1
|
Aimola G, Wight DJ, Flamand L, Kaufer BB. Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology. Microbiol Spectr 2023; 11:e0076423. [PMID: 36926973 PMCID: PMC10100985 DOI: 10.1128/spectrum.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres. IMPORTANCE Human herpesvirus 6 (HHV-6) infects almost all humans and integrates into the telomeres of latently infected cells to persist in the host for life. In addition, HHV-6 can also integrate into the telomeres of germ cells, which results in about 80 million individuals worldwide who carry the virus in every cell of their body and can pass it on to their offspring. In this study, we develop the first system that allows excision of the integrated HHV-6 genome from host telomeres using CRISPR/Cas9 technology. Our data revealed that the integrated HHV-6 genome can be efficiently removed from the telomeres of latently infected cells and cells of patients harboring the virus in their germ line. Virus removal could be achieved with both stable and transient Cas9 expression, without inducing viral reactivation.
Collapse
Affiliation(s)
- Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Impact of Host Telomere Length on HHV-6 Integration. Viruses 2022; 14:v14091864. [PMID: 36146670 PMCID: PMC9505050 DOI: 10.3390/v14091864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 12/04/2022] Open
Abstract
Human herpesvirus 6A and 6B are two closely related viruses that infect almost all humans. In contrast to most herpesviruses, HHV-6A/B can integrate their genomes into the telomeres during the infection process. Both viruses can also integrate in germ cells and subsequently be inherited in children. How HHV-6A/B integrate into host telomeres and the consequences of this remain a subject of active research. Here, we developed a method to measure telomere length by quantitative fluorescence in situ hybridization, confocal microscopy, and computational processing. This method was validated using a panel of HeLa cells having short or long telomeres. These cell lines were infected with HHV-6A, revealing that the virus could efficiently integrate into telomeres independent of their length. Furthermore, we assessed the telomere lengths after HHV-6A integration and found that the virus-containing telomeres display a variety of lengths, suggesting that either telomere length is restored after integration or telomeres are not shortened by integration. Our results highlight new aspects of HHV-6A/B biology and the role of telomere length on virus integration.
Collapse
|
3
|
Sánchez‐Ponce Y, Fuentes‐Pananá EM. Molecular and immune interactions between β‐ and γ‐herpesviruses in the immunocompromised host. J Leukoc Biol 2022; 112:79-95. [DOI: 10.1002/jlb.4mr1221-452r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yessica Sánchez‐Ponce
- Research Unit in Virology and Cancer Children's Hospital of Mexico Federico Gómez Mexico City Mexico
- Postgraduate Program in Biological Science National Autonomous University of Mexico Mexico City Mexico
| | | |
Collapse
|
4
|
The U94 Gene of Human Herpesvirus 6: A Narrative Review of Its Role and Potential Functions. Cells 2020; 9:cells9122608. [PMID: 33291793 PMCID: PMC7762089 DOI: 10.3390/cells9122608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is a β-herpesvirus that is highly prevalent in the human population. HHV-6 comprises two recognized species (HHV-6A and HHV-6B). Despite different cell tropism and disease association, HHV-6A/B show high genome homology and harbor the conserved U94 gene, which is limited to HHV-6 and absent in all the other human herpesviruses. U94 has key functions in the virus life cycle and associated diseases, having demonstrated or putative roles in virus replication, integration, and reactivation. During natural infection, U94 elicits an immune response, and the prevalence and extent of the anti-U94 response are associated with specific diseases. Notably, U94 can entirely reproduce some virus effects at the cell level, including inhibition of cell migration, induction of cytokines and HLA-G expression, and angiogenesis inhibition, supporting a direct U94 role in the development of HHV-6-associated diseases. Moreover, specific U94 properties, such as the ability to modulate angiogenesis pathways, have been exploited to counteract cancer development. Here, we review the information available on this key HHV-6 gene, highlighting its potential uses.
Collapse
|
5
|
Gilbert-Girard S, Gravel A, Collin V, Wight DJ, Kaufer BB, Lazzerini-Denchi E, Flamand L. Role for the shelterin protein TRF2 in human herpesvirus 6A/B chromosomal integration. PLoS Pathog 2020; 16:e1008496. [PMID: 32320442 PMCID: PMC7197865 DOI: 10.1371/journal.ppat.1008496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/04/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) are unique among human herpesviruses in their ability to integrate their genome into host chromosomes. Viral integration occurs at the ends of chromosomes within the host telomeres. The ends of the HHV-6A/B genomes contain telomeric repeats that facilitate the integration process. Here, we report that productive infections are associated with a massive increase in telomeric sequences of viral origin. The majority of the viral telomeric signals can be detected within viral replication compartments (VRC) that contain the viral DNA processivity factor p41 and the viral immediate-early 2 (IE2) protein. Components of the shelterin protein complex present at telomeres, including TRF1 and TRF2 are also recruited to VRC during infection. Biochemical, immunofluorescence coupled with in situ hybridization and chromatin immunoprecipitation demonstrated the binding of TRF2 to the HHV-6A/B telomeric repeats. In addition, approximately 60% of the viral IE2 protein localize at cellular telomeres during infection. Transient knockdown of TRF2 resulted in greatly reduced (13%) localization of IE2 at cellular telomeres (p<0.0001). Lastly, TRF2 knockdown reduced HHV-6A/B integration frequency (p<0.05), while no effect was observed on the infection efficiency. Overall, our study identified that HHV-6A/B IE2 localizes to telomeres during infection and highlight the role of TRF2 in HHV-6A/B infection and chromosomal integration.
Collapse
Affiliation(s)
- Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Darren J. Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - Eros Lazzerini-Denchi
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of microbiology, infectious diseases and immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Res 2020; 176:104720. [PMID: 32044155 DOI: 10.1016/j.antiviral.2020.104720] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are members of the genus Roseolovirus in the Betaherpesvirinae subfamily. HHV-6B infects humans in the first years of life, has a seroprevalence of more than 90% and causes Roseola Infantum, but less is known about HHV-6A. While most other herpesviruses maintain their latent genome as a circular episome, HHV-6A and HHV-6B (HHV-6A/B) have been shown to integrate their genome into the telomeres of infected cells. HHV-6A/B can also integrate into the chromosomes of germ cells, resulting in individuals carrying a copy of the virus genome in every nucleated cell of their bodies. This review highlights our current understanding of HHV-6A/B integration and reactivation as well as aspects that should be addressed in the future of this relatively young research area. It forms part of an online symposium on the prevention and therapy of DNA virus infections, dedicated to the memory of Mark Prichard.
Collapse
|
7
|
Flamand L. Chromosomal Integration by Human Herpesviruses 6A and 6B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:209-226. [PMID: 29896669 DOI: 10.1007/978-981-10-7230-7_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Upon infection and depending on the infected cell type, human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) can replicate or enter a state of latency. HHV-6A and HHV-6B can integrate their genomes into host chromosomes as one way to establish latency. Viral integration takes place near the subtelomeric/telomeric junction of chromosomes. When HHV-6 infection and integration occur in gametes, the virus can be genetically transmitted. Inherited chromosomally integrated HHV-6 (iciHHV-6)-positive individuals carry one integrated HHV-6 copy per somatic cell. The prevalence of iciHHV-6+ individuals varies between 0.6% and 2%, depending on the geographical region sampled. In this chapter, the mechanisms leading to viral integration and reactivation from latency, as well as some of the biological and medical consequences associated with iciHHV-6, were discussed.
Collapse
Affiliation(s)
- Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Québec Research Center, QC, Quebec, Canada. .,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, QC, Quebec, Canada.
| |
Collapse
|
8
|
Biswas B, Kumari P, Vivekanandan P. Pac1 Signals of Human Herpesviruses Contain a Highly Conserved G-Quadruplex Motif. ACS Infect Dis 2018; 4:744-751. [PMID: 29493219 DOI: 10.1021/acsinfecdis.7b00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Packaging signals ( pac1 and pac2) of human herpesviruses (HHVs) that contain GC-rich elements are essential for cleavage and packaging of the virus. Here, we report the presence of putative G-quadruplex sequences (PQSs) in the packaging signal ( pac1) of all HHVs. Importantly, the residues critical for the formation of G-quadruplex structures were highly conserved as compared to those not critical for the formation of this DNA secondary structure, indicating that G-quadruplexes are positively selected within pac1 in the evolution of herpesviruses. CD spectroscopy, NMR spectroscopy, native/denaturing gel, and DMS footprinting confirmed the formation of G-quadruplex structures in all pac1 PQS oligonucleotides analyzed; the majority of the PQS had the propensity to form intermolecular structures. The presence of highly conserved G-quadruplex motifs at genomic locations critical for virus packaging has not been previously recognized. Our findings provide a new perspective on the putative functions of G-quadruplexes in virus genomes.
Collapse
Affiliation(s)
- Banhi Biswas
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| | - Pooja Kumari
- International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, Delhi 110016, India
| |
Collapse
|
9
|
Pantry SN, Medveczky PG. Latency, Integration, and Reactivation of Human Herpesvirus-6. Viruses 2017; 9:v9070194. [PMID: 28737715 PMCID: PMC5537686 DOI: 10.3390/v9070194] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus-6A (HHV-6A) and human herpesvirus-6B (HHV-6B) are two closely related viruses that infect T-cells. Both HHV-6A and HHV-6B possess telomere-like repeats at the terminal regions of their genomes that facilitate latency by integration into the host telomeres, rather than by episome formation. In about 1% of the human population, human herpes virus-6 (HHV-6) integration into germline cells allows the viral genome to be passed down from one generation to the other; this condition is called inherited chromosomally integrated HHV-6 (iciHHV-6). This review will cover the history of HHV-6 and recent works that define the biological differences between HHV-6A and HHV-6B. Additionally, HHV-6 integration and inheritance, the capacity for reactivation and superinfection of iciHHV-6 individuals with a second strain of HHV-6, and the role of hypomethylation of human chromosomes during integration are discussed. Overall, the data suggest that integration of HHV-6 in telomeres represent a unique mechanism of viral latency and offers a novel tool to study not only HHV-6 pathogenesis, but also telomere biology. Paradoxically, the integrated viral genome is often defective especially as seen in iciHHV-6 harboring individuals. Finally, gaps in the field of HHV-6 research are presented and future studies are proposed.
Collapse
Affiliation(s)
- Shara N Pantry
- College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC Box 7, Tampa, FL 33612, USA.
- Miller School of Medicine, University of Miami, Life Sciences and Technology Park, 1951 NW 7th Avenue Ste. 270, Miami, FL 33136, USA.
| | - Peter G Medveczky
- College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC Box 7, Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Stabilization of Telomere G-Quadruplexes Interferes with Human Herpesvirus 6A Chromosomal Integration. J Virol 2017; 91:JVI.00402-17. [PMID: 28468887 DOI: 10.1128/jvi.00402-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/29/2017] [Indexed: 11/20/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into the telomeres of human chromosomes using a mechanism that remains poorly understood. To achieve a better understanding of the HHV-6A/B integration mechanism, we made use of BRACO-19, a compound that stabilizes G-quadruplex secondary structures and prevents telomere elongation by the telomerase complex. First, we analyzed the folding of telomeric sequences into G-quadruplex structures and their binding to BRACO-19 using G-quadruplex-specific antibodies and surface plasmon resonance. Circular dichroism studies indicate that BRACO-19 modifies the conformation and greatly stabilizes the G-quadruplexes formed in G-rich telomeric DNA. Subsequently we assessed the effects of BRACO-19 on the HHV-6A initial phase of infection. Our results indicate that BRACO-19 does not affect entry of HHV-6A DNA into cells. We next investigated if stabilization of G-quadruplexes by BRACO-19 affected HHV-6A's ability to integrate its genome into host chromosomes. Incubation of telomerase-expressing cells with BRACO-19, such as HeLa and MCF-7, caused a significant reduction in the HHV-6A integration frequency (P < 0.002); in contrast, BRACO-19 had no effect on HHV-6 integration frequency in U2OS cells that lack telomerase activity and elongate their telomeres through alternative lengthening mechanisms. Our data suggest that the fluidity of telomeres is important for efficient chromosomal integration of HHV-6A and that interference with telomerase activity negatively affects the generation of cellular clones containing integrated HHV-6A.IMPORTANCE HHV-6A/B can integrate their genomes into the telomeres of infected cells. Telomeres consist of repeated hexanucleotides (TTAGGG) of various lengths (up to several kilobases) and end with a single-stranded 3' extension. To avoid recognition and induce a DNA damage response, the single-stranded overhang folds back on itself and forms a telomeric loop (T-loop) or adopts a tertiary structure, referred to as a G-quadruplex. In the current study, we have examined the effects of a G-quadruplex binding and stabilizing agent, BRACO-19, on HHV-6A chromosomal integration. By stabilizing G-quadruplex structures, BRACO-19 affects the ability of the telomerase complex to elongate telomeres. Our results indicate that BRACO-19 reduces the number of clones harboring integrated HHV-6A. This study is the first of its kind and suggests that telomerase activity is essential to restore a functional telomere of adequate length following HHV-6A integration.
Collapse
|
11
|
Collin V, Flamand L. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B. Viruses 2017; 9:E160. [PMID: 28672870 PMCID: PMC5537652 DOI: 10.3390/v9070160] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 01/03/2023] Open
Abstract
Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.
Collapse
Affiliation(s)
- Vanessa Collin
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Québec, QC G1V 4G2, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
12
|
Chromosomal integration of HHV-6A during non-productive viral infection. Sci Rep 2017; 7:512. [PMID: 28360414 PMCID: PMC5428774 DOI: 10.1038/s41598-017-00658-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are two different species of betaherpesviruses that integrate into sub-telomeric ends of human chromosomes, for which different prevalence rates of integration have been reported. It has been demonstrated that integrated viral genome is stable and is fully retained. However, study of chromosomally integrated viral genome in individuals carrying inherited HHV-6 (iciHHV-6) showed unexpected number of viral DR copies. Hence, we created an in vitro infection model and studied retention of full or partial viral genome over a period of time. We observed an exceptional event where cells retained viral direct repeats (DRs) alone in the absence of the full viral genome. Finally, we found evidence for non-telomeric integration of HHV-6A DR in both cultured cells and in an iciHHV-6 individual. Our results shed light on several novel features of HHV-6A chromosomal integration and provide valuable information for future screening techniques.
Collapse
|
13
|
Wallaschek N, Sanyal A, Pirzer F, Gravel A, Mori Y, Flamand L, Kaufer BB. The Telomeric Repeats of Human Herpesvirus 6A (HHV-6A) Are Required for Efficient Virus Integration. PLoS Pathog 2016; 12:e1005666. [PMID: 27244446 PMCID: PMC4887096 DOI: 10.1371/journal.ppat.1005666] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are ubiquitous betaherpesviruses that infects humans within the first years of life and establishes latency in various cell types. Both viruses can integrate their genomes into telomeres of host chromosomes in latently infected cells. The molecular mechanism of viral integration remains elusive. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor arrays of telomeric repeats (TMR) identical to human telomere sequences at the ends of their genomes. The HHV-6A and HHV-6B genomes harbor two TMR arrays, the perfect TMR (pTMR) and the imperfect TMR (impTMR). To determine if the TMR are involved in virus integration, we deleted both pTMR and impTMR in the HHV-6A genome. Upon reconstitution, the TMR mutant virus replicated comparable to wild type (wt) virus, indicating that the TMR are not essential for HHV-6A replication. To assess the integration properties of the recombinant viruses, we established an in vitro integration system that allows assessment of integration efficiency and genome maintenance in latently infected cells. Integration of HHV-6A was severely impaired in the absence of the TMR and the virus genome was lost rapidly, suggesting that integration is crucial for the maintenance of the virus genome. Individual deletion of the pTMR and impTMR revealed that the pTMR play the major role in HHV-6A integration, whereas the impTMR only make a minor contribution, allowing us to establish a model for HHV-6A integration. Taken together, our data shows that the HHV-6A TMR are dispensable for virus replication, but are crucial for integration and maintenance of the virus genome in latently infected cells. Herpesviruses are ubiquitous pathogens that persist in the host for life. Two human herpesviruses (HHV-6A and HHV-6B) can integrate their genetic material into the telomeres of host chromosomes. Integration also occurs in germ cells, resulting in individuals that harbor the virus in every single cells of their body and transmit it to their offspring, a condition that affects about 1% of the human population. We set to elucidate the integration mechanism that allows these viruses to maintain their genome in infected cells. Intriguingly, HHV-6A, HHV-6B and several other herpesviruses harbor telomere sequences at the end of their genome. Removal of these sequences in the genome of HHV-6A revealed that the viral telomeres are crucial for the integration of this human herpesvirus. In addition, we demonstrate that the telomere sequences at the right and left end of the virus genome play different roles in the integration process. Taken together, our data sheds light on the integration mechanism that allows HHV-6A to integrate into somatic cells and to enter into the germ line.
Collapse
Affiliation(s)
- Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Anirban Sanyal
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Fabian Pirzer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
| | - Yasuko Mori
- Division of Clinical Virology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
14
|
Ohye T, Kawamura Y, Inagaki H, Yoshikawa A, Ihira M, Yoshikawa T, Kurahashi H. A simple cytogenetic method to detect chromosomally integrated human herpesvirus-6. J Virol Methods 2015; 228:74-8. [PMID: 26549829 DOI: 10.1016/j.jviromet.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/27/2023]
Abstract
Some healthy individuals carry human herpesvirus-6 (HHV-6) within a host chromosome, which is called inherited chromosomally integrated human herpesvirus-6 (iciHHV-6). Because iciHHV-6 is generally considered a non-pathogenic condition, it is important to distinguish iciHHV-6 from HHV-6 reactivation in immunocompromised hosts because both conditions manifest high copy numbers of the HHV-6 in peripheral blood mononuclear cells. Although fluorescent in situ hybridization (FISH) is a reliable method for the diagnosis of iciHHV-6, HHV-6-specific FISH probes are not commercially available. In our present study, we established a simple PCR-based method for producing FISH probes that can detect the chromosomal integration site of iciHHV-6 at high sensitivity. Using these probes, we confirmed that HHV-6 signals were consistently located at the telomeric region in all of the 13 iciHHV-6 individuals examined. Interestingly, in all seven Japanese iciHHV-6A patients, signals were detected exclusively on chromosome 22q. This method provides a simple and fast approach for iciHHV-6 diagnosis in the clinical laboratory.
Collapse
Affiliation(s)
- Tamae Ohye
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan; Department of Clinical Hematology, Faculty of Medical Technology, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Akiko Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Masaru Ihira
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
15
|
Trempe F, Gravel A, Dubuc I, Wallaschek N, Collin V, Gilbert-Girard S, Morissette G, Kaufer BB, Flamand L. Characterization of human herpesvirus 6A/B U94 as ATPase, helicase, exonuclease and DNA-binding proteins. Nucleic Acids Res 2015; 43:6084-98. [PMID: 25999342 PMCID: PMC4499131 DOI: 10.1093/nar/gkv503] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 02/02/2023] Open
Abstract
Human herpesvirus-6A (HHV-6A) and HHV-6B integrate their genomes into the telomeres of human chromosomes, however, the mechanisms leading to integration remain unknown. HHV-6A/B encode a protein that has been proposed to be involved in integration termed U94, an ortholog of adeno-associated virus type 2 (AAV-2) Rep68 integrase. In this report, we addressed whether purified recombinant maltose-binding protein (MBP)-U94 fusion proteins of HHV-6A/B possess biological functions compatible with viral integration. We could demonstrate that MBP-U94 efficiently binds both dsDNA and ssDNA containing telomeric repeats using gel shift assay and surface plasmon resonance. MBP-U94 is also able to hydrolyze adenosine triphosphate (ATP) to ADP, providing the energy for further catalytic activities. In addition, U94 displays a 3′ to 5′ exonuclease activity on dsDNA with a preference for 3′-recessed ends. Once the DNA strand reaches 8–10 nt in length, the enzyme dissociates it from the complementary strand. Lastly, MBP-U94 compromises the integrity of a synthetic telomeric D-loop through exonuclease attack at the 3′ end of the invading strand. The preferential DNA binding of MBP-U94 to telomeric sequences, its ability to hydrolyze ATP and its exonuclease/helicase activities suggest that U94 possesses all functions required for HHV-6A/B chromosomal integration.
Collapse
Affiliation(s)
- Frédéric Trempe
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Isabelle Dubuc
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, Berlin 14163, Germany
| | - Vanessa Collin
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Shella Gilbert-Girard
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Guillaume Morissette
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin 14163, Germany
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada Department of microbiology, infectious disease and immunology, Faculty of Medicine, Université Laval, Quebec city, Québec,G1V 0A6 Canada
| |
Collapse
|
16
|
Kawato Y, Yuasa K, Shimahara Y, Oseko N. Detection and application of circular (concatemeric) DNA as an indicator of koi herpesvirus infection. DISEASES OF AQUATIC ORGANISMS 2014; 112:37-44. [PMID: 25392041 DOI: 10.3354/dao02785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herpesviruses form a long continuous DNA molecule, or head-to-tail concatemer, as a replicating intermediate in the host. In this study, we developed a DNA-specific PCR assay for detecting the infection stage of koi herpesvirus (KHV) based on the presence of this 'endless' DNA. The 295 kbp double-stranded DNA KHV genome consists of a 251 kbp unique long region and two 22 kbp direct repeats (DRL and DRR) at each genome terminus. We designed a new primer set (DR primer set) based on the DR region spanning the presumed circular or concatemeric junction. Using the DR primer set, a PCR product was obtained from KHV-infected common carp brain (CCB) cells, but not from the virus-infected cell culture supernatant, implying that the PCR assay could detect intracellular virus in the host. The synthesis of a presumptive circular or concatemeric genome in virus-infected CCB cells was examined in a time-course experiment together with viral mRNA of the terminase gene, copy numbers of the viral genome, and infectious viral titer. The mRNA was first detected in the cells at 6 h post-inoculation (hpi), and the copy number of viral genome in the cells started to increase at 12 hpi. Subsequently, circular or concatemeric DNA was detected in the cells at 18 hpi, and progeny virus was detected in the cell culture supernatant at 24 hpi. These findings suggest that detection of the circular or concatemeric KHV genome with the developed PCR method can be used to determine the stage of KHV infection.
Collapse
Affiliation(s)
- Yasuhiko Kawato
- National Research Institute of Aquaculture, Fisheries Research Agency, Minamiise, Mie 516-0193, Japan
| | | | | | | |
Collapse
|
17
|
Kaufer BB, Flamand L. Chromosomally integrated HHV-6: impact on virus, cell and organismal biology. Curr Opin Virol 2014; 9:111-8. [PMID: 25462442 DOI: 10.1016/j.coviro.2014.09.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/16/2022]
Abstract
HHV-6 integrates its genome into telomeres of human chromosomes. Integration can occur in somatic cells or gametes, the latter leading to individuals harboring the HHV-6 genome in every cell. This condition is transmitted to descendants and referred to as inherited chromosomally integrated human herpesvirus 6 (iciHHV-6). Although integration can occur in different chromosomes, it invariably takes place in the telomere region. This integration mechanism represents a way to maintain the virus genome during latency, which is so far unique amongst human herpesviruses. Recent work provides evidence that the integrated HHV-6 genome can be mobilized from the host chromosome, resulting in the onset of disease. Details on required structural determinants, putative integration mechanisms and biological and medical consequences of iciHHV-6 are discussed.
Collapse
Affiliation(s)
| | - Louis Flamand
- Division of Infectious and Immune Diseases, CHU de Quebec, Research Center and Department of Microbiology-Infectious Diseases and Immunology, Université Laval, Quebec, Canada.
| |
Collapse
|
18
|
Osterrieder N, Wallaschek N, Kaufer BB. Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes. Annu Rev Virol 2014; 1:215-35. [PMID: 26958721 DOI: 10.1146/annurev-virology-031413-085422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that numerous viruses integrate their genetic material into host cell chromosomes. Human herpesvirus 6 (HHV-6) and oncogenic Marek's disease virus (MDV) have been shown to integrate their genomes into host telomeres of latently infected cells. This is unusual for herpesviruses as most maintain their genomes as circular episomes during the quiescent stage of infection. The genomic DNA of HHV-6, MDV, and several other herpesviruses harbors telomeric repeats (TMRs) that are identical to host telomere sequences (TTAGGG). At least in the case of MDV, viral TMRs facilitate integration into host telomeres. Integration of HHV-6 occurs not only in lymphocytes but also in the germline of some individuals, allowing vertical virus transmission. Although the molecular mechanism of telomere integration is poorly understood, the presence of TMRs in a number of herpesviruses suggests it is their default program for genome maintenance during latency and also allows efficient reactivation.
Collapse
Affiliation(s)
| | - Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; ,
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany; ,
| |
Collapse
|
19
|
Ohye T, Inagaki H, Ihira M, Higashimoto Y, Kato K, Oikawa J, Yagasaki H, Niizuma T, Takahashi Y, Kojima S, Yoshikawa T, Kurahashi H. Dual roles for the telomeric repeats in chromosomally integrated human herpesvirus-6. Sci Rep 2014; 4:4559. [PMID: 24691081 PMCID: PMC3972506 DOI: 10.1038/srep04559] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/17/2014] [Indexed: 12/11/2022] Open
Abstract
Approximately 1 percent of healthy individuals carry human herpesvirus-6 within a host chromosome. This is referred to as chromosomally integrated herpesvirus-6 (CIHHV-6). In this study, we investigated the chromosomal integration site in six individuals harboring CIHHV-6B. Using FISH, we found that HHV-6B signals are consistently located at the telomeric region. The proximal endpoints of the integrated virus were mapped at one of two telomere-repeat-like sequences (TRSs) within the DR-R in all cases. In two cases, we isolated junction fragments between the viral TRS and human telomere repeats. The distal endpoints were mapped at the distal TRS in all cases. The size of the distal TRS was found to be ~5 kb which is sufficient to fulfill cellular telomeric functions. We conclude that the viral TRS in the DR regions fulfill dual functions for CIHHV-6: homology-mediated integration into the telomeric region of the chromosome and neo-telomere formation that is then stably transmitted.
Collapse
Affiliation(s)
- Tamae Ohye
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Masaru Ihira
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Faculty of Clinical Engineering, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Yuki Higashimoto
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
- Department of Laboratory Medicine, Fujita Health University Hospital, Toyoake, Aichi 470-1192, Japan
| | - Koji Kato
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi 453-8511, Japan
| | - Junko Oikawa
- Department of Pediatrics, Chiba University School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics, School of Medicine, Nihon University, Itabashi-ku, Tokyo 173-8610, Japan
| | - Takahiro Niizuma
- Department of Pediatrics, Koshigaya Municipal Hospital, Koshigaya, Saitama 343-8577, Japan
- Department of Pediatrics, Tokyo Rinkai Hospital, Edogawa-ku, Tokyo 134-0086, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
20
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
21
|
Reactivation of chromosomally integrated human herpesvirus-6 by telomeric circle formation. PLoS Genet 2013; 9:e1004033. [PMID: 24367281 PMCID: PMC3868596 DOI: 10.1371/journal.pgen.1004033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/01/2013] [Indexed: 11/23/2022] Open
Abstract
More than 95% of the human population is infected with human herpesvirus-6 (HHV-6) during early childhood and maintains latent HHV-6 genomes either in an extra-chromosomal form or as a chromosomally integrated HHV-6 (ciHHV-6). In addition, approximately 1% of humans are born with an inheritable form of ciHHV-6 integrated into the telomeres of chromosomes. Immunosuppression and stress conditions can reactivate latent HHV-6 replication, which is associated with clinical complications and even death. We have previously shown that Chlamydia trachomatis infection reactivates ciHHV-6 and induces the formation of extra-chromosomal viral DNA in ciHHV-6 cells. Here, we propose a model and provide experimental evidence for the mechanism of ciHHV-6 reactivation. Infection with Chlamydia induced a transient shortening of telomeric ends, which subsequently led to increased telomeric circle (t-circle) formation and incomplete reconstitution of circular viral genomes containing single viral direct repeat (DR). Correspondingly, short t-circles containing parts of the HHV-6 DR were detected in cells from individuals with genetically inherited ciHHV-6. Furthermore, telomere shortening induced in the absence of Chlamydia infection also caused circularization of ciHHV-6, supporting a t-circle based mechanism for ciHHV-6 reactivation. Human herpesviruses (HHVs) can reside in a lifelong non-infectious state displaying limited activity in their host and protected from immune responses. One possible way by which HHV-6 achieves this state is by integrating into the telomeric ends of human chromosomes, which are highly repetitive sequences that protect the ends of chromosomes from damage. Various stress conditions can reactivate latent HHV-6 thus increasing the severity of multiple human disorders. Recently, we have identified Chlamydia infection as a natural cause of latent HHV-6 reactivation. Here, we have sought to elucidate the molecular mechanism of HHV-6 reactivation. HHV-6 efficiently utilizes the well-organized telomere maintenance machinery of the host cell to exit from its inactive state and initiate replication to form new viral DNA. We provide experimental evidence that the shortening of telomeres, as a consequence of interference with telomere maintenance, triggers the release of the integrated virus from the chromosome. Our data provide a mechanistic basis to understand HHV-6 reactivation scenarios, which in light of the high prevalence of HHV-6 infection and the possibility of chromosomal integration of other common viruses like HHV-7 have important medical consequences for several million people worldwide.
Collapse
|
22
|
Complete genome sequences of elephant endotheliotropic herpesviruses 1A and 1B determined directly from fatal cases. J Virol 2013; 87:6700-12. [PMID: 23552421 DOI: 10.1128/jvi.00655-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A highly lethal hemorrhagic disease associated with infection by elephant endotheliotropic herpesvirus (EEHV) poses a severe threat to Asian elephant husbandry. We have used high-throughput methods to sequence the genomes of the two genotypes that are involved in most fatalities, namely, EEHV1A and EEHV1B (species Elephantid herpesvirus 1, genus Proboscivirus, subfamily Betaherpesvirinae, family Herpesviridae). The sequences were determined from postmortem tissue samples, despite the data containing tiny proportions of viral reads among reads from a host for which the genome sequence was not available. The EEHV1A genome is 180,421 bp in size and consists of a unique sequence (174,601 bp) flanked by a terminal direct repeat (2,910 bp). The genome contains 116 predicted protein-coding genes, of which six are fragmented, and seven paralogous gene families are present. The EEHV1B genome is very similar to that of EEHV1A in structure, size, and gene layout. Half of the EEHV1A genes lack orthologs in other members of subfamily Betaherpesvirinae, such as human cytomegalovirus (genus Cytomegalovirus) and human herpesvirus 6A (genus Roseolovirus). Notable among these are 23 genes encoding type 3 membrane proteins containing seven transmembrane domains (the 7TM family) and seven genes encoding related type 2 membrane proteins (the EE50 family). The EE50 family appears to be under intense evolutionary selection, as it is highly diverged between the two genotypes, exhibits evidence of sequence duplications or deletions, and contains several fragmented genes. The availability of the genome sequences will facilitate future research on the epidemiology, pathogenesis, diagnosis, and treatment of EEHV-associated disease.
Collapse
|
23
|
Tyler S, Severini A, Black D, Walker M, Eberle R. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 2011; 410:181-91. [PMID: 21130483 PMCID: PMC3017652 DOI: 10.1016/j.virol.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 01/24/2023]
Abstract
We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.
Collapse
Affiliation(s)
- Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Dept. of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Darla Black
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - R. Eberle
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
24
|
Lacroix A, Collot-Teixeira S, Mardivirin L, Jaccard A, Petit B, Piguet C, Sturtz F, Preux PM, Bordessoule D, Ranger-Rogez S. Involvement of human herpesvirus-6 variant B in classic Hodgkin's lymphoma via DR7 oncoprotein. Clin Cancer Res 2010; 16:4711-21. [PMID: 20858841 DOI: 10.1158/1078-0432.ccr-10-0470] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hodgkin's lymphoma (HL) is associated with the presence of EBV in Reed-Sternberg (RS) cells in ∼40% of cases. Here, we studied the presence of human herpesvirus type 6 (HHV-6) variant B in RS cells of HL patients and correlated results with clinical parameters. We then examined the implication of HHV-6 DR7B protein in cell deregulation. EXPERIMENTAL DESIGN HHV-6 DR7B protein was produced in a Semliki Forest virus system. Polyclonal antibodies were then generated and used for immunochemical HHV-6 localization in HL biopsies. Binding between DR7B and p53 was studied using a double-hybrid system. Transactivation of NFκB was observed after transient transfection using reporter gene assays. We looked for Id2 factor expression after stable transfection of the BJAB cell line by reverse transcription-PCR and Western blot analysis. RESULTS HHV-6 was more common in nodular sclerosis subtype HL, and DR7B oncoprotein was detected in RS cells for 73.7% of EBV-negative patients. Colocalization of EBV and HHV-6 was observed in RS cells of doubly infected patients. DR7B protein bound to human p53 protein. p105-p50/p65 mRNA expression and activation of the NFκB complex were increased when DR7B was expressed. Stable expression of DR7B exhibited a strong and uniform expression of Id2. A slightly higher percentage of remission was observed in patients with RS cells testing positive for DR7B than in those testing negative. CONCLUSIONS Collectively, these data provide evidence for the implication of a novel agent, HHV-6, in cases of nodular sclerosis HL.
Collapse
|
25
|
Abstract
Herpesviruses are members of a diverse family of viruses that colonize all vertebrates from fish to mammals. Although more than one hundred herpesviruses exist, all are nearly identical architecturally, with a genome consisting of a linear double-stranded DNA molecule (100 to 225 kbp) protected by an icosahedral capsid made up of 162 hollow-centered capsomeres, a tegument surrounding the nucleocapsid, and a viral envelope derived from host membranes. Upon infection, the linear viral DNA is delivered to the nucleus, where it circularizes to form the viral episome. Depending on several factors, the viral cycle can proceed either to a productive infection or to a state of latency. In either case, the viral genetic information is maintained as extrachromosomal circular DNA. Interestingly, however, certain oncogenic herpesviruses such as Marek's disease virus and Epstein-Barr virus can be found integrated at low frequencies in the host's chromosomes. These findings have mostly been viewed as anecdotal and considered exceptions rather than properties of herpesviruses. In recent years, the consistent and rather frequent detection (in approximately 1% of the human population) of human herpesvirus 6 (HHV-6) viral DNA integrated into human chromosomes has spurred renewed interest in our understanding of how these viruses infect, replicate, and propagate themselves. In this review, we provide a historical perspective on chromosomal integration by herpesviruses and present the current state of knowledge on integration by HHV-6 with the possible clinical implications associated with viral integration.
Collapse
|
26
|
The DR1 and DR6 first exons of human herpesvirus 6A are not required for virus replication in culture and are deleted in virus stocks that replicate well in T-cell lines. J Virol 2010; 84:2648-56. [PMID: 20053742 DOI: 10.1128/jvi.01951-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and HHV-6B are lymphotropic viruses which replicate in cultured activated cord blood mononuclear cells (CBMCs) and in T-cell lines. Viral genomes are composed of 143-kb unique (U) sequences flanked by approximately 8- to 10-kb left and right direct repeats, DR(L) and DR(R). We have recently cloned HHV-6A (U1102) into bacterial artificial chromosome (BAC) vectors, employing DNA replicative intermediates. Surprisingly, HHV-6A BACs and their parental DNAs were found to contain short approximately 2.7-kb DRs. To test whether DR shortening occurred during passaging in CBMCs or in the SupT1 T-cell line, we compared packaged DNAs from various passages. Restriction enzymes, PCR, and sequencing analyses have shown the following. (i) Early (1992) viral preparations from CBMCs contained approximately 8-kb DRs. (ii) Viruses currently propagated in SupT1 cells contained approximately 2.7-kb DRs. (iii) The deletion spans positions 60 to 5545 in DR(L), including genes encoded by DR1 through the first exon of DR6. The pac-2-pac-1 packaging signals, the DR7 open reading frame (ORF), and the DR6 second exon were not deleted. (iv) The DR(R) sequence was similarly shortened by 5.4 kb. (v) The DR1 through DR6 first exon sequences were deleted from the entire HHV-6A BACs, revealing that they were not translocated into other genome locations. (vi) When virus initially cultured in CBMCs was passaged in SupT1 cells no DR shortening occurred. (vii) Viral stocks possessing short DRs replicated efficiently, revealing the plasticity of herpesvirus genomes. We conclude that the DR deletion occurred once, producing virus with advantageous growth "conquering" the population. The DR1 gene and the first DR6 exon are not required for propagation in culture.
Collapse
|
27
|
Cloning human herpes virus 6A genome into bacterial artificial chromosomes and study of DNA replication intermediates. Proc Natl Acad Sci U S A 2009; 106:19138-43. [PMID: 19858479 DOI: 10.1073/pnas.0908504106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cloning of large viral genomes into bacterial artificial chromosomes (BACs) facilitates analyses of viral functions and molecular mutagenesis. Previous derivations of viral BACs involved laborious recombinations within infected cells. We describe a single-step production of viral BACs by direct cloning of unit length genomes, derived from circular or head-to-tail concatemeric DNA replication intermediates. The BAC cloning is independent of intracellular recombinations and DNA packaging constraints. We introduced the 160-kb human herpes virus 6A (HHV-6A) genome into BACs by digesting the viral DNA replicative intermediates with the Sfil enzyme that cleaves the viral genome in a single site. The recombinant BACs contained also the puromycin selection gene, GFP, and LoxP sites flanking the BAC sequences. The HHV-6A-BAC vectors were retained stably in puromycin selected 293T cells. In the presence of irradiated helper virus, supplying most likely proteins enhancing gene expression they expressed early and late genes in SupT1 T cells. The method is especially attractive for viruses that replicate inefficiently and for viruses propagated in suspension cells. We have used the fact that the BAC cloning "freezes" the viral DNA replication intermediates to analyze their structure. The results revealed that HHV-6A-BACs contained a single direct repeat (DR) rather than a DR-DR sequence, predicted to arise by circularization of parental genomes with a DR at each terminus. HHV-6A DNA molecules prepared from the infected cells also contained DNA molecules with a single DR. Such forms were not previously described for HHV-6 DNA.
Collapse
|
28
|
Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D, Gautheret-Dejean A, Agut H. Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J Virol Methods 2009; 159:127-30. [PMID: 19442857 DOI: 10.1016/j.jviromet.2009.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 11/19/2022]
Abstract
The telomeric repeat sequences (TRS) located near both ends of human herpesvirus 6 (HHV-6) genome are unique structures of unknown function among human herpesviruses. The goal of the present study was to investigate the variability of TRS copy number among different laboratory strains and HHV-6-infected clinical specimens regarding the two variants A and B of HHV-6. DNA obtained from infected cells was submitted to a PCR assay designed to amplify the part of genome containing TRS specifically either for HHV-6A or HHV-6B. Amplicons were analyzed by electrophoresis on agarose gel with ethidium bromide staining and nucleotide sequencing. The number of TRS copies was highly variable among the distinct laboratory strains and clinical specimens studied, ranging from 15 up to more than 180. However, this number was constant for a given strain after serial propagation in cell cultures as well as in different samples from the same subject. This permitted to detect a mixed infection with two distinct strains of HHV-6A within the same patient. The PCR-based analysis of HHV-6 TRS has a limited sensitivity but is highly specific, which provides the opportunity to include it in the set of molecular tools dedicated to the study of HHV-6 epidemiology.
Collapse
Affiliation(s)
- Abla Achour
- Laboratoire de Virologie, Université Pierre et Marie Curie-Paris 6 EA2387, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Tyler SD, Peters GA, Grose C, Severini A, Gray MJ, Upton C, Tipples GA. Genomic cartography of varicella-zoster virus: a complete genome-based analysis of strain variability with implications for attenuation and phenotypic differences. Virology 2006; 359:447-58. [PMID: 17069870 DOI: 10.1016/j.virol.2006.09.037] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/15/2006] [Accepted: 09/25/2006] [Indexed: 11/26/2022]
Abstract
In order to gain a better perspective on the true variability of varicella-zoster virus (VZV) and to catalogue the location and number of differences, 11 new complete genome sequences were compared with those previously in the public domain (18 complete genomes in total). Three of the newly sequenced genomes were derived from a single strain in order to assess variations that can occur during serial passage in cell culture. The analysis revealed that while VZV is relatively stable genetically it does posses a certain degree of variability. The reiteration regions, origins of replication and intergenic homopolymer regions were all found to be variable between strains as well as within a given strain. In addition, the terminal viral sequences were found to vary within and between strains specifically at the 3' end of the genome. Analysis of single nucleotide polymorphisms (SNPs) identified a total of 557 variable sites, 451 of which were found in coding regions and resulted in 187 different in amino acid substitutions. A comparison of the SNPs present in the two gE mutant strains, VZV-MSP and VZV-BC, suggested that the missense mutation in gE was primarily responsible for the accelerated cell spread phenotype. Some of the variations noted with high passage in cell culture are consistent with variations seen in the IE62 gene of the vaccine strains (S628G, R958G and I1260V) that may help in pinpointing variations essential for attenuation. Although VZV has been considered to be one of the most genetically stable human herpesviruses, this initial assessment of genomic VZV cartography provides insight into ORFs with previously unreported variations.
Collapse
Affiliation(s)
- S D Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg MB, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Gompels U, Kasolo F. HHV-6 Genome: Similar and Different. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s0168-7069(06)12003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
31
|
De Bolle L, Naesens L, De Clercq E. Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 2005; 18:217-45. [PMID: 15653828 PMCID: PMC544175 DOI: 10.1128/cmr.18.1.217-245.2005] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) is a betaherpesvirus that is closely related to human cytomegalovirus. It was discovered in 1986, and HHV-6 literature has expanded considerably in the past 10 years. We here present an up-to-date and complete overview of the recent developments concerning HHV-6 biological features, clinical associations, and therapeutic approaches. HHV-6 gene expression regulation and gene products have been systematically characterized, and the multiple interactions between HHV-6 and the host immune system have been explored. Moreover, the discovery of the cellular receptor for HHV-6, CD46, has shed a new light on HHV-6 cell tropism. Furthermore, the in vitro interactions between HHV-6 and other viruses, particularly human immunodeficiency virus, and their relevance for the in vivo situation are discussed, as well as the transactivating capacities of several HHV-6 proteins. The insight into the clinical spectrum of HHV-6 is still evolving and, apart from being recognized as a major pathogen in transplant recipients (as exemplified by the rising number of prospective clinical studies), its role in central nervous system disease has become increasingly apparent. Finally, we present an overview of therapeutic options for HHV-6 therapy (including modes of action and resistance mechanisms).
Collapse
Affiliation(s)
- Leen De Bolle
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
32
|
Borenstein R, Singer O, Moseri A, Frenkel N. Use of amplicon-6 vectors derived from human herpesvirus 6 for efficient expression of membrane-associated and -secreted proteins in T cells. J Virol 2004; 78:4730-43. [PMID: 15078955 PMCID: PMC387683 DOI: 10.1128/jvi.78.9.4730-4743.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 01/15/2004] [Indexed: 11/20/2022] Open
Abstract
The composite amplicon-6 vectors, which are derived from human herpesvirus 6 (HHV-6), can target hematopoietic cells. In the presence of the respective helper viruses, the amplicons are replicated by the rolling circle mechanism, yielding defective genomes of overall size 135 to 150 kb, composed of multiple repeats of units, containing the viral DNA replication origin, packaging signals, and the selected transgene(s). We report the use of amplicon-6 vectors designed for transgene expression in T cells. The selected transgenes included the green fluorescent protein marker, the herpes simplex virus type 1 glycoprotein D (gD), and the gD gene deleted in the transmembrane region (gDsec). The vectors were tested after electroporation and passage in T cells with or without helper HHV-6A superinfections. The results were as follows. (i)The vectors could be passaged both as cell-associated and as cell-free secreted virions infectious to new cells. (ii)The intact gD accumulated at the cell surface, whereas the gDsec was dispersed at internal locations of the cells or was secreted into the medium. (iii)Analyses of amplicon-6-gD expression by flow cytometry have shown significant expression in cultures with reiterated amplicons and helper viruses. The vector has spread to >60% of the cells, and the efficiency of expression per cell increased 15-fold, most likely due to the presence of concatemeric amplicon repeats. Current studies are designed to test whether amplicon-6 vectors can be used for gene therapy in lymphocytes and whether amplicon-6 vectors expressed in T cells and dendritic cells can induce strong cellular and humoral immune responses.
Collapse
Affiliation(s)
- Ronen Borenstein
- The S. Daniel Abraham Institute of Molecular Virology and Department of Cell Research and Immunology, Tel Aviv University, Tel Aviv 361390, Israel
| | | | | | | |
Collapse
|
33
|
Turner S, DiLuca D, Gompels U. Characterisation of a human herpesvirus 6 variant A 'amplicon' and replication modulation by U94-Rep 'latency gene'. J Virol Methods 2002; 105:331-41. [PMID: 12270665 DOI: 10.1016/s0166-0934(02)00130-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human herpesvirus 6 (HHV-6) variant A genome has conserved sequences which are signals for initiating lytic replication (origin, 'ori-lyt') and DNA packaging into the virion (pac2/1). Here these are functionally characterised and used to construct a gene-expression amplifiable-vector, an 'amplicon', with applications for gene delivery to lymphoid-myeloid cells or their progenitor stem cells. A minimal efficient ori-lyt for replication was identified which was enhanced in the presence of the imperfect direct repeated DNA domain (IDR). In A variant strains these are arranged as three adjacent repeats with the most divergence in IDR3. Addition of the pac2/1 sequences also enhanced detection of ori-lyt replication and conferred DNA packaging properties, thus, the amplicon could be packaged with 'helper' virus. An HHV-6 specific factor, which inhibits amplicon replication was identified by trans replication assays. This is the U94-Rep 'latency' gene product, which can modulate efficiency of such amplifiable vectors, based on the lytic origin. It could also affect maintenance of viral genomes or vectors during latency.
Collapse
Affiliation(s)
- Simon Turner
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel St., London WC1E 7HT, UK
| | | | | |
Collapse
|
34
|
Izumiya Y, Jang HK, Ono M, Mikami T. A complete genomic DNA sequence of Marek's disease virus type 2, strain HPRS24. Curr Top Microbiol Immunol 2001; 255:191-221. [PMID: 11217423 DOI: 10.1007/978-3-642-56863-3_8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Y Izumiya
- Department of Veterinary Microbiology, Faculty of Agriculture, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
Several of the gamma-herpesviruses are known to have cellular transforming and oncogenic properties. The genomes of eight distinct gamma-herpesviruses have been sequenced, and the resulting database of information has enabled the identification of genetic similarities and differences between evolutionarily closely related and distant viruses of the subfamily and between the gamma-herpesviruses and other members of the herpesvirus family. The recognition of coincident loci of genetic divergence between individual gamma-herpesviruses and the identification of novel genes and cellular gene homologues in these genomic regions has delineated a subset of genes that are likely to contribute to the unique biological properties of these viruses. These genes, together with gamma-herpesvirus conserved genes not found in viruses outside the family, might be responsible for virus specific pathogenicity and pathogenic effects, such as viral associated neoplasia, characteristic of the subfamily. The presence of the gamma-herpesvirus major divergent genomic loci and the apparent increased mutational frequencies of homologous genes (where they occur) within these regions, indicates that these loci possess particular features that drive genetic divergence. Whatever the mechanisms underlying this phenomenon, it potentially provides the basis for the relatively rapid adaptation and evolution of gamma-herpesviruses and the diversity of biological and pathogenic properties.
Collapse
Affiliation(s)
- J Nicholas
- Department of Oncology, John Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| |
Collapse
|
36
|
Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J Virol 1999; 73:8040-52. [PMID: 10482553 PMCID: PMC112820 DOI: 10.1128/jvi.73.10.8040-8052.1999] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Accepted: 06/10/1999] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 variants A and B (HHV-6A and HHV-6B) are closely related viruses that can be readily distinguished by comparison of restriction endonuclease profiles and nucleotide sequences. The viruses are similar with respect to genomic and genetic organization, and their genomes cross-hybridize extensively, but they differ in biological and epidemiologic features. Differences include infectivity of T-cell lines, patterns of reactivity with monoclonal antibodies, and disease associations. Here we report the complete genome sequence of HHV-6B strain Z29 [HHV-6B(Z29)], describe its genetic content, and present an analysis of the relationships between HHV-6A and HHV-6B. As sequenced, the HHV-6B(Z29) genome is 162,114 bp long and is composed of a 144,528-bp unique segment (U) bracketed by 8,793-bp direct repeats (DR). The genomic sequence allows prediction of a total of 119 unique open reading frames (ORFs), 9 of which are present only in HHV-6B. Splicing is predicted in 11 genes, resulting in the 119 ORFs composing 97 unique genes. The overall nucleotide sequence identity between HHV-6A and HHV-6B is 90%. The most divergent regions are DR and the right end of U, spanning ORFs U86 to U100. These regions have 85 and 72% nucleotide sequence identity, respectively. The amino acid sequences of 13 of the 17 ORFs at the right end of U differ by more than 10%, with the notable exception of U94, the adeno-associated virus type 2 rep homolog, which differs by only 2.4%. This region also includes putative cis-acting sequences that are likely to be involved in transcriptional regulation of the major immediate-early locus. The catalog of variant-specific genetic differences resulting from our comparison of the genome sequences adds support to previous data indicating that HHV-6A and HHV-6B are distinct herpesvirus species.
Collapse
Affiliation(s)
- G Dominguez
- Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | |
Collapse
|
37
|
Romi H, Singer O, Rapaport D, Frenkel N. Tamplicon-7, a novel T-lymphotropic vector derived from human herpesvirus 7. J Virol 1999; 73:7001-7. [PMID: 10400799 PMCID: PMC112786 DOI: 10.1128/jvi.73.8.7001-7007.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the derivation of a novel T-cell-defective virus vector employing the human herpesvirus 7 (HHV-7). The new vector, designated Tamplicon-7, replicates in CD4(+) T cells. The system is composed of a helper virus and defective virus genomes derived by the replication of the input Tamplicon vector. There are two cis-acting functions required for the replication and packaging of the defective virus genomes in the presence of the helper virus: the viral DNA replication origin and the composite cleavage and packaging signal, which directs the cleavage and packaging of defective virus genomes. Viral DNA replication is compatible with the rolling circle mechanism, producing large head-to-tail concatemers of the Tamplicon vector. Thus, in the presence of the helper virus, the replicated vectors are packaged and secreted into the medium. Furthermore, we have shown that the vector can be employed to express a foreign gene, encoding the green fluorescent protein, in the T cells infected with the HHV-7 helper virus. We predict that the Tamplicon-7 vector might be potentially useful for gene therapy of diseases affecting the human CD4(+) T cells, including autoimmune diseases, T-cell lymphomas, and AIDS.
Collapse
Affiliation(s)
- H Romi
- Laboratory for Molecular Virology, Department of Cell Research and Immunology, Tel Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
38
|
Deng H, Dewhurst S. Functional identification and analysis of cis-acting sequences which mediate genome cleavage and packaging in human herpesvirus 6. J Virol 1998; 72:320-9. [PMID: 9420230 PMCID: PMC109379 DOI: 10.1128/jvi.72.1.320-329.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sequences present at the genomic termini of herpesviruses become linked during lytic-phase replication and provide the substrate for cleavage and packaging of unit length viral genomes. We have previously shown that homologs of the consensus herpesvirus cleavage-packaging signals, pac1 and pac2, are located at the left and right genomic termini of human herpesvirus 6 (HHV-6), respectively. Immediately adjacent to these elements are two distinct arrays of human telomeric repeat sequences (TRS). We now show that the unique sequence element formed at the junction of HHV-6B genome concatemers (pac2-pac1) is necessary and sufficient for virally mediated cleavage of plasmid DNAs containing the HHV-6B lytic-phase origin of DNA replication (oriLyt). The concatemeric junction sequence also allowed for the packaging of these plasmid molecules into intracellular nucleocapsids as well as mature, infectious viral particles. In addition, this element significantly enhanced the replication efficiency of oriLyt-containing plasmids in virally infected cells. Experiments revealed that the concatemeric junction sequence possesses an unusual, S1 nuclease-sensitive conformation (anisomorphic DNA), which might play a role in this apparent enhancement of DNA replication--although additional studies will be required to test this hypothesis. Finally, we also analyzed whether the presence of flanking viral TRS had any effect on the functional activity of the minimal concatemeric junction (pac2-pac1). These experiments revealed that the TRS motifs, either alone or in combination, had no effect on the efficiency of virally mediated DNA replication or DNA cleavage. Taken together, these data show that the cleavage and packaging of HHV-6 DNA are mediated by cis-acting consensus sequences similar to those found in other herpesviruses, and that these sequences also influence the efficiency of HHV-6 DNA replication. Since the adjacent TRS do not influence either viral cleavage and packaging or viral DNA replication, their function remains uncertain.
Collapse
Affiliation(s)
- H Deng
- Department of Microbiology and Immunology, University of Rochester Medical Center, New York 14642, USA
| | | |
Collapse
|
39
|
McVoy MA, Nixon DE, Adler SP, Mocarski ES. Sequences within the herpesvirus-conserved pac1 and pac2 motifs are required for cleavage and packaging of the murine cytomegalovirus genome. J Virol 1998; 72:48-56. [PMID: 9420199 PMCID: PMC109348 DOI: 10.1128/jvi.72.1.48-56.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The DNA sequence motifs pac1 [an A-rich region flanked by poly(C) runs] and pac2 (CGCGGCG near an A-rich region) are conserved near herpesvirus genomic termini and are believed to mediate cleavage of genomes from replicative concatemers. To determine their importance in the cleavage process, we constructed a number of recombinant murine cytomegaloviruses with a second cleavage site inserted at an ectopic location within the viral genome. Cleavage at a wild-type ectopic site occurred as frequently as at the natural cleavage site, whereas mutation of this ectopic site revealed that some of the conserved motifs of pac1 and pac2 were essential for cleavage whereas others were not. Within pac1, the left poly(C) region was very important for cleavage and packaging but the A-rich region was not. Within pac2, the A-rich region and adjacent sequences were essential for cleavage and packaging and the CGCGGCG region contributed to, but was not strictly essential for, efficient cleavage and packaging. A second A-rich region was not important at all. Furthermore, mutations that prevented cleavage also blocked duplication and deletion of the murine cytomegalovirus 30-bp terminal repeat at the ectopic site, suggesting that repeat duplication and deletion are consequences of cleavage. Given that the processes of genome cleavage and packaging appear to be highly conserved among herpesviruses, these findings should be relevant to other members of this family.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0163, USA.
| | | | | | | |
Collapse
|
40
|
Mirandola P, Ravaioli T, Cassai E. PCR analysis of human telomeric repeats present on HHV-6A viral strains. Virus Genes 1997; 15:29-32. [PMID: 9354266 DOI: 10.1023/a:1007950729162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human herpesvirus 6 (HHV-6) presents a perfect tandem array of human telomeric repeats (TRS) at both identical direct repeats (DR). Several researchers have reported a different TRS copy number by sequence analysis of HHV-6 DR's cloned fragments so it has been hypothesized that number of TRS is unstable. By PCR we show that the TRS copy number of U1102 HHV-6 variant A strains is stable during viral cultivation in cell lines and each HHV-6 variant A strain, detected in pathologic specimens, is characterized by a specific TRS copy number.
Collapse
Affiliation(s)
- P Mirandola
- Institute of Microbiology, University of Ferrara, Italy
| | | | | |
Collapse
|
41
|
Kosuge H, Isegawa Y, Yamanishi K. Nucleotide sequence analysis of a 30-kilobase-pair region of human herpesvirus-6B (HHV-6B) genome and strain-specific variations in major immediate-early genes. Virus Res 1997; 52:1-14. [PMID: 9453140 DOI: 10.1016/s0168-1702(97)00099-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human herpesvirus 6 (HHV-6) is now classified into two distinct variants such as HHV-6 variant A(HHV-6A) and B(HHV-6B) (Ablashi et al., Arch. Virol. 129, 1993, 1-4) and the DNA of HHV-6A strain U1102 was completely sequenced (Gompels et al., Virology 209, 1995, 29-51). We have sequenced a 30-kilobase pair (kbp) (genomic positions around 111-141 kb) of HHV-6B strain HST, and a sequence of this region was compared with that of HHV-6A strain U1102. Dodecameric repeats, G/T and Kpn repeat elements, putative major immediate early 1 (MIE1) and major immediate early 2 (MIE2) genes were found in this region. The DNA sequences of HHV-6A (U1102) and HHV-6B (HSI) were markedly different in the MIE1 region, Kpn repeat elements and the putative MIE2 region. Dodecameric repeat element was located in the putative MIE2 locus of HHV-6. When primers covering dodecameric repeat region were used to amplify HHV-6 DNA of clinical isolates from patients with exanthem subitum (ES) by polymerase chain reaction (PCR), variations in size of PCR products in each isolate were found, indicating strain-specific features. Furthermore, the results of molecular biological analysis by PCR using DNA samples in a family suggest that HHV-6 infects within a family.
Collapse
Affiliation(s)
- H Kosuge
- Department of Virology, Osaka University, Japan
| | | | | |
Collapse
|
42
|
Abstract
Human herpesvirus 6 variant A (HHV-6A) and human herpesvirus 6 variant B (HHV-6B) are two closely related yet distinct viruses. These visuses belong to the Roseolovirus genus of the betaherpesvirus subfamily; they are most closely related to human herpesvirus 7 and then to human cytomegalovirus. Over 95% of people older than 2 years of age are seropositive for either or both HHV-6 variants, and current serologic methods are incapable of discriminating infection with one variant from infection with the other. HHV-6A has not been etiologically linked to any human disease, but such an association will probably be found soon. HHV-6B is the etiologic agent of the common childhood illness exanthem subitum (roseola infantum or sixth disease) and related febrile illnesses. These viruses are frequently active and associated with illness in immunocompromised patients and may play a role in the etiology of Hodgkin's disease and other malignancies. HHV-6 is a commensal inhabitant of brains; various neurologic manifestations, including convulsions and encephalitis, can occur during primary HHV-6 infection or in immunocompromised patients. HHV-6 and distribution in the central nervous system are altered in patients with multiple sclerosis; the significance of this is under investigation.
Collapse
Affiliation(s)
- D K Braun
- Eli Lilly, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
43
|
Abstract
The mechanisms by which herpesvirus genome ends are fused to form circles after infection and are re-formed by cleavage from concatemeric DNA are unknown. We used the simple structure of guinea pig cytomegalovirus genomes, which have either one repeated DNA sequence at each end or one repeat at one end and no repeat at the other, to study these mechanisms. In circular DNA, two restriction fragments contained fused terminal sequences and had sizes consistent with the presence of single or double terminal repeats. This result implies a simple ligation of genomic ends and shows that circularization does not occur by annealing of single-stranded terminal repeats formed by exonuclease digestion. Cleavage to form the two genome types occurred at two sites, and homologies between these sites identified two potential cis elements that may be necessary for cleavage. One element coincided with the A-rich region of a pac2 sequence and had 9 of 11 bases identical between the two sites. The second element had six bases identical at both sites, in each case 7 bp from the termini. To confirm the presence of cis cleavage elements, a recombinant virus in which foreign sequences displaced the 6- and 11-bp elements 1 kb from the cleavage point was constructed. Cleavage at the disrupted site did not occur. In a second recombinant virus, restoration of 64 bases containing the 6- and 11-bp elements to the disrupted cleavage site restored cleavage. Therefore, cis cleavage elements exist within this 64-base region, and sequence conservation suggests that they are the 6- and 11-bp elements.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0163, USA.
| | | | | |
Collapse
|
44
|
Affiliation(s)
- P Lusso
- Unit of Human Virology, DIBIT, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
45
|
Lindquester GJ, Inoue N, Allen RD, Castelli JW, Stamey FR, Dambaugh TR, O'Brian JJ, Danovich RM, Frenkel N, Pellett PE. Restriction endonuclease mapping and molecular cloning of the human herpesvirus 6 variant B strain Z29 genome. Arch Virol 1996; 141:367-79. [PMID: 8634027 DOI: 10.1007/bf01718406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Human herpesvirus 6(HHV-6) variants A and B differ in cell tropism, reactivity with monoclonal antibodies, restriction endonuclease profiles, and epidemiology. Nonetheless, comparative nucleotide and amino acid sequences from several genes indicate that the viruses are very highly conserved genetically, The B variant is the major etiologic agent of exanthem subitum and is frequently isolated from children with febrile illness; no disease has been etiologically associated with HHV-6A. One HHV-6A strain has been cloned and sequenced, but similar information and reagents are not available for HHV-6B. We report here the determination of maps of the restriction endonuclease cleavage sites for BamHI, C1aI, HindIII, KpnI, and Sa1I, and the cloning in plasmids and bacteriophages of fragments representing over 95% of the HHV-6B strain Z29 [HHV-6B(Z29)] genome. Hybridization experiments and orientation of several blocks of nucleotide sequence information onto the genomic map indicate that HHV-6A and HHV-6B genomes are colinear.
Collapse
Affiliation(s)
- G J Lindquester
- Department of Biology, Rhodes College, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Secchiero P, Nicholas J, Deng H, Xiaopeng T, van Loon N, Ruvolo VR, Berneman ZN, Reitz MS, Dewhurst S. Identification of human telomeric repeat motifs at the genome termini of human herpesvirus 7: structural analysis and heterogeneity. J Virol 1995; 69:8041-5. [PMID: 7494318 PMCID: PMC189750 DOI: 10.1128/jvi.69.12.8041-8045.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human herpesvirus 6 (HHV-6) and HHV-7 are closely related T-lymphotropic betaherpesviruses which share a common genomic organization and are composed of a single unique component (U) that is bounded by direct repeats (DRL and DRR). In HHV-6, a sequences have been identified at each end of the DR motifs, resulting in the arrangement aDRLa-U-aDRRa. In order to determine whether determine whether HHV-7 contains similar a sequences, we have sequenced the DRL-U and U-DRR junctions of HHV-7 strain JI, together with the DRR.DRL junction from the head-to-tail concatamer that is generated during productive virus infection. In addition, we have sequenced the genomic termini of an independent isolate of HHV-7. As in HHV-6, a (GGGTTA)n motif identical to the human telomeric repeat sequence (TRS) was identified adjacent to, but not at, the genome termini of HHV-7. The left genome terminus and the U-DRR junction contained a homolog of the consensus herpesvirus packaging signal, pac-1, followed by short tandem arrays of TRSs separated by single copies of a second 6-bp repeat. This organization is similar to the arrangement found at U-DRR in HHV-6 but differs from it in that the TRS arrays are considerably shorter in HHV-7. The right genome terminus and the DRL-U junction contained a homolog of the consensus herpesvirus packaging signal, pac-2, followed by longer tandem arrays of TRSs separated by single copies of either a 6-bp or a 14-bp repeat. This arrangement is considerably more complex than the simple tandem array of TRSs that is present at the corresponding genomic location in HHV-6 and corresponds to a site of both inter- and intrastrain heterogeneity in HHV-7. The presence of TRSs in lymphotropic herpesviruses from humans (HHV-6 and HHV-7), horse (equine herpesvirus 2), and birds (Marek's disease virus) is striking and suggests that these sequences may have functional or structural significance.
Collapse
Affiliation(s)
- P Secchiero
- Laboratory of Tumor Cell Biology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Torelli G, Barozzi P, Marasca R, Cocconcelli P, Merelli E, Ceccherini-Nelli L, Ferrari S, Luppi M. Targeted integration of human herpesvirus 6 in the p arm of chromosome 17 of human peripheral blood mononuclear cells in vivo. J Med Virol 1995; 46:178-88. [PMID: 7561787 DOI: 10.1002/jmv.1890460303] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Out of 64 cases of non-Hodgkin's lymphomas (NHL), 55 cases of Hodgkin's disease (HD) and 31 cases of multiple sclerosis (MS), 2 NHL, 7 HD and 1 MS cases were found positive by polymerase chain reaction (PCR) for the presence of HHV-6 sequences in pathologic lymph nodes of the lymphomas and in peripheral blood mononuclear cells (PBMCs) of MS. A further analysis of the PBMCs of the PCR positive cases by standard Southern blot technique revealed only 2 NHL, 3 HD and 1 MS cases as positive, indicating that these six patients have an unusually high viral copy number in the PBMCs. Restriction analysis, carried out using probes representative of different regions of the virus, showed that three cases retain only a deleted portion of the viral genome. In the remaining three cases a complete viral genome was present, containing the right end sequences in which the rep-like gene, possibly crucial to the viral and cellular life cycle, is located. The analysis by pulsed field gel electrophoresis (PFGE) of the total DNA of the PBMCs obtained directly, without culture from PBMCs of these last three cases (1 NHL, 1 HD, and 1 MS), using the same probes, showed the absence of free viral molecules and the association of viral sequences with high molecular weight DNA. These results are consistent with in vivo integration of the entire virus in the cellular genome. A further study of the same patients with chromosome fluorescence in situ hybridization (FISH) showed in all the three cases the presence of a specific hybridization site, located at the telomeric extremity of the short arm of chromosome 17 (17p13), suggesting that this location is at least a preferred site of an infrequent, but possibly biologically important, integration phenomenon.
Collapse
MESH Headings
- Adult
- Antibodies, Viral/blood
- Blotting, Southern
- Cell Line
- Chromosomes, Human, Pair 17
- DNA, Viral/analysis
- Electrophoresis, Gel, Pulsed-Field
- Female
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/immunology
- Hodgkin Disease/virology
- Humans
- In Situ Hybridization, Fluorescence
- Leukocytes, Mononuclear/virology
- Lymph Nodes/virology
- Lymphoma, Non-Hodgkin/virology
- Male
- Middle Aged
- Multiple Sclerosis/virology
- Polymerase Chain Reaction
- Virus Integration
Collapse
Affiliation(s)
- G Torelli
- Department of Medical Sciences, University of Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Pfeiffer B, Thomson B, Chandran B. Identification and characterization of a cDNA derived from multiple splicing that encodes envelope glycoprotein gp105 of human herpesvirus 6. J Virol 1995; 69:3490-500. [PMID: 7745696 PMCID: PMC189062 DOI: 10.1128/jvi.69.6.3490-3500.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The glycoprotein complex gp82-gp105 is a major virion envelope glycoprotein complex of human herpesvirus 6 variant A (HHV-6A) and consists of a number of related polypeptides. Monoclonal antibodies (MAbs) 2D4, 2D6, and 13D6 against this glycoprotein complex neutralized HHV-6A infectivity. We have previously reported the isolation, mapping, and characterization of a portion of the viral genomic DNA fragment encoding the gp82-gp105 complex and the identification of the neutralizing epitope (B. Pfeiffer, Z. N. Berneman, F. Neipel, C. K. Chang, S. Tirwatnapong, and B. Chandran, J. Virol. 67:4611-4620, 1993). This gene was further characterized by the identification of a 2.3-kb genomic fragment and by the identification of a 2.5-kb cDNA clone. The genomic sequence contains a short open reading frame (ORF) encoding the epitope recognized by the MAbs. The identified cDNA showed specificity for HHV-6 in Southern blot analysis with viral DNA. In Northern (RNA) blot analysis with total RNA from HHV-6A(GS)-infected cells, the cDNA insert specifically hybridized with several RNA species. Restriction mapping analysis localized this cDNA to the HHV-6A(U1102) genomic BamHI G fragment, at the right end of the unique long segment of the genome and to the SalI L and SalI O fragments within the left and right terminal direct repeat regions, respectively. In vitro transcription and translation of the cDNA revealed a polypeptide of about 88.5 kDa which was glycosylated in the presence of microsomal membranes to a polypeptide of approximately 104.2 kDa. Both polypeptides were immunoprecipiated by MAb 2D6, verifying the identity of the cDNA as encoding the gp105 in the gp82-gp105 complex. Sequence analysis of the cDNA revealed a large ORF potentially encoding a 650-amino-acid protein with 11 potential N-linked glycosylation sites and 18 cysteine residues. A potential membrane-spanning domain is located only near the amino terminus of the putative protein, indicating that gp105 may be a class 2 glycoprotein. Comparison of the cDNA nucleotide sequence with sequences from HHV-6A(U1102) genomic BamHI G and SalI L fragments revealed that the gene encoding gp105 contains 12 exons, spanning over 20 kb of the viral genome, with intron 1 spanning about 8 kb of genomic DNA. The first exon of the cDNA mapped to the right and left terminal direct repeats, while the other exons mapped within the unique long segment of the genome.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Pfeiffer
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|