban M, Niles EG, Griffiths G. Assembly of vaccinia virus: incorporation of p14 and p32 into the membrane of the intracellular mature virus. J Virol 1995; 69:3560-74. [PMID: 7745704 PMCID: PMC189071 DOI: 10.1128/jvi.69.6.3560-3574.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cytoplasmic assembly of vaccinia virus begins with the transformation of a two-membraned cisterna derived from the intermediate compartment between the endoplasmic reticulum and the Golgi complex. This cisterna develops into a viral crescent which eventually forms a spherical immature virus (IV) that matures into the intracellular mature virus (IMV). Using immunoelectron microscopy, we determined the subcellular localization of p32 and p14, two membrane-associated proteins of vaccinia virus. p32 was associated with vaccinia virus membranes at all stages of virion assembly, starting with the viral crescents, as well as with the membranes which accumulated during the inhibition of assembly by rifampin. There was also low but significant labelling of membranes of some cellular compartments, especially those in the vicinity of the Golgi complex. In contrast, anti-p14 labelled neither the crescents nor the IV but gave strong labelling of an intermediate form between IV and IMV and was then associated with all later viral forms. This protein was also not significantly detected on identifiable cellular membranes. Both p32 and p14 were abundantly expressed on the surface of intact IMV. Our data are consistent with a model whereby p32 would become inserted into cellular membranes before being incorporated into the crescents whereas p14 would be posttranslationally associated with the viral outer membrane at a specific later stage of the viral life cycle.
Collapse
Affiliation(s)
- B Sodeik
- Cell Biology Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Simpson DA, Condit RC. The vaccinia virus A18R protein plays a role in viral transcription during both the early and the late phases of infection. J Virol 1994; 68:3642-9. [PMID: 8189502 PMCID: PMC236868 DOI: 10.1128/jvi.68.6.3642-3649.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The vaccinia virus gene A18R is essential for virus infection. The loss of A18R protein function results in unregulated transcription late during virus infection from regions of the viral genome which are normally transcriptionally quiescent. We have characterized A18R protein expression in cells infected with wild-type virus and the A18R temperature-sensitive mutant Cts23. The A18R protein is expressed during early and late phases of infection. The A18R protein expressed by Cts23 virus at permissive and nonpermissive temperatures is significantly less stable than the wild-type A18R protein. The A18R protein was identified as a virion component and localized by detergent extraction to the virion core. Virions purified from cells infected with the A18R temperature-sensitive mutants Cts4, Cts22, and Cts23 are defective in early viral transcription in vitro. The mutant transcription defect is not attributable to gross defects in virion structure or virion DNA-dependent RNA polymerase activity. We conclude that the A18R protein plays a role in viral transcription during the early phase of infection as well as during the late phase.
Collapse
Affiliation(s)
- D A Simpson
- Department of Immunology and Medical Microbiology, University of Florida, Gainesville 32610-0266
| | | |
Collapse
|
39
|
Abstract
Vaccinia virus (VV) virion morphogenesis is a complex sequence of events that occurs late in viral infection that is essential for the production of mature progeny. Electron microscopy studies have identified multiple morphogenic forms of virus particles, apparently assembled in a sequence from immature to mature particles that correlates with distinct physical changes. This assembly process is, however, rather poorly understood at the molecular level. To better characterize the multiple forms of VV previrions, sucrose log gradient fractionation of VV-infected cells was used to separate radiolabeled immature and mature forms of the virus. Depending on time postinfection that the infected cells were harvested, four distinct peaks of acid-precipitable counts could be detected that displayed different rates of sedimentation. Using pulse-chase analysis procedures, the labeled peaks were shown to have precursor-product relationships as slower sedimenting entities chased to faster sedimenting ones with time. These peaks were referred to as A, B, C, and V particles, with A being the initial precursor form found near the top of the gradient and V being the fastest sedimenting product. As the previrions mature, they migrated faster in the gradient and became infectious and resistant to treatment with DNase I. The core protein composition of the A particles was predominantly uncleaved precursors, with only small amounts of the mature core proteins 4a, 4b, 25K, and 23K evident. However, as the sedimentation rate of the particles increased, proteolytic maturation proceeded such that C particles were composed almost exclusively of mature core proteins. Together these results indicate that several distinct and separable forms of VV previrions exist, that VV core protein precursors are associated with the previrions prior to cleavage, and that maturation of the core proteins is coordinately linked to the conversion from noninfectious previrions to infectious viral particles.
Collapse
Affiliation(s)
- J K Vanslyke
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | | | | | |
Collapse
|
40
|
Abstract
The three major vaccinia virus (VV) virion proteins (4a, 4b, and 25K) are proteolytically matured from larger precursors (P4a, P4b, and P25K) during virus assembly. Within the precursors, Ala-Gly-X motifs have been noted at the putative processing sites, with cleavage apparently taking place between the Gly and X residues. To identify the sequence and/or structural parameters which are required to define an efficient cleavage site, a trans-processing assay system has been developed by tagging the carboxy terminus of the P25K polypeptide (precursor of 25K) with an octapeptide FLAG epitope, which can be specifically recognized by a monoclonal antibody. By using transient expression assays with cells coinfected with VV, the proteolytic processing of the chimeric gene product (P25K:FLAG) was monitored by immunoblotting procedures. The relationship between the P25K:FLAG precursor and the 25K:FLAG cleavage product was established by pulse-chase experiments. The in vivo cleavage of P25K:FLAG was inhibited by the drug rifampin, implying that the reaction was utilizing the same pathway as authentic VV core proteins. Moreover, the 25K:FLAG protein was found in association with mature virions in accord with the notion that cleavage occurs concomitantly with virion assembly. Site-directed mutagenesis of the Ala-Gly-Ala motif at residues 31 to 33 of the P25K:FLAG precursor to Ile-Asp-Ile blocked production of the 25K:FLAG product. The efficiency of 25K:FLAG production (33.71%) is, however, approximately only half of the production of 25K (63.98%) within VV-infected cells transfected with pL4R:FLAG. One explanation for the lower efficiency of 25K:FLAG production was suggested by the observation in the immunofluorescent-staining experiment that 25K:FLAG-related proteins were not specifically localized to the virus assembly factories (virosomes) within VV-infected cells, although virosome localization was prominent for P25K-related polypeptides. Since VV core protein proteolytic processing is believed to take place during virion maturation, only the P25K:FLAG which was assembled into immature virions could undergo proteolytic maturation. Furthermore during these experiments, a potential cleavage intermediate (25K') of P25K was identified. Amino acid residues 17 to 19 (Ala-Gly-Ser) of the P25K precursor were implicated as the intermediate cleavage site, since no 25K':FLAG product was produced from a mutant precursor in which the sequence was altered to Ile-Asp-Ile. Taken together, these results provide biochemical and genetic evidence to support the hypothesis that the Ala-Gly-X cleavage motif plays a critical role in VV virion protein proteolytic maturation.
Collapse
Affiliation(s)
- P Lee
- Department of Microbiology, Oregon State University, Corvallis 97331-3804
| | | |
Collapse
|
41
|
Kane EM, Shuman S. Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J Virol 1993; 67:2689-98. [PMID: 8386272 PMCID: PMC237591 DOI: 10.1128/jvi.67.5.2689-2698.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ts16 mutation of vaccinia virus WR (R. C. Condit, A. Motyczka, and G. Spizz, Virology 128:429-443, 1983) has been mapped by marker rescue to the I7L open reading frame located within the genomic HindIII I DNA fragment. The I7 gene encodes a 423-amino-acid polypeptide. Thermolabile growth was attributed to an amino acid substitution, Pro-344-->Leu, in the predicted I7 protein. A normal temporal pattern of viral protein synthesis was elicited in cells infected with ts16 at the nonpermissive temperature (40 degrees C). Electron microscopy revealed a defect in virion assembly at 40 degrees C. Morphogenesis was arrested at a stage subsequent to formation of spherical immature particles. Western immunoblot analysis with antiserum directed against the I7 polypeptide demonstrated an immunoreactive 47-kDa polypeptide accumulating during the late phase of synchronous vaccinia virus infection. Immunoblotting of extracts of wild-type virions showed that the I7 protein is encapsidated within the virus core. The I7 polypeptide displays amino acid sequence similarity to the type II DNA topoisomerase of Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- E M Kane
- Program in Molecular Biology, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
42
|
Dyster LM, Niles EG. Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. Virology 1991; 182:455-67. [PMID: 2024484 DOI: 10.1016/0042-6822(91)90586-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyclonal antisera raised against fusion proteins containing portions of the vaccinia virus D2L and D3R proteins were prepared. Immunoprecipitation of pulse-labeled infected cell extracts and Western blot analysis demonstrated that genes D2L and D3R encode 16.9- and 27-kDa proteins, respectively. Both are synthesized late during infection and there is no evidence for proteolytic processing of either protein. Western blots of purified virus and subvirion fractions showed that D2L and D3R are virion components, residing in a detergent-insoluble fraction, containing viral core structural proteins. Trypsin sensitivity experiments suggest that each is found in an equivalent position within the virus core. Pulse-chase analysis showed that both proteins exhibit biphasic stability in which an unstable nascent component is replaced by a stable form. This observation suggests that the stable component results from the insertion of D2L and D3R into an immature core structure. The DNA sequence of four ts mutants previously mapped to genes D2L and D3R is reported. Analysis of the ability of each mutant to synthesize and process viral proteins showed that protein synthetic patterns were indistinguishable from wild type, however, three of the four mutants were defective in the processing of the major virion structural precursor, p4a. Unlike the biphasic stability observed in wild-type infected cells, D2L and D3R were totally degraded in cells infected at 40 degrees with any of the four ts mutants. Stability of the D2L and D3R proteins, in cells treated with rifampicin, is unaffected which demonstrates that a block in morphogenesis is not directly responsible for the observed instability of the mutant proteins.
Collapse
Affiliation(s)
- L M Dyster
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo 14214
| | | |
Collapse
|
43
|
Fathi Z, Condit RC. Phenotypic characterization of a vaccinia virus temperature-sensitive complementation group affecting a virion component. Virology 1991; 181:273-6. [PMID: 1994577 DOI: 10.1016/0042-6822(91)90492-t] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Genetic and biochemical evidence is presented which shows that the product of the vaccinia virus gene 18R is a virion protein. Western blot analysis of virion proteins using anti-18R serum detects a 78,000-Da protein, localized in the virus core. Of five ts mutants which map to gene 18R, two mutants, ts 10 and ts 44, possess thermolabile virions. Temperature shifts performed during single-step growth of ts 44 suggest that precursors required for virion maturation accumulate during nonpermissive infections with ORF 18R mutants and that protein synthesis is required for recovery from nonpermissive condition.
Collapse
Affiliation(s)
- Z Fathi
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | |
Collapse
|
44
|
Oie M, Shida H, Ichihashi Y. The function of the vaccinia hemagglutinin in the proteolytic activation of infectivity. Virology 1990; 176:494-504. [PMID: 2345962 DOI: 10.1016/0042-6822(90)90019-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The vaccinia virus hemagglutinin (HA) has specific affinity for the structural protein, VP37K. The nature of this affinity and its relationship to the function of the HA were analyzed using HA mutants. The VP37K reactive site of the HA molecule is located in its transmembrane region, and the vaccinia virus HA associates with the viral particle via the VP37K-HA affinity. The viruses possessing an HA with fusion inhibitor activity were largely of the low infectivity form, whereas the viruses that associated mutant HAs defective in the activity were of the high infectivity form. D1 mutant virus does not produce HA. When it was incubated with the HA of the IHD-J strain, the HA associated with the virus particle. The HA-loaded D1 mutant virus acquired a high affinity not only for chick erythrocytes but also for KB and Vero cells. At the same time, the infectivity for Vero cells was decreased. The original high infectivity was recovered by treatment with trypsin. The virion-associated vaccinia HA has two functions; the HA protects the infectivity of the virus by the fusion inhibitor activity and exhibits affinity against host cells. Vaccinia virus first adsorbs to the cell via HA, and then proteolysis of the HA activates the second adsorption site which seems to be the fusogenic site of the virus. Proteolytic activation represents removal of the fusion inhibitor activity of the HA.
Collapse
Affiliation(s)
- M Oie
- Department of Virology, Faculty of Medicine, Niigata University, Japan
| | | | | |
Collapse
|
45
|
Seki M, Oie M, Ichihashi Y, Shida H. Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. Virology 1990; 175:372-84. [PMID: 2183466 DOI: 10.1016/0042-6822(90)90422-n] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vaccinia virus IHD-J strain induces hemagglutinin (HA) on the surface membrane of infected cells and does not elicit cell-cell fusion (F-). We isolated 21 independent hemadsorption-negative (HAD-) mutant viruses from IHD-J and five HAD+ revertants from one of these mutants. Of the 21 mutants, 19 that synthesized either no or little HA at the cell surface caused cell-cell fusion (F+), whereas none of the five revertants that synthesized HA at the cell surface induced cell-cell fusion. Furthermore, anti-HA monoclonal antibody B2D10 induced extensive polykaryocytosis of IHD-J-infected cells and suppressed the ability of the IHD-J-infected cell extract to inhibit the polykaryocytosis induced by IHD-W. The other 2 of the 21 HAD- mutants, B1 and A2, which induced HAs at the cell surface, showed F- and F+ phenotype, respectively. The HA molecule of mutant B1 had a single amino acid substitution of Lys for Glu-121 in its extracellular domain, whereas that of mutant A2 had a single substitution mutation of Tyr for Cys-103. We conclude that the vaccinia HA is a fusion inhibition protein, that the active sites for the two activities reside separately in its extracellular domain, and that cysteine-103 is important in forming the proper tertiary structure of the protein to exert both activities.
Collapse
Affiliation(s)
- M Seki
- Institute for Virus Research, Kyoto University, Japan
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
47
|
Shinder G, Parris W, Gold M. Terminase host factor: a histone-like E. coli protein which can bind to the cos region of bacteriophage lambda DNA. Nucleic Acids Res 1988; 16:2765-85. [PMID: 2835746 PMCID: PMC336432 DOI: 10.1093/nar/16.7.2765] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Terminase Host Factor (THF), an E. coli protein capable of fulfilling the host factor requirement for in vitro bacteriophage lambda terminase activity, displays properties characteristic of the prokaryotic type II DNA-binding or "histone-like" proteins. It is a 22 K basic, heat- and acid-stable protein which binds non-specifically to various DNAs. Conditions can be established, however, where THF binds preferentially to the cohesive end site (cos) of lambda DNA forming several distinct complexes as visualized by band retardation in polyacrylamide gels. DNase I footprinting reveals that THF can protect several regions of the top strand on the right side (+) of cos but does not bind as well to the left side (-). The binding regions are separated either by unprotected or by DNase I- hypersensitive bases. Under the conditions used in these experiments, DNA which does not contain cos lambda sequences does not show this pattern of protection. Several repeated motifs in the cos lambda nucleotide sequence may represent a consensus sequence for THF interaction. THF may be similar to other "histone-like" proteins which display both non-specific and selective DNA-binding capacities.
Collapse
Affiliation(s)
- G Shinder
- Department of Medical Genetics, University of Toronto, Canada
| | | | | |
Collapse
|
48
|
Ichihashi Y, Oie M. Epitope mosaic on the surface proteins of orthopoxviruses. Virology 1988; 163:133-44. [PMID: 2450423 PMCID: PMC9631680 DOI: 10.1016/0042-6822(88)90240-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1987] [Accepted: 11/04/1987] [Indexed: 01/01/2023]
Abstract
Epitopes on the surface components of orthopoxviruses were analyzed with monoclonal antibodies (MAbs) against monkeypox and vaccinia viruses by enzyme-linked immunosorbent assay (ELISA), Western blotting (WB), radioimmunoprecipitation (RIP), and competitive binding inhibition assay (CBIA). When compared by ELISA, three vaccinia virus strains exhibited a similar reactivity to 99 tested MAbs despite their remote passage history. All five isolates of monkeypox virus closely resembled one another, irrespective of the host species (human, monkey, squirrel) from which they were isolated. Taterapox virus reacted similar to vaccinia virus against 97 of the 99 tested MAbs, and reacted with 2 MAbs which were cross-reactive with monkeypox and mousepox. Mousepox and cowpox viruses reacted with these MAbs in a species-specific manner: MAbs reactive to cowpox virus distinctly differ from those reactive to mousepox virus. Of the 99 tested MAbs, 32 reacted with all the 11 tested orthopoxviruses, indicating that the corresponding epitopes existed in all the viruses. Fifty-four MAbs reacted with two or more virus species and were classified as partially common MAbs. Eight MAbs were apparently type-specific for monkeypox, and five were specific for vaccinia and taterapox viruses. No strain-specific epitope was detected. Sera of monkeypox-infected patients, when analyzed by CBIA, interfered with the binding of monkeypox-specific MAb H12C1 but not of vaccinia-specific MAb G6C6. Sera of monkeypox-infected patients who had been vaccinated competed against both MAbs, demonstrating the original antigenic sin phenomenon. The two MAbs could distinguish between the sera of monkeypox patients and those of vaccinated persons. However, the serum of a smallpox patient was competitive against these apparently vaccinia- or monkeypox-specific MAbs. Three of the eight monkeypox-specific epitopes were recognized by the above CBIA test, which suggests that they also exist in smallpox virus. The mosaic-like combination of common epitopes and the small number of type-specific epitopes manifested the antigenic characteristics of orthopox viruses. The species boundary was obscured due to the partially common epitopes, but the total composition of epitopes was stable enough to maintain the antigenic species-specificity. The mutual relationship of the orthopoxviruses was visualized in a three-dimensional network.
Collapse
Affiliation(s)
- Y Ichihashi
- Department of Virology, Faculty of Medicine, Niigata University, Japan
| | | |
Collapse
|
49
|
Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein sigma 3. Mol Cell Biol 1988. [PMID: 3275869 DOI: 10.1128/mcb.8.1.273] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By atomic absorption analysis, we determined that the reovirus outer capsid protein sigma 3, which binds double-stranded RNA (dsRNA), is a zinc metalloprotein. Using Northwestern blots and a novel zinc blotting technique, we localized the zinc- and dsRNA-binding activities of sigma 3 to distinct V8 protease-generated fragments. Zinc-binding activity was contained within an amino-terminal fragment that contained a transcription factor IIIA-like zinc-binding sequence, and dsRNA-binding activity was associated with a carboxy-terminal fragment. By these techniques, new zinc- and dsRNA-binding activities were also detected in reovirus core proteins. A sequence similarity was observed between the catalytic site of the picornavirus proteases and the transcription factor IIIA-like zinc-binding site within sigma 3. We suggest that the zinc- and dsRNA-binding activities of sigma 3 may be important for its proposed regulatory effects on viral and host cell transcription and translation.
Collapse
|
50
|
Schiff LA, Nibert ML, Co MS, Brown EG, Fields BN. Distinct binding sites for zinc and double-stranded RNA in the reovirus outer capsid protein sigma 3. Mol Cell Biol 1988; 8:273-83. [PMID: 3275869 PMCID: PMC363116 DOI: 10.1128/mcb.8.1.273-283.1988] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
By atomic absorption analysis, we determined that the reovirus outer capsid protein sigma 3, which binds double-stranded RNA (dsRNA), is a zinc metalloprotein. Using Northwestern blots and a novel zinc blotting technique, we localized the zinc- and dsRNA-binding activities of sigma 3 to distinct V8 protease-generated fragments. Zinc-binding activity was contained within an amino-terminal fragment that contained a transcription factor IIIA-like zinc-binding sequence, and dsRNA-binding activity was associated with a carboxy-terminal fragment. By these techniques, new zinc- and dsRNA-binding activities were also detected in reovirus core proteins. A sequence similarity was observed between the catalytic site of the picornavirus proteases and the transcription factor IIIA-like zinc-binding site within sigma 3. We suggest that the zinc- and dsRNA-binding activities of sigma 3 may be important for its proposed regulatory effects on viral and host cell transcription and translation.
Collapse
Affiliation(s)
- L A Schiff
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|