1
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
2
|
PPEY motif within the rabies virus (RV) matrix protein is essential for efficient virion release and RV pathogenicity. J Virol 2008; 82:9730-8. [PMID: 18667490 DOI: 10.1128/jvi.00889-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Late (L) domains containing the highly conserved sequence PPXY were first described for retroviruses, and later research confirmed their conservation and importance for efficient budding of several negative-stranded RNA viruses. Rabies virus (RV), a member of the Rhabdoviridae family, contains the sequence PPEY (amino acids 35 to 38) within the N terminus of the matrix (M) protein, but the functions of this potential L-domain in the viral life cycle, viral pathogenicity, and immunogenicity have not been established. Here we constructed a series of recombinant RVs containing mutations within the PPEY motif and analyzed their effects on viral replication and RV pathogenicity. Our results indicate that the first proline at position 35 is the most important for viral replication, whereas P36 and Y38 have a lesser but still noticeable impact. The reduction in viral replication was most likely due to inhibition of virion release, because initially no major impact on RV RNA synthesis was observed. In addition, results from electron microscopy demonstrated that the M4A mutant virus (PPEY-->SAEA) displayed a more cell-associated phenotype than that of wild-type RV. Furthermore, all mutations within the PPEY motif resulted in reduced spread of the recombinant RVs as indicated by a reduction in focus size. Importantly, recombinant PPEY L-domain mutants were highly attenuated in mice yet still elicited potent antibody responses against RV G protein that were as high as those observed after infection with wild-type virus. Our data indicate that the RV PPEY motif has L-domain activity essential for efficient virus production and pathogenicity but is not essential for immunogenicity and thus can be targeted to increase the safety of rabies vaccine vectors.
Collapse
|
3
|
Nadella MVP, Dirksen WP, Nadella KS, Shu S, Cheng AS, Morgenstern JA, Richard V, Fernandez SA, Huang TH, Guttridge D, Rosol TJ. Transcriptional regulation of parathyroid hormone-related protein promoter P2 by NF-kappaB in adult T-cell leukemia/lymphoma. Leukemia 2007; 21:1752-62. [PMID: 17554373 PMCID: PMC2676796 DOI: 10.1038/sj.leu.2404798] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) plays a primary role in the development of humoral hypercalcemia of malignancy (HHM) that occurs in the majority of patients with adult T-cell leukemia/lymphoma (ATLL) due to human T-cell lymphotropic virus type-1 (HTLV-1) infection. We previously showed that ATLL cells constitutively express high levels of PTHrP via activation of promoters P2 and P3, resulting in HHM. In this study, we characterized a nuclear factor-kappaB (NF-kappaB) binding site in the P2 promoter of human PTHrP. Using electrophoretic mobility shift assays, we detected a specific complex in Tax-expressing human T cells composed of p50/c-Rel, and two distinct complexes in ATLL cells consisting of p50/p50 homodimers and a second unidentified protein(s). Chromatin immunoprecipitation assays confirmed in vivo binding of p50 and c-Rel on the PTHrP P2 promoter. Using transient co-transfection with NF-kappaB expression plasmids and PTHrP P2 luciferase reporter-plasmid, we showed that NF-kappaB p50/p50 alone and p50/c-Rel or p50/Bcl-3 cooperatively upregulated the PTHrP P2 promoter. Furthermore, inhibition of NF-kappaB activity by Bay 11-7082 reduced PTHrP P2 promoter-initiated transcripts in HTLV-1-infected T cells. In summary, the data demonstrated that transcriptional regulation of PTHrP in ATLL cells can be controlled by NF-kappaB activation and also suggest a Tax-independent mechanism of activation of PTHrP in ATLL.
Collapse
MESH Headings
- Adult
- Animals
- Blotting, Western
- Cell Line, Tumor
- Chloramphenicol O-Acetyltransferase
- Chromatin Immunoprecipitation
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Neoplastic
- HTLV-I Infections/metabolism
- HTLV-I Infections/virology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mutagenesis, Site-Directed
- NF-kappa B/physiology
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/metabolism
- Plasmids
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- MVP Nadella
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - WP Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - KS Nadella
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - S Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - AS Cheng
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - JA Morgenstern
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - V Richard
- Pfizer, Sandwich Laboratories, Kent, UK
| | - SA Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - TH Huang
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - D Guttridge
- Human Cancer Genetics, The Ohio State University, Columbus, OH, USA
| | - TJ Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
5
|
Abstract
HTLV-1 and HTLV-2 are highly related complex retroviruses that have been studied intensely for nearly three decades because of their association with neoplasia, neuropathology, and/or their capacity to transform primary human T lymphocytes. The study of HTLV also represents an attractive model that has allowed investigators to dissect the mechanism of various cellular processes, several of which may be critical steps in HTLV-mediated pathogenesis. Both HTLV-1 and HTLV-2 can efficiently immortalize and transform T lymphocytes in cell culture and persist in infected individuals or experimental animals. However, the clinical manifestations of these two viruses differ significantly. HTLV-1 is associated with adult T-cell leukemia (ATL) and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast, HTLV-2 is much less pathogenic with reports of only a few cases of variant hairy cell leukemia and neurological disease associated with infection. The limited number of individuals shown to harbor HTLV-2 in association with specific diseases has, to date, precluded convincing epidemiological demonstration of a definitive etiologic role of HTLV-2 in human disease. Therefore, it has become clear that comparative studies designed to elucidate the mechanisms by which HTLV-1 and HTLV-2 determine distinct outcomes are likely to provide fundamental insights into the initiation of multistep leukemogenesis.
Collapse
Affiliation(s)
- Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
6
|
Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 2005; 24:5952-64. [PMID: 16155602 DOI: 10.1038/sj.onc.1208969] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T-cell transformation by the human T-cell leukemia virus type I (HTLV-I) involves deregulation of cellular transcription factors, including members of the NF-kappaB family. In normal T cells, NF-kappaB activation occurs transiently in response to immune stimuli, which is required for antigen-stimulated T-cell proliferation and survival. However, HTLV-I induces persistent activation of NF-kappaB, causing deregulated expression of a large array of cellular genes, which in turn contributes to the induction of T-cell transformation. The HTLV-I transforming protein Tax functions as an intracellular stimulator of IkappaB kinase (IKK), a cellular kinase mediating NF-kappaB activation by diverse stimuli. Tax physically interacts with IKK and renders this inducible kinase constitutively active. By assembling different Tax/IKK complexes, Tax targets the persistent activation of both canonical and noncanonical NF-kappaB signaling pathways. Whereas Tax plays a primary role in HTLV-I-mediated NF-kappaB activation, recent studies reveal that the IKK/NF-kappaB signaling pathway is also activated in freshly isolated adult T-cell leukemia (ATL) cells that often lack detectable Tax expression. The mechanism underlying this Tax-independent pathway of NF-kappaB activation remains poorly understood. Clarifying the precise nature and consequences of the constitutive NF-kappaB activation in ATL cells is important for developing rational therapeutic strategies for this T-cell malignancy.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
| | | |
Collapse
|
7
|
Beck Z, Bácsi A, Liu X, Ebbesen P, Andirkó I, Csoma E, Kónya J, Nagy E, Tóth FD. Differential patterns of human cytomegalovirus gene expression in various T-cell lines carrying human T-cell leukemia-lymphoma virus type I: role of Tax-activated cellular transcription factors. J Med Virol 2003; 71:94-104. [PMID: 12858414 DOI: 10.1002/jmv.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Replication of human cytomegalovirus (HCMV) was investigated in various T-cell lines expressing the tax gene product of human T-cell leukemia-lymphoma virus type I (HTLV-I). Differential patterns of HCMV replication were found in HTLV-I-carrying cell lines. HCMV gene expression was restricted to the immediate-early genes in MT-2 and MT-4 cells, whereas full replication cycle of the virus was observed in C8166-45 cells. Productive HCMV infection induced a cytopathic effect resulting in the lysis of infected cells. The results of electrophoretic mobility shift assay (EMSA) showed high levels of NF-kappaB-, CREB/ATF-1-, and SRF-specific DNA binding activity in all Tax-positive cell lines. In contrast, SP1 activity could be detected only in C8166-45 cells. Using an inducible system (Jurkat cell line JPX-9), a dramatic increase in NF-kappaB, CREB/ATF-1, SRF, and SP1 binding activity, as well as productive HCMV infection, were observed upon Tax expression. Overexpression of SP1 in MT-2 and MT-4 cells converted HCMV infection from an abortive to a productive one. These data suggest that the stimulatory effect of Tax protein on HCMV in T cells is accomplished through at least five host-related transcription factor pathways. The results of this study provide possible mechanisms whereby HCMV infections might imply suppression of adult T-cell leukemia.
Collapse
Affiliation(s)
- Zoltán Beck
- Institute of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pankow R, Dürkop H, Latza U, Krause H, Kunzendorf U, Pohl T, Bulfone-Paus S. The HTLV-I tax protein transcriptionally modulates OX40 antigen expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:263-70. [PMID: 10861060 DOI: 10.4049/jimmunol.165.1.263] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OX40 is a member of the TNF receptor family, expressed on activated T cells. It is the only costimulatory T cell molecule known to be specifically up-regulated in human T cell leukemia virus type-I (HTLV-I)-producing cells. In a T cell line, OX40 surface expression was shown to be induced by HTLV-I Tax alone. To understand molecular mechanisms of OX40 gene regulation and modulation by HTLV-I Tax, we have cloned the human OX40 gene and analyzed its 5'-flanking region. By reporter gene analysis with progressive 5' deletions from nucleotides -1259 to -64, we have defined a 157-bp DNA fragment as a minimal promoter for constitutive expression. In addition, we show that in the OX40+ cell line, Co, Tax is able to further increase OX40 surface expression. Up-regulation of OX40 promoter activity by Tax requires two upstream NF-kappaB sites, which are not active in the constitutive OX40 expression. Their deletion abrogates Tax responsiveness in reporter gene analysis. The site-directed mutagenesis of each NF-kappaB site demonstrates that cooperative NF-kappaB binding is a prerequisite for Tax-directed activity as neither site alone is sufficient for a full Tax responsiveness of the OX40 promoter. Upon Tax expression, both sites bind p65 and c-Rel. These data provide new insight into the direct regulation of OX40 by Tax and add to our understanding of the possible role of the OX40/OX40 ligand system in the proliferation of HTLV-I+ T cells.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Motifs/immunology
- Base Sequence
- Cloning, Molecular
- Gene Products, tax/physiology
- Human T-lymphotropic virus 1/genetics
- Human T-lymphotropic virus 1/immunology
- Humans
- Molecular Sequence Data
- NF-kappa B/metabolism
- Promoter Regions, Genetic/immunology
- Protein Binding/genetics
- Protein Binding/immunology
- Receptors, OX40
- Receptors, Tumor Necrosis Factor
- Transcription, Genetic/immunology
- Transcriptional Activation/immunology
- Tumor Cells, Cultured
- Tumor Necrosis Factor Receptor Superfamily, Member 7/biosynthesis
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
Collapse
Affiliation(s)
- R Pankow
- Departments of Pathology and Urology, University Hospital Benjamin Franklin, Free University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Ross TM, Narayan M, Fang ZY, Minella AC, Green PL. Human T-cell leukemia virus type 2 tax mutants that selectively abrogate NFkappaB or CREB/ATF activation fail to transform primary human T cells. J Virol 2000; 74:2655-62. [PMID: 10684280 PMCID: PMC111754 DOI: 10.1128/jvi.74.6.2655-2662.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human T-cell leukemia virus (HTLV) Tax protein has been implicated in the HTLV oncogenic process, primarily due to its pleiotropic effects on cellular genes involved in growth regulation and cell cycle control. To date, several approaches attempting to correlate Tax activation of the CREB/activating transcription factor (ATF) or NFkappaB/Rel transcriptional activation pathway to cellular transformation have yielded conflicting results. In this study, we use a unique HTLV-2 provirus (HTLV(c-enh)) that replicates by a Tax-independent mechanism to directly assess the role of Tax transactivation in HTLV-mediated T-lymphocyte transformation. A panel of well-characterized tax-2 mutations is utilized to correlate the respective roles of the CREB/ATF or NFkappaB/Rel signaling pathway. Our results demonstrate that viruses expressing tax-2 mutations that selectively abrogate NFkappaB/Rel or CREB/ATF activation display distinct phenotypes but ultimately fail to transform primary human T lymphocytes. One conclusion consistent with our results is that the activation of NFkappaB/Rel provides a critical proliferative signal early in the cellular transformation process, whereas CREB/ATF activation is required to promote the fully transformed state. However, complete understanding will require correlation of Tax domains important in cellular transformation to those Tax domains important in the modulation of gene transcription, cell cycle control, induction of DNA damage, and other undefined activities.
Collapse
Affiliation(s)
- T M Ross
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
10
|
Sun SC, Ballard DW. Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 1999; 18:6948-58. [PMID: 10602469 DOI: 10.1038/sj.onc.1203220] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biochemical coupling of transcription factor NF-kappaB to antigen and co-stimulatory receptors is required for the temporal control of T-cell proliferation. In contrast to its transitory activation during normal growth-signal transduction, NF-kappaB is constitutively deployed in T-cells transformed by the type 1 human T-cell leukemia virus (HTLV-1). This viral/host interaction is mediated by the HTLV-1-encoded Tax protein, which has potent oncogenic properties. As reviewed here, Tax activates NF-kappaB primarily via a pathway leading to the chronic phosphorylation and degradation of IkappaBalpha, a cytoplasmic inhibitor of NF-kappaB. To access this pathway, Tax associates stably with a cytokine-inducible IkappaB kinase (IKK), which contains both catalytic (IKKalpha and IKKbeta) and noncatalytic (IKKgamma) subunits. Unlike their transiently induced counterparts in cytokine-treated cells, Tax-associated forms of IKKalpha and IKKbeta are persistently activated in HTLV-1-infected T cells. Acquisition of the deregulated IKK phenotype is contingent on the presence of IKKgamma, which functions as a molecular adaptor in the assembly of pathologic Tax/IkappaB kinase complexes. These findings highlight a key mechanistic role for IKK in the Tax/NF-kappaB signaling axis and define new intracellular targets for the therapeutic control of HTLV-1-associated disease.
Collapse
Affiliation(s)
- S C Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania, PA 17033, USA
| | | |
Collapse
|
11
|
Abstract
The interactions between human T-cell lymphotropic virus type I (HTLV-I) and the cellular immune system can be divided into viral interference with functions of the infected host T cell and the subsequent interactions between the infected T cell and the cellular immune system. HTLV-I-mediated activation of the infected host T cell is induced primarily by the viral protein Tax, which influences transcriptional activation, signal transduction pathways, cell cycle control, and apoptosis. These properties of Tax may well explain the ability of HTLV-I to immortalize T cells. It is not clear, though, how HTLV-I induces T-cell transformation (interleukin-2 [IL-2] independence). Recent evidence suggests that Tax may promote the G1- to S-phase transition, although this may involve additional proteins. A role for other viral proteins that may constitutively activate the IL-2 receptor pathway has also been suggested. By virtue of their activated state, HTLV-I-infected T cells can nonspecifically activate resting, uninfected T cells via virus-mediated upregulation of adhesion molecules. This may favor viral dissemination. Moreover, the induction of a remarkably high frequency of antiviral CD8(+) T cells does not appear to eliminate the infection. Indeed, individuals with a high frequency of virus-specific CD8(+) T cells have a high viral load, indicating a state of chronic immune system stimulation. Thus, while an activated immune system is needed to eradicate the infection, the spread of the HTLV-I is also accelerated under these conditions. A detailed knowledge of the molecular interactions between virus-specific CD8(+) T cells and immunodominant viral epitopes holds promise for the development of specific antiviral therapy.
Collapse
Affiliation(s)
- P Höllsberg
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
12
|
Sun SC, Maggirwar SB, Harhaj EW, Uhlik M. Binding of c-Rel to STAT5 target sequences in HTLV-I-transformed T cells. Oncogene 1999; 18:1401-9. [PMID: 10050877 DOI: 10.1038/sj.onc.1202430] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The type I human T-cell leukemia virus (HTLV-I) induces abnormal growth and subsequent transformation of T cells, which is associated with the development of an acute T-cell malignancy termed adult T-cell leukemia. A characteristic of HTLV-I-transformed T cells is the constitutive nuclear expression of NF-kappaB/Rel family of transcription factors, which appears to be essential for the growth of these transformed cells. Although NF-kappaB/Rel factors are known to induce the expression of T-cell growth factor interleukin (IL)-2, it is unclear how they participate in the IL-2-independent growth of HTLV-I-transformed cells. In this study, we show that certain NF-kappaB/Rel members, predominantly c-Rel, interact with enhancer sequences for STAT5, a key transcription factor mediating IL-2-induced T-cell proliferation. Reporter gene assays reveal that the binding of c-Rel to the STAT5 site present in the Fc gammaR1 gene leads to potent transactivation of this enhancer. Binding of c-Rel to the Fc gammaR1 STAT site also occurs in human peripheral blood T cells immortalized with HTLV-I in vitro and is correlated with enhanced levels of proliferation of these cells. These results raise the possibility that NF-kappaB/Rel may participate in the growth control of HTLV-I-transformed T cells by regulating genes driven by both kappaB and certain STAT enhancers.
Collapse
Affiliation(s)
- S C Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center 17033, USA
| | | | | | | |
Collapse
|
13
|
Harhaj EW, Good L, Xiao G, Sun SC. Gene expression profiles in HTLV-I-immortalized T cells: deregulated expression of genes involved in apoptosis regulation. Oncogene 1999; 18:1341-9. [PMID: 10022816 DOI: 10.1038/sj.onc.1202405] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T-cell leukemia, an acute and often fatal T-cell malignancy. A key step in HTLV-I-induced leukemigenesis is induction of abnormal T-cell growth and survival. Unlike antigen-stimulated T cells, which cease proliferation after a finite number of cell division, HTLV-I-infected T cells proliferate indefinitely (immortalized), thus facilitating occurrence of secondary genetic changes leading to malignant transformation. To explore the molecular basis of HTLV-I-induced abnormal T-cell survival, we compared the gene expression profiles of normal and HTLV-I-immortalized T cells using 'gene array'. These studies revealed a strikingly altered expression pattern of a large number of genes along with HTLV-I-mediated T-cell immortalization. Interestingly, many of these deregulated genes are involved in the control of programmed cell death or apoptosis. These findings indicate that disruption of the cellular apoptosis-regulatory network may play a role in the HTLV-I-mediated oncogenesis.
Collapse
Affiliation(s)
- E W Harhaj
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
14
|
Chen E, Hrdlickova R, Nehyba J, Longo DL, Bose HR, Li CC. Degradation of proto-oncoprotein c-Rel by the ubiquitin-proteasome pathway. J Biol Chem 1998; 273:35201-7. [PMID: 9857058 DOI: 10.1074/jbc.273.52.35201] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-rel proto-oncogene product, c-Rel, belongs to the Rel/NF-kappaB transcription factor family, which regulates a large variety of cellular functions. The activation of NF-kappaB involves the degradation of the inhibitor, IkappaB, through the ubiquitin-proteasome (Ub-Pr)-mediated pathway. Here we report that the turnover of c-Rel is also regulated by the Ub-Pr pathway, thus adding another level of complexity to the regulation of NF-kappaB. High molecular weight ubiquitinated c-Rel conjugates are detected in cells and accumulate in cells treated with proteasome inhibitors. In a cell-free in vitro degradation assay, c-Rel is degraded specifically through the Ub-Pr pathway. N-terminally truncated c-Rel is readily degraded, implying the dispensability of N-terminal sequence; in contrast, a series of deletion mutants missing C-terminal sequences display a reduced susceptibility to the degradation. Interestingly, the sequence between residues 118 and 171 of c-Rel, i.e. the region immediately following the c-Rel/v-Rel homology domain, appears to play an important role in mediating ubiquitin conjugation and the subsequent degradation. Together with our previous study showing an elevated tumorigenic potential for C-terminally truncated mutants, our data suggest that the C-terminal domain of c-Rel plays an important role in mediating c-Rel degradation and growth control.
Collapse
Affiliation(s)
- E Chen
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The human T-cell leukemia virus type I or HTLV-I is the causative agent of adult T-cell leukemia. A protein encoded by HTLV-I, Tax, activates viral gene expression and is essential for transforming T-lymphocytes. Tax activates HTLV-I gene expression via interactions with the ATF/CREB proteins and the coactivators CBP/p300 which assemble as a multiprotein complex on regulatory elements known as 21-bp repeats in the HTLV-I LTR. Tax can also activate expression from cellular genes including the interleukin-2 (IL-2) and the IL-2 receptor genes via increases in nuclear levels of NF-kappaB. Tax modulation of gene expression via the ATF/CREB and NF-kappaB pathways is linked to its transforming properties. This review discusses the mechanisms by which Tax regulates viral and cellular gene expression.
Collapse
Affiliation(s)
- F Bex
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75235-8594, USA
| | | |
Collapse
|
16
|
Black AC, Luo J, Chun S, Tabibzadeh S. Constitutive expression of the HTLV-I pX and env regions in Jurkat T-cells induces differential activation of SRE, CRE and NF kappa B pathways. Virus Genes 1998; 15:105-17. [PMID: 9421875 DOI: 10.1023/a:1007906823269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human T-cell leukemia virus type I (HTLV-I) causes adult T-cell leukemia/lymphoma (ATLL). HTLV Tax, the viral transcriptional activator, can activate a variety of cellular genes. HTLV-mediated T-cell transformation, however, may involve additional viral proteins expressed from singly- as well as doubly-spliced viral mRNA. To determine the combined effect of these viral proteins on cellular gene expression in Jurkat T-cells, we derived stable transfectants that constitutively express the HTLV-I pX and env regions (J3.9). J3.9 cells show substantially increased mRNA levels of egr-1 and c-jun but no induction of either CD25 or GM-CSF by Northern blotting. This pattern corresponded to the activation of an egr-1 but not a GM-CSF promoter-driven reporter construct in transient gene expression assays. In DNA electrophoretic mobility shift assays (EMSA), nuclear extract from J3.9 cells has significantly increased binding to CRE and SRE but not nuclear factor kappa B (NF kappa B) DNA oligos, as compared to J-Neo cell extract. These results suggest that low level expression of pX and env region gene products in Jurkat T-cells stimulates persistent activation of CRE- and SRE- but not NF kappa B-induced cellular genes.
Collapse
Affiliation(s)
- A C Black
- Department of Medicine, UCLA School of Medicine 90095-1678, USA
| | | | | | | |
Collapse
|
17
|
Ross TM, Minella AC, Fang ZY, Pettiford SM, Green PL. Mutational analysis of human T-cell leukemia virus type 2 Tax. J Virol 1997; 71:8912-7. [PMID: 9343258 PMCID: PMC192364 DOI: 10.1128/jvi.71.11.8912-8917.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A mutational analysis of human T-cell leukemia virus type 2 (HTLV-2) Tax (Tax-2) was performed to identify regions within Tax-2 important for activation of promoters through the CREB/ATF or NF-kappaB/Rel signaling pathway. Tax-2 mutations within the putative zinc-binding region as well as mutations at the carboxy terminus disrupted CREB/ATF transactivation. A single mutation within the central proline-rich region of Tax-2 disrupted the transactivation of the NF-kappaB/Rel pathway. Surprisingly, this mutation, which is thought to be in a separate activation domain, was suppressed by mutations within or around the putative zinc-binding region, suggesting an interaction between these two regions. These analyses indicate that the functional regions or domains important for transactivation through the CREB/ATF or NF-kappaB/Rel signaling pathway are similar, but not identical, in Tax-1 and Tax-2. Identification of these distinct Tax-2 mutants should facilitate comparative biological studies of HTLV-1 and HTLV-2 and ultimately lead to the determination of the functional importance of Tax trans-acting capacities in T-lymphocyte transformation by HTLV.
Collapse
Affiliation(s)
- T M Ross
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | | | | | |
Collapse
|
18
|
Donzeau M, Winnacker EL, Meisterernst M. Specific repression of Tax trans-activation by TAR RNA-binding protein TRBP. J Virol 1997; 71:2628-35. [PMID: 9060615 PMCID: PMC191384 DOI: 10.1128/jvi.71.4.2628-2635.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1)-encoded Tax protein activates transcription from the long terminal repetition via association with host cellular factors. In this study, we searched for cellular proteins that interact with Tax and modulate its activity by using the yeast two-hybrid system. One of the strongest interactors was found to be identical with TRBP, which was previously shown to bind to the RNA encoded by the Tat response element of human immunodeficiency virus type 1. Interactions are demonstrated with Escherichia coli-expressed proteins in vitro and in mammalian cells, using one- and two-hybrid systems, and with antibodies that coprecipitate Tax and TRBP at physiological TRBP concentrations. Moreover, TRBP, when directed into the cytoplasm, is capable of preventing transport of Tax into the nucleus. A 60-amino-acid polypeptide suffices for binding to Tax. TRBP inhibits activation of transcription by both Tax and GAL4-Tax fusion proteins. Inhibition is specific for Tax and is not seen with the other activators tested. Our data are consistent with the interpretation that TRBP inhibits the interplay of Tax with the transcription machinery or accessory factors.
Collapse
Affiliation(s)
- M Donzeau
- Laboratorium für Molekulare Biologie-Genzentrum der Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
19
|
Good L, Sun SC. Persistent activation of NF-kappa B/Rel by human T-cell leukemia virus type 1 tax involves degradation of I kappa B beta. J Virol 1996; 70:2730-5. [PMID: 8627746 PMCID: PMC190129 DOI: 10.1128/jvi.70.5.2730-2735.1996] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of the eukaryotic NF-kappaB/Rel transcription factors by various cytokines and mitogens is a transient event, reflecting the fact that these inducers trigger the degradation and resynthesis of the dynamic NF-kappaB/Rel inhibitor IkappaBalpha. However, the tax gene product of the human T-cell leukemia virus type 1 (HTLV-1) is known to induce the persistent nuclear expression of various NF-kappaB/Rel factors, especially the c-Rel proto-oncoprotein, although the underlying mechanism remains unclear. In the present study, we demonstrate that Tax induces the degradation Of IkappaBbeta, another NF-kappaB/Rel cytoplasmic inhibitor that differs from IkappaBalpha in signal responses. Unlike that observed with IkappaBalpha, the degradation Of IkappaBbeta is not associated with its rapid resynthesis, apparently because of the failure of Tax to stimulate IkappaBbeta gene transcription. Thus, expression of Tax in Jurkat T cells leads to the gradual depletion of IkappaBbeta, which is correlated with the induction of c-Rel-containing kappaB binding complexes. Remarkably, in the three HTLV-1-infected T-cell lines investigated, little or no detectable amount of IkappaBbeta was found. We further demonstrate that Tax is able to override the cytoplasmic retention of c-Rel by 1kappaBbeta in transiently transfected cells. Together, these studies suggest that Tax-mediated inactivation Of IkappaBbeta may play a role in the persistent nuclear expression of c-Rel induced by HTLV-I infection.
Collapse
Affiliation(s)
- L Good
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey Medical Center, 17033, USA
| | | |
Collapse
|
20
|
Kubota S, Furuta RA, Siomi H, Maki M, Hatanaka M. Analysis of a novel defective HTLV-I provirus and detection of a new HTLV-I-induced cellular transcript. FEBS Lett 1995; 375:31-6. [PMID: 7498474 DOI: 10.1016/0014-5793(95)01166-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HTLV-I generally integrates at least one full-length copy in adult T-cell leukemia (ATL) cells. A group of patients without full-length provirus have a unique conserved truncation of the provirus which retains env-pX-3'LTR. Tumor cells of a patient from this group were genetically analyzed. Analysis of the 5' and 3' cellular flanking region adjacent to the provirus suggest that the defective provirus was integrated immediately downstream of a promoter of an unknown cellular gene. The activity of the promoter was weak but was responsive to Tax-like HTLV-I LTR. The provirus may have utilized it as a substitute for the 5'LTR and thus 3'LTR may have become an alternative promoter for the cellular gene, which may give similar viral-cellular interactions to that of general cases with full-length proviruses. Surprisingly, the 3' cellular flanking region which is thought to be controlled originally by the promoter is constitutively expressed specifically in an HTLV-I producing ATL cell line HUT1O2G, in which the corresponding region is not modified by provirus. The detection of this HTLV-I-induced transcript provides a probe to find an HTLV-I inducible unknown cellular gene that may be related to the pathogenesis of ATL.
Collapse
Affiliation(s)
- S Kubota
- Laboratory of Human Tumer Viruses, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
21
|
Lacoste J, Petropoulos L, Pépin N, Hiscott J. Constitutive phosphorylation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells. J Virol 1995; 69:564-9. [PMID: 7983756 PMCID: PMC188611 DOI: 10.1128/jvi.69.1.564-569.1995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) encodes a strong transcriptional activator, Tax, that stimulates transcription indirectly through the viral long terminal repeat and also activates a number of cellular genes via association with host transcription factors. The NF-kappa B/Rel pathway is a target for Tax trans-activation, and Tax has been correlated with increased NF-kappa B-binding activity and NF-kappa B-dependent gene expression in HTLV-I-infected cells. In this study we demonstrate that constitutive phosphorylation and increased turnover of the regulatory I kappa B alpha protein in HTLV-I-infected MT-2 and C8166 cells and Tax-expressing 19D cells contribute to constitutive NF-kappa B-binding activity, which consists primarily of c-Rel, p52(NFKB2), and p50(NFKB1). I kappa B alpha mRNA expression is also increased 7- to 20-fold in these cells, although the steady-state level of I kappa B alpha protein is reduced in HTLV-I-infected and Tax-expressing T cells. These results indicate that the viral Tax protein, by indirectly mediating phosphorylation of I kappa B, may target I kappa B alpha for rapid degradation, thus leading to constitutive NF-kappa B activity.
Collapse
Affiliation(s)
- J Lacoste
- Abe Stern Cancer Research Laboratory, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- E B Kopp
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
23
|
Li C, Dai R, Chen E, Longo D. Phosphorylation of NF-KB1-p50 is involved in NF-kappa B activation and stable DNA binding. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43777-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol 1994. [PMID: 7935451 DOI: 10.1128/mcb.14.11.7377] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tax gene product of human T-cell leukemia virus type I (HTLV-I) is a potent transcriptional activator that both stimulates viral gene expression and activates an array of cellular genes involved in T-cell growth. Tax acts indirectly by inducing or modifying the action of various host transcription factors, including members of the NF-kappa B/Rel family of enhancer-binding proteins. In resting T cells, many of these NF-kappa B/Rel factors are sequestered in the cytoplasm by various ankyrin-rich inhibitory proteins, including I kappa B alpha. HTLV-I Tax expression leads to the constitutive nuclear expression of biologically active NF-kappa B and c-Rel complexes; however, the biochemical mechanism(s) underlying this response remains poorly understood. In this study, we demonstrate that Tax-stimulated nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-transfected human T cells is associated with the phosphorylation and rapid proteolytic degradation of I kappa B alpha. In contrast to prior in vitro studies, at least a fraction of the phosphorylated form of I kappa B alpha remains physically associated with the NF-kappa B complex in vivo but is subject to rapid degradation, thereby promoting the nuclear translocation of the active NF-kappa B complex. We further demonstrate that Tax induction of nuclear c-Rel expression is activated by the RelA (p65) subunit of NF-kappa B, which activates transcription of the c-rel gene through an intrinsic kappa B enhancer element. In normal cells, the subsequent accumulation of nuclear c-Rel acts to inhibit its own continued production, indicating the presence of an autoregulatory loop. However, the pathologic action HTLV-I Tax leads to the deregulated and sustained nuclear expression of both NF-kappa B and c-Rel, a response that may contribute to HTLV-I-induced T-cell transformation.
Collapse
|
25
|
Sun SC, Elwood J, Béraud C, Greene WC. Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phosphorylation and degradation of I kappa B alpha and RelA (p65)-mediated induction of the c-rel gene. Mol Cell Biol 1994; 14:7377-84. [PMID: 7935451 PMCID: PMC359272 DOI: 10.1128/mcb.14.11.7377-7384.1994] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The tax gene product of human T-cell leukemia virus type I (HTLV-I) is a potent transcriptional activator that both stimulates viral gene expression and activates an array of cellular genes involved in T-cell growth. Tax acts indirectly by inducing or modifying the action of various host transcription factors, including members of the NF-kappa B/Rel family of enhancer-binding proteins. In resting T cells, many of these NF-kappa B/Rel factors are sequestered in the cytoplasm by various ankyrin-rich inhibitory proteins, including I kappa B alpha. HTLV-I Tax expression leads to the constitutive nuclear expression of biologically active NF-kappa B and c-Rel complexes; however, the biochemical mechanism(s) underlying this response remains poorly understood. In this study, we demonstrate that Tax-stimulated nuclear expression of NF-kappa B in both HTLV-I-infected and Tax-transfected human T cells is associated with the phosphorylation and rapid proteolytic degradation of I kappa B alpha. In contrast to prior in vitro studies, at least a fraction of the phosphorylated form of I kappa B alpha remains physically associated with the NF-kappa B complex in vivo but is subject to rapid degradation, thereby promoting the nuclear translocation of the active NF-kappa B complex. We further demonstrate that Tax induction of nuclear c-Rel expression is activated by the RelA (p65) subunit of NF-kappa B, which activates transcription of the c-rel gene through an intrinsic kappa B enhancer element. In normal cells, the subsequent accumulation of nuclear c-Rel acts to inhibit its own continued production, indicating the presence of an autoregulatory loop. However, the pathologic action HTLV-I Tax leads to the deregulated and sustained nuclear expression of both NF-kappa B and c-Rel, a response that may contribute to HTLV-I-induced T-cell transformation.
Collapse
Affiliation(s)
- S C Sun
- Gladstone Institute of Virology and Immunology, University of California, San Francisco 94141-9100, USA
| | | | | | | |
Collapse
|
26
|
Kinetic analysis of human T-cell leukemia virus type I Tax-mediated activation of NF-kappa B. Mol Cell Biol 1994. [PMID: 7935369 DOI: 10.1128/mcb.14.10.6443] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein induces the expression of cellular genes, at least in part, by activating the endogenous NF-kappa B transcription factors. Induced expression of cellular genes is thought to be important for transformation of T cells to continued growth, a prelude to the establishment of adult T-cell leukemia. However, neither underlying mechanisms nor kinetics of the Tax-mediated activation of NF-kappa B are understood. We have analyzed a permanently transfected Jurkat T-cell line in which the expression of Tax is entirely dependent on addition of heavy metals. The initial NF-kappa B binding activity seen after induction of Tax is due almost exclusively to p50/p65 heterodimers. At later times, NF-kappa B complexes containing c-Rel and/or p52 accumulate. The early activation of p50/p65 complexes is a posttranslational event, since neither mRNA nor protein levels of NF-kappa B subunits had increased at that time. We demonstrate for the first time a Tax-induced proteolytic degradation of the NF-kappa B inhibitor, I kappa B-alpha, which may trigger the initial nuclear translocation of NF-kappa B. As nuclear NF-kappa B rapidly and potently stimulates resynthesis of I kappa B-alpha, the steady-state level of I kappa B-alpha does not significantly change. Thus, the dramatic Tax-induced increase in the I kappa B-alpha turnover may continually weaken inhibition and activate NF-kappa B. Additional, distinct actions of Tax may contribute further to the high levels of NF-kappa B activity seen.
Collapse
|
27
|
Li CC, Korner M, Ferris DK, Chen E, Dai RM, Longo DL. NF-kappa B/Rel family members are physically associated phosphoproteins. Biochem J 1994; 303 ( Pt 2):499-506. [PMID: 7980409 PMCID: PMC1137355 DOI: 10.1042/bj3030499] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We performed radioimmunoprecipitation followed by serial immunoblots to show that, in the unstimulated Jurkat T cell line, the NF-kappa B/Rel family proteins, p80-c-Rel, p105-NF-kappa B, p65-NF-kappa B, p50-NF-kappa B and p36-I kappa B alpha, can be detected as complexes using antisera against c-Rel, p105-NF-kappa B or p65-NF-kappa B. p36-I kappa B alpha and p105, both known inhibitors of NF-kappa B function, can physically associate with NF-kappa B/Rel family members, but not with each other. In vivo and in vitro phosphorylation experiments demonstrated that NF-kappa B/Rel family members, including p105, c-Rel, p50, p65 (for the first time for p50 and p65) and p36-I kappa B alpha are also phosphoproteins. Phosphoserine and phosphothreonine residues were identified in these proteins isolated from unstimulated Jurkat cells. Both unphosphorylated and hyperphosphorylated forms of p36-I kappa B alpha were found in the complexes, suggesting that hyperphosphorylated I kappa B alpha is still capable of associating with the NF-kappa B/Rel family members. After stimulation with phorbol 12-myristate 13-acetate and phytohaemagglutinin for 10 min, p105-NF-kappa B and p50-NF-kappa B, but not p36-I kappa B, were highly phosphorylated. Phosphopeptide mapping of p105 showed that phorbol ester/phytohaemagglutinin stimulation may change p105 phosphorylation qualitatively.
Collapse
Affiliation(s)
- C C Li
- Biological Carcinogenesis and Development Program, Program Resources, Inc./DynCorp., NCI-Frederick Cancer Research and Development Center 21702-1201
| | | | | | | | | | | |
Collapse
|
28
|
Kanno T, Brown K, Franzoso G, Siebenlist U. Kinetic analysis of human T-cell leukemia virus type I Tax-mediated activation of NF-kappa B. Mol Cell Biol 1994; 14:6443-51. [PMID: 7935369 PMCID: PMC359174 DOI: 10.1128/mcb.14.10.6443-6451.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human T-cell leukemia virus type I (HTLV-I) Tax protein induces the expression of cellular genes, at least in part, by activating the endogenous NF-kappa B transcription factors. Induced expression of cellular genes is thought to be important for transformation of T cells to continued growth, a prelude to the establishment of adult T-cell leukemia. However, neither underlying mechanisms nor kinetics of the Tax-mediated activation of NF-kappa B are understood. We have analyzed a permanently transfected Jurkat T-cell line in which the expression of Tax is entirely dependent on addition of heavy metals. The initial NF-kappa B binding activity seen after induction of Tax is due almost exclusively to p50/p65 heterodimers. At later times, NF-kappa B complexes containing c-Rel and/or p52 accumulate. The early activation of p50/p65 complexes is a posttranslational event, since neither mRNA nor protein levels of NF-kappa B subunits had increased at that time. We demonstrate for the first time a Tax-induced proteolytic degradation of the NF-kappa B inhibitor, I kappa B-alpha, which may trigger the initial nuclear translocation of NF-kappa B. As nuclear NF-kappa B rapidly and potently stimulates resynthesis of I kappa B-alpha, the steady-state level of I kappa B-alpha does not significantly change. Thus, the dramatic Tax-induced increase in the I kappa B-alpha turnover may continually weaken inhibition and activate NF-kappa B. Additional, distinct actions of Tax may contribute further to the high levels of NF-kappa B activity seen.
Collapse
Affiliation(s)
- T Kanno
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|