1
|
Dias-Solange D, Le MT, Gottipati K, Choi KH. Structure of coxsackievirus cloverleaf RNA and 3C pro dimer establishes the RNA-binding mechanism of enterovirus protease 3C pro. SCIENCE ADVANCES 2025; 11:eads6862. [PMID: 40073119 PMCID: PMC11900867 DOI: 10.1126/sciadv.ads6862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
In positive-strand RNA viruses, the genome serves as a template for both protein translation and negative-strand RNA synthesis. Enteroviruses use the cloverleaf RNA structure at the 5' end of the genome to balance these two processes. Cloverleaf acts as a promoter for RNA synthesis and forms a complex with viral 3CD protein, the precursor to 3Cpro protease, and 3Dpol polymerase. The interaction between cloverleaf and 3CD is mediated by the 3Cpro domain, yet how 3Cpro promotes specific RNA-binding is not clear. We report the structure of coxsackievirus cloverleaf RNA-3Cpro complex, wherein two 3Cpro molecules interact with cloverleaf stem-loop D. 3Cpro dimer mainly recognizes the shape of the dsRNA helix through symmetric interactions, suggesting that 3Cpro is a previously undiscovered type of RNA binding protein. We show that 3CD protein also dimerizes on cloverleaf RNA and binds the RNA with higher affinity than 3Cpro. The structure provides insight into the RNA-binding mechanism of 3Cpro or 3CD with other cis-acting replication elements.
Collapse
Affiliation(s)
- Dimagi Dias-Solange
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - My Tra Le
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Keerthi Gottipati
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kyung H. Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Kempf BJ, Watkins CL, Peersen OB, Barton DJ. An Extended Primer Grip of Picornavirus Polymerase Facilitates Sexual RNA Replication Mechanisms. J Virol 2020; 94:e00835-20. [PMID: 32522851 PMCID: PMC7394906 DOI: 10.1128/jvi.00835-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Picornaviruses have both asexual and sexual RNA replication mechanisms. Asexual RNA replication mechanisms involve one parental template, whereas sexual RNA replication mechanisms involve two or more parental templates. Because sexual RNA replication mechanisms counteract ribavirin-induced error catastrophe, we selected for ribavirin-resistant poliovirus to identify polymerase residues that facilitate sexual RNA replication mechanisms. We used serial passage in ribavirin, beginning with a variety of ribavirin-sensitive and ribavirin-resistant parental viruses. Ribavirin-sensitive virus contained an L420A polymerase mutation, while ribavirin-resistant virus contained a G64S polymerase mutation. A G64 codon mutation (G64Fix) was used to inhibit emergence of G64S-mediated ribavirin resistance. Revertants (L420) or pseudorevertants (L420V and L420I) were selected from all independent lineages of L420A, G64Fix L420A, and G64S L420A parental viruses. Ribavirin resistance G64S mutations were selected in two independent lineages, and novel ribavirin resistance mutations were selected in the polymerase in other lineages (M299I, M323I, M392V, and T353I). The structural orientation of M392, immediately adjacent to L420 and the polymerase primer grip region, led us to engineer additional polymerase mutations into poliovirus (M392A, M392L, M392V, K375R, and R376K). L420A revertants and pseudorevertants (L420V and L420I) restored efficient viral RNA recombination, confirming that ribavirin-induced error catastrophe coincides with defects in sexual RNA replication mechanisms. Viruses containing M392 mutations (M392A, M392L, and M392V) and primer grip mutations (K375R and R376K) exhibited divergent RNA recombination, ribavirin sensitivity, and biochemical phenotypes, consistent with changes in the fidelity of RNA synthesis. We conclude that an extended primer grip of the polymerase, including L420, M392, K375, and R376, contributes to the fidelity of RNA synthesis and to efficient sexual RNA replication mechanisms.IMPORTANCE Picornaviruses have both asexual and sexual RNA replication mechanisms. Sexual RNA replication shapes picornavirus species groups, contributes to the emergence of vaccine-derived polioviruses, and counteracts error catastrophe. Can viruses distinguish between homologous and nonhomologous partners during sexual RNA replication? We implicate an extended primer grip of the viral polymerase in sexual RNA replication mechanisms. By sensing RNA sequence complementarity near the active site, the extended primer grip of the polymerase has the potential to distinguish between homologous and nonhomologous RNA templates during sexual RNA replication.
Collapse
Affiliation(s)
- Brian J Kempf
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Colorado, USA
| | - Colleen L Watkins
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Barton
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Colorado, USA
| |
Collapse
|
3
|
Paulus C, Harwardt T, Walter B, Marxreiter A, Zenger M, Reuschel E, Nevels MM. Revisiting promyelocytic leukemia protein targeting by human cytomegalovirus immediate-early protein 1. PLoS Pathog 2020; 16:e1008537. [PMID: 32365141 PMCID: PMC7224577 DOI: 10.1371/journal.ppat.1008537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/14/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Promyelocytic leukemia (PML) bodies are nuclear organelles implicated in intrinsic and innate antiviral defense. The eponymous PML proteins, central to the self-organization of PML bodies, and other restriction factors found in these organelles are common targets of viral antagonism. The 72-kDa immediate-early protein 1 (IE1) is the principal antagonist of PML bodies encoded by the human cytomegalovirus (hCMV). IE1 is believed to disrupt PML bodies by inhibiting PML SUMOylation, while PML was proposed to act as an E3 ligase for IE1 SUMOylation. PML targeting by IE1 is considered to be crucial for hCMV replication at low multiplicities of infection, in part via counteracting antiviral gene induction linked to the cellular interferon (IFN) response. However, current concepts of IE1-PML interaction are largely derived from mutant IE1 proteins known or predicted to be metabolically unstable and globally misfolded. We performed systematic clustered charge-to-alanine scanning mutagenesis and identified a stable IE1 mutant protein (IE1cc172-176) with wild-type characteristics except for neither interacting with PML proteins nor inhibiting PML SUMOylation. Consequently, IE1cc172-176 does not associate with PML bodies and is selectively impaired for disrupting these organelles. Surprisingly, functional analysis of IE1cc172-176 revealed that the protein is hypermodified by mixed SUMO chains and that IE1 SUMOylation depends on nucleosome rather than PML binding. Furthermore, a mutant hCMV expressing IE1cc172-176 was only slightly attenuated compared to an IE1-null virus even at low multiplicities of infection. Finally, hCMV-induced expression of cytokine and IFN-stimulated genes turned out to be reduced rather than increased in the presence of IE1cc172-176 relative to wild-type IE1. Our findings challenge present views on the relationship of IE1 with PML and the role of PML in hCMV replication. This study also provides initial evidence for the idea that disruption of PML bodies upon viral infection is linked to activation rather than inhibition of innate immunity.
Collapse
Affiliation(s)
- Christina Paulus
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Bernadette Walter
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Andrea Marxreiter
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Marion Zenger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Edith Reuschel
- Department of Obstetrics and Gynecology, Clinic St. Hedwig at Hospital Barmherzige Brüder Regensburg, Regensburg, Germany
| | - Michael M. Nevels
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
4
|
Bandara HMHN, Samaranayake LP. Viral, bacterial, and fungal infections of the oral mucosa: Types, incidence, predisposing factors, diagnostic algorithms, and management. Periodontol 2000 2019; 80:148-176. [PMID: 31090135 DOI: 10.1111/prd.12273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For millions of years, microbiota residing within us, including those in the oral cavity, coexisted in a harmonious symbiotic fashion that provided a quintessential foundation for human health. It is now clear that disruption of such a healthy relationship leading to microbial dysbiosis causes a wide array of infections, ranging from localized, mild, superficial infections to deep, disseminated life-threatening diseases. With recent advances in research, diagnostics, and improved surveillance we are witnessing an array of emerging and re-emerging oral infections and orofacial manifestations of systemic infections. Orofacial infections may cause significant discomfort to the patients and unnecessary economic burden. Thus, the early recognition of such infections is paramount for holistic patient management, and oral clinicians have a critical role in recognizing, diagnosing, managing, and preventing either new or old orofacial infections. This paper aims to provide an update on current understanding of well-established and emerging viral, bacterial, and fungal infections manifesting in the human oral cavity.
Collapse
Affiliation(s)
| | - Lakshman P Samaranayake
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| |
Collapse
|
5
|
Kumar S, Subbarao BL, Kumari R, Hallan V. Molecular characterization of a novel cryptic virus infecting pigeonpea plants. PLoS One 2017; 12:e0181829. [PMID: 28771507 PMCID: PMC5542627 DOI: 10.1371/journal.pone.0181829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/08/2017] [Indexed: 12/24/2022] Open
Abstract
A new member of the genus Deltapartitivirus was identified containing three dsRNAs with an estimated size of 1.71, 1.49 and 1.43 kb. The dsRNAs were extracted from symptomless pigeonpea [Cajanus cajan (L.) Millspaugh] plants cv. Erra Kandulu. This new virus with 4.64 kb genome was tentatively named Arhar cryptic virus-1 (ArCV-1). The genomic RNAs were amplified and characterized by sequence independent single primer amplification. The dsRNAs shared a highly conserved 16 nt 5' non-coding region (5'-GATAATGATCCAAGGA-3'). The largest dsRNA (dsRNA-1) was identified as the viral RNA dependent RNA polymerase (replicase), predicted to encode a putative 55.34 kDa protein (P1). The two other smaller dsRNAs (dsRNA-2 and dsRNA-3) predicted to encode for putative capsid proteins of 38.50kDa (P2) and 38.51kDa (P3), respectively. Phylogenetic analysis indicated that ArCV-1 formed a clade together with Fragaria chiloensis cryptic virus, Rosa multiflora cryptic virus and Rose cryptic virus-1, indicating that ArCV-1 could be a new member of the genus Deltapartitivirus. ArCV-1 3Dpol structure revealed several interesting features. The 3Dpol in its full-length shares structural similarities with members of the family Caliciviridaeand family Picornaviridae. In addition, fourth dsRNA molecule (dsRNA-2A), not related to ArCV-1 genome, was found in the same plant tissue. The dsRNA-2A (1.6 kb) encodes a protein (P4), with a predicted size of 44.5 kDa. P4 shares similarity with coat protein genes of several cryptic viruses, in particular the bipartite cryptic viruses including Raphanus sativus cryptic virus-3. This is the first report of occurrence of a cryptic virus in pigeonpea plants.
Collapse
Affiliation(s)
- Surender Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, India
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | | - Reenu Kumari
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vipin Hallan
- Department of Biotechnology, Plant Virus Lab, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
6
|
Daikoku T, Mizuguchi M, Obita T, Yokoyama T, Yoshida Y, Takemoto M, Shiraki K. Characterization of susceptibility variants of poliovirus grown in the presence of favipiravir. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:581-586. [PMID: 28709841 DOI: 10.1016/j.jmii.2017.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/01/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND T-705 (favipiravir) is a potent inhibitor of RNA-dependent RNA polymerases of influenza viruses and no favipiravir-resistant virus has been isolated. Poliovirus RNA polymerase has been well characterized and isolation of resistant virus was examined in poliovirus. METHODS Susceptibility variants of poliovirus I (Sabin strain) were isolated during passages in the presence of favipiravir and characterized for their susceptibility and the sequence of RNA polymerase. RESULTS Five variants with 0.47-1.88 times the 50% inhibitory concentration for plaque formation of the parent poliovirus had amino acid variations in the 3D gene of the RNA polymerase. The distribution of amino acid variations was not related to ribavirin resistance, and two amino acid variation sites were found near the finger domain. CONCLUSION Favipiravir as a chain terminator would not be incorporated and replicate to cause lethal mutagenesis as a mutagen like ribavirin, and resistant mutants were not isolated. A high replication level would generate mutations leading to favipiravir resistance as ribavirin resistance was generated, but generated mutations would be lethal to the RNA polymerase function.
Collapse
Affiliation(s)
- Tohru Daikoku
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Mineyuki Mizuguchi
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takayuki Obita
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takeshi Yokoyama
- Laboratory of Structural Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshihiro Yoshida
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Masaya Takemoto
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Department of Microbiology, Faculty of Pharmaceutical Sciences, Hokuriku University, 1-1 Taiyogaoka, Kanazawa 920-1180, Japan
| | - Kimiyasu Shiraki
- Department of Virology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
7
|
Zhang Z, Lee Y, Sivertsen A, Skjeseth G, Haugslien S, Clarke JL, Wang QC, Blystad DR. Low Temperature Treatment Affects Concentration and Distribution of Chrysanthemum Stunt Viroid in Argyranthemum. Front Microbiol 2016; 7:224. [PMID: 26973607 PMCID: PMC4777735 DOI: 10.3389/fmicb.2016.00224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in 'Border Dark Red', but none in 'Yellow Empire'. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased 'Yellow Empire' following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased 'Border Dark Red' following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected 'Border Dark Red' and 'Yellow Empire' indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.
Collapse
Affiliation(s)
- Zhibo Zhang
- The Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy ResearchÅs, Norway
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Genetic Improvement of Horticultural Crops of Northwest China, Department of Plant Sciences, College of Horticulture, Northwest A&F UniversityYangling, China
| | - YeonKyeong Lee
- Department of Plant Sciences, Norwegian University of Life ScienceÅs, Norway
| | - Astrid Sivertsen
- Department of Plant Sciences, Norwegian University of Life ScienceÅs, Norway
| | - Gry Skjeseth
- Department of Plant Sciences, Norwegian University of Life ScienceÅs, Norway
| | - Sissel Haugslien
- The Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy ResearchÅs, Norway
| | - Jihong Liu Clarke
- The Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy ResearchÅs, Norway
| | - Qiao-Chun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Genetic Improvement of Horticultural Crops of Northwest China, Department of Plant Sciences, College of Horticulture, Northwest A&F UniversityYangling, China
| | - Dag-Ragnar Blystad
- The Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy ResearchÅs, Norway
| |
Collapse
|
8
|
Boehr DD, Liu X, Yang X. Targeting structural dynamics of the RNA-dependent RNA polymerase for anti-viral strategies. Curr Opin Virol 2014; 9:194-200. [PMID: 25224392 DOI: 10.1016/j.coviro.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The RNA-dependent RNA polymerase is responsible for genome replication of RNA viruses. Nuclear magnetic resonance experiments and molecular dynamics simulations have indicated that efficient and faithful polymerase function requires highly coordinated internal protein motions. Interference with these motions, either through amino acid substitutions or small molecule binding, can disrupt polymerase and virus function. In particular, these studies have pointed toward highly conserved structural elements, like the motif-D active-site loop, that can be modified to generate polymerases with desired properties. Viruses encoding engineered polymerases might serve as live, attenuated vaccine strains. Further elucidation of polymerase structural dynamics will also provide new avenues for anti-viral drug design.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xinran Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaorong Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Han JF, Yu N, Pan YX, He SJ, Xu LJ, Cao RY, Li YX, Zhu SY, Zhang Y, Qin ED, Che XY, Qin CF. Phenotypic and genomic characterization of human coxsackievirus A16 strains with distinct virulence in mice. Virus Res 2013; 179:212-9. [PMID: 24211607 DOI: 10.1016/j.virusres.2013.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/18/2023]
Abstract
Human coxsackievirus A16 (CA16) infection results in hand, foot, and mouth disease (HFMD) along with other severe neurological diseases in children and poses an important public health threat in Asian countries. During an HFMD epidemic in 2009 in Guangdong, China, two CA16 strains (GD09/119 and GD09/24) were isolated and characterized. Although both strains were similar in plaque morphology and growth properties in vitro, the two isolates exhibited distinct pathogenicity in neonatal mice upon intraperitoneal or intracranial injection. Complete genome sequences of both CA16 strains were determined, and the possible virulence determinants were analyzed and predicted. Phylogenetic analysis revealed that these CA16 isolates from Guangdong belonged to the B1b genotype and were closely related to other recent CA16 strains isolated in mainland China. Similarity and bootscanning analyses of these CA16 strains detected homologous recombination with the EV71 prototype strain BrCr in the non-structural gene regions and the 3'-untranslated regions. Together, the phenotypic and genomic characterizations of the two clinical CA16 isolates circulating in China were compared in detail, and the potential amino acid residues responsible for CA16 virulence in mice were predicted. These findings will help explain the evolutionary relationship of the CA16 strains circulating in China, warranting future studies investigating enterovirus virulence.
Collapse
Affiliation(s)
- Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Nan Yu
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Yu-Xian Pan
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Si-Jie He
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Li-Juan Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Yuan Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue-Xiang Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yan Che
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
10
|
Kempf BJ, Kelly MM, Springer CL, Peersen OB, Barton DJ. Structural features of a picornavirus polymerase involved in the polyadenylation of viral RNA. J Virol 2013; 87:5629-44. [PMID: 23468507 PMCID: PMC3648189 DOI: 10.1128/jvi.02590-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/03/2013] [Indexed: 01/04/2023] Open
Abstract
Picornaviruses have 3' polyadenylated RNA genomes, but the mechanisms by which these genomes are polyadenylated during viral replication remain obscure. Based on prior studies, we proposed a model wherein the poliovirus RNA-dependent RNA polymerase (3D(pol)) uses a reiterative transcription mechanism while replicating the poly(A) and poly(U) portions of viral RNA templates. To further test this model, we examined whether mutations in 3D(pol) influenced the polyadenylation of virion RNA. We identified nine alanine substitution mutations in 3D(pol) that resulted in shorter or longer 3' poly(A) tails in virion RNA. These mutations could disrupt structural features of 3D(pol) required for the recruitment of a cellular poly(A) polymerase; however, the structural orientation of these residues suggests a direct role of 3D(pol) in the polyadenylation of RNA genomes. Reaction mixtures containing purified 3D(pol) and a template RNA with a defined poly(U) sequence provided data consistent with a template-dependent reiterative transcription mechanism for polyadenylation. The phylogenetically conserved structural features of 3D(pol) involved in the polyadenylation of virion RNA include a thumb domain alpha helix that is positioned in the minor groove of the double-stranded RNA product and lysine and arginine residues that interact with the phosphates of both the RNA template and product strands.
Collapse
Affiliation(s)
| | | | - Courtney L. Springer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve B. Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - David J. Barton
- Department of Microbiology
- Program in Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Wang J, Lyle JM, Bullitt E. Surface for catalysis by poliovirus RNA-dependent RNA polymerase. J Mol Biol 2013; 425:2529-40. [PMID: 23583774 DOI: 10.1016/j.jmb.2013.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/17/2013] [Accepted: 04/04/2013] [Indexed: 12/22/2022]
Abstract
The poliovirus RNA-dependent RNA polymerase, 3Dpol, replicates the viral genomic RNA on the surface of virus-induced intracellular membranes. Macromolecular assemblies of 3Dpol form linear arrays of subunits that propagate along a strong protein-protein interaction called interface-I, as was observed in the crystal structure of wild-type poliovirus polymerase. These "filaments" recur with slight modifications in planar sheets and, with additional modifications that accommodate curvature, in helical tubes of the polymerase, by packing filaments together via a second set of interactions. Periodic variations of subunit orientations within 3Dpol tubes give rise to "ghost reflections" in diffraction patterns computed from electron cryomicrographs of helical arrays. The ghost reflections reveal that polymerase tubes are formed by bundles of four to five interface-I filaments, which are then connected to the next bundle of filaments with a perturbation of interface interactions between bundles. While enzymatically inactive polymerase is also capable of oligomerization, much thinner tubes that lack interface-I interactions between adjacent subunits are formed, suggesting that long-range allostery produces conformational changes that extend from the active site to the protein-protein interface. Macromolecular assemblies of poliovirus polymerase show repeated use of flexible interface interactions for polymerase lattice formation, suggesting that adaptability of polymerase-polymerase interactions facilitates RNA replication. In addition, the presence of a positively charged groove identified in polymerase arrays may help position and stabilize the RNA template during replication.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
12
|
Lang DM, Zemla AT, Zhou CLE. Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Nucleic Acids Res 2012; 41:1464-82. [PMID: 23275546 PMCID: PMC3561941 DOI: 10.1093/nar/gks1251] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RNA-dependent RNA polymerase (RdRp) is essential to viral replication and is therefore one of the primary targets of countermeasures against these dangerous infectious agents. Development of broad-spectrum therapeutics targeting polymerases has been hampered by the extreme sequence variability of these sequences. RdRps range in length from 400–800 residues, yet contain only ∼20 residues that are conserved in most species. In this study, we made structure-based comparisons that are independent of sequence composition using a recently developed algorithm. We identified residue-to-residue correspondences of multiple protein structures and created (two-dimensional) structure-based alignment maps of 37 polymerase structures that provide both sequence and structure details. Using these maps, we determined that ∼75% of each polymerase species consists of seven protein segments, each of which has high structural similarity to segments in other species, though they are widely divergent in sequence composition and order. We define each of these segments as a ‘homomorph’, and each includes (though most are much larger than) the well-known conserved polymerase motifs. All homomorphs contact the template tunnel or nucleoside triphosphate (NTP) entry tunnel and the exterior of the protein, suggesting they constitute a structural and functional skeleton common among the polymerases.
Collapse
Affiliation(s)
- Dorothy M Lang
- Physical and Life Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
13
|
Alanine scanning of poliovirus 2CATPase reveals new genetic evidence that capsid protein/2CATPase interactions are essential for morphogenesis. J Virol 2012; 86:9964-75. [PMID: 22761387 DOI: 10.1128/jvi.00914-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polypeptide 2C(ATPase) is one of the most thoroughly studied but least understood proteins in the life cycle of poliovirus. Within the protein, multiple functional domains important for uncoating, host cell membrane alterations, and RNA replication and encapsidation have previously been identified. In this study, charged to alanine-scanning mutagenesis was used to generate conditional-lethal mutations in hitherto-uncharacterized domains of the 2C(ATPase) polypeptide, particularly those involved in morphogenesis. Adjacent or clustered charged amino acids (2 to 4), scattered along the 2C(ATPase) coding sequence, were replaced with alanines. RNA transcripts of mutant poliovirus cDNA clones were transfected into HeLa cells. Subsequently, 10 lethal, 1 severely temperature-sensitive, 2 quasi-infectious, and 3 wild type-like mutants were identified. Using a luciferase-containing reporter virus, we demonstrated RNA replication defects in all lethal and quasi-infectious mutants. Temperature-sensitive mutants were defective in RNA replication only at the restricted temperatures. Furthermore, we characterized a quasi-infectious mutant (K(6)A/K(7)A) that produced a suppressor mutation (G(1)R) and a novel 2B^2C(ATPase) cleavage site (Q^R). Surprisingly, this cleavage site mutation did not interfere with normal processing of the polyprotein. These mutants have led to the identification of several new sites within the 2C(ATPase) polypeptide that are required for RNA replication. In addition, analysis of the suppressor mutants has revealed a new domain near the C terminus of 2C(ATPase) that is involved in encapsidation, possibly achieved through interaction with an amino acid sequence between NTP binding motifs A and B of 2C(ATPase). Most importantly, the identification of suppressor mutations in both 2C(ATPase) and the capsid domains (VP1 and VP3) of poliovirus has confirmed that an interaction between 2C(ATPase) and capsid proteins is involved in viral morphogenesis.
Collapse
|
14
|
Kortus MG, Kempf BJ, Haworth KG, Barton DJ, Peersen OB. A template RNA entry channel in the fingers domain of the poliovirus polymerase. J Mol Biol 2012; 417:263-78. [PMID: 22321798 PMCID: PMC3325025 DOI: 10.1016/j.jmb.2012.01.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 01/10/2023]
Abstract
Positive-strand RNA viruses within the Picornaviridae family express an RNA-dependent RNA polymerase, 3D(pol), that is required for viral RNA replication. Structures of 3D(pol) from poliovirus, coxsackievirus, human rhinoviruses, and other picornaviruses reveal a putative template RNA entry channel on the surface of the enzyme fingers domain. Basic amino acids and tyrosine residues along this entry channel are predicted to form ionic and base stacking interactions with the viral RNA template as it enters the polymerase active site. We generated a series of alanine substitution mutations at these residues in the poliovirus polymerase and assayed their effects on template RNA binding, RNA synthesis initiation, rates of RNA elongation, elongation complex (EC) stability, and virus growth. The results show that basic residues K125, R128, and R188 are important for template RNA binding, while tyrosines Y118 and Y148 are required for efficient initiation of RNA synthesis and for EC stability. Alanine substitutions of tyrosines 118 and 148 at the tip of the 3D(pol) pinky finger drastically decreased the rate of initiation as well as EC stability, but without affecting template RNA binding or RNA elongation rates. Viable poliovirus was recovered from HeLa cells transfected with mutant RNAs; however, mutations that dramatically inhibited template RNA binding (K125A-K126A and R188A), RNA synthesis initiation (Y118A, Y148A), or EC stability (Y118A, Y148A) were not stably maintained in progeny virus. These data identify key residues within the template RNA entry channel and begin to define their distinct mechanistic roles within RNA ECs.
Collapse
Affiliation(s)
- Matthew G. Kortus
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| | - Brian J. Kempf
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Building RC-1 North, Room 9116, 12800 East 19th Avenue, MS8333, Aurora, CO 80045
| | - Kevin G. Haworth
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| | - David J. Barton
- Department of Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Building RC-1 North, Room 9116, 12800 East 19th Avenue, MS8333, Aurora, CO 80045
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, 1870 Campus Delivery, Colorado State University, Fort Collins, CO80523-1870
| |
Collapse
|
15
|
Moustafa IM, Shen H, Morton B, Colina CM, Cameron CE. Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity. J Mol Biol 2011; 410:159-81. [PMID: 21575642 PMCID: PMC3114172 DOI: 10.1016/j.jmb.2011.04.078] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/27/2011] [Accepted: 04/30/2011] [Indexed: 02/02/2023]
Abstract
The viral RNA-dependent RNA polymerase (RdRp) is essential for multiplication of all RNA viruses. The sequence diversity of an RNA virus population contributes to its ability to infect the host. This diversity emanates from errors made by the RdRp during RNA synthesis. The physical basis for RdRp fidelity is unclear but is linked to conformational changes occurring during the nucleotide-addition cycle. To understand RdRp dynamics that might influence RdRp function, we have analyzed all-atom molecular dynamics simulations on the nanosecond timescale of four RdRps from the picornavirus family that exhibit 30-74% sequence identity. Principal component analysis showed that the major motions observed during the simulations derived from conserved structural motifs and regions of known function. The dynamics of residues participating in the same biochemical property, for example, RNA binding, nucleotide binding or catalysis, were correlated even when spatially distant on the RdRp structure. The conserved and correlated dynamics of functional structural elements suggest coevolution of dynamics with structure and function of the RdRp. Crystal structures of all picornavirus RdRps exhibit a template-nascent RNA duplex channel too small to fully accommodate duplex RNA. Simulations revealed opening and closing motions of the RNA and nucleoside triphosphate channels, which might be relevant to nucleoside triphosphate entry, inorganic pyrophosphate exit and translocation. A role for nanosecond timescale dynamics in RdRp fidelity is supported by the altered dynamics of the high-fidelity G64S derivative of PV RdRp relative to wild-type enzyme.
Collapse
Key Words
- md simulation
- polymerase
- poliovirus
- conformational change
- fidelity
- pv, poliovirus
- cvb3, coxsackievirus b3
- hrv16, human rhinovirus type 16
- fmdv, foot-and-mouth disease virus
- rdrp, rna-dependent rna polymerase
- ntp, nucleoside triphosphate
- md, molecular dynamics
- rmsf, root-mean-square fluctuation
- pca, principal component analysis
- dccm, dynamic cross-correlation map
- pdb, protein data bank
- pc, principal component
- wt, wild type
- 2d, two-dimensional
- rg, radius of gyration
Collapse
Affiliation(s)
- Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hujun Shen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Brandon Morton
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Coray M. Colina
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
16
|
Charged residues in hepatitis C virus NS4B are critical for multiple NS4B functions in RNA replication. J Virol 2011; 85:8158-71. [PMID: 21680530 DOI: 10.1128/jvi.00858-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nonstructural 4B (NS4B) protein of hepatitis C virus (HCV) plays a central role in the formation of the HCV replication complex. To gain insight into the role of charged residues for NS4B function in HCV RNA replication, alanine substitutions were engineered in place of 28 charged residues residing in the N- and C-terminal cytoplasmic domains of the NS4B protein of the HCV genotype 1b strain Con1. Eleven single charged-to-alanine mutants were not viable, while the remaining mutants were replication competent, albeit to differing degrees. By selecting revertants, second-site mutations were identified for one of the lethal NS4B mutations. Second-site mutations mapped to NS4B and partially suppressed the lethal replication phenotype. Further analyses showed that three NS4B mutations disrupted the formation of putative replication complexes, one mutation altered the stability of the NS4B protein, and cleavage at the NS4B/5A junction was significantly delayed by another mutation. Individual charged-to-alanine mutations did not affect interactions between the NS4B and NS3-4A proteins. A triple charged-to-alanine mutation produced a temperature-sensitive replication phenotype with no detectable RNA replication at 39°C, demonstrating that conditional mutations can be obtained by altering the charge characteristics of NS4B. Finally, NS4B mutations dispensable for efficient Con1 RNA replication were tested in the context of the chimeric genotype 2a virus, but significant defects in infectious-virus production were not detected. Taken together, these findings highlight the importance of charged residues for multiple NS4B functions in HCV RNA replication, including the formation of a functional replication complex.
Collapse
|
17
|
Zemla AT, Lang DM, Kostova T, Andino R, Ecale Zhou CL. StralSV: assessment of sequence variability within similar 3D structures and application to polio RNA-dependent RNA polymerase. BMC Bioinformatics 2011; 12:226. [PMID: 21635786 PMCID: PMC3121648 DOI: 10.1186/1471-2105-12-226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 06/02/2011] [Indexed: 12/15/2022] Open
Abstract
Background Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Results Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. Conclusions StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.
Collapse
Affiliation(s)
- Adam T Zemla
- Global Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | | | | | | | |
Collapse
|
18
|
Shin YC, Park S, Ryu WS. A conserved arginine residue in the terminal protein domain of hepatitis B virus polymerase is critical for RNA pre-genome encapsidation. J Gen Virol 2011; 92:1809-1816. [PMID: 21525211 DOI: 10.1099/vir.0.031914-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepadnaviruses, including human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV), replicate their DNA genome through reverse transcription. Although hepadnaviral polymerase (Pol) is distantly related to retroviral reverse transcriptases, some of its features are distinct. In particular, in addition to the reverse transcriptase and RNase H domains, which are commonly encoded by retroviral reverse transcriptases, the N-terminally extended terminal protein (TP) domain confers unique features such as protein-priming capability. Importantly, the TP domain is also essential for encapsidation of the viral RNA pre-genome. To gain further insight into the TP domain, this study used clustered charged residue-to-alanine mutagenesis of HBV Pol. Of the 20 charged residues examined, only one arginine (R105) was critical for RNA encapsidation. This result contrasts with previous findings for DHBV Pol regarding the critical residue of the TP domain required for RNA binding. Firstly, R128 of DHBV Pol, which corresponds to R105 of HBV Pol, was reportedly tolerable to alanine substitution for RNA binding. Secondly, the C-terminal arginine residue of the DHBV Pol TP domain (R183) was shown to be critical for RNA binding, whereas alanine substitution of the corresponding arginine residue of the HBV Pol TP domain (R160) remained able to support RNA encapsidation. Together, these data highlight the divergence between avian and mammalian hepadnaviral Pols with respect to an arginine residue critical for RNA encapsidation.
Collapse
Affiliation(s)
- Youn-Chul Shin
- Department of Biochemistry, Yonsei University, 262 Seongsanno, Seodaemungu, Seoul 120-749, Republic of Korea
| | - Sunju Park
- Department of Biochemistry, Yonsei University, 262 Seongsanno, Seodaemungu, Seoul 120-749, Republic of Korea
| | - Wang-Shick Ryu
- Department of Biochemistry, Yonsei University, 262 Seongsanno, Seodaemungu, Seoul 120-749, Republic of Korea
| |
Collapse
|
19
|
Abstract
Over the past decade, Human enterovirus (HEV)71 has emerged as a highly significant cause of viral encephalitis in the south-east Asian region. A pattern of increased epidemic activity has been observable since 1997, the cause of which is unclear. Ongoing investigations into the molecular basis of HEV71 infection and virulence, in particular viral translation and replication, have confirmed similarities between HEV71 and other enteroviruses, including the prototype species Poliovirus, but more work is required in this field. Although several putative receptors for HEV71 have been identified, it remains likely that other, as yet unidentified, receptors exist. Work in several established animal models for HEV71 infection has confirmed the protective efficacy of several inactivated vaccines. As more information emerges regarding the molecular processes involved in HEV71 infection, further advances may lead to the development of more effective antiviral treatments and, ultimately, a vaccine protection strategy.
Collapse
Affiliation(s)
- Emily J Bek
- Infectious Diseases & Immunology, Sydney Medical School, Blackburn Building D06, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
20
|
Abstract
Poliovirus is the most extensively studied member of the order Picornavirales, which contains numerous medical, veterinary and agricultural pathogens. The picornavirus genome encodes a single polyprotein that is divided into three regions: P1, P2 and P3. P3 proteins are known to participate more directly in genome replication, for example by containing the viral RNA-dependent RNA polymerase (RdRp or 3Dpol), among several other proteins and enzymes. We will review recent data that provide new insight into the structure, function and mechanism of P3 proteins and their complexes, which are required for initiation of genome replication. Replication of poliovirus genomes occurs within macromolecular complexes, containing viral RNA, viral proteins and host-cell membranes, collectively referred to as replication complexes. P2 proteins clearly contribute to interactions with the host cell that are required for virus multiplication, including formation of replication complexes. We will discuss recent data that suggest a role for P3 proteins in formation of replication complexes. Among the least understood steps of the poliovirus lifecycle is encapsidation of genomic RNA. We will also describe data that suggest a role for P3 proteins in this step.
Collapse
Affiliation(s)
- Craig E Cameron
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
21
|
Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA (NEW YORK, N.Y.) 2010; 16:382-93. [PMID: 20051491 PMCID: PMC2811667 DOI: 10.1261/rna.1955410] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase-polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells.
Collapse
Affiliation(s)
- Jeannie F Spagnolo
- 1Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
22
|
Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396:1-9. [DOI: 10.1016/j.virol.2009.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
23
|
Bypass suppression of small-plaque phenotypes by a mutation in poliovirus 2A that enhances apoptosis. J Virol 2009; 83:10129-39. [PMID: 19625405 DOI: 10.1128/jvi.00642-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rate of protein secretion in host cells is inhibited during infection with several different picornaviruses, with consequences likely to have significant effects on viral growth, spread, and pathogenesis. This Sin(+) (secretion inhibition) phenotype has been documented for poliovirus, foot-and-mouth disease virus, and coxsackievirus B3 and can lead to reduced cell surface expression of major histocompatibility complex class I and tumor necrosis factor receptor as well as reduced extracellular secretion of induced cytokines such as interleukin-6 (IL-6), IL-8, and beta interferon. The inhibition of protein secretion is global, affecting the movement of all tested cargo proteins through the cellular secretion apparatus. To test the physiological significance of the Sin(-) and Sin(+) phenotypes in animal models, Sin(-) mutant viruses are needed that fail to inhibit host protein secretion and also exhibit robust growth properties. To identify such Sin(-) mutant polioviruses, we devised a fluorescence-activated cell sorter-based screen to select virus-infected cells that nevertheless expressed newly synthesized surface proteins. After multiple rounds of selection, candidate Sin(-) mutant viruses were screened for genetic stability, increased secretion of cargo molecules and wild-type translation and growth properties. A newly identified Sin(-) mutant poliovirus that contained coding changes in nonstructural proteins 2A (N32D) and 2C (E253G) was characterized. In this virus, the 2C mutation is responsible for the Sin(-) phenotype and the 2A mutation suppresses a resulting growth defect by increasing the rate of cell death and therefore the rate of viral spread. The 2A-N32D suppressor mutation was not allele specific and, by increasing the rate of cellular apoptosis, affected a completely different pathway than the 2C-E253G Sin(-) mutation. Therefore, the 2A mutation suppresses the 2C-E253G mutant phenotype by a bypass suppression mechanism.
Collapse
|
24
|
Mapping of the tacaribe arenavirus Z-protein binding sites on the L protein identified both amino acids within the putative polymerase domain and a region at the N terminus of L that are critically involved in binding. J Virol 2008; 82:11454-60. [PMID: 18799569 DOI: 10.1128/jvi.01533-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tacaribe virus (TacV) is the prototype of the New World group of arenaviruses. The TacV genome encodes four proteins: the nucleoprotein (N), the glycoprotein precursor, the polymerase (L), and a RING finger protein (Z). Using a reverse genetics system, we demonstrated that TacV N and L are sufficient to drive transcription and replication mediated by TacV-like RNAs and that Z is a powerful inhibitor of these processes (Lopez et al., J. Virol. 65:12241-12251, 2001). More recently, we provided the first evidence of an interaction between Z and L and showed that Z's inhibitory activity was dependent on its ability to bind to L (Jácamo et al., J. Virol. 77:10383-10393, 2003). In the present study, we mapped the TacV Z-binding sites on the 2,210-amino-acid L polymerase. To that end, we performed deletion analysis and point mutations of L and studied the Z-L interaction by coimmunoprecipitation with specific sera. We found that the C-terminal region of L was not essential for the interaction and identified two noncontiguous regions that were critical for binding: one at the N-terminus of L between residues 156 and 292 and a second one in the polymerase domain (domain III). The importance of domain III in binding was revealed by substitutions in D1188 and H1189 within motif A and in each residue of the conserved SDD sequence (residues 1328, 1329, and 1330) within motif C. Our results showed that of the substituted residues, only H1189 and D1329 appeared to be critically involved in binding Z.
Collapse
|
25
|
Kok CC, McMinn PC. Picornavirus RNA-dependent RNA polymerase. Int J Biochem Cell Biol 2008; 41:498-502. [PMID: 18487072 DOI: 10.1016/j.biocel.2008.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 03/28/2008] [Accepted: 03/29/2008] [Indexed: 11/18/2022]
Abstract
Replication of the picornavirus genome is catalysed by a viral encoded RNA-dependent RNA polymerase, termed 3D polymerase. Together with other viral and host proteins, this enzyme performs its functions in the cytoplasm of host cells. The crystal structure of 3D polymerase from a number of picornaviruses has been determined. This review discusses the structure and function of the poliovirus 3D polymerase. The high error rates of 3D polymerase result in high sequence diversity such that virus populations exist as quasispecies. This phenomenon is thought to facilitate survival of the virus population in complex environments.
Collapse
Affiliation(s)
- Chee Choy Kok
- Discipline of Infectious Diseases and Immunology, Central Clinical School, Blackburn Building D06, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
26
|
Shen M, Reitman ZJ, Zhao Y, Moustafa I, Wang Q, Arnold JJ, Pathak HB, Cameron CE. Picornavirus genome replication. Identification of the surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol complex. J Biol Chem 2008; 283:875-88. [PMID: 17993457 PMCID: PMC2186065 DOI: 10.1074/jbc.m707907200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses.
Collapse
Affiliation(s)
- Miaoqing Shen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chapter 5. In vivo analysis of the decay of transcripts generated by cytoplasmic RNA viruses. Methods Enzymol 2008; 449:97-123. [PMID: 19215755 DOI: 10.1016/s0076-6879(08)02405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The field of RNA decay has grown extensively over the last few years and numerous decay pathways have been identified and characterized. This is a truly powerful machinery for both regulation and quality control of gene expression. It is very likely that the transcripts of RNA viruses must successfully confront this arsenal of enzymes and RNA binding factors in order to establish a productive infection. This interface is an understudied branch of virology that needs to be explored if we are to fully comprehend the molecular biology of virus-cell interactions. Research in this area has the potential to increase our understanding of the fundamentals of both mRNA stability and viral biology, perhaps leading to novel antiviral approaches. This chapter discusses methods for examining the half-lives of viral RNAs during natural infection, including purification of the viral transcripts and subsequent analysis of both deadenylation and decay. Additionally, a hybrid selection protocol for identifying viral-specific small RNAs that are generated during infection by the RNAi branch of the cellular RNA decay machinery is described.
Collapse
|
28
|
Donaldson EF, Graham RL, Sims AC, Denison MR, Baric RS. Analysis of murine hepatitis virus strain A59 temperature-sensitive mutant TS-LA6 suggests that nsp10 plays a critical role in polyprotein processing. J Virol 2007; 81:7086-98. [PMID: 17428870 PMCID: PMC1933295 DOI: 10.1128/jvi.00049-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses are the largest RNA viruses, and their genomes encode replication machinery capable of efficient replication of both positive- and negative-strand viral RNAs as well as enzymes capable of processing large viral polyproteins into putative replication intermediates and mature proteins. A model described recently by Sawicki et al. (S. G. Sawicki, D. L. Sawicki, D. Younker, Y. Meyer, V. Thiel, H. Stokes, and S. G. Siddell, PLoS Pathog. 1:e39, 2005), based upon complementation studies of known temperature-sensitive (TS) mutants of murine hepatitis virus (MHV) strain A59, proposes that an intermediate comprised of nsp4 to nsp10/11 ( approximately 150 kDa) is involved in negative-strand synthesis. Furthermore, the mature forms of nsp4 to nsp10 are thought to serve as cofactors with other replicase proteins to assemble a larger replication complex specifically formed to transcribe positive-strand RNAs. In this study, we introduced a single-amino-acid change (nsp10:Q65E) associated with the TS-LA6 phenotype into nsp10 of the infectious clone of MHV. Growth kinetic studies demonstrated that this mutation was sufficient to generate the TS phenotype at permissive and nonpermissive temperatures. Our results demonstrate that the TS mutant variant of nsp10 inhibits the main protease, 3CLpro, blocking its function completely at the nonpermissive temperature. These results implicate nsp10 as being a critical factor in the activation of 3CLpro function. We discuss how these findings challenge the current hypothesis that nsp4 to nsp10/11 functions as a single cistron in negative-strand RNA synthesis and analyze recent complementation data in light of these new findings.
Collapse
Affiliation(s)
- Eric F Donaldson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
29
|
Schlax PE, Zhang J, Lewis E, Planchart A, Lawson TG. Degradation of the encephalomyocarditis virus and hepatitis A virus 3C proteases by the ubiquitin/26S proteasome system in vivo. Virology 2007; 360:350-63. [PMID: 17150238 DOI: 10.1016/j.virol.2006.10.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 08/30/2006] [Accepted: 10/30/2006] [Indexed: 12/14/2022]
Abstract
We have isolated stably transfected mouse embryonic fibroblast cell lines that inducibly express either the mature encephalomyocarditis virus (EMCV) or hepatitis A virus (HAV) 3C protease and have used these cells to demonstrate that both proteins are subject to degradation in vivo by the ubiquitin/26S proteasome system. The detection of 3C protease expression in these cells requires inducing conditions and the presence of one of several proteasome inhibitors. Both 3C proteases are incorporated into conjugates with ubiquitin in vivo. HAV 3C protease expression has deleterious effects on cell viability, as determined by observation and counting of cells cultured in the absence or presence of inducing conditions. The EMCV 3C protease was found to be preferentially localized to the nucleus of induced cells, while the HAV 3C protease remains in the cytoplasm. The absence of polyubiquitinated EMCV 3C protease conjugates in nuclear fraction preparations suggests that localization to the nucleus can protect this protein from ubiquitination.
Collapse
Affiliation(s)
- Peter E Schlax
- Department of Chemistry, Bates College, Lewiston, ME 04240, USA
| | | | | | | | | |
Collapse
|
30
|
Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, Filman DJ, Cameron CE, Hogle JM. Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase. J Virol 2007; 81:3583-96. [PMID: 17251299 PMCID: PMC1866080 DOI: 10.1128/jvi.02306-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/19/2007] [Indexed: 01/07/2023] Open
Abstract
Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3C(pro) and the viral polymerase 3D(pol) and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-A resolution and the G64S fidelity mutant of 3D(pol) at a 3.0-A resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3D(pol) G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3D(pol) makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.
Collapse
Affiliation(s)
- Laura L Marcotte
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Richards OC, Spagnolo JF, Lyle JM, Vleck SE, Kuchta RD, Kirkegaard K. Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase. J Virol 2006; 80:7405-15. [PMID: 16840321 PMCID: PMC1563691 DOI: 10.1128/jvi.02533-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The 22-amino-acid protein VPg can be uridylylated in solution by purified poliovirus 3D polymerase in a template-dependent reaction thought to mimic primer formation during RNA amplification in infected cells. In the cell, the template used for the reaction is a hairpin RNA termed 2C-cre and, possibly, the poly(A) at the 3' end of the viral genome. Here, we identify several additional substrates for uridylylation by poliovirus 3D polymerase. In the presence of a 15-nucleotide (nt) RNA template, the poliovirus polymerase uridylylates other polymerase molecules in an intermolecular reaction that occurs in a single step, as judged by the chirality of the resulting phosphodiester linkage. Phosphate chirality experiments also showed that VPg uridylylation can occur by a single step; therefore, there is no obligatory uridylylated intermediate in the formation of uridylylated VPg. Other poliovirus proteins that could be uridylylated by 3D polymerase in solution were viral 3CD and 3AB proteins. Strong effects of both RNA and protein ligands on the efficiency and the specificity of the uridylylation reaction were observed: uridylylation of 3D polymerase and 3CD protein was stimulated by the addition of viral protein 3AB, and, when the template was poly(A) instead of the 15-nt RNA, the uridylylation of 3D polymerase itself became intramolecular instead of intermolecular. Finally, an antiuridine antibody identified uridylylated viral 3D polymerase and 3CD protein, as well as a 65- to 70-kDa host protein, in lysates of virus-infected human cells.
Collapse
Affiliation(s)
- Oliver C Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305-5402, USA
| | | | | | | | | | | |
Collapse
|
32
|
Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL. Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 2006; 348:107-19. [PMID: 16445957 DOI: 10.1016/j.virol.2005.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 09/15/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
Measles virus V protein is a Cys-rich polypeptide that is dispensable for virus propagation in continuous cell lines, but necessary for efficient viral replication in animals. Those functions modulating virus propagation in vivo are not understood completely, although V protein is known to interfere with the host interferon response and control of viral gene expression. The ability to modulate gene expression was investigated further with a minireplicon transient expression system in which V protein was found to repress reporter activity. Two regions of the polypeptide contributed to this repressive effect including the carboxy-terminus and a region conserved in morbillivirus V proteins located between amino acids 110-131, whereas domains known to mediate the interaction between V and the nucleocapsid (N) protein were not essential. Accumulation of encapsidated minigenome in transfected cells was inhibited by V protein suggesting that it acted as a repressor of genome replication thereby limiting availability of template for reporter gene mRNA transcription.
Collapse
Affiliation(s)
- Susan E Witko
- Wyeth Vaccines Research, 401 North Middletown Road, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
33
|
Sawicki SG, Sawicki DL, Younker D, Meyer Y, Thiel V, Stokes H, Siddell SG. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 2005; 1:e39. [PMID: 16341254 PMCID: PMC1298938 DOI: 10.1371/journal.ppat.0010039] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/01/2005] [Indexed: 12/15/2022] Open
Abstract
The coronavirus replicase-transcriptase complex is an assembly of viral and cellular proteins that mediate the synthesis of genome and subgenome-sized mRNAs in the virus-infected cell. Here, we report a genetic and functional analysis of 19 temperature-sensitive (ts) mutants of Murine hepatitis virus MHV-A59 that are unable to synthesize viral RNA when the infection is initiated and maintained at the non-permissive temperature. Both classical and biochemical complementation analysis leads us to predict that the majority of MHV-A59 ORF1a replicase gene products (non-structural proteins nsp1-nsp11) form a single complementation group (cistron1) while the replicase gene products encoded in ORF1b (non-structural proteins nsp12-nsp16) are able to function in trans and comprise at least three, and possibly five, further complementation groups (cistrons II-VI). Also, we have identified mutations in the non-structural proteins nsp 4, nsp5, nsp10, nsp12, nsp14, and nsp16 that are responsible for the ts phenotype of eight MHV-A59 mutants, which allows us to conclude that these proteins are essential for the assembly of a functional replicase-transcriptase complex. Finally, our analysis of viral RNA synthesis in ts mutant virus-infected cells allows us to discriminate three phenotypes with regard to the inability of specific mutants to synthesize viral RNA at the non-permissive temperature. Mutant LA ts6 appeared to be defective in continuing negative-strand synthesis, mutant Alb ts16 appeared to form negative strands but these were not utilized for positive-strand RNA synthesis, and mutant Alb ts22 was defective in the elongation of both positive- and negative-strand RNA. On the basis of these results, we propose a model that describes a pathway for viral RNA synthesis in MHV-A59-infected cells. Further biochemical analysis of these mutants should allow us to identify intermediates in this pathway and elucidate the precise function(s) of the viral replicase proteins involved.
Collapse
Affiliation(s)
- Stanley G Sawicki
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Dorothea L Sawicki
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Diane Younker
- Department of Medical Microbiology and Immunology, Medical University of Ohio, Toledo, Ohio, United States of America
| | - Yvonne Meyer
- Institute of Virology, University of Würzburg, Würzburg, Germany
| | - Volker Thiel
- Institute of Virology, University of Würzburg, Würzburg, Germany
| | - Helen Stokes
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Stuart G Siddell
- Department of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Franco D, Pathak HB, Cameron CE, Rombaut B, Wimmer E, Paul AV. Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. Virol J 2005; 2:86. [PMID: 16300678 PMCID: PMC1315353 DOI: 10.1186/1743-422x-2-86] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 11/21/2005] [Indexed: 11/10/2022] Open
Abstract
Poliovirus protein 3CDpro possesses both proteinase and RNA binding activities, which are located in the 3Cpro domain of the protein. The RNA polymerase (3Dpol) domain of 3CDpro modulates these activities of the protein. We have recently shown that the level of 3CDpro in HeLa cell-free in vitro translation-RNA replication reactions is suboptimal for efficient virus production. However, the addition of either 3CDpro mRNA or of purified 3CDpro protein to in vitro reactions, programmed with viral RNA, results in a 100-fold increase in virus yield. Mutational analyses of 3CDpro indicated that RNA binding by the 3Cpro domain and the integrity of interface I in the 3Dpol domain of the protein are both required for function. The aim of these studies was to determine the exact step or steps at which 3CDpro enhances virus yield and to determine the mechanism by which this occurs. Our results suggest that the addition of extra 3CDpro to in vitro translation RNA-replication reactions results in a mild enhancement of both minus and plus strand RNA synthesis. By examining the viral particles formed in the in vitro reactions on sucrose gradients we determined that 3CDpro has only a slight stimulating effect on the synthesis of capsid precursors but it strikingly enhances the maturation of virus particles. Both the stimulation of RNA synthesis and the maturation of the virus particles are dependent on the presence of an intact RNA binding site within the 3Cpro domain of 3CDpro. In addition, the integrity of interface I in the 3Dpol domain of 3CDpro is required for efficient production of mature virus. Surprisingly, plus strand RNA synthesis and virus production in in vitro reactions, programmed with full-length transcript RNA, are not enhanced by the addition of extra 3CDpro. Our results indicate that the stimulation of RNA synthesis and virus maturation by 3CDpro in vitro is dependent on the presence of a VPg-linked RNA template.
Collapse
Affiliation(s)
- David Franco
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| | - Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Bart Rombaut
- Department of Microbiology and Hygiene, Vrije Universiteit Brussel, B-1090 Brussels, Belgium
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| | - Aniko V Paul
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, N. Y. 11790, USA
| |
Collapse
|
35
|
Feng P, Everly DN, Read GS. mRNA decay during herpes simplex virus (HSV) infections: protein-protein interactions involving the HSV virion host shutoff protein and translation factors eIF4H and eIF4A. J Virol 2005; 79:9651-64. [PMID: 16014927 PMCID: PMC1181552 DOI: 10.1128/jvi.79.15.9651-9664.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lytic infections, the virion host shutoff (Vhs) protein of herpes simplex virus accelerates the degradation of both host and viral mRNAs. In so doing, it helps redirect the cell from host to viral protein synthesis and facilitates the sequential expression of different viral genes. Vhs interacts with the cellular translation initiation factor eIF4H, and several point mutations that abolish its mRNA degradative activity also abrogate its ability to bind eIF4H. In addition, a complex containing bacterially expressed Vhs and a glutathione S-transferase (GST)-eIF4H fusion protein has RNase activity. eIF4H shares a region of sequence homology with eIF4B, and it appears to be functionally similar in that both stimulate the RNA helicase activity of eIF4A, a component of the mRNA cap-binding complex eIF4F. We show that eIF4H interacts physically with eIF4A in the yeast two-hybrid system and in GST pull-down assays and that the two proteins can be coimmunoprecipitated from mammalian cells. Vhs also interacts with eIF4A in GST pull-down and coimmunoprecipitation assays. Site-directed mutagenesis of Vhs and eIF4H revealed residues of each that are important for their mutual interaction, but not for their interaction with eIF4A. Thus, Vhs, eIF4H, and eIF4A comprise a group of proteins, each of which is able to interact directly with the other two. Whether they interact simultaneously as a tripartite complex or sequentially is unclear. The data suggest a mechanism for linking the degradation of an mRNA to its translation and for targeting Vhs to mRNAs and to regions of translation initiation.
Collapse
Affiliation(s)
- Pinghui Feng
- School of Biological Sciences, University of Missouri-Kansas City, 64110, USA
| | | | | |
Collapse
|
36
|
Franco D, Pathak HB, Cameron CE, Rombaut B, Wimmer E, Paul AV. Stimulation of poliovirus synthesis in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. J Virol 2005; 79:6358-67. [PMID: 15858019 PMCID: PMC1091690 DOI: 10.1128/jvi.79.10.6358-6367.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Accepted: 12/30/2004] [Indexed: 11/20/2022] Open
Abstract
The plus-strand RNA genome of poliovirus serves three distinct functions in the life cycle of the virus. The RNA is translated and then replicated, and finally the progeny RNAs are encapsidated. These processes can be faithfully reproduced in a HeLa cell-free in vitro translation-RNA replication system that produces viable poliovirus. We have previously observed a stimulation of virus synthesis when an mRNA, encoding protein 3CD(pro), is added to the translation-RNA replication reactions of poliovirus RNA. Our aim in these experiments was to further define the factors that affect the stimulatory activity of 3CD(pro) in virus synthesis. We observed that purified 3CD(pro) protein also enhances virus synthesis by about 100-fold but has no effect on the translation of the polyprotein. Optimal stimulation is observed only when 3CD(pro) is present early in the incubation period. The stimulation, however, is abolished by a mutation either in the RNA binding domain of 3CD(pro), 3C(pro)R84S/I86A, or by each of two groups of complementary mutations R455A/R456A and D339A/S341A/D349A at interface I in the 3D(pol) domain of 3CD(pro). Surprisingly, virus synthesis is strongly inhibited by the addition of both 3C(pro) and 3CD(pro) at the beginning of incubation. We also examined the effect of other viral or cellular proteins on virus synthesis in the in vitro system. No enhancement of virus synthesis occurred with viral proteins 3BC, 3ABC, 3BCD, 3D(pol), and 3C(pro) or with cellular protein PCBP2. These results suggest that 3CD(pro) has to be present in the reaction at the time the replication complexes are assembled and that both the 3C(pro) and 3D(pol) domains of the protein are required for its activity that stimulates virus production.
Collapse
Affiliation(s)
- David Franco
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sharma R, Raychaudhuri S, Dasgupta A. Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 2004; 320:195-205. [PMID: 15016543 DOI: 10.1016/j.virol.2003.10.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2003] [Revised: 09/26/2003] [Accepted: 10/09/2003] [Indexed: 10/26/2022]
Abstract
Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off.
Collapse
Affiliation(s)
- Rakhi Sharma
- Department of Microbiology, Immunology and Molecular Genetics, 43-144 CHS, UCLA School of Medicine, The University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
38
|
Weidman MK, Sharma R, Raychaudhuri S, Kundu P, Tsai W, Dasgupta A. The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res 2003; 95:75-85. [PMID: 12921997 DOI: 10.1016/s0168-1702(03)00164-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mammalian cells infected with poliovirus, the prototype member of the picornaviridae family, undergo rapid macromolecular and metabolic changes resulting in efficient replication and release of virus from infected cells. Although this virus is predominantly cytoplasmic, it does shut-off transcription of all three cellular transcription systems. Both biochemical and genetic studies have shown that a virally encoded protease, 3C(pro), is responsible for host cell transcription shut-off. The 3C protease cleaves a number of RNA polymerase II transcription factors including the TATA-binding protein (TBP), the cyclic AMP-responsive element binding protein (CREB), the Octamer binding protein (Oct-1), p53, and RNA polymerase III transcription factor IIICalpha, and Polymerase I factor SL-1. Most of these cleavages occur at glutamine-glycine bonds. Additionally, a second viral protease, 2A(pro), also cleaves TBP at a tyrosine-glycine bond. The latter cleavage could be responsible for shut-off of small nuclear RNA transcription. Recent studies indicate that the viral protease-polymerase precursor 3CD can enter nucleus in poliovirus-infected cells. The nuclear localization signal (NLS) present within the 3D sequence appears to play a role in the nuclear entry of 3CD. Thus, 3C may be delivered to the infected cell nucleus in the form the precursor 3CD or other 3C-containing precursors. Auto-proteolytic cleavage of these precursors could then generate 3C. Thus, for a small RNA virus that strictly replicates in the cytoplasm, a portion of its life cycle does include interaction with the host cell nucleus.
Collapse
Affiliation(s)
- Mary K Weidman
- Department of Microbiology, UCLA School of Medicine, The University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
39
|
Bjerke SL, Cowan JM, Kerr JK, Reynolds AE, Baines JD, Roller RJ. Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol 2003; 77:7601-10. [PMID: 12805460 PMCID: PMC164785 DOI: 10.1128/jvi.77.13.7601-7610.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus that acquires an envelope by budding into the inner nuclear membrane of an infected cell. Recombinant HSV-1 lacking the U(L)34 gene cannot undergo this event. U(L)34 and U(L)31, another viral protein, colocalize in an infected cell and are necessary and sufficient to target both proteins to the inner nuclear envelope. In order to define and characterize sequences of U(L)34 that are necessary for primary envelopment to occur, a library of 19 U(L)34 charged cluster mutants and a truncation mutant lacking the putative transmembrane domain (DeltaTM) were generated. Mutants in this library were analyzed in a complementation assay for their ability to function in the production of infectious virus. Seven of the mutants failed to complement a U(L)34-null virus. The remainder of the mutants complemented at or near wild-type U(L)34 levels. Failure of a mutant protein to function might be the result of incorrect subcellular localization. To address this possibility, confocal microscopy was used to determine the localization of the U(L)34 protein in charged cluster mutants and DeltaTM. In transfection-infection experiments, all of the functional U(L)34 mutants and four of the six noncomplementing mutants localized to the inner nuclear envelope in a manner indistinguishable from that of wild-type U(L)34. All of the noncomplementing U(L)34 mutants mediated proper localization of U(L)31. Charged clusters critical for U(L)34 function are dispersed throughout the protein sequence and do not correlate well with highly conserved regions of the protein. These data suggest that U(L)34 has at least one function in addition to mediating proper localization of U(L)31 in infected cells and provide further support for the role of U(L)34 in mediating proper localization of U(L)31 in infected cells.
Collapse
Affiliation(s)
- Susan L Bjerke
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
40
|
Crotty S, Andino R. Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes Infect 2002; 4:1301-7. [PMID: 12443894 DOI: 10.1016/s1286-4579(02)00008-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antiviral drug ribavirin exhibits strong antiviral activity against a broad range of RNA viruses. This drug is currently used clinically to treat hepatitis C virus infections, respiratory syncytial virus infections, and Lassa fever virus infections. Although ribavirin was discovered in 1972, its mechanism of action has remained unclear until recently. Using poliovirus as an RNA virus model, it was shown that ribavirin is a virus mutagen, and it was proposed that the primary mechanism of action of ribavirin is via lethal mutagenesis of the RNA virus genomes. This represents a novel antiviral mechanism of action and provides a model for the development of new antiviral strategies. In this review we discuss the genetic explanations, evolutionary implications, and drug development opportunities associated with RNA virus mutagenesis.
Collapse
Affiliation(s)
- Shane Crotty
- Department of Microbiology and Immunology, University of California, San Francisco 94143, USA.
| | | |
Collapse
|
41
|
Tang RS, Nguyen N, Zhou H, Jin H. Clustered charge-to-alanine mutagenesis of human respiratory syncytial virus L polymerase generates temperature-sensitive viruses. Virology 2002; 302:207-16. [PMID: 12429529 DOI: 10.1006/viro.2002.1596] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clustered charge-to-alanine mutagenesis was performed on the large (L) polymerase protein of human respiratory syncytial virus to identify charged residues in the L protein that are important for viral RNA synthesis and to generate temperature-sensitive viruses. Clusters of three, four, and five charged residues throughout the entire L protein were substituted with alanines. A minigenome replicon assay was used to determine the functions of the mutant L proteins and to identify mutations that caused temperature sensitivity by comparing the level of reporter gene expression at 39 and 33 degrees C. Charge-to-alanine mutations were introduced into an antigenomic cDNA derived from RSV A2 strain to recover infectious viruses. Of the 27 charge-to-alanine mutations, 17 recombinant viruses (63%) were obtained. Seven mutants (41%) exhibited small plaque morphologies and/or temperature-sensitive growth in tissue culture. To generate mutant viruses with more temperature-sensitive and attenuated phenotypes, several clusters of charge-to-alanine substitutions were combined. Five combination mutants were recovered that exhibited shut-off temperatures ranging from 36 to 39 degrees C in tissue culture and restricted replication in the respiratory tracts of cotton rats.
Collapse
|
42
|
Pathak HB, Ghosh SKB, Roberts AW, Sharma SD, Yoder JD, Arnold JJ, Gohara DW, Barton DJ, Paul AV, Cameron CE. Structure-function relationships of the RNA-dependent RNA polymerase from poliovirus (3Dpol). A surface of the primary oligomerization domain functions in capsid precursor processing and VPg uridylylation. J Biol Chem 2002; 277:31551-62. [PMID: 12077141 DOI: 10.1074/jbc.m204408200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary oligomerization domain of poliovirus polymerase, 3Dpol, is stabilized by the interaction of the back of the thumb subdomain of one molecule with the back of the palm subdomain of a second molecule, thus permitting the head-to-tail assembly of 3Dpol monomers into long fibers. The interaction of Arg-455 and Arg-456 of the thumb with Asp-339, Ser-341, and Asp-349 of the palm is key to the stability of this interface. We show that mutations predicted to completely disrupt this interface do not produce equivalent growth phenotypes. Virus encoding a polymerase with changes of both residues of the thumb to alanine is not viable; however, virus encoding a polymerase with changes of all three residues of the palm to alanine is viable. Biochemical analysis of 3Dpol derivatives containing the thumb or palm substitutions revealed that these derivatives are both incapable of forming long fibers, suggesting that polymerase fibers are not essential for virus viability. The RNA binding activity, polymerase activity, and thermal stability of these derivatives were equivalent to that of the wild-type enzyme. The two significant differences observed for the thumb mutant were a modest reduction in the ability of the altered 3CD proteinase to process the VP0/VP3 capsid precursor and a substantial reduction in the ability of the altered 3Dpol to catalyze oriI-templated uridylylation of VPg. The defect to uridylylation was a result of the inability of 3CD to stimulate this reaction. Because 3C alone can substitute for 3CD in this reaction, we conclude that the lethal replication phenotype associated with the thumb mutant is caused, in part, by the disruption of an interaction between the back of the thumb of 3Dpol and some undefined domain of 3C. We speculate that this interaction may also be critical for assembly of other complexes required for poliovirus genome replication.
Collapse
Affiliation(s)
- Harsh B Pathak
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lyle JM, Bullitt E, Bienz K, Kirkegaard K. Visualization and functional analysis of RNA-dependent RNA polymerase lattices. Science 2002; 296:2218-22. [PMID: 12077417 DOI: 10.1126/science.1070585] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Positive-strand RNA viruses such as poliovirus replicate their genomes on intracellular membranes of their eukaryotic hosts. Electron microscopy has revealed that purified poliovirus RNA-dependent RNA polymerase forms planar and tubular oligomeric arrays. The structural integrity of these arrays correlates with cooperative RNA binding and RNA elongation and is sensitive to mutations that disrupt intermolecular contacts predicted by the polymerase structure. Membranous vesicles isolated from poliovirus-infected cells contain structures consistent with the presence of two-dimensional polymerase arrays on their surfaces during infection. Therefore, host cytoplasmic membranes may function as physical foundations for two-dimensional polymerase arrays, conferring the advantages of surface catalysis to viral RNA replication.
Collapse
Affiliation(s)
- John M Lyle
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
44
|
Lyle JM, Clewell A, Richmond K, Richards OC, Hope DA, Schultz SC, Kirkegaard K. Similar structural basis for membrane localization and protein priming by an RNA-dependent RNA polymerase. J Biol Chem 2002; 277:16324-31. [PMID: 11877407 DOI: 10.1074/jbc.m112429200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein primers are used to initiate genomic synthesis of several RNA and DNA viruses, although the structural details of the primer-polymerase interactions are not yet known. Poliovirus polymerase binds with high affinity to the membrane-bound viral protein 3AB but uridylylates only the smaller peptide 3B in vitro. Mutational analysis of the polymerase identified four surface residues on the three-dimensional structure of poliovirus polymerase whose wild-type identity is required for 3AB binding. These mutants also decreased 3B uridylylation, arguing that the binding sites for the membrane tether and the protein primer overlap. Mutation of flanking residues between the 3AB binding site and the polymerase active site specifically decreased 3B uridylylation, likely affecting steps subsequent to binding. The physical overlap of sites for protein priming and membrane association should facilitate replication initiation in the membrane-associated complex.
Collapse
Affiliation(s)
- John M Lyle
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hanley KA, Lee JJ, Blaney JE, Murphy BR, Whitehead SS. Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 2002; 76:525-31. [PMID: 11752143 PMCID: PMC136841 DOI: 10.1128/jvi.76.2.525-531.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Accepted: 10/11/2001] [Indexed: 11/20/2022] Open
Abstract
Charge-to-alanine mutagenesis of dengue virus type 4 (DEN4) NS5 gene generated a collection of attenuating mutations for potential use in a recombinant live attenuated DEN vaccine. Codons for 80 contiguous pairs of charged amino acids in NS5 were individually mutagenized to create uncharged pairs of alanine residues, and 32 recombinant mutant viruses were recovered from the 80 full-length mutant DEN4 cDNA constructs. These mutant viruses were tested for temperature-sensitive (ts) replication in both Vero cells and HuH-7 human hepatoma cells. Of the 32 mutants, 13 were temperature sensitive (ts) in both cell lines, 11 were not ts in either cell line, and 8 exhibited a host range (tshr) phenotype. One tshr mutant was ts only in Vero cells, and seven were ts only in HuH-7 cells. Nineteen of the 32 mutants were 10-fold or more restricted in replication in the brains of suckling mice compared to that of wild-type DEN4, and three mutants were approximately 10,000-fold restricted in replication. The level of temperature sensitivity of replication in vitro did not correlate with attenuation in vivo. A virus bearing two pairs of charge-to-alanine mutations was constructed and demonstrated increased temperature sensitivity and attenuation relative to either parent virus. This large set of charge-to-alanine mutations specifying a wide range of attenuation for mouse brain should prove useful in fine-tuning recombinant live attenuated DEN vaccines.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
46
|
Pudota BN, Hommema EL, Hallgren KW, McNally BA, Lee S, Berkner KL. Identification of sequences within the gamma-carboxylase that represent a novel contact site with vitamin K-dependent proteins and that are required for activity. J Biol Chem 2001; 276:46878-86. [PMID: 11591726 DOI: 10.1074/jbc.m108696200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vitamin K-dependent (VKD) carboxylase converts clusters of Glu residues to gamma-carboxylated Glu residues (Glas) in VKD proteins, which is required for their activity. VKD precursors are targeted to the carboxylase by their carboxylase recognition site, which in most cases is a propeptide. We have identified a second tethering site for carboxylase and VKD proteins that is required for carboxylase activity, called the vitamin K-dependent protein site of interaction (VKS). Several VKD proteins specifically bound an immobilized peptide comprising amino acids 343-355 of the human carboxylase (CVYKRSRGKSGQK) but not a scrambled peptide containing the same residues in a different order. Association with the 343-355 peptide was independent of propeptide binding, because the VKD proteins lacked the propeptide and because the 343-355 peptide did not disrupt association of a propeptide factor IX-carboxylase complex. Analysis with peptides that overlapped amino acids 343-355 indicated that the 343-345 CVY residues were necessary but not sufficient for prothrombin binding. Ionic interactions were also suggested because peptide-VKD protein binding could be disrupted by changes in ionic strength or pH. Mutagenesis of Cys(343) to Ser and Tyr(345) to Phe resulted in 7-11-fold decreases in vitamin K epoxidation and peptide (EEL) substrate and carboxylase carboxylation, and kinetic analysis showed 5-6-fold increases in K(m) values for the Glu substrate. These results suggest that Cys(343) and Tyr(345) are near the catalytic center and affect the active site conformation required for correct positioning of the Glu substrate. The 343-355 VKS peptide had a higher affinity for carboxylated prothrombin (K(d) = 5 microm) than uncarboxylated prothrombin (K(d) = 60 microm), and the basic VKS region may also facilitate exiting of the Gla product from the catalytic center by ionic attraction. Tethering of VKD proteins to the carboxylase via the propeptide-binding site and the VKS region has important implications for the mechanism of VKD protein carboxylation, and a model is proposed for how the carboxylase VKS region may be required for efficient and processive VKD protein carboxylation.
Collapse
Affiliation(s)
- B N Pudota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
47
|
Dzianott A, Rauffer-Bruyere N, Bujarski JJ. Studies on functional interaction between brome mosaic virus replicase proteins during RNA recombination, using combined mutants in vivo and in vitro. Virology 2001; 289:137-49. [PMID: 11601925 DOI: 10.1006/viro.2001.1118] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two viral proteins, 1a and 2a, direct replication of brome mosaic bromovirus (BMV) RNAs as well as they participate in BMV RNA recombination. To study the relationship between replication and recombination, double BMV variants that carried mutations in 1a and 2a genes were tested. The observed effects revealed that the 1a helicase and 2a N-terminal or core domains were functionally linked during both processes in vivo. The use of a series of mutant BMV replicase (RdRp) preparations demonstrated in vitro the participation of the 1a and 2a domains in BMV RNA copying and in template switching during minus-strand synthesis. The observed effects support previous observations that the characteristics of homologous and nonhomologous recombination can be modified separately by mutations at different sites on BMV replicase proteins.
Collapse
Affiliation(s)
- A Dzianott
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | |
Collapse
|
48
|
Matusan AE, Pryor MJ, Davidson AD, Wright PJ. Mutagenesis of the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects on enzyme activity and virus replication. J Virol 2001; 75:9633-43. [PMID: 11559795 PMCID: PMC114534 DOI: 10.1128/jvi.75.20.9633-9643.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein NS3 of Dengue virus type 2 (DEN-2) is the second largest nonstructural protein specified by the virus and is known to possess multiple enzymatic activities, including a serine proteinase located in the N-terminal region and an NTPase-helicase in the remaining 70% of the protein. The latter region has seven conserved helicase motifs found in all members of the family Flaviviridae. DEN-2 NS3 lacking the proteinase region was synthesized as a fusion protein with glutathione S-transferase in Escherichia coli. The effects of 10 mutations on ATPase and RNA helicase activity were examined. Residues at four sites within enzyme motifs I, II, and VI were substituted, and six sites outside motifs were altered by clustered charged-to-alanine mutagenesis. The mutations were also tested for their effects on virus replication by incorporation into genomic-length cDNA. Two mutations, both in motif I (G198A and K199A) abolished both ATPase and helicase activity. Two further mutations, one in motif VI (R457A,R458A) and the other a clustered charged-to-alanine substitution at R(376)KNGK(380), abolished helicase activity only. No virus was detected for any mutation which prevented helicase activity, demonstrating the requirement of this enzyme for virus replication. The remaining six mutations resulted in various levels of enzyme activities, and four permitted virus replication. For the two nonreplicating viruses encoding clustered changes at R(184)KR(186) and D(436)GEE(439), we propose that the substituted residues are surface located and that the viruses are defective through altered interaction of NS3 with other components of the viral replication complex. Two of the replicating viruses displayed a temperature-sensitive phenotype. One contained a clustered mutation at D(334)EE(336) and grew too poorly for further characterization. However, virus with an M283F substitution in motif II was examined in a temperature shift experiment (33 to 37 degrees C) and showed reduced RNA synthesis at the higher temperature.
Collapse
Affiliation(s)
- A E Matusan
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
49
|
Matusan AE, Kelley PG, Pryor MJ, Whisstock JC, Davidson AD, Wright PJ. Mutagenesis of the dengue virus type 2 NS3 proteinase and the production of growth-restricted virus. J Gen Virol 2001; 82:1647-1656. [PMID: 11413376 DOI: 10.1099/0022-1317-82-7-1647] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-terminal one-third of the NS3 protein of Dengue virus type 2 (DEN-2) complexes with co-factor NS2B to form an active serine proteinase which cleaves the viral polyprotein. To identify sites within NS3 that may interact with NS2B, seven regions within the NS3 proteinase outside the conserved flavivirus enzyme motifs were mutated by alanine replacement. Five sites contained clusters of charged residues and were hydrophilic. Two sites were hydrophobic and highly conserved among flaviviruses. The effects of five mutations on NS2B/3 processing were examined using a COS cell expression system. Four retained significant proteinase activity. Three of these mutations and two more were introduced into genomic-length cDNA and tested for their effects on virus replication. The five mutant viruses showed reduced plaque size and two of the five showed significantly reduced titres. All seven mutations were mapped on the X-ray crystal structure of the DEN-2 NS3 proteinase: three were located at the N terminus and two at the C terminus of the NS2B-binding cleft. Two mutations were at the C terminus of the proteinase domain and one was solvent-exposed. The study demonstrated that charged-to-alanine mutagenesis in the viral proteinase can be used to produce growth-restricted flaviviruses that may be useful in the production of attenuated vaccine strains.
Collapse
Affiliation(s)
- Anita E Matusan
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Peter G Kelley
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Melinda J Pryor
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - James C Whisstock
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Andrew D Davidson
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| | - Peter J Wright
- Department of Microbiology1 and Department of Biochemistry and Molecular Biology2, Monash University, PO Box 53, Victoria 3800, Australia
| |
Collapse
|
50
|
Hobson SD, Rosenblum ES, Richards OC, Richmond K, Kirkegaard K, Schultz SC. Oligomeric structures of poliovirus polymerase are important for function. EMBO J 2001; 20:1153-63. [PMID: 11230138 PMCID: PMC145502 DOI: 10.1093/emboj/20.5.1153] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Central to the replication of poliovirus and other positive-strand RNA viruses is the virally encoded RNA-dependent RNA polymerase. Previous biochemical studies have suggested that direct polymerase- polymerase interactions might be important for polymerase function, and the structure of poliovirus polymerase has revealed two regions of extensive polymerase-polymerase interaction. To explore potential functional roles for the structurally observed polymerase-polymerase interactions, we have performed RNA binding and extension studies of mutant polymerase proteins in solution, disulfide cross-linking studies, mutational analyses in cells, in vitro activity analyses and RNA substrate modeling studies. The results of these studies indicate that both regions of polymerase-polymerase interaction observed in the crystals are indeed functionally important and, furthermore, reveal specific functional roles for each. One of the two regions of interaction provides for efficient substrate RNA binding and the second is crucial for forming catalytic sites. These studies strongly support the hypothesis that the polymerase- polymerase interactions discovered in the crystal structure provide an exquisitely detailed structural context for poliovirus polymerase function and for poliovirus RNA replication in cells.
Collapse
Affiliation(s)
- Scott D. Hobson
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| | - Eric S. Rosenblum
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| | - Oliver C. Richards
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| | - Kathryn Richmond
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| | - Karla Kirkegaard
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| | - Steve C. Schultz
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215 and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5402, USA Present address: CellZome GmbH, Meyerhofstrasse 1, 69117 Heidelberg, Germany Present address: Department of Pharmacology and Toxicology, University of California, Davis, CA 95616, USA Present address: Math/Science Division, Diné College, Tsaile, AZ 86558, USA Corresponding author e-mail:
| |
Collapse
|