1
|
Gifford LB, Melikyan GB. HIV-1 Capsid Uncoating Is a Multistep Process That Proceeds through Defect Formation Followed by Disassembly of the Capsid Lattice. ACS NANO 2024; 18:2928-2947. [PMID: 38241476 PMCID: PMC10832047 DOI: 10.1021/acsnano.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The HIV-1 core consists of a cone-shaped capsid shell made of capsid protein (CA) hexamers and pentamers encapsulating the viral genome. HIV-1 capsid disassembly, referred to as uncoating, is important for productive infection; however, the location, timing, and regulation of uncoating remain controversial. Here, we employ amber codon suppression to directly label CA. In addition, a fluid phase fluorescent probe is incorporated into the viral core to detect small defects in the capsid lattice. This double-labeling strategy enables the visualization of uncoating of single cores in vitro and in living cells, which we found to always proceed through at least two distinct steps─the formation of a defect in the capsid lattice that initiates gradual loss of CA below a detectable level. Importantly, intact cores containing the fluid phase and CA fluorescent markers enter and uncoat in the nucleus, as evidenced by a sequential loss of both markers, prior to establishing productive infection. This two-step uncoating process is observed in different cells, including a macrophage line. Notably, the lag between the release of fluid phase marker and terminal loss of CA appears to be independent of the cell type or reverse transcription and is much longer (>5-fold) for nuclear capsids compared to cell-free cores or cores in the cytosol, suggesting that the capsid lattice is stabilized by capsid-binding nuclear factors. Our results imply that intact HIV-1 cores enter the cell nucleus and that uncoating is initiated through a localized defect in the capsid lattice prior to a global loss of CA.
Collapse
Affiliation(s)
- Levi B. Gifford
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikyan
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles. PLoS Pathog 2022; 18:e1010754. [PMID: 35951676 PMCID: PMC9426931 DOI: 10.1371/journal.ppat.1010754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components. The timing, location and mechanisms of HIV-1 capsid disassembly which is referred to as uncoating remains unclear. Direct labeling of HIV-1 capsids, by incorporating a few green fluorescent proteins (GFP) tagged capsid protein (CA) into virions allows to image the spatio-temporal loss of HIV-1 CA during virus infection. However, the localization and functions of a few virion incorporated eGFP-tagged CA proteins remain unclear, since <50% of virus packaged CA proteins participate to form the conical capsid shell that protects the HIV-1 genome. Here we developed several approaches to test the localization and function of eGFP-tagged CA proteins in virions. We found that eGFP-tagged CA proteins are excluded from the conical capsid shell and that a subset of these proteins is associated with the viral ribonucleoprotein complex (vRNPs), through direct interactions between CA and vRNP components. eGFP-tagged CA is retained in the nucleus by virtue of vRNP association and is unlikely to report on HIV-1 capsid disassembly. We also found that HIV-1 capsids become permeabilized and are remodeled during their transport into the nucleus. Our study provides new insights into the ability of CA to interact with vRNPs for its retention in the nucleus and highlights capsid remodeling as a preferred pathway for HIV-1 entry into the nucleus.
Collapse
|
3
|
Jaguva Vasudevan AA, Balakrishnan K, Franken A, Krikoni A, Häussinger D, Luedde T, Münk C. Murine leukemia virus resists producer cell APOBEC3A by its Glycosylated Gag but not target cell APOBEC3A. Virology 2021; 557:1-14. [PMID: 33581610 DOI: 10.1016/j.virol.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
The human APOBEC3A (A3A) polynucleotide cytidine deaminase has been shown to have antiviral activity against HTLV-1 but not HIV-1, when expressed in the virus producer cell. In viral target cells, high levels of endogenous A3A activity have been associated with the restriction of HIV-1 during infection. Here we demonstrate that A3A derived from both target cells and producer cells can block the infection of Moloney-MLV (MLV) and related AKV-derived strains of MLV in a deaminase-dependent mode. Furthermore, glycosylated Gag (glycoGag) of MLV inhibits the encapsidation of human A3A, but target cell A3A was not affected by glycoGag and exerted deamination of viral DNA. Importantly, our results clearly indicate that poor glycoGag expression in MLV gag-pol packaging constructs as compared to abundant levels in full-length amphotropic MLV makes these viral vectors sensitive to A3A-mediated restriction. This raises the possibility of acquiring A3A-induced mutations in retroviral gene therapy applications.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - André Franken
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Aikaterini Krikoni
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Francis AC, Marin M, Prellberg MJ, Palermino-Rowland K, Melikyan GB. HIV-1 Uncoating and Nuclear Import Precede the Completion of Reverse Transcription in Cell Lines and in Primary Macrophages. Viruses 2020; 12:E1234. [PMID: 33143125 PMCID: PMC7693591 DOI: 10.3390/v12111234] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
An assembly of capsid proteins (CA) form the mature viral core enclosing the HIV-1 ribonucleoprotein complex. Discrepant findings have been reported regarding the cellular sites and the extent of core disassembly (uncoating) in infected cells. Here, we combined single-virus imaging and time-of-drug-addition assays to elucidate the kinetic relationship between uncoating, reverse transcription, and nuclear import of HIV-1 complexes in cell lines and monocyte-derived macrophages (MDMs). By using cyclophilin A-DsRed (CDR) as a marker for CA, we show that, in contrast to TZM-bl cells, early cytoplasmic uncoating (loss of CDR) is limited in MDMs and is correlated with the efficiency of reverse transcription. However, we find that reverse transcription is dispensable for HIV-1 nuclear import, which progressed through an uncoating step at the nuclear pore. Comparison of the kinetics of nuclear import and the virus escape from inhibitors targeting distinct steps of infection, as well as direct quantification of viral DNA synthesis, revealed that reverse transcription is completed after nuclear import of HIV-1 complexes. Collectively, these results suggest that reverse transcription is dispensable for the uncoating step at the nuclear pore and that vDNA synthesis is completed in the nucleus of unrelated target cells.
Collapse
Affiliation(s)
- Ashwanth C. Francis
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mathew J. Prellberg
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
| | - Kristina Palermino-Rowland
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Jaguva Vasudevan AA, Balakrishnan K, Gertzen CGW, Borvető F, Zhang Z, Sangwiman A, Held U, Küstermann C, Banerjee S, Schumann GG, Häussinger D, Bravo IG, Gohlke H, Münk C. Loop 1 of APOBEC3C Regulates its Antiviral Activity against HIV-1. J Mol Biol 2020; 432:6200-6227. [PMID: 33068636 DOI: 10.1016/j.jmb.2020.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 01/10/2023]
Abstract
APOBEC3 deaminases (A3s) provide mammals with an anti-retroviral barrier by catalyzing dC-to-dU deamination on viral ssDNA. Within primates, A3s have undergone a complex evolution via gene duplications, fusions, arms race, and selection. Human APOBEC3C (hA3C) efficiently restricts the replication of viral infectivity factor (vif)-deficient Simian immunodeficiency virus (SIVΔvif), but for unknown reasons, it inhibits HIV-1Δvif only weakly. In catarrhines (Old World monkeys and apes), the A3C loop 1 displays the conserved amino acid pair WE, while the corresponding consensus sequence in A3F and A3D is the largely divergent pair RK, which is also the inferred ancestral sequence for the last common ancestor of A3C and of the C-terminal domains of A3D and A3F in primates. Here, we report that modifying the WE residues in hA3C loop 1 to RK leads to stronger interactions with substrate ssDNA, facilitating catalytic function, which results in a drastic increase in both deamination activity and in the ability to restrict HIV-1 and LINE-1 replication. Conversely, the modification hA3F_WE resulted only in a marginal decrease in HIV-1Δvif inhibition. We propose that the two series of ancestral gene duplications that generated A3C, A3D-CTD and A3F-CTD allowed neo/subfunctionalization: A3F-CTD maintained the ancestral RK residues in loop 1, while diversifying selection resulted in the RK → WE modification in Old World anthropoids' A3C, possibly allowing for novel substrate specificity and function.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Kannan Balakrishnan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany; Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fanni Borvető
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anucha Sangwiman
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Held
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Gerald G Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ignacio G Bravo
- Centre National de la Recherche Scientifique, Laboratory MIVEGEC (CNRS, IRD, Uni Montpellier), Montpellier, France
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
6
|
Francis AC, Marin M, Singh PK, Achuthan V, Prellberg MJ, Palermino-Rowland K, Lan S, Tedbury PR, Sarafianos SG, Engelman AN, Melikyan GB. HIV-1 replication complexes accumulate in nuclear speckles and integrate into speckle-associated genomic domains. Nat Commun 2020; 11:3505. [PMID: 32665593 PMCID: PMC7360574 DOI: 10.1038/s41467-020-17256-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The early steps of HIV-1 infection, such as uncoating, reverse transcription, nuclear import, and transport to integration sites are incompletely understood. Here, we imaged nuclear entry and transport of HIV-1 replication complexes in cell lines, primary monocyte-derived macrophages (MDMs) and CD4+ T cells. We show that viral replication complexes traffic to and accumulate within nuclear speckles and that these steps precede the completion of viral DNA synthesis. HIV-1 transport to nuclear speckles is dependent on the interaction of the capsid proteins with host cleavage and polyadenylation specificity factor 6 (CPSF6), which is also required to stabilize the association of the viral replication complexes with nuclear speckles. Importantly, integration site analyses reveal a strong preference for HIV-1 to integrate into speckle-associated genomic domains. Collectively, our results demonstrate that nuclear speckles provide an architectural basis for nuclear homing of HIV-1 replication complexes and subsequent integration into associated genomic loci. Early steps of HIV infection of primary human cells remain poorly understood. Here, Francis et al. show that early viral replication complexes accumulate within nuclear speckles, in reliance on viral capsid/host CPSF6 interactions, and preferentially integrate in speckle-associated genomic domains.
Collapse
Affiliation(s)
- Ashwanth C Francis
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Mariana Marin
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Vasudevan Achuthan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Mathew J Prellberg
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kristina Palermino-Rowland
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Philip R Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gregory B Melikyan
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA. .,Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Abstract
Apolipoprotein A-I binding protein (AIBP) is a recently identified innate anti-inflammatory factor. Here, we show that AIBP inhibited HIV replication by targeting lipid rafts and reducing virus-cell fusion. Importantly, AIBP selectively reduced levels of rafts on cells stimulated by an inflammatory stimulus or treated with extracellular vesicles containing HIV-1 protein Nef without affecting rafts on nonactivated cells. Accordingly, fusion of monocyte-derived macrophages with HIV was sensitive to AIBP only in the presence of Nef. Silencing of endogenous AIBP significantly upregulated HIV-1 replication. Interestingly, HIV-1 replication in cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, was not inhibited by AIBP. These results suggest that AIBP is an innate anti-HIV factor that targets virus-cell fusion. Apolipoprotein A-I binding protein (AIBP) is a protein involved in regulation of lipid rafts and cholesterol efflux. AIBP has been suggested to function as a protective factor under several sets of pathological conditions associated with increased abundance of lipid rafts, such as atherosclerosis and acute lung injury. Here, we show that exogenously added AIBP reduced the abundance of lipid rafts and inhibited HIV replication in vitro as well as in HIV-infected humanized mice, whereas knockdown of endogenous AIBP increased HIV replication. Endogenous AIBP was much more abundant in activated T cells than in monocyte-derived macrophages (MDMs), and exogenous AIBP was much less effective in T cells than in MDMs. AIBP inhibited virus-cell fusion, specifically targeting cells with lipid rafts mobilized by cell activation or Nef-containing exosomes. MDM-HIV fusion was sensitive to AIBP only in the presence of Nef provided by the virus or exosomes. Peripheral blood mononuclear cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, bound less AIBP than cells from donors with other HLA genotypes and were not protected by AIBP from rapid HIV-1 replication. These results provide the first evidence for the role of Nef exosomes in regulating HIV-cell fusion by modifying lipid rafts and suggest that AIBP is an innate factor that restricts HIV replication by targeting lipid rafts.
Collapse
|
8
|
EWI-2 Inhibits Cell-Cell Fusion at the HIV-1 Virological Presynapse. Viruses 2019; 11:v11121082. [PMID: 31757023 PMCID: PMC6950393 DOI: 10.3390/v11121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-to-cell transfer of virus particles at the Env-dependent virological synapse (VS) is a highly efficient mode of HIV-1 transmission. While cell–cell fusion could be triggered at the VS, leading to the formation of syncytia and preventing exponential growth of the infected cell population, this is strongly inhibited by both viral (Gag) and host (ezrin and tetraspanins) proteins. Here, we identify EWI-2, a protein that was previously shown to associate with ezrin and tetraspanins, as a host factor that contributes to the inhibition of Env-mediated cell–cell fusion. Using quantitative fluorescence microscopy, shRNA knockdowns, and cell–cell fusion assays, we show that EWI-2 accumulates at the presynaptic terminal (i.e., the producer cell side of the VS), where it contributes to the fusion-preventing activities of the other viral and cellular components. We also find that EWI-2, like tetraspanins, is downregulated upon HIV-1 infection, most likely by Vpu. Despite the strong inhibition of fusion at the VS, T cell-based syncytia do form in vivo and in physiologically relevant culture systems, but they remain small. In regard to that, we demonstrate that EWI-2 and CD81 levels are restored on the surface of syncytia, where they (presumably) continue to act as fusion inhibitors. This study documents a new role for EWI-2 as an inhibitor of HIV-1-induced cell–cell fusion and provides novel insight into how syncytia are prevented from fusing indefinitely.
Collapse
|
9
|
Del Río-Iñiguez I, Vázquez-Chávez E, Cuche C, Di Bartolo V, Bouchet J, Alcover A. HIV-1 Nef Hijacks Lck and Rac1 Endosomal Traffic To Dually Modulate Signaling-Mediated and Actin Cytoskeleton-Mediated T Cell Functions. THE JOURNAL OF IMMUNOLOGY 2018; 201:2624-2640. [PMID: 30282749 DOI: 10.4049/jimmunol.1800372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023]
Abstract
Endosomal traffic of TCR and signaling molecules regulates immunological synapse formation and T cell activation. We recently showed that Rab11 endosomes regulate the subcellular localization of the tyrosine kinase Lck and of the GTPase Rac1 and control their functions in TCR signaling and actin cytoskeleton remodeling. HIV-1 infection of T cells alters their endosomal traffic, activation capacity, and actin cytoskeleton organization. The viral protein Nef is pivotal for these modifications. We hypothesized that HIV-1 Nef could jointly alter Lck and Rac1 endosomal traffic and concomitantly modulate their functions. In this study, we show that HIV-1 infection of human T cells sequesters both Lck and Rac1 in a pericentrosomal compartment in an Nef-dependent manner. Strikingly, the Nef-induced Lck compartment contains signaling-competent forms (phosphorylated on key Tyr residues) of Lck and some of its downstream effectors, TCRζ, ZAP70, SLP76, and Vav1, avoiding the proximal LAT adaptor. Importantly, Nef-induced concentration of signaling molecules was concomitant with the upregulation of several early and late T cell activation genes. Moreover, preventing the concentration of the Nef-induced Lck compartment by depleting the Rab11 effector FIP3 counteracted Nef-induced gene expression upregulation. In addition, Nef extensively sequesters Rac1 and downregulates Rac1-dependent actin cytoskeleton remodeling, thus reducing T cell spreading. Therefore, by modifying their endosomal traffic, Nef hijacks signaling and actin cytoskeleton regulators to dually modulate their functional outputs. Our data shed new light into the molecular mechanisms that modify T cell physiology during HIV-1 infection.
Collapse
Affiliation(s)
- Iratxe Del Río-Iñiguez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and.,Collège Doctoral, Sorbonne Université, 75014 Paris, France
| | - Elena Vázquez-Chávez
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Céline Cuche
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France.,INSERM U1221, 75015 Paris, France; and
| | - Jérôme Bouchet
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France; .,INSERM U1221, 75015 Paris, France; and
| | - Andrés Alcover
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, 75724 Paris, France; .,INSERM U1221, 75015 Paris, France; and
| |
Collapse
|
10
|
Francis AC, Melikyan GB. Single HIV-1 Imaging Reveals Progression of Infection through CA-Dependent Steps of Docking at the Nuclear Pore, Uncoating, and Nuclear Transport. Cell Host Microbe 2018; 23:536-548.e6. [PMID: 29649444 DOI: 10.1016/j.chom.2018.03.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration.
Collapse
Affiliation(s)
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
11
|
Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, Borrow P, Bergin C, Stevenson NJ. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction. EBioMedicine 2018; 30:203-216. [PMID: 29580840 PMCID: PMC5952252 DOI: 10.1016/j.ebiom.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023] Open
Abstract
Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be essential for Vif-mediated proteasomal degradation of STAT1 and STAT3. These results reveal a target for HIV-1-Vif and demonstrate how HIV-1 impairs the anti-viral activity of Type 1 IFNs, possibly explaining why both endogenous and therapeutic IFN-α fail to activate more effective control over HIV infection.
Collapse
Affiliation(s)
- Siobhan Gargan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suaad Ahmed
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rebecca Mahony
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ciaran Bannan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Silvia Napoletano
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Cliona O'Farrelly
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Colm Bergin
- School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Nigel J Stevenson
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
12
|
Puray-Chavez M, Tedbury PR, Huber AD, Ukah OB, Yapo V, Liu D, Ji J, Wolf JJ, Engelman AN, Sarafianos SG. Multiplex single-cell visualization of nucleic acids and protein during HIV infection. Nat Commun 2017; 8:1882. [PMID: 29192235 PMCID: PMC5709414 DOI: 10.1038/s41467-017-01693-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023] Open
Abstract
Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional “bursts” of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents. Technical limitations in simultaneous microscopic visualization of HIV transcription from individual integration sites have curtailed progress in the field. Here the authors report a branched DNA in situ hybridization method for direct single-cell visualization of HIV DNA, RNA, and protein.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Philip R Tedbury
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA.,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Andrew D Huber
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Obiaara B Ukah
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Vincent Yapo
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Dandan Liu
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Juan Ji
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Jennifer J Wolf
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Stefan G Sarafianos
- CS Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA. .,Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO, 65212, USA. .,Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65201, USA. .,Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA.
| |
Collapse
|
13
|
Zhang Z, Gu Q, de Manuel Montero M, Bravo IG, Marques-Bonet T, Häussinger D, Münk C. Stably expressed APOBEC3H forms a barrier for cross-species transmission of simian immunodeficiency virus of chimpanzee to humans. PLoS Pathog 2017; 13:e1006746. [PMID: 29267382 PMCID: PMC5739507 DOI: 10.1371/journal.ppat.1006746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023] Open
Abstract
APOBEC3s (A3s) are potent restriction factors of human immunodeficiency virus type 1/simian immunodeficiency viruses (HIV-1/SIV), and can repress cross-species transmissions of lentiviruses. HIV-1 originated from a zoonotic infection of SIV of chimpanzee (SIVcpz) to humans. However, the impact of human A3s on the replication of SIVcpz remains unclear. By using novel SIVcpz reporter viruses, we identified that human APOBEC3B (A3B) and APOBEC3H (A3H) haplotype II strongly reduced the infectivity of SIVcpz, because both of them are resistant to SIVcpz Vifs. We further demonstrated that human A3H inhibited SIVcpz by deaminase dependent as well independent mechanisms. In addition, other stably expressed human A3H haplotypes and splice variants showed strong antiviral activity against SIVcpz. Moreover, most SIV and HIV lineage Vif proteins could degrade chimpanzee A3H, but no Vifs from SIVcpz and SIV of gorilla (SIVgor) lineages antagonized human A3H haplotype II. Expression of human A3H hapII in human T cells efficiently blocked the spreading replication of SIVcpz. The spreading replication of SIVcpz was also restricted by stable A3H in human PBMCs. Thus, we speculate that stably expressed human A3H protects humans against the cross-species transmission of SIVcpz and that SIVcpz spillover to humans may have started in individuals that harbor haplotypes of unstable A3H proteins.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | - Tomas Marques-Bonet
- Institut Biologia Evolutiva (Universitat Pompeu Fabra/CSIC) ICREA, Barcelona, Spain
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Höhne K, Businger R, van Nuffel A, Bolduan S, Koppensteiner H, Baeyens A, Vermeire J, Malatinkova E, Verhasselt B, Schindler M. Virion encapsidated HIV-1 Vpr induces NFAT to prime non-activated T cells for productive infection. Open Biol 2017; 6:rsob.160046. [PMID: 27383627 PMCID: PMC4967821 DOI: 10.1098/rsob.160046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 01/01/2023] Open
Abstract
The majority of T cells encountered by HIV-1 are non-activated and do not readily allow productive infection. HIV-1 Vpr is highly abundant in progeny virions, and induces signalling and HIV-1 LTR transcription. We hence hypothesized that Vpr might be a determinant of non-activated T-cell infection. Virion-delivered Vpr activated nuclear factor of activated T cells (NFAT) through Ca2+ influx and interference with the NFAT export kinase GSK3β. This leads to NFAT translocation and accumulation within the nucleus and was required for productive infection of unstimulated primary CD4+ T cells. A mutagenesis approach revealed correlation of Vpr-mediated NFAT activation with its ability to enhance LTR transcription and mediate cell cycle arrest. Upon NFAT inhibition, Vpr did not augment resting T-cell infection, and showed reduced G2/M arrest and LTR transactivation. Altogether, Vpr renders unstimulated T cells more permissive for productive HIV-1 infection and stimulates activation of productively infected as well as virus-exposed T cells. Therefore, it could be involved in the establishment and reactivation of HIV-1 from viral reservoirs and might have an impact on the levels of immune activation, which are determinants of HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Kristin Höhne
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramona Businger
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Anouk van Nuffel
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Sebastian Bolduan
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Herwig Koppensteiner
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann Baeyens
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jolien Vermeire
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Eva Malatinkova
- HIV Translational Research Unit, Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Michael Schindler
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Jaguva Vasudevan AA, Hofmann H, Willbold D, Häussinger D, Koenig BW, Münk C. Enhancing the Catalytic Deamination Activity of APOBEC3C Is Insufficient to Inhibit Vif-Deficient HIV-1. J Mol Biol 2017; 429:1171-1191. [DOI: 10.1016/j.jmb.2017.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
|
16
|
Walsh SR, de Jong JG, van Vloten JP, Gerpe MCR, Santry LA, Wootton SK. Truncation of the enzootic nasal tumor virus envelope protein cytoplasmic tail increases Env-mediated fusion and infectivity. J Gen Virol 2017; 98:108-120. [PMID: 27902399 DOI: 10.1099/jgv.0.000654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzootic nasal tumor virus (ENTV) and Jaagsiekte sheep retrovirus (JSRV) are highly related ovine betaretroviruses that induce nasal and lung tumours in small ruminants, respectively. While the ENTV and JSRV envelope (Env) glycoproteins mediate virus entry using the same cellular receptor, the glycosylphosphatidylinositol-linked protein hyaluronoglucosaminidase, ENTV Env pseudovirions mediate entry into cells from a much more restricted range of species than do JSRV Env pseudovirions. Unlike JSRV Env, ENTV Env does not induce cell fusion at pH 5.0 or above, but rather requires a much lower pH (4.0-4.5) for fusion to occur. The cytoplasmic tail of retroviral envelope proteins is a key modulator of envelope-mediated fusion and pseudotype efficiency, especially in the context of virions composed of heterologous Gag proteins. Here we report that progressive truncation of the ENTV Env cytoplasmic tail improves transduction efficiency of pseudotyped retroviral vectors and that complete truncation of the ENTV Env cytoplasmic tail increases transduction efficiency to wild-type JSRV Env levels by increasing fusogenicity without affecting sensitivity to inhibition by lysosomotropic agents, subcellular localization or efficiency of inclusion into virions. Truncation of the cytoplasmic domain of ENTV Env resulted in a significant advantage in viral entry into all cell types tested, including foetal ovine lung and nasal cells. Taken together, we demonstrate that the cytoplasmic tail modulates the fusion activity of the ENTV Env protein and that truncation of this region enhances Eenv-mediated entry into target cells.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jondavid G de Jong
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K Wootton
- Present address: McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Vif Proteins from Diverse Human Immunodeficiency Virus/Simian Immunodeficiency Virus Lineages Have Distinct Binding Sites in A3C. J Virol 2016; 90:10193-10208. [PMID: 27581978 DOI: 10.1128/jvi.01497-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Lentiviruses have evolved the Vif protein to counteract APOBEC3 (A3) restriction factors by targeting them for proteasomal degradation. Previous studies have identified important residues in the interface of human immunodeficiency virus type 1 (HIV-1) Vif and human APOBEC3C (hA3C) or human APOBEC3F (hA3F). However, the interaction between primate A3C proteins and HIV-1 Vif or natural HIV-1 Vif variants is still poorly understood. Here, we report that HIV-1 Vif is inactive against A3Cs of rhesus macaques (rhA3C), sooty mangabey monkeys (smmA3C), and African green monkeys (agmA3C), while HIV-2, African green monkey simian immunodeficiency virus (SIVagm), and SIVmac Vif proteins efficiently mediate the depletion of all tested A3Cs. We identified that residues N/H130 and Q133 in rhA3C and smmA3C are determinants for this HIV-1 Vif-triggered counteraction. We also found that the HIV-1 Vif interaction sites in helix 4 of hA3C and hA3F differ. Vif alleles from diverse HIV-1 subtypes were tested for degradation activities related to hA3C. The subtype F-1 Vif was identified to be inactive for degradation of hA3C and hA3F. The residues that determined F-1 Vif inactivity in the degradation of A3C/A3F were located in the C-terminal region (K167 and D182). Structural analysis of F-1 Vif revealed that impairing the internal salt bridge of E171-K167 restored reduction capacities to A3C/A3F. Furthermore, we found that D101 could also form an internal interaction with K167. Replacing D101 with glycine and R167 with lysine in NL4-3 Vif impaired its counteractivity to A3F and A3C. This finding indicates that internal interactions outside the A3 binding region in HIV-1 Vif influence the capacity to induce degradation of A3C/A3F. IMPORTANCE The APOBEC3 restriction factors can serve as potential barriers to lentiviral cross-species transmissions. Vif proteins from lentiviruses counteract APOBEC3 by proteasomal degradation. In this study, we found that monkey-derived A3C, rhA3C and smmA3C, were resistant to HIV-1 Vif. This was determined by A3C residues N/H130 and Q133. However, HIV-2, SIVagm, and SIVmac Vif proteins were found to be able to mediate the depletion of all tested primate A3C proteins. In addition, we identified a natural HIV-1 Vif (F-1 Vif) that was inactive in the degradation of hA3C/hA3F. Here, we provide for the first time a model that explains how an internal salt bridge of E171-K167-D101 influences Vif-mediated degradation of hA3C/hA3F. This finding provides a novel way to develop HIV-1 inhibitors by targeting the internal interactions of the Vif protein.
Collapse
|
18
|
Zhang Z, Gu Q, Jaguva Vasudevan AA, Hain A, Kloke BP, Hasheminasab S, Mulnaes D, Sato K, Cichutek K, Häussinger D, Bravo IG, Smits SHJ, Gohlke H, Münk C. Determinants of FIV and HIV Vif sensitivity of feline APOBEC3 restriction factors. Retrovirology 2016; 13:46. [PMID: 27368163 PMCID: PMC4930625 DOI: 10.1186/s12977-016-0274-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Background Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. Results To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human–feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif–A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. Conclusions Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0274-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeli Zhang
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Qinyong Gu
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Björn-Philipp Kloke
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.,BioNTech RNA Pharmaceuticals GmbH, An der Goldgrube 12, 55131, Mainz, Germany
| | - Sascha Hasheminasab
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Daniel Mulnaes
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, 6068507, Japan.,CREST, Japan Science and Technology Agency, Saitama, 3220012, Japan
| | - Klaus Cichutek
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Ignacio G Bravo
- MIVEGEC (UMR CNRS 5290, IRD 224, UM), National Center of Scientific Research (CNRS), 34394, Montpellier, France
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Building 23.12.U1.82, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
19
|
Francis AC, Marin M, Shi J, Aiken C, Melikyan GB. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells. PLoS Pathog 2016; 12:e1005709. [PMID: 27322072 PMCID: PMC4913920 DOI: 10.1371/journal.ppat.1005709] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process. HIV-1 genome and key enzymes required for establishing productive infection are encased in a cone-shaped shell made of the capsid protein (CA). After being released into the cytosol of target cells, the cone-shaped core complex undergoes a series of carefully orchestrated steps, including uncoating (loss of CA). HIV-1 uncoating remains poorly understood, due in part to the lack of direct assays enabling studies of this process in living cells. Here, we introduce a novel strategy for labeling the HIV-1 capsid without genetically modifying the CA protein. We designed a novel fluorescent cyclophilin A construct that binds the capsid with an extremely high avidity and (1) efficiently incorporates into virions without compromising infectivity; (2) remains bound to cores after viral fusion; and (3) is lost from post-fusion cores along with CA. The novel imaging assay provides new insights into the kinetics and spatial distribution of HIV-1 uncoating in living cells.
Collapse
Affiliation(s)
- Ashwanth C Francis
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center. Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center. Nashville, Tennessee, United States of America
| | - Gregory B Melikyan
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America.,Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
20
|
Marino D, Perković M, Hain A, Jaguva Vasudevan AA, Hofmann H, Hanschmann KM, Mühlebach MD, Schumann GG, König R, Cichutek K, Häussinger D, Münk C. APOBEC4 Enhances the Replication of HIV-1. PLoS One 2016; 11:e0155422. [PMID: 27249646 PMCID: PMC4889046 DOI: 10.1371/journal.pone.0155422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/28/2016] [Indexed: 12/24/2022] Open
Abstract
APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters.
Collapse
Affiliation(s)
- Daniela Marino
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Mario Perković
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Anika Hain
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ananda A. Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Henning Hofmann
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | | | - Michael D. Mühlebach
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- Product Testing of Immunological Medicinal Products for Veterinary Uses, Paul-Ehrlich-Institute, Langen, Germany
| | - Gerald G. Schumann
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, Langen, Germany
- Sanford Burnham Prebys Medical Discovery Institute, Immunity and Pathogenesis Program, La Jolla, California, United States of America
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology, and Infectiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail:
| |
Collapse
|
21
|
Direct Visualization of HIV-1 Replication Intermediates Shows that Capsid and CPSF6 Modulate HIV-1 Intra-nuclear Invasion and Integration. Cell Rep 2015; 13:1717-31. [PMID: 26586435 DOI: 10.1016/j.celrep.2015.10.036] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/31/2015] [Accepted: 10/11/2015] [Indexed: 11/23/2022] Open
Abstract
Direct visualization of HIV-1 replication would improve our understanding of the viral life cycle. We adapted established technology and reagents to develop an imaging approach, ViewHIV, which allows evaluation of early HIV-1 replication intermediates, from reverse transcription to integration. These methods permit the simultaneous evaluation of both the capsid protein (CA) and viral DNA genome (vDNA) components of HIV-1 in both the cytosol and nuclei of single cells. ViewHIV is relatively rapid, uses readily available reagents in combination with standard confocal microscopy, and can be done with virtually any HIV-1 strain and permissive cell lines or primary cells. Using ViewHIV, we find that CA enters the nucleus and associates with vDNA in both transformed and primary cells. We also find that CA's interaction with the host polyadenylation factor, CPSF6, enhances nuclear entry and potentiates HIV-1's depth of nuclear invasion, potentially aiding the virus's integration into gene-dense regions.
Collapse
|
22
|
Pham S, Tabarin T, Garvey M, Pade C, Rossy J, Monaghan P, Hyatt A, Böcking T, Leis A, Gaus K, Mak J. Cryo-electron microscopy and single molecule fluorescent microscopy detect CD4 receptor induced HIV size expansion prior to cell entry. Virology 2015; 486:121-33. [PMID: 26432024 DOI: 10.1016/j.virol.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
Abstract
Viruses are often thought to have static structure, and they only remodel after the viruses have entered target cells. Here, we detected a size expansion of virus particles prior to viral entry using cryo-electron microscopy (cryo-EM) and single molecule fluorescence imaging. HIV expanded both under cell-free conditions with soluble receptor CD4 (sCD4) targeting the CD4 binding site on the HIV-1 envelope protein (Env) and when HIV binds to receptor on cellular membrane. We have shown that the HIV Env is needed to facilitate receptor induced virus size expansions, showing that the 'lynchpin' for size expansion is highly specific. We demonstrate that the size expansion required maturation of HIV and an internal capsid core with wild type stability, suggesting that different HIV compartments are linked and are involved in remodelling. Our work reveals a previously unknown event in HIV entry, and we propose that this pre-entry priming process enables HIV particles to facilitate the subsequent steps in infection.
Collapse
Affiliation(s)
- Son Pham
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Thibault Tabarin
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Megan Garvey
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Corinna Pade
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Jérémie Rossy
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Paul Monaghan
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Alex Hyatt
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Till Böcking
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia
| | - Andrew Leis
- CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia
| | - Katharina Gaus
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, New South Wales 3220, Australia.
| | - Johnson Mak
- Deakin University, Victoria 3216, Australia; CSIRO Australian Animal Health Laboratory, Victoria 3220, Australia.
| |
Collapse
|
23
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
24
|
Abstract
UNLABELLED Following entry into the target cell, human immunodeficiency virus type 1 (HIV-1) must reverse transcribe its RNA genome to DNA and traffic to the nuclear envelope, where the viral genome is translocated into the nucleus for subsequent integration into the host cell chromosome. During this time, the viral core, which houses the genome, undergoes a poorly understood process of disassembly, known as uncoating. Collectively, many studies suggest that uncoating is tightly regulated to allow nuclear import of the genome while minimizing the exposure of the newly synthesized DNA to cytosolic DNA sensors. However, whether host cellular proteins facilitate this process remains poorly understood. Here we report that intact microtubules facilitate HIV-1 uncoating in target cells. Disruption of microtubules with nocodazole substantially delays HIV-1 uncoating, as revealed with three different assay systems. This defect in uncoating did not correlate with defective reverse transcription at early times postinfection, demonstrating that microtubule-facilitated uncoating is distinct from the previously reported role of viral reverse transcription in the uncoating process. We also find that pharmacological or small interfering RNA (siRNA)-mediated inhibition of cytoplasmic dynein or the kinesin 1 heavy chain KIF5B delays uncoating, providing detailed insight into how microtubules facilitate the uncoating process. These studies reveal a previously unappreciated role for microtubules and microtubule motor function in HIV-1 uncoating, establishing a functional link between viral trafficking and uncoating. Targeted disruption of the capsid motor interaction may reveal novel mechanisms of inhibition of viral infection or provide opportunities to activate cytoplasmic antiviral responses directed against capsid or viral DNA. IMPORTANCE During HIV-1 infection, fusion of viral and target cell membranes dispenses the viral ribonucleoprotein complex into the cytoplasm of target cells. During this time, the virus must reverse transcribe its RNA genome, traffic from the location of fusion to the nuclear membrane, and undergo the process of uncoating, whereby the viral capsid core disassembles to allow the subsequent nuclear import of the viral genome. Numerous cellular restriction factors target the viral capsid, suggesting that perturbation of the uncoating process represents an excellent antiviral target. However, this uncoating process, and the cellular factors that facilitate uncoating, remains poorly understood. The main observation of this study is that normal uncoating requires intact microtubules and is facilitated by dynein and kinesin motors. Targeting these factors may either directly inhibit infection or delay it enough to trigger mediators of intrinsic immunity that recognize cytoplasmic capsid or DNA and subsequently induce an antiviral state in these cells.
Collapse
|
25
|
Widera M, Hillebrand F, Erkelenz S, Vasudevan AAJ, Münk C, Schaal H. A functional conserved intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction. Retrovirology 2014; 11:72. [PMID: 25169827 PMCID: PMC4163160 DOI: 10.1186/s12977-014-0072-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
Background The HIV-1 accessory proteins, Viral Infectivity Factor (Vif) and the pleiotropic Viral Protein R (Vpr) are important for efficient virus replication. While in non-permissive cells an appropriate amount of Vif is critical to counteract APOBEC3G-mediated host restriction, the Vpr-induced G2 arrest sets the stage for highest transcriptional activity of the HIV-1 long terminal repeat. Both vif and vpr mRNAs harbor their translational start codons within the intron bordering the non-coding leader exons 2 and 3, respectively. Intron retention relies on functional cross-exon interactions between splice sites A1 and D2 (for vif mRNA) and A2 and D3 (for vpr mRNA). More precisely, prior to the catalytic step of splicing, which would lead to inclusion of the non-coding leader exons, binding of U1 snRNP to the 5' splice site (5'ss) facilitates recognition of the 3'ss by U2 snRNP and also supports formation of vif and vpr mRNA. Results We identified a G run localized deep in the vpr AUG containing intron 3 (GI3-2), which was critical for balanced splicing of both vif and vpr non-coding leader exons. Inactivation of GI3-2 resulted in excessive exon 3 splicing as well as exon-definition mediated vpr mRNA formation. However, in an apparently mutually exclusive manner this was incompatible with recognition of upstream exon 2 and vif mRNA processing. As a consequence, inactivation of GI3-2 led to accumulation of Vpr protein with a concomitant reduction in Vif protein. We further demonstrate that preventing hnRNP binding to intron 3 by GI3-2 mutation diminished levels of vif mRNA. In APOBEC3G-expressing but not in APOBEC3G-deficient T cell lines, mutation of GI3-2 led to a considerable replication defect. Moreover, in HIV-1 isolates carrying an inactivating mutation in GI3-2, we identified an adjacent G-rich sequence (GI3-1), which was able to substitute for the inactivated GI3-2. Conclusions The functionally conserved intronic G run in HIV-1 intron 3 plays a major role in the apparently mutually exclusive exon selection of vif and vpr leader exons and hence in vif and vpr mRNA formation. The competition between these exons determines the ability to evade APOBEC3G-mediated antiviral effects due to optimal vif expression. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0072-1) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Jennelle L, Hunegnaw R, Dubrovsky L, Pushkarsky T, Fitzgerald ML, Sviridov D, Popratiloff A, Brichacek B, Bukrinsky M. HIV-1 protein Nef inhibits activity of ATP-binding cassette transporter A1 by targeting endoplasmic reticulum chaperone calnexin. J Biol Chem 2014; 289:28870-84. [PMID: 25170080 DOI: 10.1074/jbc.m114.583591] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected patients are at increased risk of developing atherosclerosis, in part due to an altered high density lipoprotein profile exacerbated by down-modulation and impairment of ATP-binding cassette transporter A1 (ABCA1) activity by the HIV-1 protein Nef. However, the mechanisms of this Nef effect remain unknown. Here, we show that Nef interacts with an endoplasmic reticulum chaperone calnexin, which regulates folding and maturation of glycosylated proteins. Nef disrupted interaction between calnexin and ABCA1 but increased affinity and enhanced interaction of calnexin with HIV-1 gp160. The Nef mutant that did not bind to calnexin did not affect the calnexin-ABCA1 interaction. Interaction with calnexin was essential for functionality of ABCA1, as knockdown of calnexin blocked the ABCA1 exit from the endoplasmic reticulum, reduced ABCA1 abundance, and inhibited cholesterol efflux; the same effects were observed after Nef overexpression. However, the effects of calnexin knockdown and Nef on cholesterol efflux were not additive; in fact, the combined effect of these two factors together did not differ significantly from the effect of calnexin knockdown alone. Interestingly, gp160 and ABCA1 interacted with calnexin differently; although gp160 binding to calnexin was dependent on glycosylation, glycosylation was of little importance for the interaction between ABCA1 and calnexin. Thus, Nef regulates the activity of calnexin to stimulate its interaction with gp160 at the expense of ABCA1. This study identifies a mechanism for Nef-dependent inactivation of ABCA1 and dysregulation of cholesterol metabolism.
Collapse
Affiliation(s)
- Lucas Jennelle
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Ruth Hunegnaw
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Larisa Dubrovsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Tatiana Pushkarsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael L Fitzgerald
- the Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Dmitri Sviridov
- the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia, and
| | - Anastas Popratiloff
- the George Washington Center for Microscopy and Image Analysis, Office of VP for Research, Washington, D. C. 20037
| | - Beda Brichacek
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037
| | - Michael Bukrinsky
- From the George Washington University School of Medicine and Health Sciences, Washington, D. C. 20037,
| |
Collapse
|
27
|
Reinhard C, Bottinelli D, Kim B, Luban J. Vpx rescue of HIV-1 from the antiviral state in mature dendritic cells is independent of the intracellular deoxynucleotide concentration. Retrovirology 2014; 11:12. [PMID: 24485168 PMCID: PMC3923257 DOI: 10.1186/1742-4690-11-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/28/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SIVMAC/HIV-2 Vpx recruits the CUL4A-DCAF1 E3 ubiquitin ligase complex to degrade the deoxynucleotide hydrolase SAMHD1. This increases the concentration of deoxynucleotides available for reverse transcription in myeloid cells and resting T cells. Accordingly, transduction of these cells by SIVMAC requires Vpx. Virus-like particles containing SIVMAC Vpx (Vpx-VLPs) also increase the efficiency of HIV-1 transduction in these cells, and rescue transduction by HIV-1, but not SIVMAC, in mature monocyte-derived dendritic cells (MDDCs). Differences in Vpx mechanism noted at that time, along with recent data suggesting that SAMHD1 gains additional restriction capabilities in the presence of type I IFN prompted further examination of the role of Vpx and SAMHD1 in HIV-1 transduction of mature MDDCs. RESULTS When challenged with Vpx-VLPs, SAMHD1 was degraded in MDDCs even after cells had been matured with LPS, though there was no increase in deoxynucleotide levels. Steady-state levels of HIV-1 late reverse transcription products in mature MDDCs were increased to the same extent by either Vpx-VLPs or exogenous nucleosides. In contrast, only Vpx-VLPs increased the levels of 2-LTR circles and proviral DNA in myeloid cells. These results demonstrate that exogenous nucleosides and Vpx-VLPs both increase the levels of HIV-1 cDNA in myeloid cells, but only Vpx-VLPs rescue 2-LTR circles and proviral DNA in myeloid cells with a previously established antiviral state. Finally, since trans-acting Vpx-VLPs provide long-lasting rescue of HIV-1 vector transduction in the face of the antiviral state, and exogenous nucleosides do not, exogenous nucleosides were used to achieve efficient transduction of MDDCs by vectors that stably encode Vprs and Vpxs from a collection of primate lentiviruses. Vpr from SIVDEB or SIVMUS, Vpx from SIVMAC251 or HIV-2, but not SIVRCM, degraded endogenous SAMHD1, increased steady-state levels of HIV-1 cDNA, and rescued HIV-1 from the antiviral state in MDDCs. CONCLUSION Inhibition of deoxynucleotide hydrolysis by promoting SAMHD1 degradation is not the only mechanism by which Vpx rescues HIV-1 in MDDCs from the antiviral state. Vpx has an additional effect on HIV-1 transduction of these cells that occurs after completion of reverse transcription and acts independently of deoxynucleotide levels.
Collapse
Affiliation(s)
| | | | | | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, Geneva 4 CH-1211, Switzerland.
| |
Collapse
|
28
|
Novis CL, Archin NM, Buzon MJ, Verdin E, Round JL, Lichterfeld M, Margolis DM, Planelles V, Bosque A. Reactivation of latent HIV-1 in central memory CD4⁺ T cells through TLR-1/2 stimulation. Retrovirology 2013; 10:119. [PMID: 24156240 PMCID: PMC3826617 DOI: 10.1186/1742-4690-10-119] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 10/10/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are crucial for recognition of pathogen-associated molecular patterns by cells of the innate immune system. TLRs are present and functional in CD4⁺ T cells. Memory CD4⁺ T cells, predominantly central memory cells (TCM), constitute the main reservoir of latent HIV-1. However, how TLR ligands affect the quiescence of latent HIV within central memory CD4⁺ T cells has not been studied. RESULTS We evaluated the ability of a broad panel of TLR agonists to reactivate latent HIV-1. The TLR-1/2 agonist Pam3CSK4 leads to viral reactivation of quiescent HIV in a model of latency based on cultured TCM and in resting CD4⁺ T cells isolated from aviremic patients. In addition, we investigated the signaling pathway associated with Pam3CSK4 involved in HIV-1 reactivation. We show that the transcription factors NFκB, NFAT and AP-1 cooperate to induce viral reactivation downstream of TLR-1/2 stimulation. Furthermore, increasing levels of cyclin T1 is not required for TLR-mediated viral reactivation, but induction of viral expression requires activated pTEFb. Finally, Pam3CSK4 reactivates latent HIV-1 in the absence of T cell activation or proliferation, in contrast to antigen stimulation. CONCLUSIONS Our findings suggest that the signaling through TLR-1/2 pathway via Pam3CSK4 or other reagents should be explored as an anti-latency strategy either alone or in combination with other anti-latency drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alberto Bosque
- Division of Microbiology and Immunology, Department of Pathology, University Of Utah School of Medicine, Emma Eccles Jones Medical Research Building, Salt Lake City, UT 84112, USA.
| |
Collapse
|
29
|
Xu H, Franks T, Gibson G, Huber K, Rahm N, Strambio De Castillia C, Luban J, Aiken C, Watkins S, Sluis-Cremer N, Ambrose Z. Evidence for biphasic uncoating during HIV-1 infection from a novel imaging assay. Retrovirology 2013; 10:70. [PMID: 23835323 PMCID: PMC3716918 DOI: 10.1186/1742-4690-10-70] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uncoating of the HIV-1 core plays a critical role during early post-fusion stages of infection but is poorly understood. Microscopy-based assays are unable to easily distinguish between intact and partially uncoated viral cores. RESULTS In this study, we used 5-ethynyl uridine (EU) to label viral-associated RNA during HIV production. At early time points after infection with EU-labeled virions, the viral-associated RNA was stained with an EU-specific dye and was detected by confocal microscopy together with viral proteins. We observed that detection of the viral-associated RNA was specific for EU-labeled virions, was detected only after viral fusion with target cells, and occurred after an initial opening of the core. In vitro staining of cores showed that the opening of the core allowed the small molecule dye, but not RNase A or antibodies, inside. Also, staining of the viral-associated RNA, which is co-localized with nucleocapsid, decays over time after viral infection. The decay rate of RNA staining is dependent on capsid (CA) stability, which was altered by CA mutations or a small molecule inducer of HIV-1 uncoating. While the staining of EU-labeled RNA was not affected by inhibition of reverse transcription, the kinetics of core opening of different CA mutants correlated with initiation of reverse transcription. Analysis of the E45A CA mutant suggests that initial core opening is independent of complete capsid disassembly. CONCLUSIONS Taken together, our results establish a novel RNA accessibility-based assay that detects an early event in HIV-1 uncoating and can be used to further define this process.
Collapse
Affiliation(s)
- Hongzhan Xu
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prototype foamy virus Bet impairs the dimerization and cytosolic solubility of human APOBEC3G. J Virol 2013; 87:9030-40. [PMID: 23760237 DOI: 10.1128/jvi.03385-12] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular cytidine deaminases from the APOBEC3 family are potent restriction factors that are able to block the replication of retroviruses. Consequently, retroviruses have evolved a variety of different mechanisms to counteract inhibition by APOBEC3 proteins. Lentiviruses such as human immunodeficiency virus (HIV) express Vif, which interferes with APOBEC3 proteins by targeting these restriction factors for proteasomal degradation, hence blocking their ability to access the reverse transcriptase complex in the virions. Other retroviruses use less-well-characterized mechanisms to escape the APOBEC3-mediated cellular defense. Here we show that the prototype foamy virus Bet protein can protect foamy viruses and an unrelated simian immunodeficiency virus against human APOBEC3G (A3G). In our system, Bet binds to A3G and prevents its encapsidation without inducing its degradation. Bet failed to coimmunoprecipitate with A3G mutants unable to form homodimers and dramatically reduced the recovery of A3G proteins from soluble cytoplasmic cell fractions. The Bet-A3G interaction is probably a direct binding interaction and seems to be independent of RNA. Together, these data suggest a novel model whereby Bet uses two possibly complementary mechanisms to counteract A3G: (i) Bet prevents encapsidation of A3G by blocking A3G dimerization, and (ii) Bet sequesters A3G in immobile complexes, impairing its ability to interact with nascent virions.
Collapse
|
31
|
Ohmine S, Singh RD, Marks DL, Meyer MA, Pagano RE, Ikeda Y. Viral attachment induces rapid recruitment of an innate immune sensor (TRIM5α) to the plasma membrane. J Innate Immun 2013; 5:414-24. [PMID: 23548691 DOI: 10.1159/000346963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 01/07/2013] [Indexed: 11/19/2022] Open
Abstract
TRIM5α (tripartite motif 5α) acts as a pattern recognition receptor specific for the retrovirus capsid lattice and blocks infection by HIV-1 immediately after entry. However, the precise mechanisms underlying this rapid recognition of viral components remain elusive. Here, we analyzed the influence of viral exposure on TRIM5α. Total internal reflection fluorescence microscopy and lipid flotation assays revealed rapid recruitment of a TRIM5α subpopulation to the plasma membrane (PM) upon exposure to vesicular stomatitis virus-G-pseudotyped HIV-1 viral-like particles (VLPs), but not to envelope (Env)-less HIV-1 VLPs. TRIM5α signals were frequently colocalized with those of HIV-1 capsid at the PM. Exposure to HIV-1 Env-pseudotyped HIV-1 vectors also triggered translocation of endogenous TRIM5α to lipid microdomains within human T cells. Similarly, clustering of lipid microdomains by a glycosphingolipid stereoisomer resulted in rapid TRIM5α recruitment to the PM. Of note, recruitment of endogenous rhesus TRIM5α to the PM prior to HIV-1 infection significantly increased the potency of viral restriction. Our data therefore suggest the importance of TRIM5α recruitment to the PM for TRIM5α-mediated innate immune sensing and restriction of retroviral infection.
Collapse
Affiliation(s)
- Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Etschel JK, Hückelhoven AG, Hofmann C, Zitzelsberger K, Maurer K, Bergmann S, Mueller-Schmucker SM, Wittmann J, Spriewald BM, Dörrie J, Schaft N, Harrer T. HIV-1 mRNA electroporation of PBMC: A simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients. J Immunol Methods 2012; 380:40-55. [DOI: 10.1016/j.jim.2012.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
|
33
|
Pereira CF, Rossy J, Owen DM, Mak J, Gaus K. HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection. Virol J 2012; 9:84. [PMID: 22551453 PMCID: PMC3409066 DOI: 10.1186/1743-422x-9-84] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/02/2012] [Indexed: 01/01/2023] Open
Abstract
Background The visualization of viral proteins has been hindered by the resolution limit of conventional fluorescent microscopes, as the dimension of any single fluorescent signal is often greater than most virion particles. Super-resolution microscopy has the potential to unveil the distribution of proteins at the resolution approaching electron microscopy without relying on morphological features of existing characteristics of the biological specimen that are needed in EM. Results Using direct stochastic optical reconstruction microscopy (dSTORM) to achieve a lateral resolution of 15–20 nm, we quantified the 2-D molecular distribution of the major structural proteins of the infectious human immunodeficiency virus type 1 (HIV-1) before and after infection of lymphoid cells. We determined that the HIV-1 matrix and capsid proteins undergo restructuring soon after HIV-1 infection. Conclusions This study provides the proof-of-concept for the use of dSTORM to visualize the changes in the molecular distribution of viral proteins during an infection.
Collapse
|
34
|
Sanders-Beer BE, Eschricht M, Seifried J, Hirsch VM, Allan JS, Norley S. Characterization of a monoclonal anti-capsid antibody that cross-reacts with three major primate lentivirus lineages. Virology 2011; 422:402-12. [PMID: 22153299 DOI: 10.1016/j.virol.2011.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/01/2011] [Accepted: 11/04/2011] [Indexed: 12/29/2022]
Abstract
Mouse monoclonal antibodies with varying specificities against the Gag capsid of simian and human immunodeficiency virus (SIV/HIV) were generated by immunizing mice with whole inactivated SIVagmTYO-1. Monoclonal antibody AG3.0 showed the broadest reactivity recognizing the Gag capsid protein (p24-27) and Gag precursors p38, p55, and p150 of HIV-1, HIV-2, SIVmac, and SIVagm. Using overlapping peptides, the AG3.0 epitope was mapped in capsid to a sequence (SPRTLNA) conserved among HIV-1, HIV-2, SIVrcm, SIVsm/mac, and SIVagm related viruses. Because of its broad cross-reactivity, AG3.0 was used to develop an antigen capture assay with a lower detection limit of 100 pg/ml HIV-1 Gag p24. Interestingly, AG3.0 was found to have a faster binding on/off rate for SIVagmVer and SIVmac Gag than for SIVagmSab Gag, possibly due to differences outside the SPRTLNA motif. In addition, the ribonucleic acid (RNA) coding for AG3.0 was sequenced to facilitate the development of humanized monoclonal antibodies.
Collapse
|
35
|
Bosque A, Famiglietti M, Weyrich AS, Goulston C, Planelles V. Homeostatic proliferation fails to efficiently reactivate HIV-1 latently infected central memory CD4+ T cells. PLoS Pathog 2011; 7:e1002288. [PMID: 21998586 PMCID: PMC3188522 DOI: 10.1371/journal.ppat.1002288] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
Homeostatic proliferation ensures the longevity of central memory T-cells by inducing cell proliferation in the absence of cellular differentiation or activation. This process is governed mainly by IL-7. Central memory T-cells can also be stimulated via engagement of the T-cell receptor, leading to cell proliferation but also activation and differentiation. Using an in vitro model of HIV-1 latency, we have examined in detail the effects of homeostatic proliferation on latently infected central memory T cells. We have also used antigenic stimulation via anti-CD3/anti-CD28 antibodies and established a comparison with a homeostatic proliferation stimulus, to evaluate potential differences in how either treatment affects the dynamics of latent virus populations. First, we show that homeostatic proliferation, as induced by a combination of IL-2 plus IL-7, leads to partial reactivation of latent HIV-1 but is unable to reduce the size of the reservoir in vitro. Second, latently infected cells are able to homeostatically proliferate in the absence of viral reactivation or cell differentiation. These results indicate that IL-2 plus IL-7 may induce a detrimental effect by favoring the maintenance of the latent HIV-1 reservoir. On the other hand, antigenic stimulation efficiently reactivated latent HIV-1 in cultured central memory cells and led to depletion of the latently infected cells via virus-induced cell death. HIV-1 latently infected cells are considered the last barrier towards viral eradication and cure. However, the low number of latently infected cells found in patients makes studies extremely difficult. Here, using a model of primary CD4 T-cells we study the behavior of latently infected central memory T cells when undergoing homeostatic proliferation. Homeostatic proliferation ensures the longevity of the central memory population, as it does not involve cellular differentiation. In the context of HIV infection, IL-7 has been reported to induce viral outgrowth from latently infected cells in different cellular models. However, those studies did not examine the relationship between cell proliferation and viral reactivation. We here report that the strong effect of IL-7 on the proliferation of memory cells counteracts this cytokine's modest ability to purge latent viruses. Thus, central memory cells are subject to homeostatic proliferation, a physiological effect that may contribute to the longevity of the latent reservoir in HIV-1 infected patients.
Collapse
Affiliation(s)
- Alberto Bosque
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Marylinda Famiglietti
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- International PhD School in Molecular Medicine, Basic and Applied Immunology Section, Vita-Salute San Raffaele University, Milano, Italy
| | - Andrew S. Weyrich
- Program in Human Molecular Biology and Genetics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Claudia Goulston
- Division of Infectious Diseases, Department of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
36
|
Pertel T, Reinhard C, Luban J. Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon. Retrovirology 2011; 8:49. [PMID: 21696578 PMCID: PMC3130655 DOI: 10.1186/1742-4690-8-49] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 06/22/2011] [Indexed: 01/08/2023] Open
Abstract
Background Vpx is a virion-associated protein encoded by SIVSM, a lentivirus endemic to the West African sooty mangabey (Cercocebus atys). HIV-2 and SIVMAC, zoonoses resulting from SIVSM transmission to humans or Asian rhesus macaques (Macaca mulatta), also encode Vpx. In myeloid cells, Vpx promotes reverse transcription and transduction by these viruses. This activity correlates with Vpx binding to DCAF1 (VPRBP) and association with the DDB1/RBX1/CUL4A E3 ubiquitin ligase complex. When delivered experimentally to myeloid cells using VSV G-pseudotyped virus-like particles (VLPs), Vpx promotes reverse transcription of retroviruses that do not normally encode Vpx. Results Here we show that Vpx has the extraordinary ability to completely rescue HIV-1 transduction of human monocyte-derived dendritic cells (MDDCs) from the potent antiviral state established by prior treatment with exogenous type 1 interferon (IFN). The magnitude of rescue was up to 1,000-fold, depending on the blood donor, and was also observed after induction of endogenous IFN and IFN-stimulated genes (ISGs) by LPS, poly(I:C), or poly(dA:dT). The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA levels for ISGs, or of cell surface markers for MDDC differentiation, was not detected. Vpx did not rescue HIV-2 or SIVMAC transduction from the antiviral state, even in the presence of SIVMAC or HIV-2 VLPs bearing additional Vpx, or in the presence of HIV-1 VLPs bearing all accessory genes. In contrast to the effect of Vpx on transduction of untreated MDDCs, HIV-1 rescue from the antiviral state was not dependent upon Vpx interaction with DCAF1 or on the presence of DCAF1 within the MDDC target cells. Additionally, although Vpx increased the level of HIV-1 reverse transcripts in MDDCs to the same extent whether or not MDDCs were treated with IFN or LPS, Vpx rescued a block specific to the antiviral state that occurred after HIV-1 cDNA penetrated the nucleus. Conclusion Vpx provides a tool for the characterization of a potent, new HIV-1 restriction activity, which acts in the nucleus of type 1 IFN-treated dendritic cells.
Collapse
Affiliation(s)
- Thomas Pertel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
37
|
Pereira CF, Ellenberg PC, Jones KL, Fernandez TL, Smyth RP, Hawkes DJ, Hijnen M, Vivet-Boudou V, Marquet R, Johnson I, Mak J. Labeling of multiple HIV-1 proteins with the biarsenical-tetracysteine system. PLoS One 2011; 6:e17016. [PMID: 21347302 PMCID: PMC3037950 DOI: 10.1371/journal.pone.0017016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/19/2011] [Indexed: 12/01/2022] Open
Abstract
Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.
Collapse
Affiliation(s)
- Cândida F. Pereira
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Monash Micro Imaging, Monash University, Clayton, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Paula C. Ellenberg
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Kate L. Jones
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Tara L. Fernandez
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Redmond P. Smyth
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - David J. Hawkes
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
| | - Marcel Hijnen
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Valérie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, Strasbourg, France
| | - Iain Johnson
- Life Technologies Corporation, Eugene, Oregon, United States of America
| | - Johnson Mak
- Centre for Virology, Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
38
|
Ohmine S, Sakuma R, Sakuma T, Thatava T, Takeuchi H, Ikeda Y. The antiviral spectra of TRIM5α orthologues and human TRIM family proteins against lentiviral production. PLoS One 2011; 6:e16121. [PMID: 21264255 PMCID: PMC3021539 DOI: 10.1371/journal.pone.0016121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
Background Rhesus monkey TRIM5α (TRIM5αrh) recognizes the incoming HIV-1 core through its C-terminal B30.2(PRYSPRY) domain and promotes its premature disassembly or degradation before reverse transcription. Previously, we have shown that TRIM5αrh blocks HIV-1 production through the N-terminal RBCC domain by the recognition of Gag polyproteins. Although all TRIM family proteins have RBCC domains, it remains elusive whether they possess similar late-restriction activities. Methodology/Principal Findings We examined the antiviral spectra of TRIM5α orthologues and human TRIM family members which have a genetic locus proximal to human TRIM5α (TRIM5αhu), against primate lentiviral production. When HIV-1 virus-like particles (VLPs) were generated in the presence of TRIM5α proteins, rhesus, African green and cynomolgus monkey TRIM5α (TRIM5αag and TRIM5αcy), but not TRIM5αhu, were efficiently incorporated into VLPs, suggesting an interaction between HIV-1 Gag and TRIM5α proteins. TRIM5αrh potently restricted the viral production of HIV-1 groups M and O and HIV-2, but not simian lentiviruses including SIVMAC1A11, SIVAGMTan-1 or SIVAGMSAB-1. TRIM5αhu did not show notable late restriction activities against these lentiviruses. TRIM5αag and TRIM5αcy showed intermediate restriction phenotypes against HIV-1 and HIV-2, but showed no restriction activity against SIV production. A series of chimeric TRIM5α constructs indicated that the N-terminal region of TRIM5αag and TRIM5αcy are essential for the late restriction activity, while the C-terminal region of TRIM5αcy negatively regulates the late restriction activity against HIV-1. When select human TRIM family proteins were examined, TRIM21 and 22 were efficiently incorporated into HIV-1 VLPs, while only TRIM22 reduced HIV-1 titers up to 5-fold. The antiviral activities and encapsidation efficiencies did not correlate with their relative expression levels in the producer cells. Conclusions/Significance Our results demonstrated the variations in the late restriction activities among closely related TRIM5α orthologues and a subset of human TRIM family proteins, providing further insights into the late restriction activities of TRIM proteins.
Collapse
Affiliation(s)
- Seiga Ohmine
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ryuta Sakuma
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Toshie Sakuma
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tayaramma Thatava
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hiroaki Takeuchi
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yasuhiro Ikeda
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
39
|
Wissing S, Galloway NLK, Greene WC. HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors. Mol Aspects Med 2010; 31:383-97. [PMID: 20538015 DOI: 10.1016/j.mam.2010.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes.
Collapse
Affiliation(s)
- Silke Wissing
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
40
|
Casartelli N, Guivel-Benhassine F, Bouziat R, Brandler S, Schwartz O, Moris A. The antiviral factor APOBEC3G improves CTL recognition of cultured HIV-infected T cells. ACTA ACUST UNITED AC 2009; 207:39-49. [PMID: 20038599 PMCID: PMC2812543 DOI: 10.1084/jem.20091933] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cytidine deaminase APOBEC3G (A3G) enzyme exerts an intrinsic anti–human immunodeficiency virus (HIV) defense by introducing lethal G-to-A hypermutations in the viral genome. The HIV-1 viral infectivity factor (Vif) protein triggers degradation of A3G and counteracts this antiviral effect. The impact of A3G on the adaptive cellular immune response has not been characterized. We examined whether A3G-edited defective viruses, which are known to express truncated or misfolded viral proteins, activate HIV-1–specific (HS) CD8+ cytotoxic T lymphocytes (CTLs). To this end, we compared the immunogenicity of cells infected with wild-type or Vif-deleted viruses in the presence or absence of the cytidine deaminase. The inhibitory effect of A3G on HIV replication was associated with a strong activation of cocultivated HS-CTLs. CTL activation was particularly marked with Vif-deleted HIV and with viruses harboring A3G. Enzymatically inactive A3G mutants failed to enhance CTL activation. We also engineered proviruses bearing premature stop codons in their genome as scars of A3G editing. These viruses were not infectious but potently activated HS-CTLs. Therefore, the pool of defective viruses generated by A3G represents an underestimated source of viral antigens. Our results reveal a novel function for A3G, acting not only as an intrinsic antiviral factor but also as an inducer of the adaptive immune system.
Collapse
|
41
|
Sakuma R, Ohmine S, Ikeda Y. Determinants for the rhesus monkey TRIM5alpha-mediated block of the late phase of HIV-1 replication. J Biol Chem 2009; 285:3784-3793. [PMID: 19951947 DOI: 10.1074/jbc.m109.059063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhesus monkey TRIM5alpha (TRIM5alpharh) includes RING, B-box, coiled-coil, and B30.2(PRYSPRY) domains and blocks HIV-1 infection by targeting HIV-1 core through a B30.2(PRYSPRY) domain. Previously, we reported that TRIM5alpharh also blocks HIV-1 production in a B30.2(PRYSPRY)-independent manner. Efficient encapsidation of TRIM5alpharh, but not human TRIM5alpha (TRIM5alphahu), in HIV-1 virus-like particles suggests the interaction between Gag and TRIM5alpharh during viral assembly. Here, we determined responsible regions for late restriction activity of TRIM5alpharh. The RING disruption, but not the replacement with human TRIM21 RING, ablated the efficient encapsidation and the late restriction, suggesting that a RING structure was essential for the late restriction and efficient interaction with HIV-1 Gag. The prominent cytoplasmic body formation of TRIM5alpharh, which depended on the coiled-coil domain and the ensuing linker 2 region, was not required for the encapsidation. Intriguingly, TRIM5alpharh coiled-coil domain mutants (M133T and/or T146A) showed impaired late restriction activity, despite the efficient encapsidation and cytoplasmic body formation. Our results suggest that the TRIM5alpharh-mediated late restriction involves at least two distinct activities as follows: (i) interaction with HIV-1 Gag polyprotein through the N-terminal, RING, and B-box 2 regions of a TRIM5alpharh monomer, and (ii) an effector function(s) that depends upon the coiled-coil and linker 2 domains of TRIM5alpharh. We speculate that the TRIM5alpharh coiled-coil region recruits additional factor(s), such as other TRIM family proteins or a cellular protease, during the late restriction. RBCC domains of TRIM family proteins may play a role in sensing newly synthesized viral proteins as a part of innate immunity against viral infection.
Collapse
Affiliation(s)
- Ryuta Sakuma
- From the Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seiga Ohmine
- From the Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Yasuhiro Ikeda
- From the Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
42
|
HIV-1 Vpr triggers natural killer cell-mediated lysis of infected cells through activation of the ATR-mediated DNA damage response. PLoS Pathog 2009; 5:e1000613. [PMID: 19798433 PMCID: PMC2747015 DOI: 10.1371/journal.ppat.1000613] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 09/11/2009] [Indexed: 11/19/2022] Open
Abstract
Natural killer (NK) cells are stimulated by ligands on virus-infected cells. We have recently demonstrated that NK cells respond to human immunodeficiency virus type-1 (HIV-1)-infected autologous T-cells, in part, through the recognition of ligands for the NK cell activating receptor NKG2D on the surface of the infected cells. Uninfected primary CD4pos T-cell blasts express little, if any, NKG2D ligands. In the present study we determined the mechanism through which ligands for NKG2D are induced on HIV-1-infected cells. Our studies reveal that expression of vpr is necessary and sufficient to elicit the expression of NKG2D ligands in the context of HIV-1 infection. Vpr specifically induces surface expression of the unique-long 16 binding proteins (ULBP)-1 and ULBP-2, but not ULBP-3, MHC class I-related chain molecules (MIC)-A or MIC-B. In these studies we also demonstrated that Vpr increases the level of ULBP-1 and ULBP-2 mRNA in primary CD4pos T-cell blasts. The presence of ULBP-1 and ULBP-2 on HIV-1 infected cells is dependent on the ability of Vpr to associate with a protein complex know as Cullin 4a (Cul4a)/damaged DNA binding protein 1 (DDB1) and Cul4a-associated factor-1(DCAF-1) E3 ubiquitin ligase (Cul4aDCAF-1). ULBP-1 and -2 expression by Vpr is also dependent on activation of the DNA damage sensor, ataxia telangiectasia and rad-3-related kinase (ATR). When T-cell blasts are infected with a vpr-deficient HIV-1, NK cells are impaired in killing the infected cells. Thus, HIV-1 Vpr actively triggers the expression of the ligands to the NK cell activation receptor. Natural killer (NK) cells are part of the innate immune response against virus infection and cancer. Recently we demonstrated that ligands for the NK cell activation receptor, NKG2D, trigger NK cell-mediated response to infected cells. These ligands are expressed on HIV-1-infected cells and not on uninfected cells. Despite the observation that NKG2D ligands are expressed on infected cells, it is unclear how HIV-1 induces their expression. In the present study, we demonstrate that HIV induces the ligands of the NKG2D receptor through the viral gene product Vpr. Vpr triggers a DNA damage response in infected cells, which in turn, increases virus production. We also demonstrate that by blocking the activity of ATR, a major component in the DNA damage response, we were able to prevent NKG2D ligand expression. When Vpr was removed from the virus genome, NK cells lost their ability to lyse the HIV-infected cells. Thus, HIV-1 actively triggers NK cells through the activity of its viral gene product, Vpr.
Collapse
|
43
|
Stauch B, Hofmann H, Perković M, Weisel M, Kopietz F, Cichutek K, Münk C, Schneider G. Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc Natl Acad Sci U S A 2009; 106:12079-84. [PMID: 19581596 PMCID: PMC2715496 DOI: 10.1073/pnas.0900979106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Indexed: 11/18/2022] Open
Abstract
Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.
Collapse
Affiliation(s)
- Benjamin Stauch
- Johann Wolfgang Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
| | - Henning Hofmann
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany; and
| | - Mario Perković
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany; and
| | - Martin Weisel
- Johann Wolfgang Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
| | - Ferdinand Kopietz
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany; and
| | - Klaus Cichutek
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225 Langen, Germany; and
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Gisbert Schneider
- Johann Wolfgang Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
| |
Collapse
|
44
|
Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol Mol Biol Rev 2009; 73:211-32. [PMID: 19487726 DOI: 10.1128/mmbr.00040-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The viral infectivity factor (Vif) is dispensable for human immunodeficiency virus type 1 (HIV-1) replication in so-called permissive cells but is required for replication in nonpermissive cell lines and for pathogenesis. Virions produced in the absence of Vif have an aberrant morphology and an unstable core and are unable to complete reverse transcription. Recent studies demonstrated that human APOBEC-3G (hA3G) and APOBEC-3F (hA3F), which are selectively expressed in nonpermissive cells, possess strong anti-HIV-1 activity and are sufficient to confer a nonpermissive phenotype. Vif induces the degradation of hA3G and hA3F, suggesting that its main function is to counteract these cellular factors. Most studies focused on the hypermutation induced by the cytidine deaminase activity of hA3G and hA3F and on their Vif-induced degradation by the proteasome. However, recent studies suggested that several mechanisms are involved both in the antiviral activity of hA3G and hA3F and in the way Vif counteracts these antiviral factors. Attempts to reconcile the studies involving Vif in virus assembly and stability with these recent findings suggest that hA3G and hA3F partially exert their antiviral activity independently of their catalytic activity by destabilizing the viral core and the reverse transcription complex, possibly by interfering with the assembly and/or maturation of the viral particles. Vif could then counteract hA3G and hA3F by excluding them from the viral assembly intermediates through competition for the viral genomic RNA, by regulating the proteolytic processing of Pr55(Gag), by enhancing the efficiency of the reverse transcription process, and by inhibiting the enzymatic activities of hA3G and hA3F.
Collapse
|
45
|
Kataropoulou A, Bovolenta C, Belfiore A, Trabatti S, Garbelli A, Porcellini S, Lupo R, Maga G. Mutational analysis of the HIV-1 auxiliary protein Vif identifies independent domains important for the physical and functional interaction with HIV-1 reverse transcriptase. Nucleic Acids Res 2009; 37:3660-9. [PMID: 19369217 PMCID: PMC2699511 DOI: 10.1093/nar/gkp226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The HIV-1 accessory protein Vif plays a dual role: it counteracts the natural restriction factors APOBEC3G and 3F and ensures efficient retrotranscription of the HIV-1 RNA genome. We have previously shown that Vif can act as an auxiliary factor for HIV-1 reverse transcriptase (RT), increasing its rate of association to RNA or DNA templates. Here, by using seven different Vif mutants, we provide in vitro evidences that Vif stimulates HIV-1 RT through direct protein–protein interaction, which is mediated by its C-terminal domain. Physical interaction appears to require the proline-rich region comprised between amino acid (aa) 161 and 164 of Vif, whereas the RT stimulatory activity requires, in addition, the extreme C-terminal region (aa 169–192) of the Vif protein. Neither the RNA interaction domain, nor the Zn++-binding domain of Vif are required for its interaction with the viral RT. Pseudotyped HIV-1 lentiviral vectors bearing Vif mutants deleted in the RNA- or RT-binding domains show defects in retrotranscription/integration processes in both permissive and nonpermissive cells. Our results broaden our knowledge on how three important functions of Vif (RNA binding, RT binding and stimulation and Zn++ binding), are coordinated by different domains.
Collapse
|
46
|
Perkovic M, Schmidt S, Marino D, Russell RA, Stauch B, Hofmann H, Kopietz F, Kloke BP, Zielonka J, Ströver H, Hermle J, Lindemann D, Pathak VK, Schneider G, Löchelt M, Cichutek K, Münk C. Species-specific inhibition of APOBEC3C by the prototype foamy virus protein bet. J Biol Chem 2008; 284:5819-26. [PMID: 19074429 DOI: 10.1074/jbc.m808853200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The APOBEC3 cytidine deaminases are part of the intrinsic defense of cells against retroviruses. Lentiviruses and spumaviruses have evolved essential accessory proteins, Vif and Bet, respectively, which counteract the APOBEC3 proteins. We show here that Bet of the Prototype foamy virus inhibits the antiviral APOBEC3C activity by a mechanism distinct to Vif: Bet forms a complex with APOBEC3C without inducing its degradation. Bet abolished APOBEC3C dimerization as shown by coimmunoprecipitation and cross-linking experiments. These findings implicate a physical interaction between Bet and the APOBEC3C. Subsequently, we identified the Bet interaction domain in human APOBEC3C in the predicted APOBEC3C dimerization site. Taken together, these data support the hypothesis that Bet inhibits incorporation of APOBEC3Cs into retroviral particles. Bet likely achieves this by trapping APOBEC3C protein in complexes rendering them unavailable for newly generated viruses due to direct immobilization.
Collapse
Affiliation(s)
- Mario Perkovic
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen 63225, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The use of antiretroviral therapy in HIV type 1 (HIV-1)-infected patients does not lead to virus eradication. This is due, to a significant degree, to the fact that HIV-1 can establish a highly stable reservoir of latently infected cells. In this work, we describe an ex vivo experimental system that generates high levels of HIV-1 latently infected memory cells using primary CD4+ T cells. Using this model, we were able to dissect the T cell-signaling pathways and to characterize the long terminal repeat (LTR) cis-acting elements involved in reactivation of HIV-1 in memory CD4+ T cells. We conclude that Lck and nuclear factor of activated T cells (NFAT), but not NF-kappaB, are required for optimal latent virus reactivation in memory T cells. We also found that the cis-acting elements which are critical toward HIV-1 reactivation are the Sp1 and kappaB/NFAT transcription factor binding sites.
Collapse
|
48
|
Probing the structural states of human immunodeficiency virus type 1 pr55gag by using monoclonal antibodies. J Virol 2007; 82:2570-4. [PMID: 18094163 DOI: 10.1128/jvi.01717-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gag-FP (fluorescent protein) fusion constructs are commonly used to study human immunodeficiency virus type 1 assembly, yielding diffuse signals throughout the cytoplasm along with punctate signals routinely described as virus-like particles (VLPs) representing assembled but unprocessed Gag. However, these particles cannot be accurately described as VLPs, since fluorescence microscopy cannot provide structural resolution. We demonstrate here that the inability of a monoclonal p24 antibody to bind its cognate epitope when unprocessed Gag is assembled distinguishes VLPs from unassembled, monomeric Gag. Furthermore, we show that assembled and unassembled Gag punctate signals travel along microtubules. These monoclonal antibody studies provide a new tool for examining retroviral assembly.
Collapse
|
49
|
Newman JT, Sturgeon TJ, Gupta P, Montelaro RC. Differential functional phenotypes of two primary HIV-1 strains resulting from homologous point mutations in the LLP domains of the envelope gp41 intracytoplasmic domain. Virology 2007; 367:102-16. [PMID: 17582453 PMCID: PMC2034414 DOI: 10.1016/j.virol.2007.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 05/21/2007] [Indexed: 01/10/2023]
Abstract
We previously reported that selected mutations of highly conserved arginine residues within the LLP regions of HIV-1(ME46) gp41 had diverse effects on Env function. In the current study, we sought to test if the observed LLP mutant phenotypes would be similar in HIV-1(89.6). The results of the current studies revealed that the LLP-1 mutations conferred reduced Env incorporation, infectivity, and replication phenotypes in both viruses, while homologous LLP-2 mutations had differential phenotypical effects between the two strains. In particular, several of the 89.6 LLP-2 mutant viruses were replication defective in CEMX174 cells despite having increased levels of Env incorporation, and with both strains, there were differential effects on infectivity. This comparison of homologous point mutations in two different strains of HIV supports the role of LLPs as determinants of Env function, but reveals for the first time the influence of virus strain on LLP mutant phenotypes.
Collapse
Affiliation(s)
- Jason T Newman
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
50
|
Ternette N, Stefanou D, Kuate S, Überla K, Grunwald T. Expression of RNA virus proteins by RNA polymerase II dependent expression plasmids is hindered at multiple steps. Virol J 2007; 4:51. [PMID: 17550613 PMCID: PMC1892776 DOI: 10.1186/1743-422x-4-51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 06/05/2007] [Indexed: 11/18/2022] Open
Abstract
Background Proteins of human and animal viruses are frequently expressed from RNA polymerase II dependent expression cassettes to study protein function and to develop gene-based vaccines. Initial attempts to express the G protein of vesicular stomatitis virus (VSV) and the F protein of respiratory syncytial virus (RSV) by eukaryotic promoters revealed restrictions at several steps of gene expression. Results Insertion of an intron flanked by exonic sequences 5'-terminal to the open reading frames (ORF) of VSV-G and RSV-F led to detectable cytoplasmic mRNA levels of both genes. While the exonic sequences were sufficient to stabilise the VSV-G mRNA, cytoplasmic mRNA levels of RSV-F were dependent on the presence of a functional intron. Cytoplasmic VSV-G mRNA levels led to readily detectable levels of VSV-G protein, whereas RSV-F protein expression remained undetectable. However, RSV-F expression was observed after mutating two of four consensus sites for polyadenylation present in the RSV-F ORF. Expression levels could be further enhanced by codon optimisation. Conclusion Insufficient cytoplasmic mRNA levels and premature polyadenylation prevent expression of RSV-F by RNA polymerase II dependent expression plasmids. Since RSV replicates in the cytoplasm, the presence of premature polyadenylation sites and elements leading to nuclear instability should not interfere with RSV-F expression during virus replication. The molecular mechanisms responsible for the destabilisation of the RSV-F and VSV-G mRNAs and the different requirements for their rescue by insertion of an intron remain to be defined.
Collapse
Affiliation(s)
- Nicola Ternette
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Daniela Stefanou
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Seraphin Kuate
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|