1
|
Proviral ALV-LTR Sequence Is Essential for Continued Proliferation of the ALV-Transformed B Cell Line. Int J Mol Sci 2022; 23:ijms231911263. [PMID: 36232572 PMCID: PMC9569804 DOI: 10.3390/ijms231911263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Avian leukosis virus (ALV) induces B-cell lymphomas and other malignancies in chickens through insertional activation of oncogenes, and c-myc activation has been commonly identified in ALV-induced tumors. Using ALV-transformed B-lymphoma-derived HP45 cell line, we applied in situ CRISPR-Cas9 editing of integrated proviral long terminal repeat (LTR) to examine the effects on gene expression and cell proliferation. Targeted deletion of LTR resulted in significant reduction in expression of a number of LTR-regulated genes including c-myc. LTR deletion also induced apoptosis of HP45 cells, affecting their proliferation, demonstrating the significance of LTR-mediated regulation of critical genes. Compared to the global effects on expression and functions of multiple genes in LTR-deleted cells, deletion of c-myc had a major effect on the HP45 cells proliferation with the phenotype similar to the LTR deletion, demonstrating the significance of c-myc expression in ALV-induced lymphomagenesis. Overall, our studies have not only shown the potential of targeted editing of the LTR for the global inhibition of retrovirus-induced transformation, but also have provided insights into the roles of LTR-regulated genes in ALV-induced neoplastic transformation.
Collapse
|
2
|
Hao M, Barlogie B, Tricot G, Liu L, Qiu L, Shaughnessy JD, Zhan F. Gene Expression Profiling Reveals Aberrant T-cell Marker Expression on Tumor Cells of Waldenström's Macroglobulinemia. Clin Cancer Res 2018; 25:201-209. [PMID: 30279229 DOI: 10.1158/1078-0432.ccr-18-1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/01/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE That the malignant clone of Waldenström's macroglobulinemia (WM) demonstrates significant intraclonal heterogeneity with respect to plasmacytoid differentiation indicates the mechanistic complexity of tumorigenesis and progression. Identification of WM genes by comparing different stages of B cells may provide novel druggable targets. EXPERIMENTAL DESIGN The gene expression signatures of CD19+ B cells (BC) and CD138+ plasma cells (PC) from 19 patients with WM were compared with those of BCs from peripheral blood and tonsil and to those of PCs from the marrow of healthy (N-PC) and multiple myeloma donors (MM-PC), as well as tonsil (T-PC). Flow cytometry and immunofluorescence were used to examine T-cell marker expression on WM tumor cells. RESULTS Consistent with defective differentiation, both BCs and PCs from WM cases expressed abnormal differentiation markers. Sets of 55 and 46 genes were differentially expressed in WM-BC and WM-PC, respectively; and 40 genes uniquely dysregulated in WM samples were identified. Dysregulated genes included cytokines, growth factor receptors, and oncogenes not previously implicated in WM or other plasma cell dyscrasias. Interestingly, strong upregulation of both IL6 and IL6R was confirmed. Supervised cluster analysis of PC revealed that marrow-derived WM-PC was either MM-PC-like or T-PC-like, but not N-PC-like. The aberrant expression of T-cell markers was confirmed at the protein level in WM-BC. CONCLUSIONS We showed that comparative microarray profiles allowed gaining more comprehensive insights into the biology of WM. The data presented here have implications for the development of novel therapies, such as targeting aberrant T-cell markers in WM.
Collapse
Affiliation(s)
- Mu Hao
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.,Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Bart Barlogie
- Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Guido Tricot
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Lanting Liu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - John D Shaughnessy
- Hematology-Oncology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Fenghuang Zhan
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
3
|
Winans S, Flynn A, Malhotra S, Balagopal V, Beemon KL. Integration of ALV into CTDSPL and CTDSPL2 genes in B-cell lymphomas promotes cell immortalization, migration and survival. Oncotarget 2017; 8:57302-57315. [PMID: 28915671 PMCID: PMC5593642 DOI: 10.18632/oncotarget.19328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/09/2017] [Indexed: 01/29/2023] Open
Abstract
Avian leukosis virus induces tumors in chickens by integrating into the genome and altering expression of nearby genes. Thus, ALV can be used as an insertional mutagenesis tool to identify novel genes involved in tumorigenesis. Deep sequencing analysis of viral integration sites has identified CTDSPL and CTDSPL2 as common integration sites in ALV-induced B-cell lymphomas, suggesting a potential role in driving oncogenesis. We show that in tumors with integrations in these genes, the viral promoter is driving the expression of a truncated fusion transcript. Overexpression in cultured chick embryo fibroblasts reveals that CTDSPL and CTDSPL2 have oncogenic properties, including promoting cell migration. We also show that CTDSPL2 has a previously uncharacterized role in protecting cells from apoptosis induced by oxidative stress. Further, the truncated viral fusion transcripts of both CTDSPL and CTDSPL2 promote immortalization in primary cell culture.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alyssa Flynn
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanandan Malhotra
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vidya Balagopal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen L Beemon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Avian Leukosis Virus Activation of an Antisense RNA Upstream of TERT in B-Cell Lymphomas. J Virol 2016; 90:9509-17. [PMID: 27512065 DOI: 10.1128/jvi.01127-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Avian leukosis virus (ALV) induces tumors by integrating its proviral DNA into the chicken genome and altering the expression of nearby genes via strong promoter and enhancer elements. Viral integration sites that contribute to oncogenesis are selected in tumor cells. Deep-sequencing analysis of B-cell lymphoma DNA confirmed that the telomerase reverse transcriptase (TERT) gene promoter is a common ALV integration target. Twenty-six unique proviral integration sites were mapped between 46 and 3,552 nucleotides (nt) upstream of the TERT transcription start site, predominantly in the opposite transcriptional orientation to TERT Transcriptome-sequencing (RNA-seq) analysis of normal bursa revealed a transcribed region upstream of TERT in the opposite orientation, suggesting the TERT promoter is bidirectional. This transcript appears to be an uncharacterized antisense RNA. We have previously shown that TERT expression is upregulated in tumors with integrations in the TERT promoter region. We now report that the viral promoter drives the expression of a chimeric transcript containing viral sequences spliced to exons 4 through 7 of this antisense RNA. Clonal expansion of cells with ALV integrations driving overexpression of the TERT antisense RNA suggest it may have a role in tumorigenesis. IMPORTANCE The data suggest that ALV integrations in the TERT promoter region drive the overexpression of a novel antisense RNA and contribute to the development of lymphomas.
Collapse
|
5
|
Abstract
Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. Avian leukosis virus induces B-cell lymphomas in chickens. Earlier studies showed that ALV can induce tumors through insertional mutagenesis, and several genes have been implicated in the development of these tumors. In this study, we use high-throughput sequencing to reveal the genome-wide ALV integration landscape in ALV-induced B-cell lymphomas. We find elevated levels of ALV integration near transcription start sites and use common integration site analysis to greatly expand the number of genes implicated in the development of these tumors. Interestingly, we identify several genes targeted by viral insertions that have not been previously shown to be involved in cancer.
Collapse
|
6
|
The MET gene is a common integration target in avian leukosis virus subgroup J-induced chicken hemangiomas. J Virol 2015; 89:4712-9. [PMID: 25673726 DOI: 10.1128/jvi.03225-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Avian leukosis virus subgroup J (ALV-J) is a simple retrovirus that can cause hemangiomas and myeloid tumors in chickens and is currently a major economic problem in Asia. Here we characterize ALV-J strain PDRC-59831, a newly studied U.S. isolate of ALV-J. Five-day-old chicken embryos were infected with this virus, and the chickens developed myeloid leukosis and hemangiomas within 2 months after hatching. To investigate the mechanism of pathogenesis, we employed high-throughput sequencing to analyze proviral integration sites in these tumors. We found expanded clones with integrations in the MET gene in two of the five hemangiomas studied. This integration locus was not seen in previous work characterizing ALV-J-induced myeloid leukosis. MET is a known proto-oncogene that acts through a diverse set of signaling pathways and is involved in many neoplasms. We show that tumors harboring MET integrations exhibit strong overexpression of MET mRNA. IMPORTANCE These data suggest that ALV-J induces oncogenesis by insertional mutagenesis, and integrations in the MET oncogene can drive the overexpression of MET and contribute to the development of hemangiomas.
Collapse
|
7
|
Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC, Vedeckis WV. Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol 2012; 87:969-76. [PMID: 22764095 DOI: 10.1002/ajh.23283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The current treatment protocol for ALL involves an intense chemotherapy regimen yielding cure rates of nearly 80%. However, new therapies need to be designed not only to increase the survival rate but also to combat the risk of severe therapy associated toxicities including secondary malignancies, growth problems, organ damage, and infertility. The c-Myb proto-oncogene is highly expressed in immature hematopoietic cells. In this study, we demonstrate that loss of c-Myb itself decreased the viability of these leukemic cells. Additionally, the inhibition of c-Myb caused a decrease in cell proliferation, significantly increased the number of cells in G(0) /G(1) phase of the cell cycle, increased the sensitivity of pre-B-ALL cells to cytotoxic agents in vitro, and significantly delayed disease onset in a mouse model of leukemia. Furthermore, we demonstrate that Bcl-2 is a target of c-Myb in pre-B-ALL cells. Our results identify c-Myb as a potential therapeutic target in pre-B-ALL and suggest that suppression of c-Myb levels or activity, in combination with currently used therapies and/or dose reduction, may lead to a decrease in toxicity and an increase in patient survival rates. Because c-Myb is aberrantly expressed in several other malignancies, targeting c-Myb will have broad clinical applications.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
8
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
9
|
Kool J, Berns A. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 2009; 9:389-99. [PMID: 19461666 DOI: 10.1038/nrc2647] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retroviral insertional mutagenesis screens have been used for many years as a tool for cancer gene discovery. In recent years, completion of the mouse genome sequence as well as improved technologies for cloning and sequencing of retroviral insertions have greatly facilitated the retrieval of more complete data sets from these screens. The concomitant increase of the size of the screens allows researchers to address new questions about the genes and signalling networks involved in tumour development. In addition, the development of new insertional mutagenesis tools such as DNA transposons enables screens for cancer genes in tissues that previously could not be analysed by retroviral insertional mutagenesis.
Collapse
Affiliation(s)
- Jaap Kool
- Division of Molecular Genetics, The Cancer Genomics Centre, The Centre of Biomedical Genetics, Academic Medical Center, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Maciolek NL, McNally MT. Characterization of Rous sarcoma virus polyadenylation site use in vitro. Virology 2008; 374:468-76. [PMID: 18272196 PMCID: PMC2413101 DOI: 10.1016/j.virol.2008.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/13/2007] [Accepted: 01/10/2008] [Indexed: 11/22/2022]
Abstract
Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSV poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.
Collapse
Affiliation(s)
- Nicole L. Maciolek
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| | - Mark T. McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701, Watertown Plank Road, Milwaukee, WI 53226 USA
| |
Collapse
|
11
|
Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proc Natl Acad Sci U S A 2007; 104:18952-7. [PMID: 18024587 DOI: 10.1073/pnas.0709173104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simple retroviruses induce tumors by integrating into the host genome, activating cellular oncogenes and microRNAs, or inactivating tumor suppressor genes. The identification of these genes elucidates molecular mechanisms of tumorigenesis. In this study, we identified avian leukosis virus (ALV) proviral integration sites in rapid-onset B cell lymphomas arising <12 weeks after infection of chicken embryos. By using inverse PCR, 28 unique viral integration sites were identified in rapid-onset tumors. Integrations in the telomerase reverse transcriptase (TERT) promoter/enhancer region were observed in four different tumors, suggesting that this is a common integration site. These provirus integrations ranged from 217 to 2,584 bp upstream of the TERT transcription initiation site and were all in the opposite transcriptional orientation to TERT. Southern blots of tumor samples demonstrated that these integrations are clonal and therefore occurred early in the process of tumorigenesis. Real-time RT-PCR showed overexpression of TERT mRNA in tumors harboring viral integrations in the TERT promoter. Telomerase activity was also up-regulated in these tumors; however, telomere-length alterations were not detected. Furthermore, viral LTR sequences directly enhanced the expression of luciferase reporters containing the TERT promoter sequences. This study documents retroviral up-regulation of cellular TERT by insertional activation to initiate or enhance tumor progression.
Collapse
|
12
|
Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA, Langerak AW, Montpellier B, Nadel B, Walrafen P, Delattre O, Aurias A, Leblanc T, Dombret H, Gewirtz AM, Baruchel A, Sigaux F, Soulier J. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110:1251-61. [PMID: 17452517 DOI: 10.1182/blood-2006-12-064683] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The C-Myb transcription factor is essential for hematopoiesis, including in the T-cell lineage. The C-Myb locus is a common site of retroviral insertional mutagenesis, however no recurrent genomic involvement has been reported in human malignancies. Here, we identified 2 types of genomic alterations involving the C-MYB locus at 6q23 in human T-cell acute leukemia (T-ALL). First, we found a reciprocal translocation, t(6;7)(q23;q34), that juxtaposed the TCRB and C-MYB loci (n = 6 cases). Second, a genome-wide copy-number analysis by array-based comparative genomic hybridization (array-CGH) identified short somatic duplications that include C-MYB (MYB(dup), n = 13 cases of 84 T-ALL, 15%). Expression analysis, including allele-specific approaches, showed stronger C-MYB expression in the MYB-rearranged cases compared with other T-ALLs, and a dramatically skewed C-MYB allele expression in the TCRB-MYB cases, which suggests that a translocation-driven deregulated expression may overcome a cellular attempt to down-regulate C-MYB. Strikingly, profiling of the T-ALLs by clinical, genomic, and large-scale gene expression analyses shows that the TCRB-MYB translocation defines a new T-ALL subtype associated with a very young age for T-cell leukemia (median, 2.2 years) and with a proliferation/mitosis expression signature. By contrast, the MYB(dup) alteration was associated with the previously defined T-ALL subtypes.
Collapse
Affiliation(s)
- Emmanuelle Clappier
- Genome Rearrangements and Cancer Group, Institut National de la Santé et de la Recherche Médicale U728 and Institut Universitaire d'Hématologie, Paris 7 University, Hôpital Saint-Louis, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM. Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 2006; 107:4090-100. [PMID: 16424392 DOI: 10.1182/blood-2005-09-3778] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR (PRDI-BF1-RIZ) domain zinc finger protein 1 (PRDM1) is a transcription repressor with a pivotal role in plasma-cell differentiation. We identified clonal inactivating mutations in PRDM1 in the diffuse large B-cell lymphoma (DLBCL) cell line OCI-Ly3 and in 8 of 35 de novo clinical DLBCL samples. The mutational spectrum consists predominantly (7 cases) of single-nucleotide mutations affecting consensus splice donor sites, some of which are recurrent, that lead to splicing aberrations and premature translation termination. In 2 of these cases, point mutations appear to be caused by RNA editing with G-to-A and U-to-G conversions. Other mutations include frame-shift deletion and chromosomal inversion. Except for one mutant, which may act as a dominant-negative, all mutations are associated with either deletion or silencing of the paired PRDM1 allele. This study identifies PRDM1 inactivation as a recurrent genetic defect in DLBCL cells and establishes PRDM1 as a potential tumor suppressor gene in DLBCL. Moreover, it implies inhibition of terminal differentiation as a pathogenetic pathway in DLBCL, particularly for the activated B-cell-like DLBCL. It also demonstrates for the first time the potential role of RNA editing in lymphomagenesis.
Collapse
Affiliation(s)
- Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, K502A, 525 East 68th Street, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Shetzline SE, Rallapalli R, Dowd KJ, Zou S, Nakata Y, Swider CR, Kalota A, Choi JK, Gewirtz AM. Neuromedin U: a Myb-regulated autocrine growth factor for human myeloid leukemias. Blood 2004; 104:1833-40. [PMID: 15187020 DOI: 10.1182/blood-2003-10-3577] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-myb proto-oncogene has been implicated in leukemogenesis, but possible mechanisms remain ill defined. To gain further insight to this process, we used transcript profiling in K562 cells expressing a dominant-negative Myb (MERT) protein. A total of 105 potential Myb gene targets were identified. Neuromedin U (NmU), a peptide affecting calcium transport, underwent the greatest expression change ( approximately 5-fold decrease). To verify a linkage between c-myb and NmU, their mRNA levels were quantitated using real-time polymerase chain reaction in primary acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), as well as normal hematopoietic cells. We found that c-myb was elevated in AML and ALL samples, but NmU expression was increased only in AML cells. Significantly, only AML cells expressed the cognate receptor of NmU, NMU1R, suggesting the presence of a novel autocrine loop. We examined this possibility in detail. Exogenous NmU "rescued" growth suppression in K562-MERT cells and stimulated the growth of primary AML cells. Short interfering RNA "knockdown" of NmU in K562 cells arrested cell growth. Exposing Indo-1-labeled K562 cells to NmU induced an intracellular Ca(++) flux consistent with engagement of the NMU1R. Combined, these results suggest that NmU expression is related to Myb and that the NmU/NMU1R axis constitutes a previously unknown growth-promoting autocrine loop in myeloid leukemia cells.
Collapse
Affiliation(s)
- Susan E Shetzline
- Department of Internal Medicine, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tomioka Y, Ochiai K, Ohashi K, Ono E, Toyoda T, Kimura T, Umemura T. Genome sequence analysis of the avian retrovirus causing so-called fowl glioma and the promoter activity of the long terminal repeat. J Gen Virol 2004; 85:647-652. [PMID: 14993650 DOI: 10.1099/vir.0.79778-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
So-called fowl glioma is a retroviral infectious disease caused by avian leukosis virus subgroup A (ALV-A). We determined the complete nucleotide sequence of the virus genome. The full-length sequence was consistent with a genetic organization typical of a replication-competent type C retrovirus lacking viral oncogenes. The coding sequences were well conserved with those of replication-competent viruses, but the 3' noncoding regions including LTR were most related to those of replication-defective sarcoma viruses. The U3 region of the LTR had a few deletions and several point mutations compared to that of other ALVs. The promoter activities of the LTRs of glioma-inducing ALV and ALV-A standard strain, RAV-1, were equivalent in chick embryo fibroblasts (CEF), while that of glioma-inducing ALV was significantly lower than that of RAV-1 in human astrocytic cells. These subtle differences of the promoter activity of the LTR may be related to the induction of glial neoplasm.
Collapse
Affiliation(s)
- Y Tomioka
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - K Ochiai
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - K Ohashi
- Laboratory of Infectious Disease, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - E Ono
- Laboratory of Animal Experiment for Disease Model, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - T Toyoda
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - T Kimura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - T Umemura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
16
|
Polony TS, Bowers SJ, Neiman PE, Beemon KL. Silent point mutation in an avian retrovirus RNA processing element promotes c-myb-associated short-latency lymphomas. J Virol 2003; 77:9378-87. [PMID: 12915553 PMCID: PMC187396 DOI: 10.1128/jvi.77.17.9378-9387.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The avian leukosis virus DeltaLR-9 causes a high frequency of B-cell lymphomas within weeks after injection into 10-day-old chicken embryos. These lymphomas result from proviral integrations into the oncogene c-myb. In contrast, LR-9, which lacks the 42-nucleotide gag gene deletion of DeltaLR-9, does not cause a high frequency of c-myb-associated short-latency lymphomas. Although viral replication rates and spliced env mRNA levels were found to be similar for both viruses, DeltaLR-9 exhibited an increase in readthrough transcription compared to LR-9. The DeltaLR-9 deletion is located in the region of the gag gene corresponding to the matrix (MA) protein as well as in the negative regulator of splicing (NRS) element. To test whether disruption of the NRS or of the MA protein was responsible for inducing short-latency lymphomas, we generated viruses with NRS point mutations that maintained the wild-type Gag amino acid sequence. One of the mutant viruses induced an even higher incidence than DeltaLR-9 of short-latency lymphomas with viral integrations into c-myb. Thus, we propose that disruption of the NRS sequence promotes readthrough transcription and splicing to the downstream myb gene, causing overexpression of a slightly truncated Myb protein, which induces short-latency tumors.
Collapse
MESH Headings
- Animals
- Avian Leukosis/etiology
- Avian Leukosis/genetics
- Avian Leukosis/virology
- Avian Leukosis Virus/genetics
- Avian Leukosis Virus/pathogenicity
- Avian Leukosis Virus/physiology
- Base Sequence
- Chick Embryo
- DNA, Viral/genetics
- Genes, env
- Genes, myb
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/virology
- Oncogene Proteins v-myb/genetics
- Oncogene Proteins v-myb/physiology
- Point Mutation
- RNA Processing, Post-Transcriptional/genetics
- RNA Splicing/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sequence Deletion
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/physiology
- Virus Integration/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- Tatjana S Polony
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
17
|
Neiman PE, Grbiç JJ, Polony TS, Kimmel R, Bowers SJ, Delrow J, Beemon KL. Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of Fabricius. Oncogene 2003; 22:1073-86. [PMID: 12592394 DOI: 10.1038/sj.onc.1206070] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Avian retroviral integration into the c-myb locus is casually associated with the development of lymphomas in the bursa of Farbricius of chickens; these arise with a shorter latency than bursal lymphomas caused by deregulation of c-myc. This study indicates that c-myb mutation in embryonic bursal precursors leads to an oligoclonal population of developing bursal follicles, showing a variable propensity to form a novel lesion, the neoplastic follicle (NF). About half of such bursas rapidly developed lymphomas. Detection of changes in gene expression, during the development of neoplasms, was carried out by cDNA microarray analysis. The transcriptional signature of lymphomas with mutant c-myb was more limited than, and only partially shared with, those of bursal lymphomas caused by Myc or Rel oncogenes. The c-myb-associated lymphomas frequently showed overexpression of c-myc and altered expression of other genes involved in cell cycle control and proliferation-related signal transduction. Oligoclonal, NF-containing bursas lacked detectable c-myc overexpression and demonstrated a pattern of gene expression distinct from that of normal bursa and partially shared with the short-latency lymphomas. This functional genomic analysis uncovered several different pathways of lymphomagenesis by oncogenic transcription factors acting in a B-cell lineage.
Collapse
Affiliation(s)
- Paul E Neiman
- Divisions of Basic Science and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tam W, Hughes SH, Hayward WS, Besmer P. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 2002; 76:4275-86. [PMID: 11932393 PMCID: PMC155062 DOI: 10.1128/jvi.76.9.4275-4286.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
bic is a novel gene identified at a common retroviral integration site in avian leukosis virus-induced lymphomas and has been implicated as a collaborator with c-myc in B lymphomagenesis. It lacks an extensive open reading frame and is believed to function as an untranslated RNA (W. Tam, Gene 274:157-167, 2001; W. Tam, D. Ben-Yehuda, and W. S. Hayward, Mol. Cell. Biol. 17:1490-1502, 1997). The oncogenic potential of bic, particularly its ability to cooperate with c-myc in oncogenesis, was tested directly by expressing c-myc and bic, either singly or in pairwise combination, in cultured chicken embryo fibroblasts (CEFs) and in chickens using replication-competent retrovirus vectors. Coexpression of c-myc and bic in CEFs caused growth enhancement of cells. Most importantly, chick oncogenicity assays demonstrated that bic can cooperate with c-myc in lymphomagenesis and erythroleukemogenesis. The present study provides direct evidence for the involvement of untranslated RNAs in oncogenesis and provides further support for the role of noncoding RNAs as riboregulators.
Collapse
Affiliation(s)
- Wayne Tam
- Graduate Program in Molecular Biology, Joan & Sanford Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA.
| | | | | | | |
Collapse
|
19
|
Oelgeschläger M, Kowenz-Leutz E, Schreek S, Leutz A, Lüscher B. Tumorigenic N-terminal deletions of c-Myb modulate DNA binding, transactivation, and cooperativity with C/EBP. Oncogene 2001; 20:7420-4. [PMID: 11704872 DOI: 10.1038/sj.onc.1204922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Revised: 08/07/2001] [Accepted: 08/14/2001] [Indexed: 11/09/2022]
Abstract
Oncogenic activation of c-myb by retroviral insertion has been implicated in tumor formation in chicken and mice. These genetic alterations result in deregulated expression of the c-myb gene and frequently in N-terminal truncation of the c-Myb protein. We demonstrate that truncation of the c-Myb N-terminus affects DNA binding and reporter activation. However, all three mutants, Myb Delta N20, Myb Delta N47 and Myb Delta N71 cooperated with C/EBP beta in reporter assays. In contrast to Myb Delta N20 and Myb Delta N47, however, the Myb Delta N71 mutant failed to activate the chromatin embedded endogenous mim-1 gene together with C/EBP beta. This suggests that an N-terminal region (amino acids 47-71) within repeat 1 (R1) of the murine c-Myb DNA binding domain affects activation of chromosomal target genes in collaboration with C/EBP beta.
Collapse
Affiliation(s)
- M Oelgeschläger
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany
| | | | | | | | | |
Collapse
|
20
|
Masselink H, Vastenhouw N, Bernards R. B-myb rescues ras-induced premature senescence, which requires its transactivation domain. Cancer Lett 2001; 171:87-101. [PMID: 11485831 DOI: 10.1016/s0304-3835(01)00631-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
B-myb, a ubiquitously expressed member of the myb gene family, is highly regulated throughout the cell cycle and appears to be required for cell cycle progression. In contrast to its relatives A-myb, c-myb, and v-myb, no transforming activity of B-myb has been reported thus far. We report here that B-myb can rescue senescence induced by an activated ras oncogene in rodent cells in vitro. We show that transformation by B-Myb involves its ability to activate transcription. Similar to other oncogenic transcription factors, such as c-Myc and E2F, we show that B-Myb also has repression activity. We demonstrate that the C-terminus of B-Myb can function as a repressor of transcription, that B-Myb interacts with the repressor molecules BS69 and N-CoR and that the repression function, like the transactivation domain, contributes to B-myb transformation.
Collapse
Affiliation(s)
- H Masselink
- Division of Molecular Carcinogenesis and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Lutwyche JK, Keough RA, Hughes TP, Gonda TJ. Mutation screening of the c-MYB negative regulatory domain in acute and chronic myeloid leukaemia. Br J Haematol 2001; 114:632-4. [PMID: 11552989 DOI: 10.1046/j.1365-2141.2001.02966.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over-expression of the c-myb gene and expression of activated forms of myb are known to transform haemopoietic cells, particularly cells of the myeloid lineage. Truncations or mutations that disrupt the negative regulatory domain (NRD) of the Myb protein confer an increased ability to transform cells. Although it has proved difficult to link mutations in c-MYB to human leukaemia, no studies investigating the presence of mutations within the c-MYB NRD have been reported. Therefore, we have performed mutational analysis of this region, using polymerase chain reaction-single-stranded conformation polymorphism and sequence analysis, in 26 patients with acute or chronic myeloid leukaemia. No mutations were detected, indicating that mutation of this region of the Myb protein is not common in the pathogenesis or progression of these diseases.
Collapse
Affiliation(s)
- J K Lutwyche
- Hanson Centre for Cancer Research, Division of Human Immunology, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | |
Collapse
|
22
|
Abstract
Chromosomal translocations involving transcription factors and aberrant expression of transcription factors are frequently associated with leukemogenesis. Transcription factors are essential in maintaining the regulation of cell growth, development, and differentiation in the hematopoietic system. Alterations in the mechanisms that normally control these functions can lead to hematological malignancies. Further characterization of the molecular biology of leukemia will enhance our ability to develop disease-specific treatment strategies, and to develop effective methods of diagnosis and prognosis.
Collapse
Affiliation(s)
- H N Crans
- Department of Pediatrics, UCLA School of Medicine and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | | |
Collapse
|
23
|
Schmidt M, Nazarov V, Stevens L, Watson R, Wolff L. Regulation of the resident chromosomal copy of c-myc by c-Myb is involved in myeloid leukemogenesis. Mol Cell Biol 2000; 20:1970-81. [PMID: 10688644 PMCID: PMC110814 DOI: 10.1128/mcb.20.6.1970-1981.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-myb is a frequent target of retroviral insertional mutagenesis in murine leukemia virus-induced myeloid leukemia. Induction of the leukemogenic phenotype is generally associated with inappropriate expression of this transcriptional regulator. Despite intensive investigations, the target genes of c-myb that are specifically involved in development of these myeloid lineage neoplasms are still unknown. In vitro assays have indicated that c-myc may be a target gene of c-Myb; however, regulation of the resident chromosomal gene has not yet been demonstrated. To address this question further, we analyzed the expression of c-myc in a myeloblastic cell line, M1, expressing a conditionally active c-Myb-estrogen receptor fusion protein (MybER). Activation of MybER both prevented the growth arrest induced by interleukin-6 (IL-6) and rapidly restored c-myc expression in nearly terminal differentiated cells that had been exposed to IL-6 for 3 days. Restoration occurred in the presence of a protein synthesis inhibitor but not after a transcriptional block, indicating that c-myc is a direct, transcriptionally regulated target of c-Myb. c-myc is a major target that transduces Myb's proliferative signal, as shown by the ability of a c-Myc-estrogen receptor fusion protein alone to also reverse growth arrest in this system. To investigate the possibility that this regulatory connection contributes to Myb's oncogenicity, we expressed a dominant negative Myb in the myeloid leukemic cell line RI-4-11. In this cell line, c-myb is activated by insertional mutagenesis and cannot be effectively down regulated by cytokine. Myb's ability to regulate c-myc's expression was also demonstrated in these cells, showing a mechanism through which the proto-oncogene c-myb can exert its oncogenic potential in myeloid lineage hematopoietic cells.
Collapse
Affiliation(s)
- M Schmidt
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The v-myb oncogene of the avian myeloblastosis virus (AMV) is unique among known oncogenes in that it causes only acute leukemia in animals and transforms only hematopoietic cells in culture. AMV was discovered in the 1930s as a virus that caused a disease in chickens that is similar to acute myelogenous leukemia in humans (Hall et al., 1941). This avian retrovirus played an important role in the history of cancer research for two reasons. First, AMV was used to demonstrate that all oncogenic viruses did not contain a single cancer-causing principle. In particular, although both Rous sarcoma virus (RSV) and AMV could replicate in cultures of either embryonic fibroblasts or hematopoietic cells, RSV could transform only fibroblasts whereas AMV could transform only hematopoietic cells (Baluda, 1963; Durban and Boettiger, 1981a). Second, chickens infected with AMV develop remarkably high white counts and therefore their peripheral blood contains remarkably large quantities of viral particles (Beard, 1963). For this reason AMV was often used as a prototypic retrovirus in order to study viral assembly and later to produce large amounts of reverse transcriptase for both research and commercial purposes. Following the discovery of the v-src oncogene of RSV and the demonstration that it arose from the normal c-src proto-oncogene, a number of acute leukemia viruses were analysed by similar techniques and found to also contain viral oncogenes of cellular origin (Roussel et al., 1979). In the case of AMV, it was shown that almost the entire retroviral env gene had been replaced by a sequence of cellular origin (initially called mab or amv, but later renamed v-myb) (Duesberg et al., 1980; Souza et al., 1980). Remarkably, sequences contained in this myb oncogene were shared between AMV and the avian E26 leukemia virus, but were not contained in any other acutely transforming retroviruses. In addition, the E26 virus contained a second sequence of cellular origin (ets) that was unique. The E26 leukemia virus was first described in the 1960s and causes an acute erythroblastosis in chickens, more reminiscent of the disease caused by avian erythroblastosis virus (AEV) than by AMV (Ivanov et al., 1962).
Collapse
Affiliation(s)
- J S Lipsick
- Department of Pathology, Stanford University School of Medicine, California 94305-5324, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- B Ganter
- Department of Pathology, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
26
|
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene 1998; 222:1-16. [PMID: 9813219 DOI: 10.1016/s0378-1119(98)00451-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reviewed here three sets of data concerning the integration of retroviral sequences in the mammalian genome: (i) our experimental localization of a number of proviruses integrated in isochores characterized by different GC levels; (ii) results from other laboratories on the localization of retroviral sequences in open chromatin regions and/or next to CpG islands; and (iii) our compositional analysis of genes located in the neighborhood of integrated retroviral sequences. The three sets of data have provided a very consistent picture in that a compartmentalized, isopycnic integration of expressed proviruses appears to be the rule ('isopycnic' refers to the compositional match between viral and host sequences around the integration site). The results reviewed here suggest that: (i) integration of proviral sequences is targeted initially towards 'open chromatin regions'; while these exist in both GC-rich and GC-poor isochores, the 'open chromatin regions' of GC-rich isochores are the main targets for integration of retroviral sequences because of their much greater abundance; (ii) isopycnicity is associated with stability of integration; indeed, even non-expressed integrated retroviral sequences tend to show an isopycnic localization in the genome; (iii) transcription of integrated viral sequences (like transcription of host genes) appears to be associated, as a rule, with an isopycnic localization, as indicated by transcribed sequences that show an isopycnic integration and act in trans; (iv) selection plays a role in the choice of specific sites within an isopycnic region; in exceptional cases [such as mouse mammary tumor virus (MMTV) activating GC-rich oncogenes], selection may override isopycnicity.
Collapse
Affiliation(s)
- A V Rynditch
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005, Paris, France
| | | | | | | | | |
Collapse
|
27
|
Hihara H, Nomura N, Tsukamoto K, Ishizaki R. Rearrangement of c-myc gene in rapidly induced avian lymphoid leukosis tumors. J Vet Med Sci 1998; 60:395-7. [PMID: 9560795 DOI: 10.1292/jvms.60.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Southern blot hybridization of DNA samples from 9 primary tumors of avian lymphoid leukosis (LL) rapidly induced by ALV infection 27-74 days post inoculation was carried out to search for rearrangement of the c-myc gene with human c-myc gene exon III as a probe. Rearrangement of the c-myc gene was detected by appearance of new EcoRI fragments in 7 out of 9 tumors examined. The size of the fragments ranged from 3.1 to 4.0 kilobases (kb). In addition to these fragments, two fragments (9.0 kb and 13 kb) were observed in one tumor, and a faint fragment (3.5 kb) was observed in another tumor. Rearrangement of the c-myc gene was not detected in the remaining two tumors kept in unsuitable condition. These results suggest that rearrangement of c-myc gene was induced even in rapidly induced LL as well as that induced after long incubation period. This is the first report of involvement of c-myc gene in rapidly induced B-cell lymphoma (LL).
Collapse
Affiliation(s)
- H Hihara
- National Institute of Animal Health, Ibaraki, Japan
| | | | | | | |
Collapse
|
28
|
Jiang W, Kanter MR, Dunkel I, Ramsay RG, Beemon KL, Hayward WS. Minimal truncation of the c-myb gene product in rapid-onset B-cell lymphoma. J Virol 1997; 71:6526-33. [PMID: 9261372 PMCID: PMC191928 DOI: 10.1128/jvi.71.9.6526-6533.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Oncogenic activation of c-myb by insertional mutagenesis has been implicated in rapid-onset B-cell lymphomas induced by the nonacute avian leukosis virus EU-8. In these tumors, proviruses are integrated either upstream of the c-myb coding region or within the first intron of c-myb. Tumors with either type of integration contained identical chimeric mRNAs in which the viral 5' splice site was juxtaposed to the 3' splice site of c-myb exon 2 and myb exon 1 was eliminated. Both classes of integrations generated truncated Myb proteins that were indistinguishable by Western analysis. In contrast to most other examples of c-myb activation, the truncation consisted of only 20 N-terminal amino acids and did not disrupt either the DNA binding domain near the N terminus or the negative regulatory domain near the C terminus of Myb. The significance of the 20-amino-acid Myb truncation to tumorigenesis was tested by infection of chicken embryos with retroviral vectors expressing different myb gene products. While virus expressing either wild-type c-myb or c-myb mutated at the N-terminal casein kinase II sites was only weakly oncogenic at 10 weeks, the minimally truncated myb virus induced a high incidence of rapid-onset tumors, including B-cell lymphomas, sarcomas, and adenocarcinomas.
Collapse
Affiliation(s)
- W Jiang
- Laboratory of Molecular Genetics and Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
29
|
Smith MR, Smith RE, Dunkel I, Hou V, Beemon KL, Hayward WS. Genetic determinant of rapid-onset B-cell lymphoma by avian leukosis virus. J Virol 1997; 71:6534-40. [PMID: 9261373 PMCID: PMC191929 DOI: 10.1128/jvi.71.9.6534-6540.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infection of 10 day-old chicken embryos with the recombinant avian leukosis virus (ALV) EU-8 induces a high incidence of rapid-onset B-cell lymphoma by insertional activation of the c-myb gene. LR-9, a related ALV with differences from EU-8 in the gag and pol genes, induces rapid-onset lymphoma at only a low incidence. To localize the viral determinant(s) responsible for this biologic difference, we constructed and tested a series of reciprocal chimeras between EU-8 and LR-9 ALVs. The ability to induce rapid-onset lymphoma efficiently was localized to a 925-nucleotide (nt) region of the EU-8 gag gene. Sequence analysis of the region revealed a 42-nt deletion in EU-8 relative to LR-9, as well as some single-nucleotide changes. A mutant virus, delta LR-9, constructed by deleting these 42 nt from LR-9, also induced rapid-onset lymphoma at a high frequency, confirming the biologic significance of this deletion. This deletion removed nt 735 to 776, which lies within a cis-acting RNA element that negatively regulates splicing (NRS). The deletion was shown to cause an increase in splicing efficiency, which may lead to increased production of a truncated myb gene product from an ALV-myb readthrough RNA.
Collapse
Affiliation(s)
- M R Smith
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
30
|
Golay J, Facchinetti V, Ying G, Introna M. The A-myb transcription factor in neoplastic and normal B cells. Leuk Lymphoma 1997; 26:271-9. [PMID: 9322889 DOI: 10.3109/10428199709051776] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The myb family of transcription factors has been strongly implicated in the regulation of cell growth and differentiation in the haematopoietic system. The v-myb oncogene, carried by avian defective retroviruses, causes leukaemias in the chicken and transforms haematopoietic cells in vitro. Its normal cellular equivalent c-myb, has been shown to promote the proliferation and block the differentiation of haematopoietic cells in several experimental models and is required for fetal haematopoiesis. Two other members of the family have been cloned more recently, A-myb and B-myb, which show sequence homology with c-myb in several domains, of which the DNA binding domain as well as other regulatory domains. Both have been shown to be transcription factors. B-myb is also involved in the control of proliferation and differentiation, but, unlike c-myb, it is expressed in many cell types. The third member of the family, A-myb, shows the most restricted pattern of expression, suggesting a very specific role for this transcription factor. A-myb is expressed in a subpopulation of normal B lymphocytes activated in vivo and localised in the germinal center of peripheral lymphoid organs and is not detected at significant levels in all other mature or immature haematopoietic populations studied, including bone marrow cells, T lymphocytes, granulocytes, monocytes, either at rest or after in vitro activation. These studies indicate that A-myb plays a role during a narrow window of normal B cell differentiation. A-myb expression has also been studied in a wide range of neoplastic B cells, representing the whole spectrum of B cell differentiation. A-myb is strongly expressed in Burkitt's lymphomas (BL) and slg+ B-acute lymphoblastic leukaemias (B-ALL) and not in all other leukaemias/lymphomas tested, with the exception of a subset of CLL (about 25% of cases). It is intriguing that the A-myb genome has been localised relatively close to the c-myc gene on chromosome 8, suggesting that the c-myc translocation in BL and B-ALL may affect A-myb transcription. Studies are in progress to investigate the functional relationship between A-myb and c-myc, particularly in the context of BL cells and to determine whether A-myb is deregulated in these cells.
Collapse
Affiliation(s)
- J Golay
- Department of Immunology and Cellular Biology, Istituto Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | |
Collapse
|
31
|
Le Rouzic E, Perbal B. Retroviral insertional activation of the c-myb proto-oncogene in a Marek's disease T-lymphoma cell line. J Virol 1996; 70:7414-23. [PMID: 8892859 PMCID: PMC190808 DOI: 10.1128/jvi.70.11.7414-7423.1996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Marek's disease virus (MDV) is an avian herpesvirus that causes, in chickens, a lymphoproliferative disease characterized by malignant transformation of T lymphocytes. The rapid onset of polyclonal tumors indicates the existence of MDV-encoded oncogenic products. However, the molecular basis of MDV-induced lymphoproliferative disease and latency remains largely unclear. Several lines of evidence suggest that MDV and Rous-associated virus (RAV) might cooperate in the development of B-cell lymphomas induced by RAV. Our present results indicate for the first time that MDV and RAV might also act synergistically in the development of T-cell lymphomas. We report an example of an MDV-transformed T-lymphoblastoid cell line (T9) expressing high levels of a truncated C-MYB protein as a result of RAV integration within one c-myb allele. The chimeric RAV-c-myb mRNA species initiated in the 5' long terminal repeat of RAV are deprived of sequences corresponding to c-myb exons 1 to 3. The attenuation of MDV oncogenicity has been strongly related to structural changes in the MDV BamHI-D and BamHI-H DNA fragments. We have established that both DNA restriction fragments are rearranged in the T9 MDV-transformed cells. Our results suggest that retroviral insertional activation of the c-myb proto-oncogene is a critical factor involved in the maintenance of the transformed phenotype and the tumorigenic potential of this T-lymphoma cell line.
Collapse
Affiliation(s)
- E Le Rouzic
- Laboratoire d'Oncologie Virale et Moléculaire, UMR CNRS 146, Institut Curie, Centre Universitaire, Orsay, France
| | | |
Collapse
|
32
|
Abstract
The nuclear protein v-Myb, encoded by the avian myeloblastosis virus (AMV), can induce acute monoblastic leukemia in vivo and transform chicken myelomonocytic cells in culture. The N terminus of v-Myb functions as the DNA-binding domain, and multiple central and C-terminal regions of this protein have been reported to function in transcriptional activation of model reporter genes. We showed previously that a C-terminal domain (amino acids 296 to 371) is required for transcriptional activation and transformation of primary chicken myelomonocytic cells. In this study, we have now analyzed a series of C-terminal mutants of v-Myb to further investigate this domain. A strong correlation was observed between transcriptional activation and leukemic transformation by this series of mutants. Furthermore, deletion analyses demonstrate that the C-terminal 41 amino acids of v=MybAMV (amino acids 331 to 371 of the Myb portion) are nonessential whereas further deletion of amino acids 321 to 330 (EFAETLQLID) results in a nonfunctional protein. Hence, we defined a 10-amino-acid subregion (the "FAETL" motif) required for transcriptional activation and oncogenic transformation by v-Myb Amv. The FAETL region is part of a putative leucine zipper structure and lies near a cluster of phosphorylation sites. Our analysis of mutants with substitutions of the zipper leucines or multiple adjacent phosphorylation sites demonstrates that the function of the FAETL motif is not dependent on an intact leucine zipper structure or adjacent phosphorylation sites. The study of GAL4-Myb fusions suggests that this region is important in maintaining a fully functional conformation of v-Myb. The putative leucine zipper structure has previously been proposed to exert inhibitory effects on c-Myb because its mutation caused increased transcriptional transactivation and transformation. Interestingly, our results show that this region is essential for the functions of v-Myb without requiring a heptad leucine repeat.
Collapse
Affiliation(s)
- S L Fu
- Department of Pathology, Stanford University, California 94305-5324, USA
| | | |
Collapse
|
33
|
Jonkers J, Berns A. Retroviral insertional mutagenesis as a strategy to identify cancer genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1287:29-57. [PMID: 8639705 DOI: 10.1016/0304-419x(95)00020-g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- J Jonkers
- The Netherlands Cancer Institute, Division of Molecular Genetics, Amsterdam, Netherlands
| | | |
Collapse
|
34
|
Golay J, Basilico L, Loffarelli L, Songia S, Broccoli V, Introna M. Regulation of hematopoietic cell proliferation and differentiation by the myb oncogene family of transcription factors. INTERNATIONAL JOURNAL OF CLINICAL & LABORATORY RESEARCH 1996; 26:24-32. [PMID: 8739852 DOI: 10.1007/bf02644770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The myb family of genes include the virally encoded v-myb oncogene, its normal cellular equivalent c-myb and two related members called A-myb and B-myb. They are all transcription factors that recognize the same DNA sequence (PyAACG/TG) and are all involved in the regulation of proliferation and differentiation in different cell types, including hematopoietic cells. C-myb is most highly expressed in hematopoietic cells and its oncogenic activation leads to transformation of these cells. Several lines of evidence have demonstrated that c-myb regulates both the proliferation and differentiation of hematopoietic cells of different lineages. The mechanisms of action of c-myb and v-myb are becoming clearer, mostly through the study of the different genes that are regulated by these transcription factors and the cofactors with which c-myb and v-myb co-operate. More recently the biological and biochemical functions of the B-myb and A-myb gene products have been investigated. Evidence for the function of the different members of the myb family in relation to hematopoietic proliferation and differentiation is presented, and the different roles of the myb genes are discussed.
Collapse
Affiliation(s)
- J Golay
- Department of Immunology and Cell Biology, Istituto Ricerche Farmacologiche, Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Darcel C. Lymphoid leukosis viruses, their recognition as 'persistent' viruses and comparisons with certain other retroviruses of veterinary importance. Vet Res Commun 1996; 20:83-108. [PMID: 8693704 DOI: 10.1007/bf00346580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Diseases caused by lymphoid leukosis virus (LLV), a retrovirus, take a long time after infection to develop and have a wide variety of pathological manifestations. This long latent period is characteristic of 'persistent virus infections'. Disease produced by LLV infection and its underlying mechanisms is compared with 'persistent' infections caused by other retroviruses in birds and mammals of veterinary importance. The diseases considered for comparison are those caused by reticuloendotheliosis, feline leukaemia, bovine leukosis and equine infectious anaemia viruses. There are significant changes in the immunological status in all diseases caused by these viruses. LLV infections follow this trend with, in manifestations of neoplastic disease, a perturbation of the normal switch that occurs from IgM to IgG synthesis. There are also indications of other immunological disturbances. Factors other than immunological disturbances may contribute to the length of time after infection required for the many forms of LLV infection to appear. Such additional factors may include the operation of 'biological clocks', such as the arrival of sexual maturity, and also the very nature of retroviruses. These factors, like the immunological changes, play major roles in the maintenance and progression of persistent retrovirus infections.
Collapse
Affiliation(s)
- C Darcel
- Palliser Animal Health Laboratories Ltd, Lethbridge, Alberta, Canada
| |
Collapse
|
36
|
Lin HH, Sternfeld DC, Shinpock SG, Popp RA, Mucenski ML. Functional analysis of the c-myb proto-oncogene. Curr Top Microbiol Immunol 1996; 211:79-87. [PMID: 8585967 DOI: 10.1007/978-3-642-85232-9_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Targeted mutagenesis studies were initiated to determine the normal biological function of the c-myb proto-oncogene. While heterozygous mice are phenotypically indistinguishable from their wild-type littermates, homozygous mutant fetuses die at approximately 15.5 days of gestation apparently due to anemia, which results from an inability to switch from embryonic yolk sac to fetal liver erythropoiesis. Studies are currently being done to determine the extent of hematopoietic abnormalities in the homozygous mutant fetuses. In vitro assays for hematopoietic colony-forming cells have been used to determine the frequency of both erythroid and myeloid progenitors in the fetal livers of wild-type, heterozygous, and homozygous mutant c-myb fetuses. The reduced number of erythroid progenitors was not unexpected considering the mutant fetus's pale color and reduced hematocrit. The dramatically reduced number of colonies derived from myeloid progenitors in the mutant fetuses in comparison to the number detected in phenotypically normal littermates suggests that expression of the c-myb proto-oncogene is critical for the proliferation and/or differentiation of early hematopoietic progenitors and possibly hematopoietic stem cells. Other possible explanations would include a hematopoietic progenitor migration problem from the yolk sac to the fetal liver or a defect in the microenvironment of the liver. Whether the lymphoid lineage is also adversely affected by the lack of c-myb expression remains to be determined. RT-PCR and Northern blot analyses were used in an attempt to identify downstream genes which may be directly or indirectly regulated by the Myb gene product. While the levels of expression of several genes involved in erythropoiesis (GATA-1, NF-E2, SCL, and EpoR) were reduced in the livers of homozygous mutant fetuses in comparison to phenotypically normal littermates and one gene, Kit ligand (KL), was expressed at higher levels in the mutant livers, these results must be viewed with caution. The livers of the mutant fetuses have been shown to be hypocellular in comparison to those of phenotypically normal littermates (35). It is possible that the Myb gene product is directly or indirectly modulating the expression of these genes. Conversely, the alteration in expression may be due to the reduced number or absence of specific hematopoietic lineages in the livers of the mutant fetuses. Differential display has also been used to identify putative novel genes that are involved in hematopoiesis. Preliminary studies suggest that this may be a powerful methodology to compare the expression pattern of genes in the fetal liver of wild-type, heterozygous, and homozygous mutant littermates at 14.5 days of gestation. To date nearly 60% of the partial cDNAs subcloned analyzed have been shown to be differentially expressed. More importantly, 75% of the differentially expressed cDNAs that have been sequenced appear to encode novel genes. Whether any of these novel genes are involved in the c-myb transcriptional cascade remains to be determined. Overall, analysis of the c-myb mutant fetuses have provided valuable insight into the biological function of this interesting proto-oncogene. The continued analysis of this resource will undoubtedly provide additional information concerning the role of the c-myb gene in hematopoiesis.
Collapse
Affiliation(s)
- H H Lin
- University of Tennessee Graduate School of Biomedical Sciences, Oak Ridge 37831-8080, USA
| | | | | | | | | |
Collapse
|
37
|
Oelgeschläger M, Krieg J, Lüscher-Firzlaff JM, Lüscher B. Casein kinase II phosphorylation site mutations in c-Myb affect DNA binding and transcriptional cooperativity with NF-M. Mol Cell Biol 1995; 15:5966-74. [PMID: 7565749 PMCID: PMC230848 DOI: 10.1128/mcb.15.11.5966] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylation of c-Myb has been implicated in the regulation of the binding of c-Myb to DNA. We show that murine c-Myb is phosphorylated at Ser-11 and -12 in vivo and that these sites can be phosphorylated in vitro by casein kinase II (CKII), analogous to chicken c-Myb. An efficient method to study DNA binding properties of full-length c-Myb and Myb mutants under nondenaturing conditions was developed. It was found that a Myb mutant in which Ser-11 and -12 were replaced with Ala (Myb Ala-11/12), wild-type c-Myb, and Myb Asp-11/12 bound to the A site of the mim-1 promoter with decreasing affinities. In agreement with this finding, Myb Ala-11/12 transactivated better than wild-type c-Myb and Myb Asp-11/12 on the mim-1 promoter or a synthetic Myb-responsive promoter. Similar observations were made for the myeloid-specific neutrophil elastase promoter. The presence of NF-M or an NF-M-like activity abolished partially the differences seen with the Ser-11/12 mutants, suggesting that the reduced DNA binding due to negative charge at positions 11 and 12 can be compensated for by NF-M. Since no direct interaction of c-Myb and NF-M was observed, we propose that the cooperativity is mediated by a third factor. Our data offer two possibilities for how casein kinase II phosphorylation can influence c-Myb function: first, by reducing c-Myb DNA binding and thereby influencing transactivation, and second, by enhancing the apparent cooperativity between c-Myb and NF-M or an NF-M-like activity.
Collapse
Affiliation(s)
- M Oelgeschläger
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
38
|
Shastry BS. Overexpression of genes in health and sickness. A bird's eye view. Comp Biochem Physiol B Biochem Mol Biol 1995; 112:1-13. [PMID: 7584839 DOI: 10.1016/0305-0491(95)00055-d] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many human disorders are associated with gene alterations, such as translocations, deletions, insertions, inversions, rearrangements and point mutations. However, an overexpression of certain normal genes could also contribute to the pathology of neurological disorders, retinal degeneration, diabetes, fibrosis of lung, cardiac and skin, programmed cell death and cancer. This implies that the regulated expression of normal genes is an important factor in determining human health. An understanding of the mechanisms involved in the control of expression of normal genes may provide a greater or more refined success in correcting, delaying or possibly preventing the disorders by a gene therapeutic approach.
Collapse
Affiliation(s)
- B S Shastry
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
39
|
Aziz N, Miglarese MR, Hendrickson RC, Shabanowitz J, Sturgill TW, Hunt DF, Bender TP. Modulation of c-Myb-induced transcription activation by a phosphorylation site near the negative regulatory domain. Proc Natl Acad Sci U S A 1995; 92:6429-33. [PMID: 7604007 PMCID: PMC41531 DOI: 10.1073/pnas.92.14.6429] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.
Collapse
Affiliation(s)
- N Aziz
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Dini PW, Eltman JT, Lipsick JS. Mutations in the DNA-binding and transcriptional activation domains of v-Myb cooperate in transformation. J Virol 1995; 69:2515-24. [PMID: 7884901 PMCID: PMC188928 DOI: 10.1128/jvi.69.4.2515-2524.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The v-Myb protein encoded by avian myeloblastosis virus causes oncogenic transformation of monoblastic cells committed to the monocyte/macrophage lineage. v-Myb is a doubly truncated form of its normal cellular counterpart, c-Myb. In addition to its N- and C-terminal deletions, v-Myb contains a number of amino acid substitutions relative to c-Myb. We have previously shown that neither overexpression of c-Myb nor introduction of these amino acid substitutions into c-Myb is sufficient for transformation of myelomonocytic cells. However, a doubly truncated form of c-Myb which lacked these substitutions transformed myeloblastic cells that appeared to be committed to the granulocytic pathway. We demonstrate here that mutations in both the DNA-binding and transcriptional activation domains of v-Myb are required for transformation of rapidly growing monoblasts rather than more slowly growing myeloblasts. These rapidly growing monoblasts do not express mim-1, a target gene for the Gag-Myb-Ets protein of E26 leukemia virus, or C/EBP proteins which cooperate with Myb to activate mim-1 expression. Furthermore, v-Myb proteins which contain both sets of these mutations are weaker transcriptional activators relative to proteins which lack these mutations. These results support a model in which amino acid substitutions in v-Myb have been selected for their ability to activate only a subset of those genes which can be activated by a doubly truncated form of c-Myb. In particular, mim-1 appears to represent a class of genes whose expression was selected against during the development of an increasingly virulent strain of avian myeloblastosis virus by passage in animals.
Collapse
Affiliation(s)
- P W Dini
- Department of Pathology, Stanford University, California 94305-5324
| | | | | |
Collapse
|
41
|
Affiliation(s)
- A Ruddell
- Department of Microbiology and Immunology, University of Rochester, New York 14642
| |
Collapse
|
42
|
Overexpression of C-terminally but not N-terminally truncated Myb induces fibrosarcomas: a novel nonhematopoietic target cell for the myb oncogene. Mol Cell Biol 1994. [PMID: 8139533 DOI: 10.1128/mcb.14.4.2278] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myb oncogene encodes a DNA-binding transcriptional transactivator which can become a hematopoietic cell-transforming protein following the deletion of amino acid sequences from either its amino or carboxyl terminus. Although a number of hematopoietic tumors express terminally deleted variants of Myb, the involvement of truncated Myb in nonhematopoietic tumors has not been adequately investigated. To assess the full spectrum of Myb's oncogenic capability, a replication-competent retroviral vector (RCAMV) was used to express a full-length protein (C-Myb), an amino-terminally truncated protein (VCC- or delta N-Myb), a carboxyl-terminally truncated protein (T-Myb), or a doubly truncated protein (VCT-Myb) in vivo. These viruses were injected intravenously into 10-day chicken embryos, and the infected chicks were monitored for tumors. Approximately 4 to 8 weeks after hatching, the majority (30 of 39 [77%]) of animals infected with the T-Myb retrovirus (without 214 carboxyl-terminal residues) developed nodular muscle tumors which could be identified by both morphologic and immunohistochemical criteria as fibrosarcomas. Identically appearing tumors could also be found in the kidney of some T-Myb-infected animals. The T-Myb-induced fibrosarcomas expressed the appropriately sized T-Myb protein, contained an unaltered proviral T-myb gene, and showed clonal proviral integration sites. In comparison, no sarcomas were observed in any of the animals infected with the amino-terminally truncated (VCC- and delta N-Myb) or doubly truncated (VCT-Myb) viruses. A loss of carboxyl-terminal but not amino-terminal sequences can thus convert Myb into a potent in vivo transforming protein for nonhematopoietic mesenchymal cells. In comparison, a truncation of either or both ends of the protein can activate Myb into a hematopoietic cell-transforming protein.
Collapse
|
43
|
Press RD, Reddy EP, Ewert DL. Overexpression of C-terminally but not N-terminally truncated Myb induces fibrosarcomas: a novel nonhematopoietic target cell for the myb oncogene. Mol Cell Biol 1994; 14:2278-90. [PMID: 8139533 PMCID: PMC358594 DOI: 10.1128/mcb.14.4.2278-2290.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The myb oncogene encodes a DNA-binding transcriptional transactivator which can become a hematopoietic cell-transforming protein following the deletion of amino acid sequences from either its amino or carboxyl terminus. Although a number of hematopoietic tumors express terminally deleted variants of Myb, the involvement of truncated Myb in nonhematopoietic tumors has not been adequately investigated. To assess the full spectrum of Myb's oncogenic capability, a replication-competent retroviral vector (RCAMV) was used to express a full-length protein (C-Myb), an amino-terminally truncated protein (VCC- or delta N-Myb), a carboxyl-terminally truncated protein (T-Myb), or a doubly truncated protein (VCT-Myb) in vivo. These viruses were injected intravenously into 10-day chicken embryos, and the infected chicks were monitored for tumors. Approximately 4 to 8 weeks after hatching, the majority (30 of 39 [77%]) of animals infected with the T-Myb retrovirus (without 214 carboxyl-terminal residues) developed nodular muscle tumors which could be identified by both morphologic and immunohistochemical criteria as fibrosarcomas. Identically appearing tumors could also be found in the kidney of some T-Myb-infected animals. The T-Myb-induced fibrosarcomas expressed the appropriately sized T-Myb protein, contained an unaltered proviral T-myb gene, and showed clonal proviral integration sites. In comparison, no sarcomas were observed in any of the animals infected with the amino-terminally truncated (VCC- and delta N-Myb) or doubly truncated (VCT-Myb) viruses. A loss of carboxyl-terminal but not amino-terminal sequences can thus convert Myb into a potent in vivo transforming protein for nonhematopoietic mesenchymal cells. In comparison, a truncation of either or both ends of the protein can activate Myb into a hematopoietic cell-transforming protein.
Collapse
Affiliation(s)
- R D Press
- Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
44
|
Nomura T, Sakai N, Sarai A, Sudo T, Kanei-Ishii C, Ramsay R, Favier D, Gonda T, Ishii S. Negative autoregulation of c-Myb activity by homodimer formation through the leucine zipper. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80628-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Abstract
Activation of the murine c-myc promoter by murine c-Myb protein was examined in several cell lines by using a transient expression system in which Myb expression vectors activate the c-myc promoter linked to a chloramphenicol acetyltransferase reporter gene or a genomic beta-globin gene. S1 nuclease protection analyses confirmed that the induction of c-myc by c-Myb was transcriptional and affected both P1 and P2 start sites in a murine T-cell line, EL4, and a myelomonocytic line, WEHI-3. Mutational analyses of the c-myc promoter revealed that two distinct regions could confer Myb responsiveness in two T-cell lines, a distal site upstream of P1 and a proximal site within the first noncoding exon. In contrast, only the proximal site was required for other cell lineages examined. Five separate Myb-binding sites were located in this proximal site and found to be important for c-Myb trans activation. DNA binding was necessary for c-myc activation, as shown by the loss of function associated with mutation of Myb's DNA-binding domain and by trans-dominant repressor activity of the DNA binding, trans-activation-defective mutant. The involvement of additional protein factors was addressed by inhibiting protein synthesis with cycloheximide in a conditional expression system in which the activity of presynthesized Myb was under the control of estrogen. These experiments indicate that de novo synthesis of additional proteins was not necessary for c-myc trans activation. Together these data reveal two cell lineage-dependent pathways by which c-Myb regulates c-myc; however, both pathways are mechanistically indistinguishable in that direct DNA binding by Myb is required for activating c-myc whereas neither de novo protein synthesis nor other labile proteins are necessary.
Collapse
|
46
|
Cogswell JP, Cogswell PC, Kuehl WM, Cuddihy AM, Bender TM, Engelke U, Marcu KB, Ting JP. Mechanism of c-myc regulation by c-Myb in different cell lineages. Mol Cell Biol 1993; 13:2858-69. [PMID: 8474446 PMCID: PMC359676 DOI: 10.1128/mcb.13.5.2858-2869.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the murine c-myc promoter by murine c-Myb protein was examined in several cell lines by using a transient expression system in which Myb expression vectors activate the c-myc promoter linked to a chloramphenicol acetyltransferase reporter gene or a genomic beta-globin gene. S1 nuclease protection analyses confirmed that the induction of c-myc by c-Myb was transcriptional and affected both P1 and P2 start sites in a murine T-cell line, EL4, and a myelomonocytic line, WEHI-3. Mutational analyses of the c-myc promoter revealed that two distinct regions could confer Myb responsiveness in two T-cell lines, a distal site upstream of P1 and a proximal site within the first noncoding exon. In contrast, only the proximal site was required for other cell lineages examined. Five separate Myb-binding sites were located in this proximal site and found to be important for c-Myb trans activation. DNA binding was necessary for c-myc activation, as shown by the loss of function associated with mutation of Myb's DNA-binding domain and by trans-dominant repressor activity of the DNA binding, trans-activation-defective mutant. The involvement of additional protein factors was addressed by inhibiting protein synthesis with cycloheximide in a conditional expression system in which the activity of presynthesized Myb was under the control of estrogen. These experiments indicate that de novo synthesis of additional proteins was not necessary for c-myc trans activation. Together these data reveal two cell lineage-dependent pathways by which c-Myb regulates c-myc; however, both pathways are mechanistically indistinguishable in that direct DNA binding by Myb is required for activating c-myc whereas neither de novo protein synthesis nor other labile proteins are necessary.
Collapse
Affiliation(s)
- J P Cogswell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599-7295
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Garrido C, Grässer F, Lipsick JS, Stehelin D, Saule S. Protein truncation is not required for c-myb proto-oncogene activity in neuroretina cells. J Virol 1992; 66:6773-6. [PMID: 1404616 PMCID: PMC240175 DOI: 10.1128/jvi.66.11.6773-6776.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The v-myb oncogene of avian myeloblastosis virus (AMV) differs from its normal cellular counterpart by a truncation at both its amino and carboxyl termini and by a substitution of 11 amino acid residues. We had previously shown that v-myb-containing AMV, in the presence of basic fibroblast growth factor, transformed chicken neuroretina (CNR) cells. To understand the mechanism of c-myb activation, we have tested whether avian retroviruses that express the full-length c-Myb are also active on CNR cells. We have found that c-Myb, like v-Myb, strongly increases the basic fibroblast growth factor response of CNR cells and that these c-myb-expressing cells are able to grow in soft agar in the presence of the growth factor. We have also found that, in contrast to normal or v-myb-expressing AMV-transformed CNR cells, c-Myb-transformed cells express mim-1, a granulocyte-specific gene. However, normal v-Myb- and c-Myb-expressing CNR cells all express the pax-QNR gene, a newly described paired and homeobox-containing gene specifically expressed in the neuroretina. We conclude that, in contrast to what has been described for hematopoietic cells, overexpression of c-Myb is sufficient to activate gene expression and to induce an abnormal behavior of CNR cells.
Collapse
Affiliation(s)
- C Garrido
- CNRS URA 1160, Institut Pasteur de Lille, France
| | | | | | | | | |
Collapse
|
48
|
Mukhopadhyaya R, Wolff L. New sites of proviral integration associated with murine promonocytic leukemias and evidence for alternate modes of c-myb activation. J Virol 1992; 66:6035-44. [PMID: 1527851 PMCID: PMC241481 DOI: 10.1128/jvi.66.10.6035-6044.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Murine promonocytic leukemias involving insertional mutagenesis of the c-myb locus can be induced by replication-competent retroviruses. In previously studied promonocytic leukemic cells induced by Moloney murine leukemia virus (called MML), the provirus has been invariably integrated upstream of exons 3 or 4 and the leukemic cells expressed aberrant RNAs with fused virus-myb sequences. Furthermore, Myb expressed by these cells has been shown to be truncated by 47 or 71 amino acids. The present report examines the mechanisms of myb activation in leukemias induced by two other retroviruses, amphotropic virus 4070A and Friend strain FB29 (the leukemias are called AMPH-ML and FB-ML, respectively). This study revealed two additional c-myb proviral insertion sites in these promonocytic leukemias. One FB-ML had a proviral integration in exon 9, and expressed a C-terminally truncated Myb protein of 47 kDa similar to that previously demonstrated to be expressed in the myelomonocytic cell lines NFS60 and VFL-2. However, a sequence of reverse-transcribed and amplified RNA from this leukemia demonstrated that the truncation involved a loss of 248 amino acids compared with a loss of 240 amino acids in the myelomonocytic cell lines. Another leukemia had a provirus integrated in the 5' end of c-myb upstream of exon 2 (in the first intron) and produced a Myb protein that was indistinguishable on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from normal Myb. This latter leukemia (FB-ML R1-4-10) expressed Myb with the smallest N-terminal truncation observed so far in promonocytic leukemias; translation begins at an ATG within c-myb exon 2, leading to loss of only 20 amino acids from the N terminus. Unlike the proteins produced in Moloney murine leukemia virus-induced promonocytic leukemias (MML) that have larger truncations, this protein has an intact DNA binding region and does not contain N-terminal amino acids encoded by gag. However, this protein is similar to all N-terminally truncated Mybs so far studied, in that the truncation resulted in deletion of a casein kinase II phosphorylation site which has been proposed to be involved in regulation of DNA binding.
Collapse
Affiliation(s)
- R Mukhopadhyaya
- Laboratory of Genetics, National Cancer Institute, Bethesda, Maryland 20892
| | | |
Collapse
|
49
|
Press RD, Kim A, Ewert DL, Reddy EP. Transformation of chicken myelomonocytic cells by a retrovirus expressing the v-myb oncogene from the long terminal repeats of avian myeloblastosis virus but not Rous sarcoma virus. J Virol 1992; 66:5373-83. [PMID: 1323701 PMCID: PMC289093 DOI: 10.1128/jvi.66.9.5373-5383.1992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To test the effect of long terminal repeat (LTR) regulatory sequences on the transforming capability of the v-myb oncogene from avian myeloblastosis virus (AMV), we have constructed replication-competent avian retroviral vectors with nearly identical structural genes that express v-myb from either AMV or Rous sarcoma virus (RSV) LTRs. After transfection into chicken embryo fibroblasts, virus-containing cell supernatants were used to infect chicken myelomonocytic target cells from preparations of 16-day-old embryonic spleen cells. Both wild-type AMV and the virus expressing v-myb from AMV LTRs (RCAMV-v-myb) were able to transform the splenocyte cultures into a population of immature myelomonocytic cells. The transformed cells expressed the p48v-Myb oncoprotein and formed compact foci when grown in soft agar. In contrast, the virus expressing v-myb from RSV LTRs (RCAS-v-myb) was repeatedly unable to transform the same splenocyte cells, despite being able to infect fibroblasts with high efficiency. This difference in the transforming activities of v-myb-expressing viruses with different LTRs most likely results from the presence of a factor (or factors) within the appropriate myelomonocytic target cell that promotes specific expression from the AMV but not from the RSV LTR.
Collapse
Affiliation(s)
- R D Press
- Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104-4268
| | | | | | | |
Collapse
|
50
|
Miller JT, Stoltzfus CM. Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. J Virol 1992; 66:4242-51. [PMID: 1318403 PMCID: PMC241228 DOI: 10.1128/jvi.66.7.4242-4251.1992] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Retroviruses, pararetroviruses, and related retrotransposons generate terminally redundant RNAs by transcription of a template flanked by long terminal repeats in which initiation occurs within the 5' long terminal repeat sequences and 3'-end processing occurs within the 3' long terminal repeat sequences. Processing of avian sarcoma virus RNA is relatively inefficient; approximately 15% of the viral RNA transcripts are read-through products; i.e., they are not processed at the viral poly(A) addition site but at sites in the cellular sequence further downstream. In this report, we show that the efficiency of processing at the viral site is further reduced by deletion of two distant upstream sequences: (i) a 606-nucleotide sequence in the gag gene containing a cis-acting negative regulator of splicing and (ii) a 136-nucleotide sequence spanning the env 3' splice site. The deletion of either or both upstream regions increases the levels of read-through products of both unspliced and spliced viral RNA. In contrast, deletion of the src 3' splice site does not affect the efficiency of processing at the viral poly(A) addition site. The effects on 3'-end processing are not correlated either with distance from the promoter to the poly(A) addition site or with the overall level of viral RNA splicing. Substitution of the avian sarcoma virus poly(A) signal with the simian virus 40 early or late poly(A) signal relieves the requirement for the distant upstream sequences. We propose that cellular factors, which may correspond to splicing factors, bound to the upstream viral sequences may interact with factors bound at the avian sarcoma virus poly(A) signal to stabilize the polyadenylation-cleavage complex and allow for more efficient 3'-end processing.
Collapse
Affiliation(s)
- J T Miller
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|