1
|
Hasan MT, Abdulrazak LF, Alam MK, Islam MR, Sathi YH, Al-Zahrani FA, Ahmed K, Bui FM, Moni MA. Discovering Common Pathophysiological Processes between COVID-19 and Cystic Fibrosis by Differential Gene Expression Pattern Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8078259. [PMID: 35528173 PMCID: PMC9076317 DOI: 10.1155/2022/8078259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a family of viruses that infect mammals and birds. Coronaviruses cause infections of the respiratory system in humans, which can be minor or fatal. A comparative transcriptomic analysis has been performed to establish essential profiles of the gene expression of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) linked to cystic fibrosis (CF). Transcriptomic studies have been carried out in relation to SARS-CoV-2 since a number of people have been diagnosed with CF. The recognition of differentially expressed genes demonstrated 8 concordant genes shared between the SARS-CoV-2 and CF. Extensive gene ontology analysis and the discovery of pathway enrichment demonstrated SARS-CoV-2 response to CF. The gene ontological terms and pathway enrichment mechanisms derived from this research may affect the production of successful drugs, especially for the people with the following disorder. Identification of TF-miRNA association network reveals the interconnection between TF genes and miRNAs, which may be effective to reveal the other influenced disease that occurs for SARS-CoV-2 to CF. The enrichment of pathways reveals SARS-CoV-2-associated CF mostly engaged with the type of innate immune system, Toll-like receptor signaling pathway, pantothenate and CoA biosynthesis, allograft rejection, graft-versus-host disease, intestinal immune network for IgA production, mineral absorption, autoimmune thyroid disease, legionellosis, viral myocarditis, inflammatory bowel disease (IBD), etc. The drug compound identification demonstrates that the drug targets of IMIQUIMOD and raloxifene are the most significant with the significant hub DEGs.
Collapse
Affiliation(s)
- Md. Tanvir Hasan
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1341, Bangladesh
| | - Lway Faisal Abdulrazak
- Department of Computer Science, Cihan University Sulaimaniya, Sulaimaniya, 46001 Kurdistan Region, Iraq
| | - Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezwan Islam
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1341, Bangladesh
| | - Yeasmin Hena Sathi
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1341, Bangladesh
| | | | - Kawsar Ahmed
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9
- Group of Bio-photomatix, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail 1902, Bangladesh
| | - Francis M. Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9
| | - Mohammad Ali Moni
- School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Benchmarking B-cell epitope prediction with quantitative dose-response data on antipeptide antibodies: towards novel pharmaceutical product development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:867905. [PMID: 24949474 PMCID: PMC4037609 DOI: 10.1155/2014/867905] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/20/2014] [Accepted: 04/22/2014] [Indexed: 12/12/2022]
Abstract
B-cell epitope prediction can enable novel pharmaceutical product development. However, a mechanistically framed consensus has yet to emerge on benchmarking such prediction, thus presenting an opportunity to establish standards of practice that circumvent epistemic inconsistencies of casting the epitope prediction task as a binary-classification problem. As an alternative to conventional dichotomous qualitative benchmark data, quantitative dose-response data on antibody-mediated biological effects are more meaningful from an information-theoretic perspective in the sense that such effects may be expressed as probabilities (e.g., of functional inhibition by antibody) for which the Shannon information entropy (SIE) can be evaluated as a measure of informativeness. Accordingly, half-maximal biological effects (e.g., at median inhibitory concentrations of antibody) correspond to maximally informative data while undetectable and maximal biological effects correspond to minimally informative data. This applies to benchmarking B-cell epitope prediction for the design of peptide-based immunogens that elicit antipeptide antibodies with functionally relevant cross-reactivity. Presently, the Immune Epitope Database (IEDB) contains relatively few quantitative dose-response data on such cross-reactivity. Only a small fraction of these IEDB data is maximally informative, and many more of them are minimally informative (i.e., with zero SIE). Nevertheless, the numerous qualitative data in IEDB suggest how to overcome the paucity of informative benchmark data.
Collapse
|
3
|
Simultaneous detection of antibodies to mouse hepatitis virus recombinant structural proteins by a microsphere-based multiplex fluorescence immunoassay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:758-66. [PMID: 21430123 DOI: 10.1128/cvi.00467-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a new microsphere-based multiplex fluorescent immunoassay (MFI) using recombinant mouse hepatitis virus (MHV) proteins to detect antibodies to coronaviruses in mouse and rat sera. All the recombinant proteins, including nucleocapsid (N) and 3 subunits of spike protein, S1, S2, and Smid, showed positive reactivity in MFI with mouse antisera to 4 MHV strains (MHV-S, -A59, -JHM, and -Nu67) and rat antiserum to a strain of sialodacryoadenitis virus (SDAV-681). The MFI was evaluated for its diagnostic power, with panels of mouse sera classified as positive or negative for anti-MHV antibodies by enzyme-linked immunosorbent assay (ELISA) using MHV virion antigen and indirect fluorescent antibody assay. The reactivities of 236 naturally infected mouse sera were examined; 227 samples were positive by MFI using S2 antigen (96% sensitivity), and 208 samples were positive using N antigen (88% sensitivity). Based on the assessment by MFI using the S2 and N antigens, only 3 serum samples showed double-negative results, indicating a false-negative rate of 1.3%. In 126 uninfected mouse sera, including 34 ELISA false-positive sera, only 7 samples showed false-positive results by MFI using either the S2 or N antigen (94% specificity). Similarly, the S2 and N antigen-based MFI was 98% sensitive and 100% specific in detecting anticoronavirus antibodies in rat sera. Thus, this MFI-based serologic assay using the S2 and N antigens promises to be a reliable diagnostic method, representing a highly sensitive and specific alternative to traditional ELISA for detection of coronavirus infections in laboratory mouse and rat colonies.
Collapse
|
4
|
Abstract
The severe acute respiratory syndrome (SARS) epidemic brought into the spotlight the need for rapid development of effective anti-viral drugs against newly emerging viruses. Researchers have leveraged the 20-year battle against AIDS into a variety of possible treatments for SARS. Most prominently, based solely on viral genome information, silencers of viral genes, viral-enzyme blockers and viral-entry inhibitors were suggested as potential therapeutic agents for SARS. In particular, inhibitors of viral entry, comprising therapeutic peptides, were based on the recently launched anti-HIV drug enfuvirtide. This could represent one of the most direct routes from genome sequencing to the discovery of antiviral drugs.
Collapse
|
5
|
Keng CT, Zhang A, Shen S, Lip KM, Fielding BC, Tan THP, Chou CF, Loh CB, Wang S, Fu J, Yang X, Lim SG, Hong W, Tan YJ. Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J Virol 2005; 79:3289-96. [PMID: 15731223 PMCID: PMC1075733 DOI: 10.1128/jvi.79.6.3289-3296.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SDelta10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.
Collapse
Affiliation(s)
- Choong-Tat Keng
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Dr., Singapore 138673
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Groneberg DA, Hilgenfeld R, Zabel P. Molecular mechanisms of severe acute respiratory syndrome (SARS). Respir Res 2005; 6:8. [PMID: 15661082 PMCID: PMC548145 DOI: 10.1186/1465-9921-6-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 01/20/2005] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is a new infectious disease caused by a novel coronavirus that leads to deleterious pulmonary pathological features. Due to its high morbidity and mortality and widespread occurrence, SARS has evolved as an important respiratory disease which may be encountered everywhere in the world. The virus was identified as the causative agent of SARS due to the efforts of a WHO-led laboratory network. The potential mutability of the SARS-CoV genome may lead to new SARS outbreaks and several regions of the viral genomes open reading frames have been identified which may contribute to the severe virulence of the virus. With regard to the pathogenesis of SARS, several mechanisms involving both direct effects on target cells and indirect effects via the immune system may exist. Vaccination would offer the most attractive approach to prevent new epidemics of SARS, but the development of vaccines is difficult due to missing data on the role of immune system-virus interactions and the potential mutability of the virus. Even in a situation of no new infections, SARS remains a major health hazard, as new epidemics may arise. Therefore, further experimental and clinical research is required to control the disease.
Collapse
Affiliation(s)
- David A Groneberg
- Pneumology and Immunology, Otto-Heubner-Centre, Charité School of Medicine, Free University and Humboldt-University, D-13353 Berlin, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, University of Lübeck, D-23538 Lübeck, Germany
| | - Peter Zabel
- Division of Clinical Infectiology and Immunology, Department of Medicine, Research Center Borstel, D-23845 Borstel, Germany
- Division of Thoracic Medicine, Department of Medicine, University of Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
7
|
Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, Wang W, Yin X, Zhao Y, Qu X, Ding M, Deng H. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol 2004; 78:6938-45. [PMID: 15194770 PMCID: PMC421668 DOI: 10.1128/jvi.78.13.6938-6945.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) is a life-threatening disease caused by a newly identified coronavirus (CoV), SARS-CoV. The spike (S) glycoprotein of CoV is the major structural protein responsible for induction of host immune response and virus neutralization by antibodies. Hence, knowledge of neutralization determinants on the S protein is helpful for designing protective vaccines. To analyze the antigenic structure of the SARS-CoV S2 domain, the carboxyl-terminal half of the S protein, we first used sera from convalescent SARS patients to test the antigenicity of 12 overlapping fragments spanning the entire S2 and identified two antigenic determinants (Leu 803 to Ala 828 and Pro 1061 to Ser 1093). To determine whether neutralizing antibodies can be elicited by these two determinants, we immunized animals and found that both of them could induce the S2-specific antisera. In some animals, however, only one determinant (Leu 803 to Ala 828) was able to induce the antisera with the binding ability to the native S protein and the neutralizing activity to the SARS-CoV pseudovirus. This determinant is highly conserved across different SARS-CoV isolates. Identification of a conserved antigenic determinant on the S2 domain of the SARS-CoV S protein, which has the potential for inducing neutralizing antibodies, has implications in the development of effective vaccines against SARS-CoV.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Navas-Martín S, Weiss SR. Coronavirus replication and pathogenesis: Implications for the recent outbreak of severe acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol 2004; 10:75-85. [PMID: 15204926 PMCID: PMC7095027 DOI: 10.1080/13550280490280292] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 12/10/2003] [Indexed: 12/28/2022]
Abstract
A novel coronavirus has been recently identified as the causative agent of the severe acute respiratory syndrome (SARS) outbreak that has accounted for more than 8000 infected people worldwide. This review will discuss current knowledge on coronavirus replication, pathogenesis, evolution, and vaccine strategies, as well as the most recent findings on SARS coronavirus.
Collapse
Affiliation(s)
- Sonia Navas-Martín
- Department of Microbiology, University of Pennsylvania, School of Medicine, 36th Street and Hamilton Walk, 19104-6076 Philadelphia, PA USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, School of Medicine, 36th Street and Hamilton Walk, 19104-6076 Philadelphia, PA USA
| |
Collapse
|
9
|
De Groot AS. How the SARS vaccine effort can learn from HIV-speeding towards the future, learning from the past. Vaccine 2003; 21:4095-104. [PMID: 14505885 PMCID: PMC7126672 DOI: 10.1016/s0264-410x(03)00489-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 06/16/2003] [Indexed: 01/01/2023]
Abstract
A remarkable collaborative effort coordinated by the severe acute respiratory syndrome (SARS) team at WHO resulted in discovery of the etiologic agent of severe acute respiratory syndrome less than 2 months after the announcement of global alert. The development of a vaccine to prevent SARS should be pursued with the same urgency and cooperative spirit, as SARS is highly lethal and, if not controlled during the first few generations of transmission, is likely to become endemic in regions of the world where health-care infrastructure is underdeveloped and epidemiological control measures are weak. The scientific community already learned many important lessons from HIV vaccine development; these should be heeded. For example, consideration should be given to the development of a vaccine that will protect across regional strains of SARS, as the newly emergent coronavirus SARS-coronavirus (SARS-CoV) is proving to be variable and may be mutating in response to immune pressure. SARS-specific research reagents should also be collected and shared. These would include SARS peptides, adjuvants, DNA vaccine vectors and clinical grade viral vectors. Rapidly developing a collaborative approach to developing a SARS vaccine that will be both effective and safe is the only way to go. This article reviews parallels between HIV and SARS and proposes an approach that would accelerate the development of a SARS vaccine.
Collapse
Affiliation(s)
- Anne S De Groot
- TB/HIV Research Laboratory, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
10
|
Mebatsion T, Koolen MJM, de Vaan LTC, de Haas N, Braber M, Römer-Oberdörfer A, van den Elzen P, van der Marel P. Newcastle disease virus (NDV) marker vaccine: an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J Virol 2002; 76:10138-46. [PMID: 12239288 PMCID: PMC136582 DOI: 10.1128/jvi.76.20.10138-10146.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoprotein (NP) of Newcastle disease virus (NDV) functions primarily to encapsidate the virus genome for the purpose of RNA transcription, replication, and packaging. This conserved multifunctional protein is also efficient in inducing NDV-specific antibody in chickens. Here, we localized a conserved B-cell immunodominant epitope (IDE) spanning residues 447 to 455 and successfully generated a recombinant NDV lacking the IDE by reverse genetics. Despite deletion of NP residues 443 to 460 encompassing the NP-IDE, the mutant NDV propagated in embryonated specific-pathogen-free chicken eggs to a level comparable to that of the parent virus. In addition, a B-cell epitope of the S2 glycoprotein of murine hepatitis virus (MHV) was inserted in-frame to replace the NP-IDE. Recombinant viruses properly expressing the introduced MHV epitope were successfully generated, demonstrating that the NP-IDE not only is dispensable for virus replication but also can be replaced by foreign sequences. Chickens immunized with the hybrid recombinants produced specific antibodies against the S2 glycoprotein of MHV and completely lacked antibodies directed against the NP-IDE. These marked-NDV recombinants, in conjunction with a diagnostic test, enable serological differentiation of vaccinated animals from infected animals and may be useful tools in ND eradication programs. The identification of a mutation-permissive region on the NP gene allows a rational approach to the insertion of protective epitopes and may be relevant for the design of NDV-based cross-protective marker vaccines.
Collapse
Affiliation(s)
- Teshome Mebatsion
- Department of Virology, Intervet International B.V., PO Box 31, 5830 AA Boxmeer, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Taguchi F, Shimazaki YK. Involvement in fusion activity of an epitope in the S2 subunit of murine coronavirus spike protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:213-8. [PMID: 11774471 DOI: 10.1007/978-1-4615-1325-4_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- F Taguchi
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | |
Collapse
|
12
|
Vázquez S, Guzmán MG, Guillen G, Chinea G, Pérez AB, Pupo M, Rodriguez R, Reyes O, Garay HE, Delgado I, García G, Alvarez M. Immune response to synthetic peptides of dengue prM protein. Vaccine 2002; 20:1823-30. [PMID: 11906771 DOI: 10.1016/s0264-410x(01)00515-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immunological activities of five synthetic peptides of the prM protein of dengue-2 (DEN-2) virus containing B cell epitopes were evaluated in BALB/c mice. Two peptides elicited neutralizing antibodies against all four DEN serotypes. Virus-specific proliferative responses were demonstrated in mice immunized with four of the five peptides, demonstrating the presence of T cell epitopes. Mice immunized with three of the five peptides conjugated with bovine albumin showed statistically significant levels (P<0.05) of protection when challenged with DEN-2 virus. These results could constitute the basis for the establishment of the role of DEN virus pre and M antigens in the development of anti-flaviviral vaccines.
Collapse
Affiliation(s)
- Susana Vázquez
- Virology Department, "Pedro Kouri" Tropical Medicine Institute, Autopista Novia del Mediodia, km 6, P.O. Box Marianao 13, Havana, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Feline infectious peritonitis (FIP) is a common cause of death in cats. Management of this disease has been hampered by difficulties identifying the infection and determining the immunological status of affected cats and by high variability in the clinical, pathological, and immunological characteristics of affected cats. Neurological FIP, which is much more homogeneous than systemic effusive or noneffusive FIP, appears to be a good model for establishing the basic features of FIP immunopathogenesis. Very little information is available about the immunopathogenesis of neurologic FIP, and it is reasonable to use research from the well-characterized mouse hepatitis virus (MHV) immune-mediated encephalitis system, as a template for FIP investigation, and to contrast findings from the MHV model with those of FIP. It is expected that the immunopathogenic mechanisms will have important similarities. Such comparative research may lead to better understanding of FIP immunopathogenesis and rational prospects for management of this frustrating disease.
Collapse
Affiliation(s)
- J E Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis 95616, USA.
| | | |
Collapse
|
14
|
Foley JE, Leutenegger C. A review of coronavirus infection in the central nervous system of cats and mice. J Vet Intern Med 2001; 15:438-44. [PMID: 11596730 PMCID: PMC7166525 DOI: 10.1892/0891-6640(2001)015<0438:arocii>2.3.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/15/2000] [Accepted: 02/28/2001] [Indexed: 12/25/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a common cause of death in cats. Management of this disease has been hampered by difficulties identifying the infection and determining the immunological status of affected cats and by high variability in the clinical, pathological, and immunological characteristics of affected cats. Neurological FIP, which is much more homogeneous than systemic effusive or noneffusive FIP, appears to be a good model for establishing the basic features of FIP immunopathogenesis. Very little information is available about the immunopathogenesis of neurologic FIP, and it is reasonable to use research from the well-characterized mouse hepatitis virus (MHV) immune-mediated encephalitis system, as a template for FIP investigation, and to contrast findings from the MHV model with those of FIP. It is expected that the immunopathogenic mechanisms will have important similarities. Such comparative research may lead to better understanding of FIP immunopathogenesis and rational prospects for management of this frustrating disease.
Collapse
Affiliation(s)
- J E Foley
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California, Davis 95616, USA.
| | | |
Collapse
|
15
|
Taguchi F, Shimazaki YK. Functional analysis of an epitope in the S2 subunit of the murine coronavirus spike protein: involvement in fusion activity. J Gen Virol 2000; 81:2867-2871. [PMID: 11086117 DOI: 10.1099/0022-1317-81-12-2867] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The monoclonal antibody (MAb) 5B19.2, which has virus-neutralizing and fusion inhibition activities, binds to an epitope (S2A) consisting of nine hydrophobic amino acids in the S2 subunit of the mouse hepatitis virus (MHV) spike (S) protein. This suggests that the S2A epitope may be involved in binding the virus to the MHV receptor and/or in virus-cell fusion. Co-immunoprecipitation analyses demonstrated that while the binding of virus to the receptor was blocked by anti-S1 MAbs, it was not blocked by the S2A antiserum, indicating that S2A was not involved in receptor-binding. The S proteins prepared in this study with mutations in the S2A epitope were either fusogenic or non-fusogenic and their fusogenicity did not correlate with the hydrophobic feature of the S2A epitope. All of these wt and mutated S proteins were similarly transported onto the cell membrane independent of their fusogenicity capability. These results suggest that S2A may mediate the fusion activity of the MHV S protein during virus entry into cells.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan1
| | - Yohko K Shimazaki
- National Veterinary Assay Laboratory, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan2
- National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan1
| |
Collapse
|
16
|
Yu MW, Scott JK, Fournier A, Talbot PJ. Characterization of murine coronavirus neutralization epitopes with phage-displayed peptides. Virology 2000; 271:182-96. [PMID: 10814583 PMCID: PMC3987775 DOI: 10.1006/viro.2000.0310] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2000] [Revised: 02/07/2000] [Accepted: 03/10/2000] [Indexed: 11/22/2022]
Abstract
Phage-displayed peptide libraries were used to map immunologically relevant epitopes on the surface (S) glycoprotein of a neurotropic murine coronavirus (MHV-A59). Three in vitro virus-neutralizing and in vivo protective mAbs against either continuous or discontinuous epitopes on the S glycoprotein were used to screen 12 different peptide libraries expressed on the pVIII major coat protein of the fd filamentous bacteriophage. Consensus sequences that matched short sequences within the S glycoprotein were identified. The sequence of a tight-binding, mAb-selected peptide suggested the location of a discontinuous epitope within the N-terminal S1 subunit. Several tightly binding phage were amplified and used directly as immunogens in BALB/c and C57BL/6 mice. Partial protection of C57BL/6 mice against a lethal acute virus infection was achieved with a phage preparation that displayed a linear epitope. Protection correlated with the presence of sufficient levels of specific antiviral antibodies recognizing the same immunodominant domain and 13-mer peptide, located within the C-terminal S2 subunit, as the selecting mAb. Thus, the direct use of phage-displayed peptides to evaluate protective antiviral immune responses complements their use to characterize antibody-binding epitopes. This is the first evaluation of protective immunization induced by mAb-selected phage-displayed peptides.
Collapse
Affiliation(s)
- M W Yu
- Human Health Research Center, INRS-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada
| | | | | | | |
Collapse
|
17
|
Koo M, Bendahmane M, Lettieri GA, Paoletti AD, Lane TE, Fitchen JH, Buchmeier MJ, Beachy RN. Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc Natl Acad Sci U S A 1999; 96:7774-9. [PMID: 10393897 PMCID: PMC22137 DOI: 10.1073/pnas.96.14.7774] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hybrids of tobacco mosaic virus (TMV) were constructed with the use of fusion to the coat protein peptides of 10 or 15 amino acids, containing the 5B19 epitope from the spike protein of murine hepatitis virus (MHV) and giving rise to TMV-5B19 and TMV-5B19L, respectively. The TMV hybrids were propagated in tobacco plants, and the virus particles were purified. Immunogold labeling, with the use of the monoclonal MAb5B19 antibody, showed specific decoration of hybrid TMV particles, confirming the expression and display of the MHV epitope on the surface of the TMV. Mice were immunized with purified hybrid viruses after several regimens of immunization. Mice that received TMV-5B19L intranasally developed serum IgG and IgA specific for the 5B19 epitope and for the TMV coat protein. Hybrid TMV-5B19, administered by subcutaneous injections, elicited high titers of serum IgG that was specific for the 5B19 epitope and for coat protein, but IgA that was specific against 5B19 was not observed. Mice that were immunized with hybrid virus by subcutaneous or intranasal routes of administration survived challenge with a lethal dose (10 x LD50) of MHV strain JHM, whereas mice administered wild-type TMV died 10 d post challenge. Furthermore, there was a positive correlation between the dose of administered immunogen and protection against MHV infection. These studies show that TMV can be an effective vaccine delivery vehicle for parenteral and mucosal immunization and for protection from challenge with viral infection.
Collapse
MESH Headings
- Administration, Intranasal
- Amino Acid Sequence
- Animals
- Epitopes/administration & dosage
- Epitopes/immunology
- Female
- Hemagglutinins, Viral/administration & dosage
- Hemagglutinins, Viral/immunology
- Hepatitis B Vaccines
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Immunization Schedule
- Injections, Subcutaneous
- Membrane Glycoproteins/administration & dosage
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred BALB C
- Murine hepatitis virus/immunology
- Spike Glycoprotein, Coronavirus
- Tobacco Mosaic Virus/immunology
- Vaccines, Synthetic
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/immunology
- Viral Hepatitis Vaccines
Collapse
Affiliation(s)
- M Koo
- Department of Cell Biology, Division of Plant Biology, BCC 206, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 1998; 72:4508-14. [PMID: 9557750 PMCID: PMC109693 DOI: 10.1128/jvi.72.5.4508-4514.1998] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Accepted: 02/10/1998] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to recombinant viruses which encode a CCV-like S protein and the M, N, 7a, and 7b proteins of FCoV type I (K. Motowaka, T. Hohdatsu, H. Hashimoto, and H. Koyama, Microbiol. Immunol. 40:425-433, 1996; H. Vennema, A. Poland, K. Floyd Hawkins, and N. C. Pedersen, Feline Pract. 23:40-44, 1995). In the present study, we have looked for additional FCoV-CCV recombination sites. Four regions in the pol gene were selected for comparative sequence analysis of the type II FCoV strains 79-1683 and 79-1146, the type I FCoV strains TN406 and UCD1, the CCV strain K378, and the TGEV strain Purdue. Our data show that the type II FCoVs have arisen from double recombination events: additional crossover sites were mapped in the ORF1ab frameshifting region of strain 79-1683 and in the 5' half of ORF1b of strain 79-1146.
Collapse
Affiliation(s)
- A A Herrewegh
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Corbeil S, Seguin C, Trudel M. Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2. Vaccine 1996; 14:521-5. [PMID: 8782350 PMCID: PMC7126533 DOI: 10.1016/0264-410x(95)00222-m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Passive immunization of mice with 131 micrograms of the non-neutralizing monoclonal antibody (mAb) 18A2B2, directed against the A subgroup epitope of the G glycoprotein of respiratory syncytial virus Long strain (RSV), confers protection against viral i.n. challenge. The role of the Fc fragment of this antibody as well as the involvement of antibody-dependent cellular cytotoxicity (ADCC) and complement-mediated cytolysis towards protection was evaluated in vivo. Passive immunization with the Fab fragment alone (618-907 micrograms mouse-1) was unable to confer protection in mice. Furthermore, we passively immunized with the mAb 18A2B2 SCID beige mice, which are deficient in natural killer (NK) cell activity, to ascertain the role of NK cells in the protective mechanism. These mice were free of virus 5 days following viral challenge, indicating that NK cells do not contribute significantly towards the protective action of this antibody. Moreover, passively immunized BALB/c mice decomplemented with 8-10 U of cobra venom factor (CoVF) and DBA/2J mice (C5 deficient) were only partially protected. These findings suggest that in mice the alternative and classical pathways of the complement system are involved in the passive protection mechanism conferred by the non-neutralizing mAb 18A2B2. To our knowledge, it is the first description of a protective mechanism in mice that involves a non-neutralizing antibody and the complement system.
Collapse
Affiliation(s)
- S Corbeil
- Centre de Recherche en Virologie, Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
20
|
Heemskerk MH, Schoemaker HM, De Jong I, Schijns VE, Spaan WJ, Boog CJ. Differential activation of mouse hepatitis virus-specific CD4+ cytotoxic T cells is defined by peptide length. Immunol Suppl 1995; 85:517-22. [PMID: 7558143 PMCID: PMC1383777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study we have characterized the core epitope recognized by the MHV-A59-specific CD4+ cytotoxic T lymphocyte (CTL) clones HS1 and B6.1, derived from BALB/c and C57/BL6 mice, respectively. These CD4+ clones respond to the promiscuous peptide fragment S-329-343 of the glycoprotein S of MHV-A59. The results indicate that the core peptides of both clones overlap but are not identical. The core region of the HS1 clone is an 8-mer, and comprises the amino acid residues S-332-339, whereas the minimal epitope for clone B6.1 is a 9-mer and comprises the amino acid residues S-334-342. The peptide fragment S-329-343 activates all T-cell effector functions, including proliferation, cytokine secretion and cytolysis. However, in the present study we show that T-cell activation is not an all-or-none phenomenon, in which T-cell stimulation leads to activation of all T-cell effector functions. It appears that changes in the length of a peptide ligand can differentially activate the cytolytic machinery from proliferation and cytokine secretion. Furthermore, the results indicate that, in our case, modulation of the flanking residues of the core epitopes did not convert the cytokine profile of polarized T-helper type-1 (Th1) clones into a Th2-type pattern.
Collapse
Affiliation(s)
- M H Heemskerk
- Department of Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- R H Meloen
- ID-DLO, Department of Molecular Recognition, Lelystad, The Netherlands
| | | | | | | |
Collapse
|
22
|
|
23
|
Jackwood MW, Hilt DA. Production and immunogenicity of multiple antigenic peptide (MAP) constructs derived from the S1 glycoprotein of infectious bronchitis virus (IBV). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:213-9. [PMID: 8830482 DOI: 10.1007/978-1-4615-1899-0_35] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Synthetic peptides were prepared as multiple antigenic peptide (MAP) constructs to the S1 glycoprotein of infectious bronchitis virus (IBV). The MAP system has been used in the production of anti-peptide and anti-protein antibodies. It has an advantage over linking peptides to a highly immunogenic carrier molecule because antibodies are not produced to the MAP core matrix of lysine residues. Two 25-residue peptides were synthesized to the Arkansas serotype and two were synthesized to the Massachusetts serotype of IBV. The peptide sequences correspond to amino acid residues 64 to 88 and to residues 117 to 141 for each of the IBV serotypes. A MAP construct for each peptide was prepared by linking 4 copies of a peptide to the immunogenetically inert core matrix of lysine residues. The MAP constructs were used to immunize specific pathogen free chickens. Anti-peptide ELISA titers and the dot immunobinding assay against the homologous peptide were positive for all of the sera tested whereas the anti-whole virus ELISA titers and virus neutralization titers were negative for all of the sera tested. Hyperimmune sera against whole virus did not cross react with synthetic peptides made to the heterologous virus suggesting a possible role for the MAP constructs in a serotype specific dot blot or ELISA test for IBV.
Collapse
Affiliation(s)
- M W Jackwood
- University of Georgia, College of Veterinary Medicine, Poultry Diagnostic and Research Center, Athens 30602, USA
| | | |
Collapse
|
24
|
Enjuanes L, Smerdou C, Castilla J, Antón IM, Torres JM, Sola I, Golvano J, Sánchez JM, Pintado B. Development of protection against coronavirus induced diseases. A review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1995; 380:197-211. [PMID: 8830481 DOI: 10.1007/978-1-4615-1899-0_34] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Langeveld JP, Casal JI, Osterhaus AD, Cortés E, de Swart R, Vela C, Dalsgaard K, Puijk WC, Schaaper WM, Meloen RH. First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs. J Virol 1994; 68:4506-13. [PMID: 8207825 PMCID: PMC236377 DOI: 10.1128/jvi.68.7.4506-4513.1994] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of viral protein VP2. As with marker vaccines, it is possible to discriminate between vaccinated dogs that have not been exposed to the virus and dogs that have been infected with the virus. The protective mechanism can be explained by a humoral response against the peptide aided by T-cell epitopes contained in the carrier protein used for peptide coupling. This is the first example of a synthetic peptide vaccine that induces protection in target animals.
Collapse
Affiliation(s)
- J P Langeveld
- Institute for Animal Science and Health, Lelystad, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ignjatovic J, Galli L. The S1 glycoprotein but not the N or M proteins of avian infectious bronchitis virus induces protection in vaccinated chickens. Arch Virol 1994; 138:117-34. [PMID: 7980002 PMCID: PMC7087189 DOI: 10.1007/bf01310043] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The S1, N and M proteins, obtained from the nephropathogenic N1/62 strain of infectious bronchitis virus (IBV) by immunoaffinity purification with monoclonal antibodies, were used for immunization of chickens. For all three antigens multiple immunizations were necessary for induction of an antibody response. Protection of chickens vaccinated with the S1 glycoprotein against virulent challenge was demonstrated by the complete absence of virus in tracheas and kidneys of vaccinated chickens. Following four immunizations with the S1 glycoprotein 71% and 86% of chickens were protected at the level of tracheas and kidneys, respectively. Three immunizations with the S1 glycoprotein protected 70% and 10% of chickens at the level of kidney and trachea, respectively. Neither the N nor the M antigen induced protection to a virulent challenge with the nephropathogenic N1/62 strain of IBV after four immunizations. Virus neutralizing, haemagglutination inhibiting and ELISA antibodies were detected in chickens immunized with the S1 glycoprotein and inactivated N1/62 virus, however there was no correlation between the presence of any of these antibodies and protection.
Collapse
Affiliation(s)
- J Ignjatovic
- CSIRO Division of Animal Health, Animal Health Research Laboratory, Parkville, Victoria, Australia
| | | |
Collapse
|
27
|
Ignjatovic J, Galli L. Structural proteins of avian infectious bronchitis virus: role in immunity and protection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:449-53. [PMID: 8209767 DOI: 10.1007/978-1-4615-2996-5_71] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The antigenicity of the S1, M and N proteins of avian infectious bronchitis virus was compared following immunization of chickens with live and inactivated virus. The N protein was immunodominant antigen inducing cross-reactive antibodies in high titres whereas the S1 glycoprotein induced serotype-specific and cross-reactive antibodies. The M glycoprotein elicited antibodies in low titres and of limited cross-reactivity. Immunization of chickens with the purified N and M proteins did not induce protection against virulent challenge whereas immunization with the S1 glycoprotein prevented replication of nephropathogenic IBV in kidneys but not in tracheas of immunized chickens.
Collapse
Affiliation(s)
- J Ignjatovic
- CSIRO Division of Animal Health, Parkville, Australia
| | | |
Collapse
|
28
|
Wege H, Schliephake A, Körner H, Flory E, Wege H. Coronavirus induced encephalomyelitis: an immunodominant CD4(+)-T cell site on the nucleocapsid protein contributes to protection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:413-8. [PMID: 7911644 DOI: 10.1007/978-1-4615-2996-5_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this communication we present clear evidence, that the N-protein of MHV-JHM contains immunodominant CD4+ T-cell sites. These sites were recognized by the immune system of virus infected Lewis rats. In previous investigations we have shown, that CD4+ T-cell lines with specificity for defined viral proteins can be selected from diseased Lewis rats and mediate protection, if transferred to otherwise lethally infected animals. To define regions of the N-protein, which are immunodominant for the T-cell response, we employed bacterially expressed N-protein and truncated subfragments of N as an antigen. We demonstrate, that T-cells from MHV-JHM infected, diseased Lewis rats recognized with high prevalence the carboxyterminal subfragment C4-N (95 aa) and to some extent the adjacent C3-N protein. The same results were obtained with T-cells derived from rats immunized with bacterially expressed N-protein or from animals vaccinated by a stable N-protein expressing vaccinia recombinant. Finally, transfer of CD4+ line T-cells to MHV-JHM infected rats specific for C4-N mediated protection against acute disease.
Collapse
Affiliation(s)
- H Wege
- Institute of Virology and Immunobiology, Würzburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Daniel C, Anderson R, Buchmeier MJ, Fleming JO, Spaan WJ, Wege H, Talbot PJ. Identification of an immunodominant linear neutralization domain on the S2 portion of the murine coronavirus spike glycoprotein and evidence that it forms part of complex tridimensional structure. J Virol 1993; 67:1185-94. [PMID: 7679743 PMCID: PMC237483 DOI: 10.1128/jvi.67.3.1185-1194.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numerous studies have demonstrated that the spike glycoprotein of coronaviruses bears major determinants of pathogenesis. To elucidate the antigenic structure of the protein, a panel of monoclonal antibodies was studied by competitive ELISA, and their reactivities were assayed against fragments of the murine coronavirus murine hepatitis virus strain A59 S gene expressed in prokaryotic vectors. An immunodominant linear domain was localized within the predicted stalk, S2, of the peplomer. It is recognized by several neutralizing antibodies. Other domains were also identified near the proteolytic cleavage site, in the predicted globular head, S1, and in another part of the stalk. Furthermore, competition results suggest that the immunodominant functional domain forms part of a complex three-dimensional structure. Surprisingly, some antibodies which have no antiviral biological activities were shown to bind the immunodominant neutralization domain.
Collapse
Affiliation(s)
- C Daniel
- Centre de Recherche en Virologie, Institut Armand-Frappier, Université du Québec, Laval-des-Rapides, Laval, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Hunt AR, Short WA, Johnson AJ, Bolin RA, Roehrig JT. Synthetic peptides of the E2 glycoprotein of Venezuelan equine encephalomyelitis virus. II. Antibody to the amino terminus protects animals by limiting viral replication. Virology 1991; 185:281-90. [PMID: 1718085 DOI: 10.1016/0042-6822(91)90775-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A peptide composed of the amino-terminal 25 amino acids of the E2 glycoprotein of the virulent Trinidad donkey (TRD) strain of Venezuelan equine encephalomyelitis virus was found to protect peptide-immunized mice from lethal TRD virus challenge (Hunt et al., 1990). Viral growth in peptide-immunized animals was found to be limited in comparison to that in nonimmunized controls. Although both treated and control groups of mice responded to virus challenge by producing neutralizing antibody, only immunized mice with preexisting antipeptide antibody survived. Polyclonal antipeptide sera as well as a monoclonal antipeptide antibody were able to passively protect naive mice from TRD virus challenge, despite the fact that these antibodies were nonneutralizing. Passive transfer of antipeptide antibody to immunosuppressed recipients was not protective, thus indicating that survival of TRD virus challenge required an in situ immune response as well as preexisting antipeptide antibody. Binding studies of both polyclonal and monoclonal antipeptide antibodies indicated that they recognize only epitopes present on virus-infected cells or denatured virus.
Collapse
Affiliation(s)
- A R Hunt
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, Colorado 80522
| | | | | | | | | |
Collapse
|