1
|
Jonsson N, Sävneby A, Gullberg M, Evertsson K, Klingel K, Lindberg AM. Efficient replication of recombinant Enterovirus B types, carrying different P1 genes in the coxsackievirus B5 replicative backbone. Virus Genes 2015; 50:351-7. [PMID: 25663145 DOI: 10.1007/s11262-015-1177-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022]
Abstract
Recombination is an important feature in the evolution of the Enterovirus genus. Phylogenetic studies of enteroviruses have revealed that the capsid genomic region (P1) is type specific, while the parts of the genome coding for the non-structural proteins (P2-P3) are species specific. Hence, the genome may be regarded as consisting of two modules that evolve independently. In this study, it was investigated whether the non-structural coding part of the genome in one type could support replication of a virus with a P1 region from another type of the same species. A cassette vector (pCas) containing a full-length cDNA copy of coxsackievirus B5 (CVB5) was used as a replicative backbone. The P1 region of pCas was replaced with the corresponding part from coxsackievirus B3 Nancy (CVB3N), coxsackievirus B6 Schmitt (CVB6S), and echovirus 7 Wallace (E7W), all members of the Enterovirus B species. The replication efficiency after transfection with clone-derived in vitro transcribed RNA was studied and compared with that of pCas. All the recombinant viruses replicated with similar efficiencies and showed threshold cycle (Ct) values, tissue culture infectivity dose 50 %, and plaque-forming unit titers comparable to viruses generated from the pCas construct. In addition to this, a clone without the P1 region was also constructed, and Western Blot and immunofluorescence staining analysis showed that the viral genome could be translated and replicated despite the lack of the structural protein-coding region. To conclude, the replicative backbone of the CVB5 cassette vector supports replication of intraspecies constructs with P1 regions derived from other members of the Enterovirus B species. In addition to this, the replicative backbone can be both translated and replicated without the presence of a P1 region.
Collapse
Affiliation(s)
- Nina Jonsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | | | | | | | | |
Collapse
|
2
|
Lim BK, Yun SH, Gil CO, Ju ES, Choi JO, Kim DK, Jeon ES. Foreign gene transfer to cardiomyocyte using a replication-defective recombinant coxsackievirus B3 without cytotoxicity. Intervirology 2011; 55:201-9. [PMID: 21821992 DOI: 10.1159/000324541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Replication-competent coxsackievirus B3 (CVB3) has been used as a gene transfer vector for cultured cardiomyocytes and hearts in vivo. However, CVB3 induces cell lysis when it replicates in infected cells. In this study, we investigated whether a replication-defective rCVB3 vector could be generated and used as a noncytotoxic gene transfer vector for cardiomyocytes. METHODS We generated a replication-defective luciferase-expressing CVB3 plasmid. This recombinant cDNA and pCMV-P1 plasmids were amplified and cotransfected into Hek293 cells using transfection reagents. Replication-defective rLuCVB3 virus was recovered from the cells and cell culture supernatants for 3 days after transfection. The generated rLuCVB3 viruses were concentrated on a 30% sucrose cushion and semiquantified using a luciferase assay. In addition, foreign gene delivery by the rLuCVB3 was tested in cultured cardiomyocytes and intact mouse hearts after rLuCVB3 infection. RESULTS Luciferase was expressed in Hek293, HeLa cells and cardiomyocytes after rLuCVB3 infection. In addition, these cells did not show a significant cytopathic effect after 72 h. Luciferase protein expression or activity were detected for 3 days in the myocardium of rLuCVB3-infected mouse hearts without producing cytotoxicity or inflammation. CONCLUSION As a proof-of-concept, these data indicate that a replication-defective rCVB3 vector can be generated and used as a novel gene transfer system to transfect exogenous genes into cardiomyocytes without generating cytotoxicity.
Collapse
Affiliation(s)
- Byung-Kwan Lim
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
3
|
Mueller S, Wimmer E. Introducing recombinant picornaviral genomes into cells. Cold Spring Harb Protoc 2011; 2011:657-63. [PMID: 21632780 DOI: 10.1101/pdb.prot5626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
IntroductionPicornarviruses comprise a large group of small, nonenveloped, positive-sense, single-stranded RNA viruses. The picornavirus life cycle is usually rapid and exclusively cytoplasmic, without integration into the host cell’s genome or a nuclear phase. Due to their biology and genetic constraints, the utility of picornaviruses for general gene delivery purposes is limited. However, they may prove useful as vaccine vectors. Furthermore, picornavirus-driven expression of various reporter genes or foreign RNA elements is of interest to the picornavirus molecular virologist. Introduction of recombinant picornaviral genomes into the cell relies on the historic observation that the isolated virion RNA is infectious. This property extends to in-vitro-transcribed RNA as long as the authentic viral 5' end is preserved. That said, up to two additional 5'-terminal guanine residues (remnants from the T7 RNA polymerase-based in vitro transcription), although reducing infectivity, can be tolerated. Additional nucleotides at the 3' end are of far less consequence. Thus, any unique restriction site downstream from the poly(A) sequence (preferably as close as possible downstream) can be used to linearize the plasmid containing the viral genome before in vitro transcription.
Collapse
|
4
|
Abstract
Poliovirus (PV) 2A(pro) has been considered important for PV replication and is known to be toxic to host cells. A 2A(pro)-deficient PV would potentially be less toxic and ideal as a vector. To examine whether 2A(pro) is needed to form progeny virus, a full-length cDNA of dicistronic (dc) PV with (pOME) or without (pOMEDelta2A) 2A(pro) was constructed in the strain PV1(M)OM. RNAs of both pOME and pOMEDelta2A were capable of forming progeny viruses, called OME and OMEDelta2A, respectively. In their ability to induce a cytopathic effect (CPE), the strains ranked as OMEDelta2A < OME falling dots PV1(M)OM. These results suggest that 2A(pro) is not essential for full-length dc PV to form progeny virus and that it contributes to the efficient viral replication and/or induction of a CPE. To clarify whether 2A(pro) is essential for P1-null (lacking the entire coding sequence for capsid proteins) PV, the RNA replication activity of P1-null PV (pOMDeltaP1) or P1-null PV without 2A(pro) (pOMDeltaP1Delta2A) or without both 2A(pro) and 2B (pOMDeltaP1Delta2ADelta2B) was examined. The RNAs of pOMDeltaP1 and pOMDeltaP1Delta2A could replicate and form progeny viruses under a trans supply of P1 protein, whereas the RNA of pOMDeltaP1Delta2ADelta2B could not. These results suggest that 2A(pro) is not needed for the replication of P1-null PV, although it is important for PV RNA replication and inducing a CPE. To know whether a 2A(pro)-deficient PV can be used as a vector, a P1-null PV containing the enhanced green fluorescent protein (EGFP) coding sequence with or without 2A(pro) was examined. It expressed fluorescent protein. This result suggests that 2A(pro)-deficient PV can express foreign genes.
Collapse
|
5
|
Meyer RG, Meyer-Ficca ML, Kaiser H, Selinka HC, Kandolf R, Küpper JH. Plasmid-based generation of recombinant coxsackievirus B3 particles carrying capsid gene replacement replicons. Virus Res 2004; 104:17-26. [PMID: 15177888 DOI: 10.1016/j.virusres.2004.02.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/24/2022]
Abstract
Recombinant infectious coxsackievirus B3 (CVB3) particles were generated by packaging of modified viral genomes in which the capsid coding P1-region was replaced by an EGFP-luciferase reporter gene. Efficient packaging of the recombinant genome was achieved by a novel method based on cotransfection of a plasmid encoding the subgenomic viral replicon together with two alternative helper plasmids carrying expression cassettes of the CVB3 capsid proteins, and a T7 RNA polymerase expression plasmid. Transcription of a reporter gene and expression of capsid proteins were achieved in a single step, eliminating the need of a helper virus. Recombinant viral stocks were used to infect human embryonal cardiomyocytes (hCMC) and other cell types, and luciferase activity was measured at different timepoints after infection. Neither progeny virus nor wildtype CVB3 was produced upon infection of target cells, facilitating analyses of infected cells without viral spread. The presence of an IRES sequence upstream of the P1 open reading frame in the helper plasmids was indispensable for the generation of recombinant particles, as no packaging was observed using helper plasmids without this feature. Luciferase data obtained by transfection of reporter plasmids with and without upstream 5'-NTR sequences suggests that the CVB3 IRES facilitates translation in T7 RNA polymerase-dependent gene transcription, both in presence and absence of viral replication.
Collapse
Affiliation(s)
- Ralph G Meyer
- Department of Molecular Pathology, University Hospital of Tübingen, Liebermeisterstr. 8, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Fultz PN, Stallworth J, Porter D, Novak M, Anderson MJ, Morrow CD. Immunogenicity in pig-tailed macaques of poliovirus replicons expressing HIV-1 and SIV antigens and protection against SHIV-89.6P disease. Virology 2003; 315:425-37. [PMID: 14585346 DOI: 10.1016/s0042-6822(03)00546-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the search for an effective vaccine against the human immunodeficiency virus (HIV), novel ways to deliver viral antigens are being evaluated. One such approach is the use of nonreplicating viral vectors encoding HIV and/or SIV genes that are expressed after infection of host cells. Nonreplicating poliovirus vectors, termed replicons, that expressed HIV-1/HXB2 and SIVmac239 gag and various HIV-1 env genes from different clades were tested for immunogenicity and protective efficacy against intravenous challenge of pig-tailed macaques with SHIV-89.6P. To maximize both cellular and humoral immune responses, a prime-boost regimen was used. Initially, macaques were immunized four times over 35 weeks by either the intranasal and intrarectal or the intramuscular (im) route with mixtures of poliovirus replicons expressing HIV-1 gag and multiple env genes. Immunization with replicons alone induced both serum antibodies and lymphocyte proliferative responses. After boosting with purified Env protein, neutralizing antibodies to SHIV-89.6P were induced in four of five immunized animals. In a second experiment, four macaques were immunized im three times over 27 weeks with replicons expressing the SIVmac239 gag and HIV-1/HXB2 env genes. All immunized animals were then boosted twice with purified HIV-1-89.6 rgp140-Env and SIVmac239 p55-Gag proteins. Four control animals received only the two protein inoculations. Immunized and control animals were then challenged intravenously with the pathogenic SHIV-89.6P. After challenge the animals were monitored for virus isolation from peripheral blood mononuclear cells and plasma viremia and for changes in virus-specific antibody titers. Naïve pig-tailed macaques experienced rapid loss of CD4(+) T cells and died between 38 and 62 weeks after infection. In contrast, macaques immunized with replicons and proteins rapidly cleared plasma virus and did not experience sustained loss of CD4(+) lymphocytes. Furthermore, two of the four macaques that were immunized only with purified proteins maintained high viral burdens and lost greater than 95% of their CD4(+) lymphocytes within 2 to 4 weeks after challenge. Thus, poliovirus replicons expressing HIV-1 and SIV antigens were immunogenic in pig-tailed macaques and appeared to enhance the protective effects observed after administration of purified proteins alone.
Collapse
Affiliation(s)
- Patricia N Fultz
- Department of Microbiology, University of Alabama School of Medicine Birmingham, AL 35294, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
Vaccinology has experienced a dramatic resurgence recently, as traditional methodologies of using attenuated live pathogens or inactivated whole pathogens have been either ineffective or are not an acceptable risk for several disease targets, including HIV and Hepatitis C. Gene-based vaccines can stimulate potent humoral and cellular immune responses, and viral vectors might be an efficient strategy for both delivery of antigen-encoding genes, as well as facilitating and enhancing antigen presentation. Vectors derived from diverse viruses with distinct tropism and gene expression strategies have been developed, and are being evaluated in preclinical and clinical vaccine studies. Virus-based vaccines represent a promising approach for vaccines against infectious and malignant disease.
Collapse
Affiliation(s)
- John M Polo
- Chiron Corporation, Immunology and Infectious Diseases, 4560 Horton St, Emeryville, CA 94608, USA.
| | | |
Collapse
|
8
|
Curtis KM, Yount B, Baric RS. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J Virol 2002; 76:1422-34. [PMID: 11773416 PMCID: PMC135785 DOI: 10.1128/jvi.76.3.1422-1434.2002] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2001] [Accepted: 10/24/2001] [Indexed: 11/20/2022] Open
Abstract
We have recently isolated a transmissible gastroenteritis virus (TGEV) infectious construct designated TGEV 1000 (B. Yount, K. M. Curtis, and R. S. Baric, J. Virol. 74:10600-10611, 2000). Using this construct, a recombinant TGEV was constructed that replaced open reading frame (ORF) 3A with a heterologous gene encoding green fluorescent protein (GFP). Following transfection of baby hamster kidney (BHK) cells, a recombinant TGEV (TGEV-GFP2) was isolated that replicated efficiently and expressed GFP. Replicon constructs were constructed that lacked either the ORF 3B and E genes or the ORF 3B, E, and M genes [TGEV-Rep(AvrII) and TGEV-Rep(EcoNI), respectively]. As the E and M proteins are essential for TGEV virion budding, these replicon RNAs should replicate but not result in the production of infectious virus. Following cotransfection of BHK cells with the replicon RNAs carrying gfp, GFP expression was evident by fluorescent microscopy and leader-containing transcripts carrying gfp were detected by reverse transcription-PCR (RT-PCR). Subsequent passage of cell culture supernatants onto permissive swine testicular (ST) cells did not result in the virus, GFP expression, or the presence of leader-containing subgenomic transcripts, demonstrating the single-hit nature of the TGEV replicon RNAs. To prepare a packaging system to assemble TGEV replicon particles (TGEV VRP), the TGEV E gene was cloned into a Venezuelan equine encephalitis (VEE) replicon expression vector and VEE replicon particles encoding the TGEV E protein were isolated [VEE-TGEV(E)]. BHK cells were either cotransfected with TGEV-Rep(AvrII) (E gene deletion) and VEE-TGEV(E) RNA transcripts or transfected with TGEV-Rep(AvrII) RNA transcripts and subsequently infected with VEE VRPs carrying the TGEV E gene. In both cases, GFP expression and leader-containing GFP transcripts were detected in transfected cells. Cell culture supernatants, collected approximately 36 h posttransfection, were passed onto fresh ST cells where GFP expression was evident approximately 18 h postinfection. Leader-containing GFP transcripts containing the ORF 3B and E gene deletions were detected by RT-PCR. Recombinant TGEV was not released from these cultures. Under identical conditions, TGEV-GFP2 spread throughout ST cell cultures, expressed GFP, and formed viral plaques. The development of infectious TGEV replicon particles should assist studies of TGEV replication and assembly as well as facilitate the production of novel swine candidate vaccines.
Collapse
Affiliation(s)
- Kristopher M Curtis
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, USA
| | | | | |
Collapse
|
9
|
Jackson CA, Cobbs C, Peduzzi JD, Novak M, Morrow CD. Repetitive intrathecal injections of poliovirus replicons result in gene expression in neurons of the central nervous system without pathogenesis. Hum Gene Ther 2001; 12:1827-41. [PMID: 11589826 DOI: 10.1089/104303401753153893] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poliovirus-based vectors (replicons) can be used for gene delivery to motor neurons of the CNS. In the current study, a replicon encoding green fluorescent protein (GFP) was encapsidated into authentic poliovirions, using established procedures. Intrathecal delivery of encapsidated replicons encoding GFP to the CNS of mice transgenic for the human poliovirus receptor did not result in any functional deficits as judged by behavioral testing. Histological analysis of the CNS of mice given a single intrathecal injection of poliovirus replicons encoding GFP revealed no obvious pathogenesis in neurons (or other cell types) within the CNS. The expression of GFP was confined to motor neurons throughout the neuroaxis; a time course of expression of GFP revealed that expression was detectable 24 hr postinoculation and returned to background levels by 120 hr postinoculation. A procedure was devised to allow repetitive inoculation of replicons within the same animal. Behavioral testing of animals that had received 6 to 13 independent inoculations of replicons revealed no functional deficits. Histological analysis of the CNS from animals that had received 6 to 13 sequential inoculations of replicons revealed no obvious abnormalities in neurons or other cell types in the CNS; expression of GFP was demonstrated in neurons 24 to 72 hr after the final inoculation of the replicon. Furthermore, there was no obvious inflammatory response in the CNS after the multiple inoculations. These studies establish the safety and efficacy of replicons for gene delivery to the CNS and are discussed with respect to use of replicons as new therapeutic strategies for spinal cord injuries and/or neurological diseases.
Collapse
Affiliation(s)
- C A Jackson
- Department of Physiological Optics, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans.
Collapse
|
11
|
Abstract
Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans.
Collapse
Affiliation(s)
- P L Ogra
- Department of Pediatrics, Division of Infectious Diseases, State University of New York at Buffalo, and Children's Hospital of Buffalo, Buffalo, New York 14222, USA.
| | | | | |
Collapse
|
12
|
Johansen LK, Morrow CD. Inherent instability of poliovirus genomes containing two internal ribosome entry site (IRES) elements supports a role for the IRES in encapsidation. J Virol 2000; 74:8335-42. [PMID: 10954532 PMCID: PMC116343 DOI: 10.1128/jvi.74.18.8335-8342.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have described poliovirus genomes in which the internal ribosome entry (IRES) for encephalomyocarditis virus (EMCV) is positioned between the P1 and P2-P3 open reading frames of the poliovirus genome. Although these dicistronic poliovirus genomes were replication competent, most exhibited evidence of genetic instability, and the EMCV IRES was deleted upon serial passage. One possible reason for instability of the genome is that the dicistronic genome was at least 108% larger than the wild-type poliovirus genome, which could reduce the efficiency of encapsidation. To address this possibility, we have constructed dicistronic poliovirus replicons by substituting the EMCV IRES and the gene encoding luciferase in place of the poliovirus P1 region; the resulting dicistronic replicons are smaller than the wild-type poliovirus genome. One dicistronic genome was constructed in which the poliovirus 5' nontranslated region was fused to the gene encoding luciferase, followed by the complete EMCV IRES fused to the P2-P3 region of the poliovirus genome (PV-Luc-EMCV). A second dicistronic genome, EMCV-Luc-PV, was constructed with the first 108 nucleotides of the poliovirus genome fused to the EMCV IRES, followed by the gene encoding luciferase and the poliovirus IRES fused to the remaining P2-P3 region of the poliovirus genome. Both dicistronic replicons expressed abundant luciferase following transfection of in vitro-transcribed RNA into HeLa cells at 30, 33, or 37 degrees C. The luciferase activity detected from PV-Luc-EMCV increased rapidly during the first 4 h following transfection and then plateaued, peaking after approximately 24 h. In contrast, the luciferase activity detected from EMCV-Luc-PV increased for approximately 12 h following transfection; by 24 h posttransfection, the overall levels of luciferase activity were similar to that of PV-Luc-EMCV. To analyze encapsidation of the dicistronic replicons, we used a system in which the capsid protein (P1) is provided in trans from a recombinant vaccinia virus (VV-P1). The PV-Luc-EMCV replicon was unstable upon serial passage in the presence of VV-P1, with deletions of the EMCV IRES region detected even during the initial transfection at 37 degrees C. Following serial passage in the presence of VV-P1 at 33 or 30 degrees C, we detected deleted genomes in which the luciferase gene was fused with the P2-P3 genes of the poliovirus genome so as to maintain the translational reading frame. In contrast, the EMCV-Luc-PV replicon was genetically stable during passage with VV-P1 at 33 or 30 degrees C. The encapsidation of EMCV-Luc-PV was compared to that of monocistronic replicons encoding luciferase with either a poliovirus or EMCV IRES. Analysis of the encapsidated replicons after four serial passages with VV-P1 revealed that the dicistronic replicon was encapsidated more efficiently than the monocistronic replicon with the EMCV IRES but less efficiently than the monicistronic replicon with the poliovirus IRES. The results of this study suggest a genetic predisposition for picornavirus genomes to contain a single IRES region and are discussed with respect to a role of the IRES in encapsidation.
Collapse
Affiliation(s)
- L K Johansen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
13
|
Bledsoe AW, Jackson CA, McPherson S, Morrow CD. Cytokine production in motor neurons by poliovirus replicon vector gene delivery. Nat Biotechnol 2000; 18:964-9. [PMID: 10973217 DOI: 10.1038/79455] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Poliovirus replicon vectors transiently express foreign proteins selectively in motor neurons of the anterior horn of the spinal cord. Here we intraspinally inoculated mice transgenic for the poliovirus receptor (PVR) with replicons encoding murine tumor necrosis factor alpha (mTNF-alpha). We detected high-level expression of mTNF-alpha in the spinal cords of these animals at 8-12 h post inoculation; this returned to background by 72 h. The mice exhibited ataxia and tail atony, whereas animals given a replicon encoding green fluorescent protein (GFP) exhibited no neurological symptoms. Histology of spinal cords from mice given the replicon encoding mTNF-alpha revealed neuronal chromatolysis, reactive astrogliosis, decreased expression of myelin basic protein, and demyelination. These animals recovered with only slight residual damage. This study shows that replicon vectors have potential for targeted delivery of therapeutic proteins to the central nervous system and provide a new approach for treatment of spinal cord trauma and neurological disease.
Collapse
Affiliation(s)
- A W Bledsoe
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
14
|
Chapman NM, Kim KS, Tracy S, Jackson J, Höfling K, Leser JS, Malone J, Kolbeck P. Coxsackievirus expression of the murine secretory protein interleukin-4 induces increased synthesis of immunoglobulin G1 in mice. J Virol 2000; 74:7952-62. [PMID: 10933703 PMCID: PMC112326 DOI: 10.1128/jvi.74.17.7952-7962.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/1999] [Accepted: 06/08/2000] [Indexed: 11/20/2022] Open
Abstract
We cloned the sequence encoding murine interleukin-4 (mIL-4), including the secretory signal, into the genome of CVB3/0, an artificially attenuated strain of coxsackievirus B3, at the junction of the capsid protein 1D and the viral protease 2Apro. Two strains of chimeric CVB3 were constructed using, in one case, identical sequences to encode 2Apro cleavage sites (CVB3/0-mIL4/47) on either side of the inserted coding sequence and, in the other case, nonidentical sequences that varied at the nucleotide level without changing the amino acid sequences (CVB3-PL2-mIL4/46). Transfection of HeLa cells yielded progeny viruses that replicated with rates similar to that of the parental CVB3/0 strain, although yields of mIL-4-expressing strains were approximately 10-fold lower than those of the parental virus. Western blot analysis of viral proteins isolated from HeLa cells inoculated with either strain of chimeric virus demonstrated that the chimeric viruses synthesized capsid protein 1D at approximately twofold-higher levels than the parental virus. mIL-4 protein was detected by enzyme-linked immunosorbent assay (ELISA) in HeLa cells inoculated with either strain of chimeric virus. Lysates of HeLa cells inoculated with either chimeric virus induced the proliferation of the mIL-4-requiring murine MC-9 cell line, demonstrating biological activity of the CVB3-expressed mIL-4. Reverse transcription (RT)-PCR analysis of viral RNA derived from sequential passaging of CVB3/0-mIL4/47 in HeLa cells demonstrated deletion of the mIL-4 coding sequence occurring by the fourth passage, while similar analysis of CVB3-PL2-mIL4/46 RNA demonstrated detection of the mIL-4 coding sequence in the virus population through 10 generations in HeLa cells. mIL-4 protein levels determined by ELISA were consistent with the stability and loss data determined by RT-PCR analysis of the passaged viral genomes. Studies of insert stability of CVB3-PL2-mIL4/46 during replication in mice showed the presence of the viral mIL-4 insert in pancreas, heart, and liver at 14 days postinfection. Comparison of the murine antibody responses to CVB3-PL2-mIL4/46 and the parental CVB3/0 strain demonstrated an increased level of CVB3-binding serum immunoglobulin G1 in mice inoculated with CVB3-PL2-mIL4/46.
Collapse
Affiliation(s)
- N M Chapman
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Johansen LK, Morrow CD. The RNA encompassing the internal ribosome entry site in the poliovirus 5' nontranslated region enhances the encapsidation of genomic RNA. Virology 2000; 273:391-9. [PMID: 10915610 DOI: 10.1006/viro.2000.0433] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poliovirus replicons were constructed which contain the internal ribosome entry site (IRES) of encephalomyocarditis virus (EMCV) substituted for the poliovirus IRES. To monitor gene expression and encapsidation, the gene encoding firefly luciferase was substituted for the P1 gene. Replicons can be encapsidated following serial passage in the presence of a recombinant vaccinia virus, VV-P1, which expresses the poliovirus P1 protein following infection. Encapsidation of the wild-type replicon (PV-Luc) was accomplished at either 33 or 37 degrees C; the lower temperature actually resulted in greater amounts of encapsidated replicon. In contrast, the replicon with the EMCV IRES element (EMCV-Luc) was not efficiently encapsidated at 37 degrees C and, following serial passage with VV-P1 at 37 degrees C, was not amplified. EMCV-Luc was efficiently encapsidated, however, following serial passage with VV-P1 at 33 degrees C. Using the encapsidated EMCV-Luc obtained at 33 degrees C, we found that cells infected with EMCV-Luc at 33 or 37 degrees C produced similar amounts of luciferase. Encapsidated EMCV-Luc and PV-Luc had similar thermal stability at 33 and 37 degrees C. A single-round encapsidation analysis revealed that less EMCV-Luc was encapsidated at 37 than at 33 degrees C; less EMCV-Luc was encapsidated at 33 degrees C compared to PV-Luc at either 37 or 33 degrees C. The results of our studies suggest that in addition to influencing translation/replication, the IRES region of poliovirus can function to enhance encapsidation.
Collapse
Affiliation(s)
- L K Johansen
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
16
|
Höfling K, Tracy S, Chapman N, Kim KS, Smith Leser J. Expression of an antigenic adenovirus epitope in a group B coxsackievirus. J Virol 2000; 74:4570-8. [PMID: 10775593 PMCID: PMC111977 DOI: 10.1128/jvi.74.10.4570-4578.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group B coxsackieviruses (CVB) cause human myocarditis, while human adenovirus type 2 (Ad2) is implicated as an agent of this disease. The L1 loop of the Ad2 hexon protein has been demonstrated to be antigenic in rabbits. To evaluate the feasibility of a multivalent vaccine strain against the CVB and Ad2, we cloned the sequence encoding the Ad2 hexon L1 loop, flanked by dissimilar sequences encoding the protease 2A (2Apro) recognition sites, into the genome of an attenuated strain of CVB type 3 (CVB3/0) at the junction of 2Apro and the capsid protein 1D. Progeny virus (CVB3-PL2-Ad2L1) was obtained following transfection of the construct into HeLa cells. Replication of CVB3-PL2-Ad2L1 in diverse cell cultures demonstrated that the yield of the chimeric virus was between 0.5 to 2 log units less than the parental strain. Western blot analyses of the CVB3 capsid protein 1D in CVB3-PL2-Ad2L1-infected HeLa cells demonstrated production of the expected capsid protein. Viral proteins were detected earlier and in approximately fourfold greater amounts in CVB3-PL2-Ad2L1-infected HeLa cells than in CVB3/0-infected cells. Cleavage of the CVB3-PL2-Ad2L1 polyprotein by 2Apro was slowed, accompanied by an accumulation of the fusion 1D-L1 loop protein. Reverse transcription-PCR sequence analysis of CVB3-PL2-Ad2L1 RNA demonstrated that the Ad2 hexon polypeptide coding sequence was maintained in the chimeric viral genome through at least 10 passages in HeLa cells. Mice inoculated with CVB3-PL2-Ad2L1 demonstrated a brief viremia with no replication detectable in the heart but prolonged replication of virus in the pancreas in the absence of pathologic changes in either organ. CVB3-PL2-Ad2L1 induced binding and neutralizing anti-Ad2 antibodies, in addition to antibodies against CVB3 in mice. CVB3-PL2-Ad2L1 was used to challenge mice previously inoculated with CVB3/0 and with preexisting anti-CVB3 neutralizing-antibody titers; anti-Ad2 neutralizing and binding antibodies were induced in these mice at higher levels than in mice without anti-CVB3 immunity. The data demonstrate that a CVB vector can stably express an antigenic polypeptide of Ad2 from within the CVB open reading frame that results in the induction of protective immune responses against both viruses.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Base Sequence
- Blotting, Western
- Capsid/chemistry
- Capsid/genetics
- Capsid/immunology
- Capsid/metabolism
- Capsid Proteins
- Cells, Cultured
- Enterovirus B, Human/genetics
- Enterovirus B, Human/immunology
- Enterovirus B, Human/metabolism
- Epitopes/genetics
- Epitopes/metabolism
- Genetic Vectors
- Genome, Viral
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neutralization Tests
- Rabbits
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- K Höfling
- Enterovirus Research Laboratory, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6495, USA
| | | | | | | | | |
Collapse
|
17
|
Varnavski AN, Young PR, Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 2000; 74:4394-403. [PMID: 10756054 PMCID: PMC111956 DOI: 10.1128/jvi.74.9.4394-4403.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primary features of the flavivirus Kunjin (KUN) subgenomic replicons include continuous noncytopathic replication in host cell cytoplasm and the ability to be encapsidated into secreted virus-like particles (VLPs). Previously we reported preparation of RNA-based KUN replicon vectors and expression of heterologous genes (HG) in cell culture after RNA transfection or after infection with recombinant KUN VLPs (A. N. Varnavski and A. A. Khromykh, Virology 255:366-375, 1999). In this study we describe the development of the next generation of KUN replicon vectors, which allow synthesis of replicon RNA in vivo from corresponding plasmid DNAs. These DNA-based vectors were able to direct stable expression of beta-galactosidase (beta-Gal) in several mammalian cell lines, and expression remained high ( approximately 150 pg per cell) throughout cell passaging. The applicability of these vectors in vivo was demonstrated by beta-Gal expression in the mouse lung epithelium for at least 8 weeks after intranasal inoculation and induction of anti-beta-Gal antibody response after intramuscular inoculation of the beta-Gal-encoding KUN replicon DNA. The noncytopathic nature of DNA-based KUN replicon vectors combined with high-level and stability of HG expression in a broad range of host cells should prove them to be useful in a variety of applications in vitro and in vivo.
Collapse
Affiliation(s)
- A N Varnavski
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston, Brisbane 4029, Australia
| | | | | |
Collapse
|
18
|
Affiliation(s)
- D J Evans
- Division of Virology, University of Glasgow, United Kingdom
| |
Collapse
|
19
|
Bell YC, Semler BL, Ehrenfeld E. Requirements for RNA replication of a poliovirus replicon by coxsackievirus B3 RNA polymerase. J Virol 1999; 73:9413-21. [PMID: 10516050 PMCID: PMC112976 DOI: 10.1128/jvi.73.11.9413-9421.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric poliovirus type 1 (PV1) genome was constructed in which the 3D RNA polymerase (3D(pol)) coding sequences were replaced with those from coxsackievirus B3 (CVB3). No infectious virus was produced from HeLa cells transfected with the chimeric RNA. Processing of the PV1 capsid protein precursor was incomplete, presumably due to inefficient recognition of the P1 protein substrate by the chimeric 3CD proteinase containing CVB3 3D sequences. The ability of the chimeric RNA to replicate in the absence of capsid formation was measured after replacement of the P1 region with a luciferase reporter gene. No RNA synthesis was detected, despite efficient production of enzymatically active 3D(pol) from the 3D portion of the chimeric 3CD. The chimeric 3CD protein was unable to efficiently bind to the cloverleaf-like structure (CL) at the 5' end of PV1 RNA, which has been demonstrated previously to be required for viral RNA synthesis. The CVB3 3CD protein bound the PV1 CL as well as PV1 3CD. An additional chimeric PV1 RNA that contained CVB3 3CD sequences also failed to produce virus after transfection. Since processing of PV1 capsid protein precursors by the CVB3 3CD was again incomplete, a luciferase-containing replicon was also analyzed for RNA replication. The 3CD chimera replicated at 33 degrees C, but not at 37 degrees C. Replacement of the PV1 5'-terminal CL with that of CVB3 did not rescue the temperature-sensitive phenotype. Thus, there is an essential interaction(s) between 3CD and other viral P2 or P3 protein products required for efficient RNA replication which is not fully achieved between proteins from the two different members of the same virus genus.
Collapse
Affiliation(s)
- Y C Bell
- Department of Molecular Biology, College of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
20
|
Novak MJ, Smythies LE, McPherson SA, Smith PD, Morrow CD. Poliovirus replicons encoding the B subunit of Helicobacter pylori urease elicit a Th1 associated immune response. Vaccine 1999; 17:2384-91. [PMID: 10392620 DOI: 10.1016/s0264-410x(99)00035-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of a vaccine for Helicobacter pylori is a key strategy for reducing the worldwide prevalence of H. pylori infection. Although immunization with recombinant B subunit of H. pylori urease (ureB) has yielded promising results, for the most part, these studies relied on the use of strong adjuvant, cholera toxin, precluding the use in humans. Thus, the development of new vaccine strategies for H. pylori is essential. Previous studies from our laboratory have described a vaccine vector based on poliovirus in which foreign genes are substituted for the poliovirus capsid genes. The genomes encoding foreign proteins (replicons) are encapsidated into authentic poliovirions by providing the capsids in trans. To test the utility of replicons as a vaccine vector for H. pylori, a replicon was constructed which encodes ureB. Expression of ureB in cells from the replicon was demonstrated by metabolic labeling followed by immunoprecipitation with anti-urease antibodies. To investigate the immunogenicity of the replicons, mice containing the transgene for the receptor for poliovirus were immunized via the intramuscular route. Mice given three doses of replicons did not develop substantial antibodies to ureB as determined by Western blot analysis using lysates from H. pylori. In contrast, mice given two doses of replicon followed by a single injection of recombinant ureB developed serum antibodies to ureB which were predominately IgG2a. Splenic lymphocytes from mice immunized with replicons alone, or replicons plus recombinant ureB produced abundant interferon-gamma and no detectable interleukin-4 upon stimulation with recombinant ureB. These results establish that poliovirus replicons encoding H. pylori ureB are immunogenic and induce primarily a T helper 1 associated immune response.
Collapse
Affiliation(s)
- M J Novak
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
21
|
Varnavski AN, Khromykh AA. Noncytopathic flavivirus replicon RNA-based system for expression and delivery of heterologous genes. Virology 1999; 255:366-75. [PMID: 10069962 DOI: 10.1006/viro.1998.9564] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Noncytopathic replicons of the flavivirus Kunjin (KUN) were employed for expression and delivery of heterologous genes. Replicon vector C20DX2Arep, containing a unique cloning site followed by the sequence of 2A autoprotease of foot-and-mouth disease virus, was constructed and used for expression of a number of heterologous genes including chloramphenicol acetyltransferase (CAT), green fluorescent protein (GFP), beta-galactosidase, glycoprotein G of vesicular stomatitis virus, and the Core and NS3 genes of hepatitis C virus. The expression and proper processing of these genes upon transfection of BHK21 cells with the recombinant replicon RNAs were demonstrated by immunofluorescence, radioimmunoprecipitation, and appropriate reporter gene assays. Most of these recombinant KUN replicon RNAs were also successfully packaged into secreted virus-like particles (VLPs) by subsequent transfection with Semliki Forest virus replicon RNA expressing KUN structural genes. Infection of BHK21 and Vero cells with these VLPs resulted in continuous replication of the recombinant replicon RNAs and prolonged expression of the cloned genes without any cytopathic effect. We also developed a replicon vector for generation of stable cell lines continuously expressing heterologous genes by inserting an encephalomyelocarditis virus internal ribosomal entry site-neomycin transferase gene cassette into the 3'-untranslated region of the C20DX2Arep vector. Using this vector (C20DX2ArepNeo), stable BHK cell lines persistently expressing GFP and CAT genes for up to 17 passages were established. Thus noncytopathic KUN replicon vectors with the ability to be packaged into VLPs should provide a useful tool for the development of noninfectious and noncytopathic vaccines as well as for gene therapy applications.
Collapse
Affiliation(s)
- A N Varnavski
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Herston Road, Brisbane, 4029, Australia
| | | |
Collapse
|
22
|
Morrow CD, Novak MJ, Ansardi DC, Porter DC, Moldoveanu Z. Recombinant viruses as vectors for mucosal immunity. Curr Top Microbiol Immunol 1999; 236:255-73. [PMID: 9893364 DOI: 10.1007/978-3-642-59951-4_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development and characterization of viral based vaccine vectors is extremely active research field. Much of this work has been facilitated by developments in molecular biology that allow work with large plasmid-based vectors, as well as the use of PCR. Several different vector systems are now available using RNA viruses and DNA viruses. Each vector system has its own strengths and weaknesses. Due to the differences and diversity between the viruses used as vectors, it is doubtful that a single system will be useful for all desired vaccines. However, the further development of existing, as well as potentially new systems, will provide a repertoire for vaccinologists to design the recombinant vaccine which will generate an optimal humoral and immune response for protection against infection or disease caused by pathogens that infect via mucosal surfaces.
Collapse
Affiliation(s)
- C D Morrow
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The discovery of viruses heralded an exciting new era for research in the medical and biological sciences. It has been realized that the cellular receptor guiding a virus to a target cell cannot be the sole determinant of a virus's pathogenic potential. Comparative analyses of the structures of genomes and their products have placed the picornaviruses into a large “picorna-like” virus family, in which they occupy a prominent place. Most human picornavirus infections are self-limiting, yet the enormously high rate of picornavirus infections in the human population can lead to a significant incidence of disease complications that may be permanently debilitating or even fatal. Picornaviruses employ one of the simplest imaginable genetic systems: they consist of single-stranded RNA that encodes only a single multidomain polypeptide, the polyprotein. The RNA is packaged into a small, rigid, naked, and icosahedral virion whose proteins are unmodified except for a myristate at the N-termini of VP4. The RNA itself does not contain modified bases. The key to ultimately understanding picornaviruses may be to rationalize the huge amount of information about these viruses from the perspective of evolution. It is possible that the replicative apparatus of picornaviruses originated in the precellular world and was subsequently refined in the course of thousands of generations in a slowly evolving environment. Picornaviruses cultivated the art of adaptation, which has allowed them to “jump” into new niches offered in the biological world.
Collapse
|
24
|
Melnick L, Yang SS, Rossi R, Zepp C, Heefner D. An Escherichia coli expression assay and screen for human immunodeficiency virus protease variants with decreased susceptibility to indinavir. Antimicrob Agents Chemother 1998; 42:3256-65. [PMID: 9835523 PMCID: PMC106031 DOI: 10.1128/aac.42.12.3256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/1998] [Accepted: 09/12/1998] [Indexed: 11/20/2022] Open
Abstract
We have developed a recombinant Escherichia coli screening system for the rapid detection and identification of amino acid substitutions in the human immunodeficiency virus (HIV) protease associated with decreased susceptibility to the protease inhibitor indinavir (MK-639; Merck & Co.). The assay depends upon the correct processing of a segment of the HIV-1 HXB2 gag-pol polyprotein followed by detection of HIV reverse transcriptase activity by a highly sensitive, colorimetric enzyme-linked immunosorbent assay. The highly sensitive system detects the contributions of single substitutions such as I84V, L90M, and L63P. The combination of single substitutions further decreases the sensitivity to indinavir. We constructed a library of HIV protease variant genes containing dispersed mutations and, using the E. coli recombinant system, screened for mutants with decreased indinavir sensitivity. The discovered HIV protease variants contain amino acid substitutions commonly associated with indinavir resistance in clinical isolates, including the substitutions L90M, L63P, I64V, V82A, L24I, and I54T. One substitution, W6R, is also frequently found by the screen and has not been reported elsewhere. Of a total of 12,000 isolates that were screened, 12 protease variants with decreased sensitivity to indinavir were found. The L63P substitution, which is also associated with indinavir resistance, increases the stability of the isolated protease relative to that of the native HXB2 protease. The rapidity, sensitivity, and accuracy of this screen also make it useful for screening for novel inhibitors. We have found the approach described here to be useful for the detection of amino acid substitutions in HIV protease that have been associated with drug resistance as well as for the screening of novel compounds for inhibitory activity.
Collapse
Affiliation(s)
- L Melnick
- Sepracor Inc., Marlborough, Massachusetts 01752, USA.
| | | | | | | | | |
Collapse
|
25
|
Khromykh AA, Varnavski AN, Westaway EG. Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin virus structural proteins in trans. J Virol 1998; 72:5967-77. [PMID: 9621059 PMCID: PMC110401 DOI: 10.1128/jvi.72.7.5967-5977.1998] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kunjin virus (KUN) replicon RNA was encapsidated by a procedure involving two consecutive electroporations of BHK-21 cells, first with KUN replicon RNA C20DXrep (with prME and most of C deleted) and about 24 h later with a recombinant Semliki Forest virus (SFV) replicon RNA(s) expressing KUN structural proteins. The presence of KUN replicon RNA in encapsidated particles was demonstrated by its amplification and expression in newly infected BHK-21 cells, detected by Northern blotting with a KUN-specific probe and by immunofluorescence analysis with anti-NS3 antibodies. No infectious particles were produced when C20DXrep RNA and recombinant SFV RNAs were electroporated simultaneously. When the second electroporation was performed with a single SFV replicon RNA expressing the KUN contiguous prME genes and the KUN C gene together but under control of two separate 26S subgenomic promoters (SFV-prME-C107), a 10-fold-higher titer of infectious particles was achieved than when two different SFV replicon RNAs expressing the KUN C gene (SFV-C107) and prME genes (SFV-prME) separately were used. No SFV replicon RNAs expressing KUN structural proteins were encapsidated in secreted particles. Infectious particles pelleted by ultracentrifugation of the culture fluid from cells sequentially transfected with C20DXrep and SFV-prME-C107 RNAs were neutralized by preincubation with monoclonal antibodies to KUN E protein. Radioimmunoprecipitation analysis with anti-E antibodies of the culture fluid of the doubly transfected cells showed the presence of C, prM/M, and E proteins in the immunoprecipitated particles. Reverse transcription-PCR analysis showed that the immunoprecipitated particles also contained KUN-specific RNA. The encapsidated replicon particles sedimented more slowly than KUN virions in a 5 to 25% sucrose density gradient and were uniformly spherical, with an approximately 35-nm diameter, compared with approximately 50 nm for KUN virions. The results of this study demonstrate for the first time packaging of flavivirus RNA in trans, and they exclude a role in packaging for virtually all of the structural region. Possible applications of the developed packaging system include the definition of the packaging signal(s) in flavivirus RNA as well as the amino acid motif(s) in the structural proteins involved in RNA encapsidation, virion assembly, and secretion. Furthermore, it could facilitate the development of a noninfectious vaccine delivery system based on encapsidation of a noncytopathic flavivirus replicon expressing heterologous genes.
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|
26
|
Hung M, Patel P, Davis S, Green SR. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol 1998; 72:4819-24. [PMID: 9573247 PMCID: PMC110024 DOI: 10.1128/jvi.72.6.4819-4824.1998] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The recent development and use of protease inhibitors have demonstrated the essential role that combination therapy will play in the treatment of individuals infected with the human immunodeficiency virus type 1 (HIV-1). Past clinical experience suggests that due to the appearance of resistant HIV-1 variants, additional therapeutics will be required in the future. To identify new options for combination therapy, it is of paramount importance to pursue novel targets for drug development. Ribosomal frameshifting is one potential target that has not been fully explored. Data presented here demonstrate that small molecules can stimulate frameshifting, leading to an imbalance in the ratio of Gag to Gag-Pol and inhibiting HIV-1 replication at what appears to be the point of viral particle assembly. Thus, we propose that frameshifting represents a new target for the identification of novel anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- M Hung
- RiboGene Inc., Hayward, California 94545, USA
| | | | | | | |
Collapse
|
27
|
Porter DC, Ansardi DC, Wang J, McPherson S, Moldoveanu Z, Morrow CD. Demonstration of the specificity of poliovirus encapsidation using a novel replicon which encodes enzymatically active firefly luciferase. Virology 1998; 243:1-11. [PMID: 9527910 DOI: 10.1006/viro.1998.9046] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The specificity of poliovirus encapsidation has been studied using a novel chimeric genome in which the gene encoding firefly luciferase has been substituted for the VP2-VP3-VP1 genes of the poliovirus capsid (P1) gene. Transfection of RNA transcribed in vitro from this genome resulted in a VP4-luciferase fusion protein which retained luciferase enzyme activity. Since the detection of enzyme activity was dependent upon replication of the transfected RNA genome, we refer to these genomes as replicons. The replicon encoding luciferase was encapsidated upon transfection of the genomic RNA into cells previously infected with a recombinant vaccinia virus, VV-P1, which encodes the poliovirus type 1 capsid proteins (P1). Infection of cells with each serial passage, followed by analysis of luciferase enzyme activity, revealed that encapsidated replicons could be detected at the first passage with VV-P1. Amplification of the titer of encapsidated replicons occurred upon serial passage with VV-P1, as evidenced by the high expression levels of luciferase enzyme activity following infection. Serial passage of the luciferase replicons with poliovirus type 1, 2, or 3 resulted in the trans encapsidation into the type 1, 2, or 3 capsids, respectively. In contrast, serial passage with bovine enterovirus, Coxsackievirus A21 or B3, or enterovirus 70 did not result in trans encapsidation, even though co-infection of cells with the replicon and different enteroviruses resulted in high-level expression of luciferase. The results of this study highlight the specificity of poliovirus encapsidation and point to the use of encapsidated replicons encoding luciferase as a reagent for dissecting elements of replication and encapsidation.
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | |
Collapse
|
28
|
Zhang Y, Kaplan GG. Characterization of replication-competent hepatitis A virus constructs containing insertions at the N terminus of the polyprotein. J Virol 1998; 72:349-57. [PMID: 9420233 PMCID: PMC109382 DOI: 10.1128/jvi.72.1.349-357.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/1997] [Accepted: 09/17/1997] [Indexed: 02/05/2023] Open
Abstract
To determine whether hepatitis A virus (HAV) could tolerate the insertion of exogenous sequences, we constructed full-length HAV cDNAs containing in-frame insertions at the N terminus of the polyprotein and transfected the derived T7 RNA polymerase in vitro transcripts into FRhK-4 cells. Replication of HAVvec1, a construct containing an insertion of 60 nucleotides coding for a polylinker, a 2B/2C cleavage site for HAV protease 3Cpro, and two initiation codons that restored the sequence of the N terminus of the polyprotein, was detected 2 weeks after transfection by indirect immunofluorescence analysis using anti-HAV monoclonal antibodies. Western blot analysis of HAVvec1-infected cells using anti-VP2 and anti-VP4 antibodies failed to detect the expression of the inserted sequences. Insertion of a 24-mer oligonucleotide coding for a FLAG epitope into HAVvec1 resulted in its HAV-mediated expression which was retained upon deletion of a Gln residue from the inserted 2B/2C cleavage site. Western blot analysis using anti-FLAG and anti-VP2 antibodies showed that the FLAG epitope accumulated in infected cells fused to VP0. Replacement of the FLAG epitope with an epitope of the circumsporozoite protein (CSP) of Plasmodium falciparum resulted in its stable HAV-mediated expression for at least six serial passages in FRhK-4 cells. Sedimentation analysis in sucrose density gradients showed that the CSP epitope accumulated in infected cells fused to VP0, forming 80S empty capsids which also contained native VP0. Our data suggest that the HAV internal ribosome entry site can efficiently direct dual initiation of translation of the polyprotein from AUG codons separated by 66 to 78 nucleotides and show that HAV can tolerate insertions at the N terminus of the polyprotein.
Collapse
Affiliation(s)
- Y Zhang
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
29
|
Khromykh AA, Westaway EG. Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 1997; 71:1497-505. [PMID: 8995675 PMCID: PMC191206 DOI: 10.1128/jvi.71.2.1497-1505.1997] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several Kunjin virus (KUN) subgenomic replicons containing large deletions in the structural region (C-prM-E) and in the 3' untranslated region (3'UTR) of the genome have been constructed. Replicon RNA deltaME with 1,987 nucleotides deleted (from nucleotide 417 [in codon 108] in the C gene to nucleotide 2403 near the carboxy terminus of the E gene, inclusive) and replicon RNA C20rep with 2,247 nucleotides deleted (from nucleotide 157 [in codon 20] in C to nucleotide 2403) replicated efficiently in electroporated BHK21 cells. A further deletion from C20rep of 53 nucleotides, reducing the coding sequence in core protein to two codons (C2rep RNA), resulted in abolishment of RNA replication. Replicon deltaME/76 with a deletion of 76 nucleotides in the 3'UTR of deltaME RNA (nucleotides 10423 to 10498) replicated efficiently, whereas replicon deltaME/352 with a larger deletion of 352 nucleotides (nucleotides 10423 to 10774), including two conserved sequences RCS3 and CS3, was significantly inhibited in RNA replication. To explore the possibility of using a reporter gene assay to monitor synthesis of the positive strand and the negative strand of KUN RNA, we inserted a chloramphenicol acetyltransferase (CAT) gene into the 3'UTR of deltaME/76 RNA under control of the internal ribosomal entry site (IRES) of encephalomyelocarditis virus RNA in both plus (deltaME/76CAT[+])- and minus (deltaME/76CAT[-])-sense orientations. Although insertion of the IRES-CAT cassette in the plus-sense orientation resulted in a significant (10- to 20-fold) reduction of RNA replication compared to that of the parental deltaME/76 RNA, CAT expression was readily detected in electroporated BHK cells. No CAT expression was detected after electroporation of RNA containing the IRES-CAT cassette inserted in the minus-sense orientation despite its apparently more efficient replication (similar to that of deltaME/76 RNA); this result indicated that KUN negative-strand RNA was probably not released from its template after synthesis. Replacement of the CAT gene in the deltaME/76CAT(+) RNA with the neomycin gene (Neo) enabled selection and recovery of a BHK cell culture in which the majority of cells were continuously expressing the replicon RNA for 41 days (nine passages) without apparent cytopathic effect. The constructed KUN replicons should provide valuable tools to study flavivirus RNA replication as well as providing possible vectors for a long-lasting and noncytopathic RNA virus expression system.
Collapse
Affiliation(s)
- A A Khromykh
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Queensland, Australia.
| | | |
Collapse
|
30
|
Porter DC, Wang J, Moldoveanu Z, McPherson S, Morrow CD. Immunization of mice with poliovirus replicons expressing the C-fragment of tetanus toxin protects against lethal challenge with tetanus toxin. Vaccine 1997; 15:257-64. [PMID: 9139483 DOI: 10.1016/s0264-410x(96)00187-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, we describe the construction of poliovirus genomes or "replicons" which contain the C fragment gene of tetanus toxin substituted for the poliovirus P1 capsid. Upon transfection of replicon RNA into cells, we immunoprecipitated a protein corresponding to the C-fragment of tetanus toxin using tetanus-specific antibodies. Using a recombinant vaccinia virus expressing poliovirus P1 capsid protein (VV-P1) to provide P1 protein, the replicon RNA was encapsidated; stocks of the replicons were generated by passage with VV-P1. The immunogenicity of the replicons was determined by immunization of transgenic mice which are susceptible to poliovirus. A serum antibody response to poliovirus and tetanus toxoid was detected in all of the immunized mice. Protection against a lethal dose of tetanus toxin generally correlated with the levels of serum anti-tetanus antibodies. To address whether pre-existing antibodies to poliovirus limit the effectiveness of the replicon as a vaccine vector, mice were first immunized with the inactivated poliovirus vaccine followed by immunization with the replicons expressing C-fragment protein. Anti-tetanus antibodies were detected in these mice after a single administration of the replicon; these antibodies conferred protection upon challenge with tetanus toxin. These results demonstrate the potential use of poliovirus replicons encoding foreign proteins to induce a protective antibody response, even in the presence of pre-existing antibodies to poliovirus.
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
31
|
Anderson MJ, Porter DC, Moldoveanu Z, Fletcher TM, McPherson S, Morrow CD. Characterization of the expression and immunogenicity of poliovirus replicons that encode simian immunodeficiency virus SIVmac239 Gag or envelope SU proteins. AIDS Res Hum Retroviruses 1997; 13:53-62. [PMID: 8989427 DOI: 10.1089/aid.1997.13.53] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The effectiveness of the poliovirus vaccines to induce both systemic and mucosal immunity has prompted the development of this virus as a vector in which to express foreign proteins. Our laboratory has previously reported on the construction and characterization of poliovirus genomes that encode HIV-1 proteins (Porter DC, et al.: J Virol 1996;70:2643-2649). To develop this system further, we have constructed poliovirus genomes, referred to as replicons, which encode the SIVmac239 Gag or Env SU in place of the poliovirus capsid gene (P1). Since the replicons do not encode capsid proteins, they are encapsidated into poliovirus by passage with a recombinant vaccinia virus, VVP1, which provides the poliovirus capsid proteins in trans. Using this system, we have derived stocks of the encapsidated replicons which encode the SIVmac239 or Env SU protein. Infection of cells with the replicon that encodes SIVmac239 Gag resulted in the expression of a 55-kDa protein that was released from the infected cells. Analysis of the sedimentation of the released proteins by sucrose density gradient centrifugation revealed that the protein was released from the cell in the form of a virus-like particle. Infection of cells with the replicons encoding the SIVmac239 Env SU resulted in the expression of a 63-kDa protein, corresponding to the molecular mass predicted for the nonglycosylated SIVmac239 SU protein. A second protein with a molecular mass greater than 160 kDa was also immunoprecipitated. After enzymatic deglycosylation, this protein migrated at a molecular mass consistent with that for an Env SU dimer. Analysis of the medium from cells infected with the replicon encoding SIVmac239 Env SU revealed the presence of a protein of molecular mass 85-90 kDa, possibly representing a fragment of the SIVmac239 or Env SU protein. To determine the immunogenicity of the replicons encoding SIVmac239 Gag or Env SU, transgenic mice that express the human receptor for poliovirus, and are thus susceptible to poliovirus, were immunized via the intramuscular route. A serum antibody response to SIV envelope was detected following booster immunization, establishing that the encapsidated replicon was immunogenic. Finally, we demonstrate that the replicons have the capacity to infect peripheral blood mononuclear monocytes/macrophages, suggesting that this cell is a possible target for in vivo infection. The results of our studies, then, lend further support for the development and application of recombinant poliovirus replicons in a vaccine strategy.
Collapse
MESH Headings
- Animals
- Gene Expression
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Genes, env
- Genes, gag
- Humans
- Macaca nemestrina
- Macrophages, Peritoneal/virology
- Membrane Proteins
- Mice
- Mice, Transgenic
- Molecular Weight
- Poliovirus/genetics
- Receptors, Virus
- Replicon/genetics
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Vaccination
- Vaccinia virus/genetics
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virion
Collapse
Affiliation(s)
- M J Anderson
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | |
Collapse
|
32
|
Porter DC, Melsen LR, Compans RW, Morrow CD. Release of virus-like particles from cells infected with poliovirus replicons which express human immunodeficiency virus type 1 Gag. J Virol 1996; 70:2643-9. [PMID: 8642700 PMCID: PMC190116 DOI: 10.1128/jvi.70.4.2643-2649.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The effectiveness of attenuated poliovirus vaccines when given orally to induce both systemic and mucosal immune responses against poliovirus has resulted in an effort to develop poliovirus-based vectors to express foreign proteins. We have previously described the construction of poliovirus genomes (referred to as replicons) in which the complete human immunodeficiency virus type 1 (HIV-1) gag gene was substituted for the capsid gene (P1) (D.C. Porter, D.C. Ansardi, and C.D. Morrow, J. Virol. 69:1548-1555, 1995). Infection of cells with encapsidated replicons resulted in the expression of a 55-kDa protein. To further characterize the biological features of the HIV-1 Gag proteins expressed in cells infected with encapsidated replicons, we utilized biochemical analysis and electron microscopy. Expression of the 55-kDa protein in cells infected with encapsidated replicons resulted in myristylation of the Pr55gag protein. The Gag precursor protein was released from infected cells; analysis on sucrose density gradients revealed that the precursor sedimented at a density consistent with that of an HIV-1 virus-like particle. Analysis of replicon-infected cells by electron microscopy demonstrated the presence of condensed structures at the plasma membrane and the release of virus-like particles. These studies demonstrate that poliovirus-based vectors can be used to express foreign proteins which require posttranslational modifications, such as myristylation, and assemble into higher-order structures, providing a foundation for the future use of poliovirus replicons as vaccine vectors.
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
33
|
Gao F, Morrison SG, Robertson DL, Thornton CL, Craig S, Karlsson G, Sodroski J, Morgado M, Galvao-Castro B, von Briesen H, Beddows S, Weber J, Sharp PM, Shaw GM, Hahn BH. Molecular cloning and analysis of functional envelope genes from human immunodeficiency virus type 1 sequence subtypes A through G. The WHO and NIAID Networks for HIV Isolation and Characterization. J Virol 1996; 70:1651-67. [PMID: 8627686 PMCID: PMC189989 DOI: 10.1128/jvi.70.3.1651-1667.1996] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Present knowledge of human immunodeficiency virus type 1 (HIV-1) envelope immunobiology has been derived almost exclusively from analyses of subtype B viruses, yet such viruses represent only a minority of strains currently spreading worldwide. To generate a more representative panel of genetically diverse envelope genes, we PCR amplified, cloned, and sequenced complete gp160 coding regions of 35 primary (peripheral blood mononuclear cell-propagated) HIV-1 isolates collected at major epicenters of the current AIDS pandemic. Analysis of their deduced amino acid sequences revealed several important differences from prototypic subtype B strains, including changes in the number and distribution of cysteine residues, substantial length differences in hypervariable regions, and premature truncations in the gp41 domain. Moreover, transiently expressed glycoprotein precursor molecules varied considerably in both size and carbohydrate content. Phylogenetic analyses of full-length env sequences indicated that the panel included members of all major sequence subtypes of HIV-1 group M (clades A to G), as well as an intersubtype recombinant (F/B) from an infected individual in Brazil. In addition, all subtype E and three subtype G viruses initially classified on the basis of partial env sequences were found to cluster in subtype A in the 3' half of their gp41 coding region, suggesting that they are also recombinant. The biological activity of PCR-derived env genes was examined in a single-round virus infectivity assay. This analysis identified 20 clones, including 1 from each subtype (or recombinant), which expressed fully functional envelope glycoproteins. One of these, derived from a patient with rapid CD4 cell decline, contained an amino acid substitution in a highly conserved endocytosis signal (Y721C), as mediated virus entry with very poor efficiency, although they did not contain sequence changes predicted to alter protein function. These results indicate that the env genes of primary HIV-1 isolates collected worldwide can vary considerably in their genetic, phylogenetic, and biological properties. The panel of env constructs described here should prove valuable for future structure-function studies of naturally occurring envelope glycoproteins as well as AIDS vaccine development efforts targeted against a broader spectrum of viruses.
Collapse
Affiliation(s)
- F Gao
- Department of Medicine, University of Alabama at Birmingham 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
McKnight KL, Lemon SM. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J Virol 1996; 70:1941-52. [PMID: 8627720 PMCID: PMC190023 DOI: 10.1128/jvi.70.3.1941-1952.1996] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mechanisms by which the plus-sense RNA genomes of picornaviruses are replicated remain poorly defined, but existing models do not suggest a role for sequences encoding the capsid proteins. However, candidate RNA replicons (delta P1 beta gal and delta P1Luc), representing the sequence of human rhinovirus 14 virus (HRV-14) with reporter protein sequences (beta-galactosidase or luciferase, respectively) replacing most of the P1 capsid-coding region, failed to replicate in transfected H1-HeLa cells despite efficient primary cleavage of the polyprotein. To determine which P1 sequences might be required for RNA replication, HRV-14 mutants in which segments of the P1 region were removed to frame from the genome were constructed. Mutants with deletions involving the 5'proximal 1,489 nucleotides of the P1 region replicated efficiently, while those with deletions involving the 3' 1,079 nucleotides did not. Reintroduction of the 3' P1 sequence into the nonreplicating delta P1Luc construct resulted in a new candidate replicon, delta P1Luc/VP3, which replicated well and expressed luciferase efficiently. Capsid proteins provided in trans by helper virus failed to rescue the nonreplicating delta P1Luc genome but were able to package the larger-than-genome-length delta P1Luc/VP3 replicon. Thus, a 3'-distal P1 capsid-coding sequence has a previously unrecognized cis-active function related to replication of HRV-14 RNA.
Collapse
Affiliation(s)
- K L McKnight
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill 27599-7030, USA
| | | |
Collapse
|
35
|
Ansardi DC, Porter DC, Anderson MJ, Morrow CD. Poliovirus Assembly and Encapsidation of Genomic RNA. Adv Virus Res 1996. [DOI: 10.1016/s0065-3527(08)60069-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Lu HH, Alexander L, Wimmer E. Construction and genetic analysis of dicistronic polioviruses containing open reading frames for epitopes of human immunodeficiency virus type 1 gp120. J Virol 1995; 69:4797-806. [PMID: 7541843 PMCID: PMC189292 DOI: 10.1128/jvi.69.8.4797-4806.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
On the basis of previous studies of dicistronic (dc) polioviruses that carried two internal ribosomal entry sites (L. Alexander, H.-H. Lu, and E. Wimmer, Proc. Natl. Acad. Sci. USA 91:1406-1410, 1994; A. Molla, S. K. Jang, A. V. Paul, Q. Reuer, and E. Wimmer, Nature [London] 356:255-257, 1992), we have constructed a variety of dc polioviruses which express foreign genetic elements that were inserted either between two internal ribosomal entry site elements upstream of the poliovirus open reading frame (pPNENPO derivatives) or upstream of the open reading frame for the poliovirus proteinase 2Apro (pDI-E2A derivatives). Surprisingly, the addition of an N-terminal secretory pathway signal sequence to the open reading frame of the inserted foreign sequences (specifying either truncated versions of human immunodeficiency virus type 1 [HIV-1] gp120 or chloramphenicol acetyltransferase) resulted in a null phenotype, whereas removal of the signal sequence led to the production of viable viruses. Constructs that carried a foreign gene with a signal sequence were negative in RNA synthesis, an observation that suggested a very early block in viral replication. The insertion of transmembrane sequences downstream of the leader sequence did not reverse the replication block. Studies of dc polioviruses that encoded the truncated versions of HIV-1 gp120 showed an increase in genetic stability that correlated with a decrease in the size of the insert. A dc construct that contained a minigene encoding the principal neutralization determinant of HIV-1 produced a stable virus that retained the foreign sequence through multiple passages in cultured cells. These data indicate that dc polioviruses have potential as vaccines for the expression of small foreign epitopes.
Collapse
Affiliation(s)
- H H Lu
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook 11794-5222, USA
| | | | | |
Collapse
|
37
|
Moldoveanu Z, Porter DC, Lu A, McPherson S, Morrow CD. Immune responses induced by administration of encapsidated poliovirus replicons which express HIV-1 gag and envelope proteins. Vaccine 1995; 13:1013-22. [PMID: 8525684 DOI: 10.1016/0264-410x(95)00018-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several viruses have been exploited for the development of recombinant vaccine vectors in which to express foreign proteins. Recently, we have described a system utilizing the RNA virus, poliovirus. We have constructed poliovirus genomes in which regions of the capsid have been substituted with gene fragments of the HIV gag and env genes. A complementation system has been designed to encapsidate defective genomes by providing the capsid protein in trans from a recombinant vaccinia virus (VV-P1). Serial passage in the presence of VV-P1 resulted in the generation of stocks of these encapsidated replicons. Infection of cells with these encapsidated replicons resulted in the expression of the recombinant protein as a fusion protein with the poliovirus capsid proteins VP4 and VP1. In this study, we have utilized encapsidated replicons which express the HIV-1-gag capsid protein (p24) as well as 1.5 kb of the HIV-1 env gene. Stocks of these encapsidated replicons were obtained by 20 serial passages in the presence of VV-P1. In addition, passage of the encapsidated replicons in the presence of poliovirus type 2 Lansing resulted in the encapsidation of the replicons by the capsid proteins provided by poliovirus. The administration of the type 2 Lansing/encapsidated replicons expressing HIV-1 gag in BALB/c mice by intramuscular, intrarectal, or intragastric routes resulted in the generation of antibodies in the serum and secretions against both poliovirus and HIV-1 gag. To prove that the replicons alone are immunogenic, we administered replicons expressing either HIV-1 gag or env to transgenic mice which expressed the receptor for poliovirus type 1. Immunization of these mice by the intramuscular route resulted in the generation of serum antibodies specific for poliovirus as well as for HIV-1 antigens. The results obtained led us to the conclusion that the replicons are immunogenic when given alone or in the presence of poliovirus. These results are important for the use of the poliovirus replicons as a recombinant vaccine vector.
Collapse
Affiliation(s)
- Z Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
38
|
Porter DC, Ansardi DC, Morrow CD. Encapsidation of poliovirus replicons encoding the complete human immunodeficiency virus type 1 gag gene by using a complementation system which provides the P1 capsid protein in trans. J Virol 1995; 69:1548-55. [PMID: 7853488 PMCID: PMC188748 DOI: 10.1128/jvi.69.3.1548-1555.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Poliovirus genomes which contain small regions of the human immunodeficiency virus type 1 (HIV-1) gag, pol, and env genes substituted in frame for the P1 capsid region replicate and express HIV-1 proteins as fusion proteins with the P1 capsid precursor protein upon transfection into cells (W. S. Choi, R. Pal-Ghosh, and C. D. Morrow, J. Virol. 65:2875-2883, 1991). Since these genomes, referred to as replicons, do not express capsid proteins, a complementation system was developed to encapsidate the genomes by providing P1 capsid proteins in trans from a recombinant vaccinia virus, VV-P1. Virus stocks of encapsidated replicons were generated after serial passage of the replicon genomes into cells previously infected with VV-P1 (D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993). Using this system, we have further defined the role of the P1 region in viral protein expression and RNA encapsidation. In the present study, we constructed poliovirus replicons which contain the complete 1,492-bp gag gene of HIV-1 substituted for the entire P1 region of poliovirus. To investigate whether the VP4 coding region was required for the replication and encapsidation of poliovirus RNA, a second replicon in which the complete gag gene was substituted for the VP2, VP3, and VP1 capsid sequences was constructed. Transfection of replicon RNA with and without the VP4 coding region into cells resulted in similar levels of expression of the HIV-1 Gag protein and poliovirus 3CD protein, as indicated by immunoprecipitation using specific antibodies. Northern (RNA) blot analysis of RNA from transfected cells demonstrated comparable levels of RNA replication for each replicon. Transfection of the replicon genomes into cells infected with VV-P1 resulted in the encapsidation of the genomes; serial passage in the presence of VV-P1 resulted in the generation of virus stocks of encapsidated replicons. Analysis of the levels of protein expression and encapsidated replicon RNA from virus stocks after 21 serial passages of the replicon genomes with VV-P1 indicated that the replicon which contained the VP4 coding region was present at a higher level than the replicon which contained a complete substitution of the P1 capsid sequences. These differences in encapsidation, though, were not detected after only two serial passages of the replicons with VV-P1 or upon coinfection and serial passage with type 1 Sabin poliovirus.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D C Porter
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | |
Collapse
|
39
|
Ansardi DC, Pal-Ghosh R, Porter D, Morrow CD. Encapsidation and serial passage of a poliovirus replicon which expresses an inactive 2A proteinase. J Virol 1995; 69:1359-66. [PMID: 7815522 PMCID: PMC188721 DOI: 10.1128/jvi.69.2.1359-1366.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The multiple roles of the viral proteinase 2A in poliovirus replication have been difficult to assess because, to date, it has not been possible to isolate and characterize a viral genome with an inactive 2Apro. We have previously reported that a poliovirus replicon containing an inactive 2Apro by virtue of a change at amino acid 109 from a cysteine to a serine (C109S) was replication competent when transfected into cells previously infected with vaccinia virus (R. Pal-Ghosh and C. D. Morrow, J. Virol. 67:4621-4629, 1993). To further develop this system, we have used a poliovirus replicon which contains the human immunodeficiency virus type 1 (HIV-1) gag gene positioned between nucleotides 1174 and 2470 of the poliovirus genome and have engineered a second mutation within this replicon to change the codon for amino acid 109 of the 2Apro from cysteine to serine (2AC109S). Transfection of this replicon into cells previously infected with vaccinia virus results in the replication and expression of a protein with a molecular mass consistent with that of a P1-HIV-1 Gag-2A fusion protein. Using a recently described complementation system which relies on the capacity of a recombinant vaccinia virus (VV-P1) to provide the capsid precursor (P1) in trans (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993; and D. C. Porter, D. C. Ansardi, W. S. Choi, and C. D. Morrow, J. Virol. 67:3712-3719, 1993), we have encapsidated this replicon containing the 2AC109S mutation. By using reverse transcription PCR, we demonstrated that after 15 serial passages the encapsidated replicon still contained the 2AC109S mutation. Infection of cells with a stock of encapsidated replicon, either in the presence or in the absence of vaccinia virus, resulted in the expression of the P1-HIV-1 Gag-2A fusion protein. Expression of the P1-HIV-1 Gag fusion protein in cells infected with the encapsidated replicon containing the 2AC109S mutation was reduced compared with the expression of P1-HIV-1 Gag in those cells infected with a replicon containing a wild type 2A gene. The protein expression and replication of the replicon RNA in cells containing the 2AC109S mutation was maintained for a longer period of time than for the replicons containing the wild-type 2A gene, possibly because of a reduced cytopathic effect.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D C Ansardi
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
40
|
Mestecky J, Moldoveanu Z, Novak M, Compans RW. Mucosal immunity and strategies for novel microbial vaccines. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1994; 36:537-44. [PMID: 7825460 DOI: 10.1111/j.1442-200x.1994.tb03243.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Infectious diseases continue to be the leading cause of morbidity and mortality worldwide. Increased awareness of the fact that mucosal membranes are the most frequent portals of entry of pathogenic microorganisms has prompted studies aimed at the development of vaccination protocols and antigen delivery systems that would lead to an increased protection of mucosae. Although systemic and strictly local immunizations are of limited effectiveness in the induction of mucosal protection, ingestion or inhalation of antigens results in a generalized immune response manifested by the appearance of specific antibodies of the secretory immunoglobulin (Ig) isotype in external secretions due to the dissemination of IgA precursor cells from IgA-inductive lymphoid tissues. Furthermore, additional inductive sites strategically positioned at the opening of the respiratory and digestive tracts may also be suitable targets for induction of immune responses at desired effector sites. To prevent degradation and the increase of ingested antigens absorption, novel strategies including enclosure of antigens into biodegradable microspheres, liposomes or their expression in viral and bacterial vectors and plants are currently being considered. Forthcoming technological advances in antigen preparation and routes of delivery will undoubtedly have a profound impact on immunization practices in the future.
Collapse
Affiliation(s)
- J Mestecky
- Department of Microbiology, University of Alabama at Birmingham 35294
| | | | | | | |
Collapse
|
41
|
Mestecky J, Jackson S. Reassessment of the impact of mucosal immunity in infection with the human immunodeficiency virus (HIV) and design of relevant vaccines. J Clin Immunol 1994; 14:259-72. [PMID: 7814455 DOI: 10.1007/bf01540979] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Mestecky
- Department of Microbiology, UAB, Birmingham, Alabama 35294-2170
| | | |
Collapse
|
42
|
Staats HF, Jackson RJ, Marinaro M, Takahashi I, Kiyono H, McGhee JR. Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol 1994; 6:572-83. [PMID: 7946045 DOI: 10.1016/0952-7915(94)90144-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The induction of effective mucosal immunity that also provides systemic immunity is a considerable challenge. Over the past two years, efforts to develop novel mucosal vaccine delivery systems to induce mucosal immunity against bacterial and viral diseases, including HIV, have dramatically increased. Here we cite novel vaccines and delivery systems being used to establish effective mucosal immunity.
Collapse
Affiliation(s)
- H F Staats
- Department of Microbiology, University of Alabama at Birmingham 35294-2170
| | | | | | | | | | | |
Collapse
|
43
|
Mattion NM, Reilly PA, DiMichele SJ, Crowley JC, Weeks-Levy C. Attenuated poliovirus strain as a live vector: expression of regions of rotavirus outer capsid protein VP7 by using recombinant Sabin 3 viruses. J Virol 1994; 68:3925-33. [PMID: 8189529 PMCID: PMC236898 DOI: 10.1128/jvi.68.6.3925-3933.1994] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The ability to express heterologous antigens from attenuated poliovirus strains suggests the potential for use as live vectored vaccines. Full- or partial-length sequences of the gene encoding rotavirus major outer capsid protein VP7 were cloned into the open reading frame of a full-length cDNA copy of poliovirus Sabin type 3. They were inserted either at the 5' end or immediately after the capsid protein coding region, at the junction between precursors P1 and P2. A protease cleavage site for 3C protease was introduced 3' to the foreign sequences to enable proteolytic processing of the antigen from the poliovirus polyprotein. Infectious viruses were generated from several of the DNA constructs, and the presence of the foreign gene sequences was confirmed by reverse transcription of the viral RNA and PCR amplification. Viruses with inserts of about 300 bases maintained the foreign sequences during passage in Vero cells. Viruses carrying larger sequences were unstable, and deletions were generated within the foreign sequences. Expression of the VP7 polypeptides was demonstrated by immunoprecipitation with specific antiserum of labeled proteins from cells infected with Sabin 3 recombinant viruses. Comparative studies of RNA synthesis showed similar kinetics for Sabin 3 and the Sabin 3/VP7 recombinants. One-step growth curves showed that production of recombinant viruses was slower than that of Sabin 3 and that the final titers were 1 to 1.5 logs lower. Accumulation of VP7-containing precursors in infected cells suggests that slow cleavage at the engineered 3C protease site may be a limiting step in the growth of these recombinant Sabin polioviruses and may influence the permissible size of foreign sequence to be inserted.
Collapse
Affiliation(s)
- N M Mattion
- Lederle-Praxis Biologicals, Pearl River, New York 10965
| | | | | | | | | |
Collapse
|
44
|
Abstract
This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of viruses and infection of cells by several viruses that have been widely utilized for studies of cellular processes. Most investigations of virus replication at the cellular level are carried out using animal cells in culture. For the events in individual cells to occur with a high level of synchrony, single cycle growth conditions are used. Cells are infected using a high multiplicity of infectious virus particles in a low volume of medium to enhance the efficiency of virus adsorption to cell surfaces. After the adsorption period, the residual inoculum is removed and replaced with an appropriate culture medium. During further incubation, each individual cell in the culture is at a similar temporal stage in the viral replication process. Therefore, experimental procedures carried out on the entire culture reflect the replicative events occurring within an individual cell. The length of a single cycle of virus growth can range from a few hours to several days, depending on the virus type.
Collapse
Affiliation(s)
- R W Compans
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|