1
|
Hewawasam S, El-Mayet FS, Jones C. Glucocorticoid Receptor (GR) and Specificity Protein 1 (Sp1) or Sp3 Transactivate the Bovine Alphaherpesvirus 1 (BoHV-1)-Infected Cell Protein 0 Early Promoter. Viruses 2025; 17:229. [PMID: 40006984 PMCID: PMC11860498 DOI: 10.3390/v17020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) acute infection leads to latently infected sensory neurons in trigeminal ganglia. During lytic infection, the immediate early expression of infected cell protein 0 (bICP0) and bICP4 is regulated by an immediate early transcription unit 1 (IEtu1) promoter. A separate bICP0 early (E) promoter drives bICP0 as an early viral gene, presumably to sustain high levels during productive infection. Notably, bICP0 protein expression is detected before bICP4 during reactivation from latency, suggesting the bICP0 E promoter drives bICP0 protein expression during the early phases of reactivation from latency. The glucocorticoid receptor (GR) and Krüppel-like factor 4 (KLF4) cooperatively transactivate the bICP0 E promoter despite this promoter lacks a consensus GR response element (GRE). KLF and specificity protein (Sp) family members comprise a "super-family" of transcription factors. Consequently, we hypothesized Sp1 and Sp3 transactivated the bICP0 E promoter. These studies revealed GR and Sp3 or Sp1 cooperatively transactivated bICP0 E promoter activity. KLF4 and Sp3, but not Sp1, had an additive effect on bICP0 E promoter activity. Mutating the consensus Sp1 and CACCC binding sites proximal to the TATA box impaired promoter activity more than the Sp1 sites further upstream from the TATA box.
Collapse
Affiliation(s)
- Sankha Hewawasam
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74074, USA; (S.H.); (F.S.E.-M.)
| | - Fouad S. El-Mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74074, USA; (S.H.); (F.S.E.-M.)
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Benha 13511, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74074, USA; (S.H.); (F.S.E.-M.)
| |
Collapse
|
2
|
Souza KFCDSE, Rabelo VWH, Abreu PA, Santos CC, Amaral e Silva NAD, Luna DD, Ferreira VF, Braz BF, Santelli RE, Gonçalves-de-Albuquerque CF, Paixão ICDP, Burth P. Synthetic Naphthoquinone Inhibits Herpes Simplex Virus Type-1 Replication Targeting Na +, K + ATPase. ACS OMEGA 2024; 9:36835-36846. [PMID: 39220530 PMCID: PMC11360054 DOI: 10.1021/acsomega.4c05904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Since 1970 acyclovir (ACV) has been the reference drug in treating herpes simplex virus (HSV) infections. However, resistant herpes simplex virus type 1 (HSV-1) strains have emerged, narrowing the treatment efficacy. The antiviral activity of classical Na+, K+ ATPase enzyme (NKA) inhibitors linked the viral replication to the NKA's activity. Herein, we evaluated the anti-HSV-1 activity of synthetic naphthoquinones, correlating their antiviral activity with NKA inhibition. We tested seven synthetic naphthoquinones initially at 50 μM on HSV-1-infected African green monkey kidney cells (VERO cells). Only one compound, 2-hydroxy-3-(2-thienyl)-1,4-naphthoquinone (AN-06), exhibited higher antiviral activity with a low cytotoxicity. AN-06 reduced the viral titer of 9 (log10) to 1.32 (log10) and decreased the steps of attachment and penetration. The addition of AN-06 up to 20 h postinfection (hpi) interfered with the viral cycle. The viral infection alone increases NKA activity 3 h postinfection (hpi), scaling up to 6 hpi. The addition of AN-06 in a culture infected with HSV-1 decreased NKA activity, suggesting that its antiviral action is linked to NKA inhibition. Also, docking results showed that this compound binds at the same site of NKA in which adenosine triphosphate (ATP) binds. AN-06 exhibited promising pharmacokinetic and toxicology properties. Thus, we postulate that AN-06 may be a good candidate for antiviral compounds with a mechanism of action targeting NKA activity.
Collapse
Affiliation(s)
| | - Vitor Won-Held Rabelo
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Paula Alvarez Abreu
- Instituto
de Biodiversidade e Sustentabilidade, Universidade
Federal do Rio de Janeiro, Macaé, Rio de Janeiro CEP 27965-045, Brazil
| | - Cláudio
César Cirne Santos
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| | - Nayane Abreu do Amaral e Silva
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Daniela de Luna
- Departamento
de Química, Instituto de Química, Laboratório
de Catálise e Síntese (Lab CSI), Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-141, Brazil
| | - Vitor Francisco Ferreira
- Departamento
de Tecnologia Farmacêutica, Universidade
Federal Fluminense, Faculdade de Farmácia, Niterói, Rio de Janeiro 24241-002, Brazil
| | - Bernardo Ferreira Braz
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Ricardo Erthal Santelli
- Departamento
de Química Analítica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro CEP 21941-909, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório
de Imunofarmacologia, Instituto Oswaldo
Cruz, FIOCRUZ, Rio de Janeiro, Rio de Janeiro CEP 21040-900 Brazil
- Laboratório
de Imunofarmacologia, Universidade Federal
do Estado do Rio de Janeiro, Rio
de Janeiro, Rio de Janeiro CEP 20211-010 Brazil
| | | | - Patricia Burth
- Departamento
de Biologia Celular e Molecular, Instituto
de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP 24020-201, Brazil
| |
Collapse
|
3
|
El-mayet FS, Jones C. A cell cycle regulator, E2F2, and glucocorticoid receptor cooperatively transactivate the bovine alphaherpesvirus 1 immediate early transcription unit 1 promoter. J Virol 2024; 98:e0042324. [PMID: 38771044 PMCID: PMC11237710 DOI: 10.1128/jvi.00423-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Kaliobyia, Egypt
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Jefferson VA, Bostick H, Oldenburg D, Meyer F. Evidence of a Protein-Coding Gene Antisense to the U L5 Gene in Bovine Herpesvirus I. Viruses 2023; 15:1977. [PMID: 37896756 PMCID: PMC10610667 DOI: 10.3390/v15101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Bovine herpesvirus type 1 (BoHV-1) is an important agricultural pathogen that infects cattle and other ruminants worldwide. Though it was first sequenced and annotated over twenty years ago, the Cooper strain, used in this study, was sequenced as recently as 2012 and is currently said to encode 72 unique proteins. However, tandem mass spectrometry has identified several peptides produced during active infection that align with the BoHV-1 genome in unannotated regions. One of these abundant peptides, "ORF M", aligned antisense to the DNA helicase/primase protein UL5. This study characterizes the novel transcript and its protein product and provides evidence to support the existence of homolog protein-coding genes in other Herpesviruses.
Collapse
Affiliation(s)
- Victoria A. Jefferson
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (H.B.)
| | - Hannah Bostick
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (H.B.)
| | - Darby Oldenburg
- Gundersen Medical Foundation, 1900 South Ave., La Crosse, WI 54601, USA;
| | - Florencia Meyer
- Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (H.B.)
| |
Collapse
|
5
|
Ostler JB, Jones C. The Bovine Herpesvirus 1 Latency-Reactivation Cycle, a Chronic Problem in the Cattle Industry. Viruses 2023; 15:552. [PMID: 36851767 PMCID: PMC9966457 DOI: 10.3390/v15020552] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023] Open
Abstract
Bovine alphaherpesvirus 1 (BoHV-1) is a persistent and recurring disease that affects cattle worldwide. It is a major contributor to bovine respiratory disease and reproductive failure in the US. A major complication of BoHV-1 arises from the lifelong latent infection established in the sensory ganglia of the peripheral nervous system following acute infection. Lifelong latency is marked by periodic reactivation from latency that leads to virus transmission and transient immunosuppression. Physiological and environmental stress, along with hormone fluctuations, can drive virus reactivation from latency, allowing the virus to spread rapidly. This review discusses the mechanisms of the latency/reactivation cycle, with particular emphasis on how different hormones directly regulate BoHV-1 gene expression and productive infection. Glucocorticoids, including the synthetic corticosteroid dexamethasone, are major effectors of the stress response. Stress directly regulates BoHV-1 gene expression through multiple pathways, including β-catenin dependent Wnt signaling, and the glucocorticoid receptor. Related type 1 nuclear hormone receptors, the androgen and progesterone receptors, also drive BoHV-1 gene expression and productive infection. These receptors form feed-forward transcription loops with the stress-induced Krüppel-like transcription factors KLF4 and KLF15. Understanding these molecular pathways is critical for developing novel therapeutics designed to block reactivation and reduce virus spread and disease.
Collapse
Affiliation(s)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
6
|
Toomer G, Workman A, Harrison KS, Stayton E, Hoyt PR, Jones C. Stress Triggers Expression of Bovine Herpesvirus 1 Infected Cell Protein 4 (bICP4) RNA during Early Stages of Reactivation from Latency in Pharyngeal Tonsil. J Virol 2022; 96:e0101022. [PMID: 36416585 PMCID: PMC9749472 DOI: 10.1128/jvi.01010-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.
Collapse
Affiliation(s)
- Gabriela Toomer
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Aspen Workman
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kelly S. Harrison
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Erin Stayton
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Peter R. Hoyt
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
7
|
Liu CY, Guo H, Zhao HZ, Hou LN, Wen YJ, Wang FX. Recombinant Bovine Herpesvirus Type I Expressing the Bovine Viral Diarrhea Virus E2 Protein Could Effectively Prevent Infection by Two Viruses. Viruses 2022; 14:v14081618. [PMID: 35893683 PMCID: PMC9331970 DOI: 10.3390/v14081618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a comprehensive disease in cattle caused by various viral and bacterial infections. Among them, bovine herpesvirus type I (BoHV−1) and bovine viral diarrhea virus (BVDV) play important roles and have caused huge financial losses for the cattle industry worldwide. At present, vaccines against BRDC include trivalent attenuated BoHV−1, BVDV−1, and BVDV−2 live vaccines, BoHV−1 live attenuated vaccines, and BoHV−1/BVDV bivalent live attenuated vaccines, which have limitations in terms of their safety and efficacy. To solve these problems, we optimized the codon of the BVDV−1 E2 gene, added the signal peptide sequence of the BoHV−1 gD gene, expressed double BVDV−1 E2 glycoproteins in tandem at the BoHV−1 gE gene site, and constructed a BoHV−1 genetics-engineered vectored vaccine with gE gene deletion, named BoHV−1 gE/E2−Linker−E2+ and BoHV−1 ΔgE. This study compared the protective effects in BoHV−1, BoHV−1 ΔgE, BoHV−1 gE/E2−Linker−E2+, and BVDV−1 inactivated antigen immunized guinea pigs and calves. The results showed that BoHV−1 gE/E2−Linker−E2+ could successfully induce guinea pigs and calves to produce specific neutralizing antibodies against BVDV−1. In addition, after BoHV−1 and BVDV−1 challenges, BoHV−1 gE/E2−Linker−E2+ can produce a specific neutralizing antibody response against BoHV−1 and BVDV−1 infections. Calves immunized with this type of virus can be distinguished as either vaccinated animals (gE-) or naturally infected animals (gE+). In summary, our data suggest that BoHV−1 gE/E2−Linker−E2+ and BoHV−1 ΔgE have great potential to prevent BVDV−1 or BoHV−1 infection.
Collapse
|
8
|
Tombácz D, Kakuk B, Torma G, Csabai Z, Gulyás G, Tamás V, Zádori Z, Jefferson VA, Meyer F, Boldogkői Z. In-Depth Temporal Transcriptome Profiling of an Alphaherpesvirus Using Nanopore Sequencing. Viruses 2022; 14:v14061289. [PMID: 35746760 PMCID: PMC9229804 DOI: 10.3390/v14061289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
In this work, a long-read sequencing (LRS) technique based on the Oxford Nanopore Technology MinION platform was used for quantifying and kinetic characterization of the poly(A) fraction of bovine alphaherpesvirus type 1 (BoHV-1) lytic transcriptome across a 12-h infection period. Amplification-based LRS techniques frequently generate artefactual transcription reads and are biased towards the production of shorter amplicons. To avoid these undesired effects, we applied direct cDNA sequencing, an amplification-free technique. Here, we show that a single promoter can produce multiple transcription start sites whose distribution patterns differ among the viral genes but are similar in the same gene at different timepoints. Our investigations revealed that the circ gene is expressed with immediate–early (IE) kinetics by utilizing a special mechanism based on the use of the promoter of another IE gene (bicp4) for the transcriptional control. Furthermore, we detected an overlap between the initiation of DNA replication and the transcription from the bicp22 gene, which suggests an interaction between the two molecular machineries. This study developed a generally applicable LRS-based method for the time-course characterization of transcriptomes of any organism.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
| | - Vivien Tamás
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; (V.T.); (Z.Z.)
| | - Victoria A. Jefferson
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Florencia Meyer
- Department of Biochemistry & Molecular Biology, Entomology & Plant Pathology, Mississippi State University, 408 Dorman P.O. Box 9655, 32 Creelman St., Starkville, MS 39762, USA; (V.A.J.); (F.M.)
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, 6720 Szeged, Hungary; (D.T.); (B.K.); (G.T.); (Z.C.); (G.G.)
- Correspondence:
| |
Collapse
|
9
|
Sawant L, Ostler JB, Jones C. A Pioneer Transcription Factor and Type I Nuclear Hormone Receptors Synergistically Activate the Bovine Herpesvirus 1 Infected Cell Protein 0 (ICP0) Early Promoter. J Virol 2021; 95:e0076821. [PMID: 34319779 PMCID: PMC8475507 DOI: 10.1128/jvi.00768-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Jeffery B. Ostler
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Regulation of neurotropic herpesvirus productive infection and latency-reactivation cycle by glucocorticoid receptor and stress-induced transcription factors. VITAMINS AND HORMONES 2021; 117:101-132. [PMID: 34420577 DOI: 10.1016/bs.vh.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.
Collapse
|
11
|
El-mayet FS, Harrison KS, Jones C. Regulation of Krüppel-Like Factor 15 Expression by Herpes Simplex Virus Type 1 or Bovine Herpesvirus 1 Productive Infection. Viruses 2021; 13:1148. [PMID: 34203849 PMCID: PMC8232590 DOI: 10.3390/v13061148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.
Collapse
Affiliation(s)
- Fouad S. El-mayet
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Kaliobyia, Egypt
| | - Kelly S. Harrison
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| | - Clinton Jones
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA; (F.S.E.-m.); (K.S.H.)
| |
Collapse
|
12
|
Inhibition of Stress-Induced Viral Promoters by a Bovine Herpesvirus 1 Non-Coding RNA and the Cellular Transcription Factor, β-Catenin. Int J Mol Sci 2021; 22:ijms22020519. [PMID: 33430186 PMCID: PMC7825607 DOI: 10.3390/ijms22020519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
The ability to establish, maintain, and reactivate from latency in sensory neurons within trigeminal ganglia (TG) is crucial for bovine herpesvirus 1 (BoHV-1) transmission. In contrast to lytic infection, the only viral gene abundantly expressed during latency is the latency-related (LR) gene. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency, in part because the glucocorticoid receptor (GR) transactivates viral promoters that drive expression of key viral transcriptional regulator proteins (bICP0 and bICP4). Within hours after dexamethasone treatment of latently infected calves, LR gene products and β-catenin are not readily detected in TG neurons. Hence, we hypothesized that LR gene products and/or β-catenin restrict GR-mediated transcriptional activation. A plasmid expressing LR RNA sequences that span open reading frame 2 (ORF2-Stop) inhibited GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) and mouse mammary tumor virus (MMTV) promoter activity in mouse neuroblastoma cells (Neuro-2A). ORF2-Stop also reduced productive infection and GR steady-state protein levels in transfected Neuro-2A cells. Additional studies revealed that the constitutively active β-catenin mutant reduced the transactivation of the IEtu1 promoter by GR and dexamethasone. Collectively, these studies suggest ORF2 RNA sequences and Wnt/β-catenin signaling pathway actively promote maintenance of latency, in part, by impairing GR-mediated gene expression.
Collapse
|
13
|
Sawant L, Thunuguntla P, Jones C. Cooperative activation of bovine herpesvirus 1 productive infection and viral regulatory promoters by androgen receptor and Krüppel-like transcription factors 4 and 15. Virology 2021; 552:63-72. [PMID: 33065464 DOI: 10.1016/j.virol.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/12/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Bovine herpesvirus 1 (BoHV-1), a significant viral pathogen, establishes latency in sensory neurons. The viral genome contains more than 100 consensus glucocorticoid receptor (GR) regulatory elements (GREs): consequently, stress stimulates viral replication and reactivation from latency. The immediate early transcription unit 1 (IEtu1) and bICP0 early promoters are transactivated by GR and synthetic corticosteroid dexamethasone. The androgen receptor (AR), like GR, is a Type 1 nuclear hormone receptor that binds and stimulates certain promoters containing GREs. Consequently, we hypothesized AR and 5α-Dihydrotestosterone (DHT) stimulate productive infection and key viral promoters. New studies demonstrated AR, DHT, and Krüppel like transcription factor 4 (KLF4) cooperatively stimulated productive infection and bICP0 E promoter activity in mouse neuroblastoma cells (Neuro-2A). KLF15 also cooperated with AR and DHT to stimulate IEtu1 promoter activity. We suggest AR and testosterone increase the prevalence of virus in semen by stimulating viral gene expression and replication.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Prasanth Thunuguntla
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, USA.
| |
Collapse
|
14
|
Sawant L, Wijesekera N, Jones C. Pioneer transcription factors, progesterone receptor and Krüppel like transcription factor 4, cooperatively stimulate the bovine herpesvirus 1 ICP0 early promoter and productive late protein expression. Virus Res 2020; 288:198115. [PMID: 32795492 DOI: 10.1016/j.virusres.2020.198115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
Bovine herpesvirus 1 (BoHV-1), including commercially available modified live vaccines, readily infect the fetus and ovaries, which can cause reproductive failure. The BoHV-1 latency-reactivation cycle in sensory neurons further complicates reproductive failure because progesterone sporadically induces reactivation from latency. The progesterone receptor (PR) and Krüppel-like transcription factor 15 (KLF15) cooperatively stimulate productive infection and the immediate early transcription unit 1 (IEtu1) promoter. In addition to the IEtu1 promoter, the bICP0 gene also contains a separate early (E) promoter. In this study, we tested the hypothesis that PR and KLF family members transactivate the bICP0 E promoter. PR and KLF4 stimulated bICP0 E promoter activity and expression of late productive viral protein expression in a cooperative manner. Additional studies revealed three enhancer domains within the bICP0 E promoter were responsive to PR and KLF4. Chromatin immunoprecipitation studies demonstrated PR and KLF4 occupy bICP0 E promoter sequences in transfected Neuro-2A cells and at late times following infection of bovine kidney cells. Co-immunoprecipitation studies indicated PR and KLF4 stably interact with each other. These studies suggest cooperative activation of the bICP0 E promoter by PR and KLF4 correlate with interactions between these pioneer transcription factors.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States
| | - Nishani Wijesekera
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States
| | - Clinton Jones
- Oklahoma State University, College of Veterinary Medicine, Department of Veterinary Pathobiology, Stillwater, OK 74078, United States.
| |
Collapse
|
15
|
Two Pioneer Transcription Factors, Krüppel-Like Transcription Factor 4 and Glucocorticoid Receptor, Cooperatively Transactivate the Bovine Herpesvirus 1 ICP0 Early Promoter and Stimulate Productive Infection. J Virol 2020; 94:JVI.01670-19. [PMID: 31776270 DOI: 10.1128/jvi.01670-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.
Collapse
|
16
|
Jones C. Bovine Herpesvirus 1 Counteracts Immune Responses and Immune-Surveillance to Enhance Pathogenesis and Virus Transmission. Front Immunol 2019; 10:1008. [PMID: 31134079 PMCID: PMC6514135 DOI: 10.3389/fimmu.2019.01008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Infection of cattle by bovine herpesvirus 1 (BoHV-1) can culminate in upper respiratory tract disorders, conjunctivitis, or genital disorders. Infection also consistently leads to transient immune-suppression. BoHV-1 is the number one infectious agent in cattle that is associated with abortions in cattle. BoHV-1, as other α-herpesvirinae subfamily members, establishes latency in sensory neurons. Stressful stimuli, mimicked by the synthetic corticosteroid dexamethasone, consistently induce reactivation from latency in latently infected calves and rabbits. Increased corticosteroid levels due to stress have a two-pronged effect on reactivation from latency by: (1) directly stimulating viral gene expression and replication, and (2) impairing antiviral immune responses, thus enhancing virus spread and transmission. BoHV-1 encodes several proteins, bICP0, bICP27, gG, UL49.5, and VP8, which interfere with key antiviral innate immune responses in the absence of other viral genes. Furthermore, the ability of BoHV-1 to infect lymphocytes and induce apoptosis, in particular CD4+ T cells, has negative impacts on immune responses during acute infection. BoHV-1 induced immune-suppression can initiate the poly-microbial disorder known as bovine respiratory disease complex, which costs the US cattle industry more than one billion dollars annually. Furthermore, interfering with antiviral responses may promote viral spread to ovaries and the developing fetus, thus enhancing reproductive issues associated with BoHV-1 infection of cows or pregnant cows. The focus of this review is to describe the known mechanisms, direct and indirect, by which BoHV-1 interferes with antiviral immune responses during the course of infection.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
17
|
El-Mayet FS, El-Habbaa AS, D'Offay J, Jones C. Synergistic Activation of Bovine Herpesvirus 1 Productive Infection and Viral Regulatory Promoters by the Progesterone Receptor and Krüppel-Like Transcription Factor 15. J Virol 2019; 93:e01519-18. [PMID: 30305353 PMCID: PMC6288325 DOI: 10.1128/jvi.01519-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause "abortion storms" in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.
Collapse
Affiliation(s)
- Fouad S El-Mayet
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Ayman S El-Habbaa
- Benha University, Faculty of Veterinary Medicine, Department of Virology, Benha, Egypt
| | - Jean D'Offay
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
18
|
Guo J, Li Q, Jones C. The bovine herpesvirus 1 regulatory proteins, bICP4 and bICP22, are expressed during the escape from latency. J Neurovirol 2018; 25:42-49. [PMID: 30402823 DOI: 10.1007/s13365-018-0684-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Following acute infection of mucosal surfaces by bovine herpesvirus 1 (BoHV-1), sensory neurons are a primary site for lifelong latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Two viral regulatory proteins (VP16 and bICP0) are expressed within 1 h after calves latently infected with BoHV-1 are treated with dexamethasone. Since the immediate early transcription unit 1 (IEtu1) promoter regulates both BoHV-1 infected cell protein 0 (bICP0) and bICP4 expressions, we hypothesized that the bICP4 protein is also expressed during early stages of reactivation from latency. In this study, we tested whether bICP4 and bICP22, the only other BoHV-1 protein known to be encoded by an immediate early gene, were expressed during reactivation from latency by generating peptide-specific antiserum to each protein. bICP4 and bICP22 protein expression were detected in trigeminal ganglionic (TG) neurons during early phases of dexamethasone-induced reactivation from latency, operationally defined as the escape from latency. Conversely, bICP4 and bICP22 were not readily detected in TG neurons of latently infected calves. In summary, it seems clear that all proteins encoded by known BoHV-1 IE genes (bICP4, bICP22, and bICP0) were expressed during early stages of dexamethasone-induced reactivation from latency.
Collapse
Affiliation(s)
- Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, 116 Huayuan Rd., Zhengzhou, People's Republic of China.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Clinton Jones
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
19
|
Sawant L, Kook I, Vogel JL, Kristie TM, Jones C. The Cellular Coactivator HCF-1 Is Required for Glucocorticoid Receptor-Mediated Transcription of Bovine Herpesvirus 1 Immediate Early Genes. J Virol 2018; 92:e00987-18. [PMID: 29899098 PMCID: PMC6096806 DOI: 10.1128/jvi.00987-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022] Open
Abstract
Following productive infection, bovine herpesvirus 1 (BoHV-1) establishes latency in sensory neurons. As in other alphaherpesviruses, expression of BoHV-1 immediate early (IE) genes is regulated by an enhancer complex containing the viral IE activator VP16, the cellular transcription factor Oct-1, and transcriptional coactivator HCF-1, which is assembled on an IE enhancer core element (TAATGARAT). Expression of the IE transcription unit that encodes the viral IE activators bICP0 and bICP4 may also be induced by the activated glucocorticoid receptor (GR) via two glucocorticoid response elements (GREs) located upstream of the enhancer core. Strikingly, lytic infection and reactivation from latency are consistently enhanced by glucocorticoid treatment in vivo As the coactivator HCF-1 is essential for IE gene expression of alphaherpesviruses and recruited by multiple transcription factors, we tested whether HCF-1 is required for glucocorticoid-induced IE gene expression. Depletion of HCF-1 reduced GR-mediated activation of the IE promoter in mouse neuroblastoma cells (Neuro-2A). More importantly, HCF-1-mediated GR activation of the promoter was dependent on the presence of GRE sites but independent of the TAATGARAT enhancer core element. HCF-1 was also recruited to the GRE region of a promoter lacking the enhancer core, consistent with a direct role of the coactivator in mediating GR-induced transcription. Similarly, during productive lytic infection, HCF-1 and GR occupied the IE region containing the GREs. These studies indicate HCF-1 is critical for GR activation of the viral IE genes and suggests that glucocorticoid induction of viral reactivation proceeds via an HCF-1-GR mechanism in the absence of the viral IE activator VP16.IMPORTANCE BoHV-1 transcription is rapidly activated during stress-induced reactivation from latency. The immediate early transcription unit 1 (IEtu1) promoter is regulated by the GR via two GREs. The IEtu1 promoter regulates expression of two viral transcriptional regulatory proteins, infected cell proteins 0 and 4 (bICP0 and bICP4), and thus must be stimulated during reactivation. This study demonstrates that activation of the IEtu1 promoter by the synthetic corticosteroid dexamethasone requires HCF-1. Interestingly, the GRE sites, but not the IE enhancer core element (TAATGARAT), were required for HCF-1-mediated GR promoter activation. The GR and HCF-1 were recruited to the IEtu1 promoter in transfected and infected cells. Collectively, these studies indicate that HCF-1 is critical for GR activation of the viral IE genes and suggest that an HCF-1-GR complex can stimulate the IEtu1 promoter in the absence of the viral IE activator VP16.
Collapse
Affiliation(s)
- Laximan Sawant
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| | - Insun Kook
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
| | - Jodi L Vogel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas M Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, Oklahoma, USA
| |
Collapse
|
20
|
Three newly identified Immediate Early Genes of Bovine herpesvirus 1 lack the characteristic Octamer binding motif- 1. Sci Rep 2018; 8:11441. [PMID: 30061689 PMCID: PMC6065388 DOI: 10.1038/s41598-018-29490-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Only three immediate early genes (IE) BICP0, BICP4 and BICP22 of Bovine herpesvirus 1 (BoHV-1) are known. These genes are expressed coordinately and their promoters are well characterized. We provide evidence for expression of three additional IE genes of BoHV-1 i.e. UL21, UL33 and UL34. These genes are expressed in the presence of cycloheximide (CH) at the same time as known IE genes. Surprisingly, the promoters of newly identified IE genes (UL21, UL33, UL34) lack the OCT-1 binding site, a considered site of transactivation of the BoHV-1 IE genes. The other difference in the promoters of the newly identified IE genes is the presence of TATA box at near optimal site. However, all the IE genes have similar spatial placements of C/EBPα, DPE and INR elements.
Collapse
|
21
|
Combinatorial Effects of the Glucocorticoid Receptor and Krüppel-Like Transcription Factor 15 on Bovine Herpesvirus 1 Transcription and Productive Infection. J Virol 2017; 91:JVI.00904-17. [PMID: 28794031 DOI: 10.1128/jvi.00904-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/04/2017] [Indexed: 12/11/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Latently infected calves consistently reactivate from latency following a single intravenous injection of the synthetic corticosteroid dexamethasone. The immediate early transcription unit 1 (IEtu1) promoter, which drives bovine ICP0 (bICP0) and bICP4 expression, is stimulated by dexamethasone because it contains two glucocorticoid receptor (GR) response elements (GREs). Several Krüppel-like transcription factors (KLF), including KLF15, are induced during reactivation from latency, and they stimulate certain viral promoters and productive infection. In this study, we demonstrate that the GR and KLF15 were frequently expressed in the same trigeminal ganglion (TG) neuron during reactivation and cooperatively stimulated productive infection and IEtu1 GREs in mouse neuroblastoma cells (Neuro-2A). We further hypothesized that additional regions in the BoHV-1 genome are transactivated by the GR or stress-induced transcription factors. To test this hypothesis, BoHV-1 DNA fragments (less than 400 bp) containing potential GR and KLF binding sites were identified and examined for transcriptional activation by stress-induced transcription factors. Intergenic regions within the unique long 52 gene (UL52; a component of the DNA primase/helicase complex), bICP4, IEtu2, and the unique short region were stimulated by KLF15 and the GR. Chromatin immunoprecipitation studies revealed that the GR and KLF15 interacted with sequences within IEtu1 GREs and the UL52 fragment. Coimmunoprecipitation studies demonstrated that KLF15 and the GR were associated with each other in transfected cells. Since the GR stimulates KLF15 expression, we suggest that these two transcription factors form a feed-forward loop that stimulates viral gene expression and productive infection following stressful stimuli.IMPORTANCE Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen that causes respiratory disease and suppresses immune responses in cattle; consequently, life-threatening bacterial pneumonia can occur. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons. Reactivation from latency is initiated by the synthetic corticosteroid dexamethasone. Dexamethasone stimulates lytic cycle viral gene expression in sensory neurons of calves latently infected with BoHV-1, culminating in virus shedding and transmission. Two stress-induced cellular transcription factors, Krüppel-like transcription factor 15 (KLF15) and the glucocorticoid receptor (GR), cooperate to stimulate productive infection and viral transcription. Additional studies demonstrated that KLF15 and the GR form a stable complex and that these stress-induced transcription factors bind to viral DNA sequences, which correlates with transcriptional activation. The ability of the GR and KLF15 to synergistically stimulate viral gene expression and productive infection may be critical for the ability of BoHV-1 to reactivate from latency following stressful stimuli.
Collapse
|
22
|
Zhu L, Thompson J, Ma F, Eudy J, Jones C. Effects of the synthetic corticosteroid dexamethasone on bovine herpesvirus 1 productive infection. Virology 2017; 505:71-79. [PMID: 28237765 DOI: 10.1016/j.virol.2017.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
Abstract
Sensory neurons are a primary site for life-long latency of bovine herpesvirus 1 (BoHV-1). The synthetic corticosteroid dexamethasone induces reactivation from latency and productive infection, in part because the BoHV-1 genome contains more than 100 glucocorticoid receptor (GR) responsive elements (GREs). Two GREs in the immediate early transcription unit 1 promoter are required for dexamethasone induction. Recent studies also demonstrated that the serum and glucocorticoid receptor protein kinase (SGK) family stimulated BoHV-1 replication. Consequently, we hypothesized that dexamethasone influences several aspects of productive infection. In this study, we demonstrated that dexamethasone increased expression of the immediate early protein bICP4, certain late transcripts, and UL23 (thymidine kinase) by four hours after infection. SGK1 expression and Akt phosphorylation were also stimulated during early stages of infection and dexamethasone treatment further increased this effect. These studies suggest that stress, as mimicked by dexamethasone treatment, has the potential to stimulate productive infection by multiple pathways.
Collapse
Affiliation(s)
- Liqian Zhu
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA; College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Jesse Thompson
- University of Nebraska, Nebraska Center for Virology, Morisson Life Science Center, Lincoln, NE 68583-09065, USA
| | - Fangrui Ma
- University of Nebraska, Nebraska Center for Virology, Morisson Life Science Center, Lincoln, NE 68583-09065, USA
| | - James Eudy
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA
| |
Collapse
|
23
|
Kook I, Jones C. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection. Virus Res 2016; 222:106-112. [PMID: 27297663 DOI: 10.1016/j.virusres.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
Abstract
Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli.
Collapse
Affiliation(s)
- Insun Kook
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morisson Life Science Center, RM234, Lincoln, NE 68583-09065, USA
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK 74078, USA.
| |
Collapse
|
24
|
Bovine Herpes Virus 1 Major Immediate Early Transcription Unit 1 (IETU-1) Uses Alternative Promoters to Transcribe BICP0 and BICP4 Transcripts. Curr Microbiol 2015; 72:420-5. [DOI: 10.1007/s00284-015-0961-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
25
|
Kook I, Henley C, Meyer F, Hoffmann FG, Jones C. Bovine herpesvirus 1 productive infection and immediate early transcription unit 1 promoter are stimulated by the synthetic corticosteroid dexamethasone. Virology 2015; 484:377-385. [PMID: 26226582 DOI: 10.1016/j.virol.2015.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 01/21/2023]
Abstract
The primary site for life-long latency of bovine herpesvirus 1 (BHV-1) is sensory neurons. The synthetic corticosteroid dexamethasone consistently induces reactivation from latency; however the mechanism by which corticosteroids mediate reactivation is unclear. In this study, we demonstrate for the first time that dexamethasone stimulates productive infection, in part, because the BHV-1 genome contains more than 100 potential glucocorticoid receptor (GR) response elements (GREs). Immediate early transcription unit 1 (IEtu1) promoter activity, but not IEtu2 or VP16 promoter activity, was stimulated by dexamethasone. Two near perfect consensus GREs located within the IEtu1 promoter were necessary for dexamethasone-mediated stimulation. Electrophoretic mobility shift assays and chromatin immunoprecipitation studies demonstrated that the GR interacts with IEtu1 promoter sequences containing the GREs. Although we hypothesize that DEX-mediated stimulation of IEtu1 promoter activity is important during productive infection and perhaps reactivation from latency, stress likely has pleiotropic effects on virus-infected cells.
Collapse
Affiliation(s)
- Insun Kook
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morisson Life Science Center, RM234, Lincoln, NE 68583-09065, USA
| | - Caitlin Henley
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Florencia Meyer
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Federico G Hoffmann
- Mississippi State University, Department of Biochemistry and Molecular Biology, Entomology and Plant Pathology, 408 Dorman Hall-Mailstop 9655, 32 Creelman St., Starkville, MS 39762, USA
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Morisson Life Science Center, RM234, Lincoln, NE 68583-09065, USA.
| |
Collapse
|
26
|
Stress-induced cellular transcription factors expressed in trigeminal ganglionic neurons stimulate the herpes simplex virus 1 ICP0 promoter. J Virol 2013; 87:13042-7. [PMID: 24027338 DOI: 10.1128/jvi.02476-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alphaherpesvirinae family members can reactivate from latency following stress. The synthetic corticosteroid dexamethasone induces certain cellular transcription factors in murine and bovine trigeminal ganglionic neurons. Three dexamethasone-induced transcription factors, Krüppel-like factor 15, Slug, and SPDEF, stimulated the herpes simplex virus type 1-infected cell protein 0 (ICP0) promoter more than 150-fold. Conversely, other viral promoters (VP16 and ICP4) were not strongly stimulated, suggesting that the ICP0 promoter is preferentially activated by dexamethasone-simulated stress.
Collapse
|
27
|
Abstract
Glycoprotein D (gD) and glycoprotein I (gI) genes of bovine herpes virus 1 (BHV1) are contiguous genes with 141 bp region between the two open reading frames (ORFs). Expression of gD and gI from a bicistronic construct containing complete gD and gI gene has been reported either through internal ribosome entry site (IRES)-like element or through the scanning and leakage model (Mukhopadhyay 2000). We here show by computational and experimental means that gD is expressed solely as bicistronic transcript comprising gD and gI coding region in BHV1-infected cells. gI ORF was also shown to express separately. An IRES-like element was also predicted by IRES predicting software in the middle of the gD coding region; within that region a putative promoter was also identified by promoterscan. The intergenic region between the two ORF showed extensive secondary structure which brings the stop codon of gD very close to start codon of gI gene. gD gene transcript in BHV1-infected cells was solely bicistronic. gI transcript was also present in the BHV1-infected cells but in low copy number. The results indicate that gI is probably transcribed from its own transcript in BHV1-infected cells.
Collapse
|
28
|
A protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 interacts with DNA. J Virol 2013; 87:5493-501. [PMID: 23468493 DOI: 10.1128/jvi.00193-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), like other members of the Alphaherpesvirinae subfamily, establishes latency in sensory neurons. The virally encoded latency-related RNA (LR-RNA) is expressed abundantly in latently infected sensory neurons and encodes several proteins, including ORF2. An LR mutant virus with stop codons at the amino terminus of ORF2 does not reactivate from latency after treatment with the synthetic corticosteroid dexamethasone, in part because it induces higher levels of apoptosis during the establishment of latency. ORF2 inhibits apoptosis, interacts with three cellular transcription factors (Notch1, Notch3, and C/EBP-α), and interferes with Notch-mediated signaling. Consequently, we predict that ORF2 expression is crucial for the latency reactivation cycle in cattle. In this study, we tested whether ORF2 interacts with nucleic acids, because it contains 18% basic amino acids and localizes to the nucleus. A subset of ORF2 proteins was associated with chromatin and preferentially associated with single-stranded DNA in transfected neuroblastoma cells (Neuro-2A). Alanine substitution of serine, threonine, and tyrosine residues in ORF2 increased the steady-state protein levels in Neuro-2A cells, and this protein preferentially interacted with double-stranded DNA. Certain in-frame transposon insertion mutants did not interact with DNA as efficiently as wild-type (wt) ORF2 did. ORF2 purified from bacteria under denaturing conditions preferentially interacted with double-stranded DNA, suggesting that the interaction between ORF2 and DNA was direct. In contrast, ORF2 purified under native conditions preferentially interacted with single-stranded DNA. We suggest that interactions between ORF2 and DNA mediate certain aspects of the latency reactivation cycle.
Collapse
|
29
|
Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters. J Virol 2011; 86:2459-73. [PMID: 22190728 DOI: 10.1128/jvi.06143-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.
Collapse
|
30
|
Jones C, da Silva LF, Sinani D. Regulation of the latency-reactivation cycle by products encoded by the bovine herpesvirus 1 (BHV-1) latency-related gene. J Neurovirol 2011; 17:535-45. [PMID: 22139602 DOI: 10.1007/s13365-011-0060-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 01/04/2023]
Abstract
Like other α-herpesvirinae subfamily members, the primary site for bovine herpesvirus 1 (BHV-1) latency is ganglionic sensory neurons. Periodically BHV-1 reactivates from latency, virus is shed, and consequently virus transmission occurs. Transcription from the latency-related (LR) gene is readily detected in neurons of trigeminal ganglia (TG) of calves or rabbits latently infected with BHV-1. Two micro-RNAs and a transcript encompassing a small open reading frame (ORF-E) located within the LR promoter can also be detected in TG of latently infected calves. A BHV-1 mutant that contains stop codons near the beginning of the first open reading frame (ORF2) within the major LR transcript (LR mutant virus) has been characterized. The LR mutant virus does not express ORF2, a reading frame that lacks an initiating ATG (reading frame B), and has reduced expression of ORF1 during productive infection. The LR mutant virus does not reactivate from latency following dexamethasone treatment suggesting that LR protein expression regulates the latency-reactivation cycle. Higher levels of apoptosis occur in TG neurons of calves infected with the LR mutant viruses when compared to wild-type BHV-1 indicating that the anti-apoptotic properties of the LR gene is necessary for the latency-reactivation cycle. ORF2 inhibits apoptosis and regulates certain viral promoters, in part, because it interacts with three cellular transcription factors (C/EBP-alpha, Notch1, and Notch3). Although ORF2 is important for the latency-reactivation cycle, we predict that other LR gene products play a supportive role during life-long latency in cattle.
Collapse
Affiliation(s)
- Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, RM 234, Morisson Life Science Center, Lincoln, NE 68583, USA.
| | | | | |
Collapse
|
31
|
da Silva LF, Jones C. Infection of cultured bovine cells with bovine herpesvirus 1 (BHV-1) or Sendai virus induces different beta interferon subtypes. Virus Res 2011; 157:54-60. [PMID: 21316405 PMCID: PMC3078687 DOI: 10.1016/j.virusres.2011.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 12/21/2022]
Abstract
In contrast to mice or humans, cattle contain three beta interferon (IFN-β) genes with distinct transcriptional promoters suggesting IFN-β gene expression is not stimulated the same by different viruses. To test this hypothesis, we compared expression of the three IFN-β subtypes after infection with a RNA virus, Sendai, versus a large DNA virus, bovine herpesvirus 1 (BHV-1). Infection of low passage bovine kidney (BK) or established bovine kidney cells (CRIB) with Sendai virus has consistently led to high levels of IFN-β1 RNA. Conversely, infection of CRIB cells, but not BK cells, with BHV-1 increased IFN-β3 RNA levels and to a lesser extent the other two IFN-β subtypes. Inhibition of de novo protein synthesis with cycloheximide resulted in higher levels of IFN-β1 and IFN-β2 RNA levels after BHV-1 infection. Further studies demonstrated that BHV-1 immediate early and/or early genes were primarily responsible for inhibiting the IFN response in BK cells. The three bovine IFN-β promoters were cloned upstream of a reporter gene construct, and their properties analyzed in transient transfection assays. Only the IFN-β3 promoter was trans-activated by IRF3 (interferon responsive factor 3). IRF7 and double stranded RNA (polyI:C) stimulated IFN-β1 and IFN-β3 promoter activity, but not IFN-β2. Relative to the human IFN-β promoter, the IFN-β3 promoter contained fewer nucleotide differences in the positive regulatory domain III (PRD III), PRD IV, and PRD I compared to the IFN-β1 and IFN-β2 promoter. Collectively, these studies provide evidence that virus infection differentially stimulates expression of the three bovine IFN-β genes.
Collapse
Affiliation(s)
- Leticia Frizzo da Silva
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905, Phone: (402) 472-1890, FAX: (402) 472-9690
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905, Phone: (402) 472-1890, FAX: (402) 472-9690
| |
Collapse
|
32
|
Workman A, Sinani D, Pittayakhajonwut D, Jones C. A protein (ORF2) encoded by the latency-related gene of bovine herpesvirus 1 interacts with Notch1 and Notch3. J Virol 2011; 85:2536-46. [PMID: 21191019 PMCID: PMC3067920 DOI: 10.1128/jvi.01937-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 12/17/2010] [Indexed: 12/12/2022] Open
Abstract
Like other Alphaherpesvirinae subfamily members, bovine herpesvirus 1 (BHV-1) establishes latency in sensory neurons. The latency-related RNA (LR-RNA) is abundantly expressed in latently infected sensory neurons. An LR mutant virus with stop codons at the amino terminus of the first open reading frame (ORF) in the LR gene (ORF2) does not reactivate from latency, in part because it induces higher levels of apoptosis in infected neurons. ORF2 is not the only viral product expressed during latency, but it is important for the latency reactivation cycle because it inhibits apoptosis. In this study, a yeast 2-hybrid screen revealed that ORF2 interacted with two cellular transcription factors, Notch1 and Notch3. These interactions were confirmed in mouse neuroblastoma cells by confocal microscopy and in an in vitro "pulldown" assay. During reactivation from latency, Notch3 RNA levels in trigeminal ganglia were higher than those during latency, suggesting that Notch family members promote reactivation from latency or that reactivation promotes Notch expression. A plasmid expressing the Notch1 intercellular domain (ICD) stimulated productive infection and promoters that encode the viral transcription factor bICP0. The Notch3 ICD did not stimulate productive infection as efficiently as the Notch1 ICD and had no effect on bICP0 promoter activity. Plasmids expressing the Notch1 ICD or the Notch3 ICD trans-activated a late promoter encoding glycoprotein C. ORF2 reduced the trans-activation potential of Notch1 and Notch3, suggesting that ORF2 interfered with the trans-activation potential of Notch. These studies provide evidence that ORF2, in addition to inhibiting apoptosis, has the potential to promote establishment and maintenance of latency by sequestering cellular transcription factors.
Collapse
Affiliation(s)
- Aspen Workman
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Devis Sinani
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Daraporn Pittayakhajonwut
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| | - Clinton Jones
- School of Biological Sciences, School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Morisson Life Science Center, Rm. 234, Lincoln, Nebraska 68583-0900
| |
Collapse
|
33
|
Xiang J, Zhang S, Cheng A, Wang M, Chang H, Shen C, Zhu D, Jia R, Luo Q, Chen Z, Chen X. Expression and characterization of recombinant VP19c protein and N-terminal from duck enteritis virus. Virol J 2011; 8:82. [PMID: 21349183 PMCID: PMC3050827 DOI: 10.1186/1743-422x-8-82] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/24/2011] [Indexed: 11/10/2022] Open
Abstract
Background Previous studies have indicated that the VP19c protein and its homology play similar roles in capsid assembly of all Alphaherpesvirus subfamily. However, there is no report on the VP19c protein of duck enteritis virus (DEV). In this study, we expressed the DEV VP19c protein and presented its antigenic properties. Moreover, we developed polyclonal antibody against the VP19c protein and characterized it. Methods A recombinant VP19c (rVP19c) and N-terminal were expressed in Escherichia coli (E.coli) and purified by Ni2+-affinity chromatography. The antigenic properties of the recombinant protein were determined by Western blot and indirect enzyme-linked immunosorbent assay (ELISA). Furthermore, the polyclonal antibodies against the purified recombinant proteins were produced and the titer of polyclonal antibody was determined by ELISA analysis. Finally, the antibody was used to recognize the VP19c in the cells infected with DEV in the immunofluorescence assay. Results The N-terminally His-tagged rVP19c and rVP19c(N) were produced as inclusion bodies in E. coli strain BL21 (DE3) with molecular weight of about 66 and 46 kDa. Then the proteins were purified to reach the level of homogeneity. Western blot and ELISA analysis that the rVP19c seems to be structurally and antigenically very similar to native VP19c and the N-terminus of VP19c may contain most antigenic linear-epitopes. Furthermore, ELISA analysis demonstrated that the titer of polyclonal antibody was approximately 1:12800, and in the immunofluorescence assay, the antibody was able to recognize the VP19c in the cells infected with DEV. Conclusions To our knowledge, this was the first report on basic properties of DEV VP19c protein. In the present study, we obtained a high-level expression of the recombinant VP19c protein as well as high titers of rabbit polyclonal antibody against to VP19c protein. The anti-rVP19c serum was able to detect the VP19c protein in DEV infected cells and the VP19c protein targeted to the nucleus as distinct punctate speckles. This specific polyclonal antibody provides a good tool for further studying structural and functional characterization of DEV VP19c.
Collapse
Affiliation(s)
- Jun Xiang
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University,Ya'an, Sichuan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Workman A, Jones C. Productive infection and bICP0 early promoter activity of bovine herpesvirus 1 are stimulated by E2F1. J Virol 2010; 84:6308-17. [PMID: 20410283 PMCID: PMC2903271 DOI: 10.1128/jvi.00321-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/10/2010] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) is an important viral pathogen of cattle. Like other members of the subfamily Alphaherpesvirinae, BoHV-1 establishes latency in sensory neurons and has the potential to reactivate from latency. Dexamethasone (DEX) treatment of latently infected calves or rabbits consistently leads to reactivation from latency. The BoHV-1 transcript encoding the infected cell protein 0 (bICP0) is consistently detected during reactivation from latency, in part because the bICP0 early promoter is activated by DEX. During DEX-induced reactivation from latency, cyclin expression is stimulated in infected sensory neurons. Cyclin-dependent kinase activity phosphorylates Rb (retinoblastoma tumor suppressor gene product) family proteins and consequently releases the E2F family of transcription factors, suggesting that E2F family members stimulate productive infection and/or reactivation from latency. In this study, we provide evidence that repression of E2F1 by a specific small interfering RNA (siRNA) reduced productive infection approximately 5-fold. E2F1 or E2F2 stimulated bICP0 early promoter activity at least 100-fold in transient transfection assays. Two E2F-responsive regions (ERR) were identified within the early promoter, with one adjacent to the TATA box (ERR1) and one approximately 600 bp upstream from the TATA box (ERR2). Mobility shift assays suggested that E2F interacts with ERR1 and ERR2. E2F1 protein levels were increased at late times after infection, which correlated with enhanced binding to a consensus E2F binding site, ERR1, or ERR2. Collectively, these studies suggest that E2F1 stimulates productive infection and bICP0 early promoter activity, in part because E2F family members interact with ERR1 and ERR2.
Collapse
Affiliation(s)
- Aspen Workman
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Fair Street at East Campus Loop, Lincoln, Nebraska 68583-0905
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln Fair Street at East Campus Loop, Lincoln, Nebraska 68583-0905
| |
Collapse
|
35
|
Jaber T, Workman A, Jones C. Small noncoding RNAs encoded within the bovine herpesvirus 1 latency-related gene can reduce steady-state levels of infected cell protein 0 (bICP0). J Virol 2010; 84:6297-307. [PMID: 20410286 PMCID: PMC2903259 DOI: 10.1128/jvi.02639-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/30/2010] [Indexed: 01/02/2023] Open
Abstract
Following acute infection in mucosal epithelium, bovine herpes virus 1 (BHV-1) establishes lifelong latency in sensory neurons within trigeminal ganglia. The latency-related RNA (LR-RNA) is abundantly expressed in sensory neurons of latently infected calves. Expression of LR proteins is necessary for the latency reactivation cycle because a mutant virus that does not express LR proteins is unable to reactivate from latency after dexamethasone treatment. LR-RNA sequences also inhibit bICP0 expression, productive infection, and cell growth. However, it is unclear how LR-RNA mediates these functions. In this study, we identified a 463-bp region within the LR gene (the XbaI-PstI [XP] fragment) that inhibited bICP0 protein and RNA expression in transiently transfected mouse neuroblastoma cells. Small noncoding RNAs (sncRNAs) encoded within the XP fragment (20 to 90 nucleotides in length) were detected in transiently transfected mouse neuroblastoma cells. Two families of sncRNAs were cloned from this region, and each family was predicted to contain a mature microRNA (miRNA). Both miRNAs were predicted to base pair with bICP0 mRNA sequences, suggesting that they reduce bICP0 levels. To test this prediction, sequences encompassing the respective sncRNAs and mature miRNAs were synthesized and cloned into a small interfering RNA expression vector. Both sncRNA families and their respective miRNAs inhibited bICP0 protein expression in mouse neuroblastoma cells and productive infection in bovine cells. In trigeminal ganglia of latently infected calves, an sncRNA that migrated between nucleotides 20 and 25 hybridized to the XP fragment. During dexamethasone-induced reactivation from latency, XP-specific sncRNA levels were reduced, suggesting that these sncRNAs support the establishment and maintenance of lifelong latency in cattle.
Collapse
Affiliation(s)
- Tareq Jaber
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Aspen Workman
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| | - Clinton Jones
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, School of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503
| |
Collapse
|
36
|
Ding Q, Guo H, Lin F, Pan W, Ye B, Zheng AC. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res 2010; 149:95-103. [PMID: 20109505 DOI: 10.1016/j.virusres.2010.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 11/16/2022]
Abstract
In previous study, we have identified a nuclear localization signal (NLS) and a nucleolar localization signal (NoLS) in bovine herpesvirus-1 (BHV-1) infected cell protein 27 (BICP27), which targets predominantly to the nucleolus. Furthermore, the C-terminal 300 amino acid residues targets exclusively to the cytoplasm, suggesting that BICP27 might contain a nuclear export signal (NES). Amino acid sequence analysis revealed that there is a cluster of leucine-rich residues resembling a NES. Heterokaryon assays demonstrated that BICP27 is capable of shuttling between the nucleus and the cytoplasm of the BHV-1 infected, BICP27 and BICP27-EYFP transfected cells. Deletion mutant analysis revealed that this property is attributed to the leucine-rich NES 299LEELCAARRLSL310. Moreover, the functional NES could mediate transport of a monomer EYFP and a dimer EYFP to the cytoplasm. The nucleocytoplasmic shuttling of BICP27 and the nuclear export of NES-EYFP and NES-dEYFP could be blocked by leptomycin LMB, an inhibitor of the chromosomal region maintenance 1 (CRM1), which is the receptor for exportin-1-dependent nuclear export. In addition, the nuclear import of BICP27 was inhibited by a dominant negative Ran-GTP, namely Ran-GTP Q69L, indicating that BICP27 localized to the nucleus by means of a classic Ran dependent nuclear import mechanism. In conclusion, these results demonstrate that BICP27 shuttles between the nucleus and the cytoplasm by the functional NES and NLS through a CRM1-dependent nuclear export pathway and a Ran dependent nuclear import pathway.
Collapse
Affiliation(s)
- Qiong Ding
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Jones C. Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0). Viruses 2009; 1:255-75. [PMID: 21994549 PMCID: PMC3185490 DOI: 10.3390/v1020255] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/24/2009] [Accepted: 09/02/2009] [Indexed: 01/12/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle.
Collapse
Affiliation(s)
- Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Fair Street at East Campus Loop, Lincoln, NE, 68583-0905, USA; E-mail: ; Tel.: +1 (402) 472-1890
| |
Collapse
|
38
|
Guo H, Ding Q, Lin F, Pan W, Lin J, Zheng AC. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res 2009; 145:312-20. [PMID: 19682510 PMCID: PMC7125963 DOI: 10.1016/j.virusres.2009.07.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 11/19/2022]
Abstract
Bovine herpesvirus-1 infected cell protein 27 (BICP27) was detected predominantly in the nucleolus. The open reading frame of BICP27 was fused with the enhanced yellow fluorescent protein (EYFP) gene to investigate its subcellular localization in live cells and BICP27 was able to direct monomeric, dimeric or trimeric EYFP exclusively to the nucleolus. By constructing a series of deletion mutants, the putative nuclear localization signal (NLS) and nucleolar localization signal (NoLS) were mapped to (81)RRAR(84) and (86)RPRRPRRRPRRR(97) respectively. Specific deletion of the putative NLS, NoLS or both abrogated nuclear localization, nucleolar localization or both respectively. Furthermore, NLS was able to direct trimeric EYFP predominantly to the nucleus but excluded from the nucleolus, whereas NoLS targeted trimeric EYFP primarily to the nucleus, and enriched in the nucleolus with faint staining in the cytoplasm. NLS+NoLS directed trimeric EYFP predominantly to the nucleolus with faint staining in the nucleus. Moreover, deletion of NLS+NoLS abolished the transactivating activity of BICP27 on gC promoter, whereas deletion of either NLS or NoLS did not. The study demonstrated that BICP27 is a nucleolar protein, adding BICP27 to the growing list of transactivators which localize to the nucleolus.
Collapse
Affiliation(s)
- Hong Guo
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
| | - Qiong Ding
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
| | - Fusen Lin
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
| | - Weiwei Pan
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
| | - Jianyin Lin
- Department of Molecular Medicine, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, PR China
| | - Alan C. Zheng
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiaohongshan, Wuchang, Wuhan, Hubei 430071, PR China
- Corresponding author. Tel.: +86 27 8719 8676; fax: +86 27 8719 8676.
| |
Collapse
|
39
|
Meyer F, Jones C. The cellular transcription factor, CCAAT enhancer-binding protein alpha (C/EBP-alpha), has the potential to activate the bovine herpesvirus 1 immediate-early transcription unit 1 promoter. J Neurovirol 2009; 15:123-30. [PMID: 19115128 DOI: 10.1080/13550280802534771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Following acute infection, bovine herpesvirus-1 (BHV-1) establishes a lifelong latent infection in sensory neurons of trigeminal ganglia. BHV-1 periodically reactivates from latency and is shed as infectious virus. The latency-related (LR) gene is abundantly expressed in trigeminal ganglia of infected calves, and proteins encoded by the LR gene are necessary for reactivation from latency. We previously demonstrated that a novel LR protein interacts with a host transcription factor, CCAAT enhancer-binding protein alpha (C/EBPalpha). C/EBPalpha increases plaque-forming efficiency when cotransfected with BHV-1 DNA and its expression is induced in neurons during reactivation from latency (Meyer et al, 2007, J Virol 81: 59-67). The ability of C/EBPalpha to bind DNA is necessary for stimulating productive infection, suggesting C/EBPalpha stimulates viral transcription. We tested whether C/EBPalpha could trans-activate the BHV-1 immediate early transcription unit 1 (IEtu1) promoter because the IEtu1 promoter activates expression of two viral genes (bICP0 and bICP4) that stimulate producitve infection. In the current study, We demonstrate that C/EBPalpha and the BHV-1 trans-inducing factor (bTIF) synergistically trans-activate IEtu1 promoter activity. However, bICP0 and C/EBPalpha did not synergistically trans-activate IEtu1 promoter activity. Deletion of IEtu1 promoter sequences demonstrated that C/EBPalpha by itself could trans-activate a truncated IEtu1 promoter, suggesting sequences in the distal region of the IEtu1 promoter negatively regulate C/EBPalpha activtiy. These studies suggest that C/EBPalpha stimulates productive infection and reactivation from latency, in part, by cooperating with bTIF to activate IEtu1 promoter activity.
Collapse
Affiliation(s)
- Florencia Meyer
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska 68503, USA
| | | |
Collapse
|
40
|
Dexamethasone treatment of calves latently infected with bovine herpesvirus 1 leads to activation of the bICP0 early promoter, in part by the cellular transcription factor C/EBP-alpha. J Virol 2009; 83:8800-9. [PMID: 19553330 DOI: 10.1128/jvi.01009-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sensory neurons within trigeminal ganglia (TG) are the primary site for bovine herpesvirus 1 (BHV-1) latency. During latency, viral gene expression is restricted to the latency-related (LR) gene and the open reading frame ORF-E. We previously constructed an LR mutant virus that expresses LR RNA but not any of the known LR proteins. In contrast to calves latently infected with wild-type (wt) BHV-1 or the LR rescued virus, the LR mutant virus does not reactivate from latency following dexamethasone (DEX) treatment. In this study, we demonstrated that bICP0, but not bICP4, transcripts were consistently detected in TG of calves infected with the LR mutant or LR rescued virus following DEX treatment. Calves latently infected with the LR rescued virus but not the LR mutant virus expressed late transcripts, which correlated with shedding of infectious virus following DEX treatment. The bICP4 and bICP0 genes share a common immediate-early promoter, suggesting that this promoter was not consistently activated during DEX-induced reactivation from latency. The bICP0 gene also contains a novel early promoter that was activated by DEX in mouse neuroblastoma cells. Expression of a cellular transcription factor, C/EBP-alpha, was stimulated by DEX, and C/EBP-alpha expression was necessary for DEX induction of bICP0 early promoter activity. C/EBP-alpha directly interacted with bICP0 early promoter sequences that were necessary for trans activation by C/EBP-alpha. In summary, DEX treatment of latently infected calves induced cellular factors that stimulated bICP0 early promoter activity. Activation of bICP0 early promoter activity does not necessarily lead to late gene expression and virus shedding.
Collapse
|
41
|
Muylkens B, Thiry J, Kirten P, Schynts F, Thiry E. Bovine herpesvirus 1 infection and infectious bovine rhinotracheitis. Vet Res 2007; 38:181-209. [PMID: 17257569 DOI: 10.1051/vetres:2006059] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/15/2006] [Indexed: 12/12/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), classified as an alphaherpesvirus, is a major pathogen of cattle. Primary infection is accompanied by various clinical manifestations such as infectious bovine rhinotracheitis, abortion, infectious pustular vulvovaginitis, and systemic infection in neonates. When animals survive, a life-long latent infection is established in nervous sensory ganglia. Several reactivation stimuli can lead to viral re-excretion, which is responsible for the maintenance of BoHV-1 within a cattle herd. This paper focuses on an updated pathogenesis based on a molecular characterization of BoHV-1 and the description of the virus cycle. Special emphasis is accorded to the impact of the latency and reactivation cycle on the epidemiology and the control of BoHV-1. Several European countries have initiated BoHV-1 eradication schemes because of the significant losses incurred by disease and trading restrictions. The vaccines used against BoHV-1 are described in this context where the differentiation of infected from vaccinated animals is of critical importance to achieve BoHV-1 eradication.
Collapse
Affiliation(s)
- Benoît Muylkens
- Virology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Boulevard de Colonster 20, B43b, 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
42
|
Zhang Y, Jiang Y, Geiser V, Zhou J, Jones C. Bovine herpesvirus 1 immediate-early protein (bICP0) interacts with the histone acetyltransferase p300, which stimulates productive infection and gC promoter activity. J Gen Virol 2006; 87:1843-1851. [PMID: 16760386 DOI: 10.1099/vir.0.81766-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The immediate-early protein, bICP0, ofBovine herpesvirus 1(BHV-1) transactivates viral promoters and stimulates productive infection. bICP0 is expressed constitutively during productive infection, as its gene contains an immediate-early and an early promoter. Like other ICP0 homologues encoded by members of the subfamilyAlphaherpesvirinae, bICP0 contains a zinc RING finger located near its N terminus. Mutations that disrupt the bICP0 zinc RING finger impair its ability to activate transcription, stimulate productive infection, inhibit interferon-dependent transcription in certain cell types and regulate subnuclear localization. bICP0 also interacts with a cellular chromatin-remodelling enzyme, histone deacetylase 1 (HDAC1), and can relieve HDAC1-mediated transcriptional repression, suggesting that bICP0 inhibits silencing of the viral genome. In this study, it was shown that bICP0 interacted with the histone acetyltransferase p300 during productive infection and in transiently transfected cells. In addition, p300 enhanced BHV-1 productive infection and transactivated a late viral promoter (gC). In contrast, a CH3-domain deletion mutant of p300, which is a dominant-negative mutant, did not activate the gC promoter. bICP0 and p300 cooperated to activate the gC promoter, suggesting that there is a synergistic effect on promoter activation. As p300 can activate certain antiviral signalling pathways (for example, interferon), it was hypothesized that interactions between p300 and bICP0 may dampen the antiviral response following infection.
Collapse
Affiliation(s)
- Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yunquan Jiang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Vicki Geiser
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Joe Zhou
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
43
|
Taylor JL, Bennett HN, Snyder BA, Moore PS, Chang Y. Transcriptional analysis of latent and inducible Kaposi's sarcoma-associated herpesvirus transcripts in the K4 to K7 region. J Virol 2006; 79:15099-106. [PMID: 16306581 PMCID: PMC1315995 DOI: 10.1128/jvi.79.24.15099-15106.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gamma-2 herpesvirus with a genome containing a long unique coding region (LUR) flanked by GC-rich terminal repeat sequences. The LUR encodes approximately 90 annotated open reading frames (ORFs) with complex patterns of gene expression during viral latency, reactivation, and de novo infection. To identify unannotated KSHV genes, we examined the region between 21,500 and 30,000 bp of the KSHV LUR, representing approximately 8.5 kb of sequence. This region encodes seven known single-exon ORFs (K4, K4.1, K4.2, K5, K6, K7, and PAN), but previous computer analyses have failed to identify additional likely genes in the remaining 5.2 kb. We identified four novel transcripts using Northern blotting, phage library screening, and 5' rapid amplification of cDNA ends analysis in the region between ORFs K4.2 and K7. In vitro analysis of KSHV-infected primary effusion lymphoma cell lines in the presence of 12-O-tetradecanoylphorbol-13-acetate and phosphonoformic acid suggests that one latent transcript is coterminal with the previously annotated K3 gene encoding an ubiquitin-ligase known to downregulate major histocompatibility complex class I expression. This alternatively spliced transcript may contribute to KSHV adaptive immune evasion during latent infection. Other transcripts are inducible, including a 6.1-kb transcript that is the largest transcript found in the KSHV genome to date.
Collapse
Affiliation(s)
- Jennifer L Taylor
- Hillman Cancer Center, Molecular Virology Program, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 1.8, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
44
|
Geiser V, Zhang Y, Jones C. Analysis of a bovine herpesvirus 1 recombinant virus that does not express the bICP0 protein. J Gen Virol 2005; 86:1987-1996. [PMID: 15958678 DOI: 10.1099/vir.0.80921-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bovine herpesvirus 1 (BHV-1) infected-cell protein 0 (bICP0) stimulates productive infection by activating viral gene expression. In this study, an attempt was made to construct a recombinant virus with point mutations in the C3HC4zinc RING finger of bICP0, as this domain is necessary for activating viral transcription and productive infection. A virus was identified in bovine cells that induced small clusters of infected cells resembling a small plaque. Instead of the expected mutations within the zinc RING finger, this virus contained a point mutation within the initiating ATG of bICP0, a point mutation two bases downstream from the ATG mutation and deletion of flanking plasmid sequences used for homologous recombination. The bICP0 mutant was rescued with wild-type (wt) bICP0 sequences and the bICP0-rescued virus produced wt plaques. The bICP0-rescued virus and wt BHV-1, but not the mutant, expressed the bICP0 protein during productive infection of bovine cells, suggesting that the mutant virus was a null mutant. Consequently, the mutant was designated the bICP0 null mutant. Infection of bovine cells with the bICP0 null mutant resulted in at least 100-fold lower virus titres, indicating that bICP0 protein expression is important, but not required, for virus production. When bovine cells infected with the bICP0 null mutant virus were subcultured, the cells continued to divide, but viral DNA could be detected after more than 35 passages, suggesting that the bICP0 null mutant induced a persistent-like infection in bovine cells and that it may be useful for generating additional bICP0 mutants.
Collapse
Affiliation(s)
- V Geiser
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Y Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - C Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
45
|
Yazici Z, Baskin Y, Baskin H, Gecer O, Bahar IH, Ozkul A. Study of programmed cell death in bovine herpesvirus 1 infected MDBK cells and the possible role of nitric oxide in this process. Acta Vet Hung 2004; 52:287-97. [PMID: 15379444 DOI: 10.1556/avet.52.2004.3.5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) is the aetiological agent of many disease types and may predispose infected animals, possibly through immunosuppression, to secondary bacterial infections. Immunosuppression may directly be associated with the induction of programmed cell death (PCD) in some virus-infected cells. Nitric oxide (NO) has an important mediating role against fungal, bacterial, protozoal, viral pathogens and tumours. BHV-1 induced apoptosis between 0.5-3 h postinfection (PI) in MDBK cells; however, between 3 and 6 h PI the PCD response was found to be decreased. It was interesting to see that BHV-I inhibited staurosporin-induced PCD after 1 h. These results showed similarities with those obtained from herpes simplex type I infections in human epithelial cells. PCD response decreased 1 h following caspase-3 inhibitor applications, whereas NO response increased 3 h following infection in the presence of caspase-8 and -9 inhibitory peptides. In conclusion, BHV-1 inhibited the staurosporin-induced apoptotic response and also the NO response. We propose that this inhibition is caspase-3 dependent.
Collapse
Affiliation(s)
- Z Yazici
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Kurupelit, Samsun, Turkey
| | | | | | | | | | | |
Collapse
|
46
|
Henderson G, Zhang Y, Inman M, Jones D, Jones C. Infected cell protein 0 encoded by bovine herpesvirus 1 can activate caspase 3 when overexpressed in transfected cells. J Gen Virol 2004; 85:3511-3516. [PMID: 15557224 DOI: 10.1099/vir.0.80371-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection of cattle or bovine cells with bovine herpesvirus 1 (BHV-1) leads to increased apoptosis. Previous studies indicated that BHV-1 infected cell protein 0 (bICP0), the major transcriptional regulatory protein of BHV-1, is toxic in transiently transfected cells. Point mutations within the zinc RING finger of bICP0 reduced toxicity and eliminated the ability of bICP0 to activate viral gene expression. In mouse neuroblastoma cells (neuro-2A) and bovine turbinate cells, bICP0 activated caspase 3, a key regulatory protein in the apoptotic pathway. A pro-apoptotic gene (Bax), but not bICP0, induced caspase 3 cleavage and activation by 8 h after transfection of neuro-2A cells. Conversely, bICP0 or the N-terminal 356 aa of bICP0 did not induce caspase 3 cleavage in neuro-2A cells until 30 h after transfection, suggesting that bICP0 stimulates caspase 3 cleavage by an indirect mechanism. These studies indicate that the toxic functions of bICP0 correlate with caspase 3 cleavage and activation.
Collapse
Affiliation(s)
- Gail Henderson
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Yange Zhang
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Melissa Inman
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Dallas Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68503, USA
| |
Collapse
|
47
|
König P, Beer M, Makoschey B, Teifke JP, Polster U, Giesow K, Keil GM. Recombinant virus-expressed bovine cytokines do not improve efficacy of a bovine herpesvirus 1 marker vaccine strain. Vaccine 2004; 22:202-12. [PMID: 14615147 DOI: 10.1016/s0264-410x(03)00565-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytokines play a key role as regulators of the immune response. To elucidate whether the efficacy of a live virus vaccine can be improved by co-expression of cytokines, expression cassettes for bovine interleukins (boIL)-2, -4, -6, and -12 and bovine interferon-gamma (boIFN-gamma) were integrated into the glycoprotein E (gE)-locus of the bovine herpesvirus 1 (BHV-1) vaccine virus strain GK/D. Cell culture analyses demonstrated that expression of the cytokines did not impair the replication of the recombinant viruses. To test safety and efficacy, groups of 4-6 months old BHV-1 seronegative calves were vaccinated intranasally with the parental virus strain GK/D or the recombinants, and challenged intranasally 3 weeks later with virulent BHV-1. The animals were monitored for clinical signs, virus excretion and antibody status after vaccination and challenge. All vaccines were well tolerated and protected the immunised calves from clinical disease following challenge, and reduced duration and titres of challenge virus shedding. Calves inoculated with the boIL-6, boIL-12 and boIFN-gamma expressing recombinants showed a significant reduction in vaccine virus shedding but secreted more challenge virus than the other vaccinees. These findings indicate that expression of these cytokines mediates a better control of the vaccine virus replication which, however, interferes with the immunogenicity of the vaccine. In summary, all recombinant viruses were safe and effective, but protection afforded by the recombinants was not improved as compared to vaccination with the parental virus strain GK/D.
Collapse
Affiliation(s)
- Patricia König
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, 17493 Greifswald-Insel, Riems, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Devireddy LR, Zhang Y, Jones CJ. Cloning and initial characterization of an alternatively spliced transcript encoded by the bovine herpes virus 1 latency-related gene. J Neurovirol 2004; 9:612-22. [PMID: 14602574 DOI: 10.1080/13550280390247542] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Bovine herpesvirus 1 (BHV-1) establishes latency in trigeminal ganglionic sensory neurons of infected cattle. The latency-related (LR) RNA is the only abundantly expressed viral transcript in sensory neurons of latently infected calves. Wild-type expression of LR gene products is required for the latency-reactivation cycle in calves. LR RNA is alternatively spliced in trigeminal ganglia (TG) after infection of calves, suggesting that these alternatively spliced transcripts encode novel factors that regulate specific steps during latency. To begin testing whether these alternatively spliced transcripts have novel functions, the authors cloned a full-length cDNA identified in TG of calves at 7 days post infection (dpi) and compared the functions of this cDNA to the intact LR gene. As a result of splicing, the 7 dpi cDNA contains a novel open reading (ORF) comprised of OFR-2 fused to ORF-1. Overexpression of the 7 dpi cDNA inhibited the BHV-1 immediate-early transcription unit 1 (IEtu1) promoter and the herpes simplex virus type 1 ICP0 promoter. Conversely, the 7 dpi cDNA stimulated the LR promoter in transiently transfected cells. A plasmid containing the LR gene had little effect on IEtu1 or LR promoter activity, indicating that the 7 dpi cDNA has novel functions.
Collapse
Affiliation(s)
- Laxminarayana R Devireddy
- Department of Veterinary and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | |
Collapse
|
49
|
De Martino L, Marfé G, Di Stefano C, Pagnini U, Florio S, Crispino L, Iovane G, Macaluso M, Giordano A. Interference of bovine herpesvirus 1 (BHV-1) in sorbitol-Induced apoptosis. J Cell Biochem 2003; 89:373-80. [PMID: 12704800 DOI: 10.1002/jcb.10518] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to determine the ability of bovine herpesvirus type 1 (BHV-1) to suppress apoptosis, we examined the effects of BHV-1 infection on sorbitol-induced apoptosis on Madin-Darby bovine kidney (MDBK) cells. BHV-1 suppresses sorbitol-induced apoptosis in a manner similar to that of herpes simplex virus type 1 (HSV-1), indicating that BHV-1 has one or more anti-apoptotic genes. To elucidate the molecular mechanisms of apoptosis, expression of some genes encoding apoptosis-inhibiting and -promoting factors were analyzed on BHV-1 infected cells during the process of sorbitol-induced apoptosis. Our results revealed that the expression of bcl-2 and bcl-x(L) decreased after 5 and 3 h p.i., respectively; while bax and procaspase-3 expression increased with respect to control as a function of p.i. times and at 7 h p.i. they were not observed. We further show that the expression of p53 gene was also enhanced, suggesting that this apoptotic mechanism is p53 dependent. From these results, we propose that BHV-1 has one or more genes encoding apoptosis-inhibiting factors which interfere with the involvement of bcl-2 gene family members and apoptotic pathway, depending upon caspase-3, triggered by sorbitol.
Collapse
Affiliation(s)
- L De Martino
- Department of Pathology and Animal Health, School of Veterinary Medicine, University of Naples Federico II, 80137 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Geiser V, Jones C. Stimulation of bovine herpesvirus-1 productive infection by the adenovirus E1A gene and a cell cycle regulatory gene, E2F-4. J Gen Virol 2003; 84:929-938. [PMID: 12655094 DOI: 10.1099/vir.0.18915-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying cellular genes that promote bovine herpesvirus-1 (BHV-1) productive infection is important, as BHV-1 is a significant bovine pathogen. Previous studies demonstrated that BHV-1 DNA is not very infectious unless cotransfected with a plasmid expressing bICP0, a viral protein that stimulates expression of all classes of viral promoters. Based on these and other studies, we hypothesize that the ability of bICP0 to interact with and modify the function of cellular proteins stimulates virus transcription. If this prediction is correct, cellular proteins that activate virus transcription could, in part, substitute for bICP0 functions. The adenovirus E1A gene and bICP0 encode proteins that are potent activators of viral gene expression, they do not specifically bind DNA and both proteins interact with chromatin-remodelling enzymes. Because of these functional similarities, E1A was tested initially to see if it could stimulate BHV-1 productive infection. E1A consistently stimulates BHV-1 productive infection, but not as efficiently as bICP0. The ability of E1A to bind Rb family members plays a role in stimulating productive infection, suggesting that E2F family members activate productive infection. E2F-4, but not E2F-1, E2F-2 or E2F-5, activates productive infection with similar efficiency as E1A. Next, E2F family members were examined for their ability to activate the BHV-1 immediate-early (IE) transcription unit 1 (IEtu1) promoter, as it regulates IE expression of bICP0 and bICP4. E2F-1 and E2F-2 strongly activate the IEtu1 promoter, but not a BHV-1 IEtu2 promoter or a herpes simplex virus type 1 ICP0 promoter construct. These studies suggest that E2F family members can stimulate BHV-1 productive infection.
Collapse
Affiliation(s)
- Vicki Geiser
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Clinton Jones
- Department of Veterinary and Biomedical Sciences, School of Biological Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|