1
|
Ali A, Rahimi R, Mahmoud ME, Shalaby AA, Gallardo RA, Abdul-Careem MF. Genetic and Phenotypic Investigations of Viral Subpopulations Detected in Different Tissues of Laying Hens Following Infectious Bronchitis Virus Infection. Viruses 2025; 17:527. [PMID: 40284970 PMCID: PMC12030972 DOI: 10.3390/v17040527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Infectious bronchitis virus (IBV) commonly produces a range of genetic sequences during replication, particularly in the spike 1 (S1)-coding portion of the S gene, leading to distinct subpopulations within the broader viral population. It has been shown that certain microenvironments exert selective pressure on the S1-coding sequences and their encoded proteins, influencing the selection of viral subpopulations in these environments. In this study, high-throughput next-generation sequencing (NGS) was used to analyze the S1-coding sequences from tissues of the respiratory, digestive, renal, and reproductive systems of specific pathogen-free (SPF) laying hens. These tissues were collected nine days after infection with the California 1737/04 (CA1737/04) IBV strain, which is known to cause varying degrees of pathology in these tissues. Using a specific bioinformatics pipeline, 27 single nucleotide variants (SNVs) were detected in the S1-coding sequences derived from different tissues. These SNVs shaped multiple subpopulations (SP1-SP15), with SP1 being the core subpopulation present in all tissues, while others were tissue-specific. The IBV RNA loads in the tissues were negatively correlated with the number of SNVs or the Shannon entropy values, and phylogenetic analysis revealed a genetic divergence in the S1-coding sequences from certain tissues with lower viral RNA loads, particularly those from the trachea and ovary. Furthermore, the SNVs were associated with nonsynonymous mutations, primarily located in hypervariable region 2 (HVR 2) within the N-terminal domain of S1 (S1-NTD), except for those in SP7, which was exclusive to the trachea and contained changes in HVR 3 in the C-terminal domain of S1 (S1-CTD). Overall, this study adds to the existing knowledge about IBV evolution by highlighting the role of tissue-specific environments in shaping viral genetic diversity.
Collapse
Affiliation(s)
- Ahmed Ali
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.A.); (R.R.); (M.E.M.)
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Ryan Rahimi
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.A.); (R.R.); (M.E.M.)
| | - Motamed Elsayed Mahmoud
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.A.); (R.R.); (M.E.M.)
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Sohag University, Sohag 84524, Egypt
| | - Adel A. Shalaby
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| | - Rodrigo A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Dr. VM3B, Davis, CA 95616, USA;
| | - Mohamed Faizal Abdul-Careem
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.A.); (R.R.); (M.E.M.)
| |
Collapse
|
2
|
Zhou T, Gilliam NJ, Li S, Spandau S, Osborn RM, Connor S, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and Functional Analysis of Defective Viral Genomes during SARS-CoV-2 Infection. mBio 2023; 14:e0025023. [PMID: 37074178 PMCID: PMC10294654 DOI: 10.1128/mbio.00250-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Simone Spandau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sarah Connor
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
3
|
Zhou T, Gilliam NJ, Li S, Spaudau S, Osborn RM, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and functional analysis of defective viral genomes during SARS-CoV-2 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.22.509123. [PMID: 36172120 PMCID: PMC9516852 DOI: 10.1101/2022.09.22.509123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from RNA-seq datasets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hotspots were identified for DVG recombination and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single cell RNA-seq analysis indicated the IFN stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the NGS dataset from a published cohort study and observed significantly higher DVG amount and frequency in symptomatic patients than that in asymptomatic patients. Finally, we observed unusually high DVG frequency in one immunosuppressive patient up to 140 days after admitted to hospital due to COVID-19, first-time suggesting an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. Importance Defective viral genomes (DVGs) are ubiquitously generated in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide them the potential for novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex and the recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hotspots for non-homologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide the evidence to harness DVGs’ immunostimulatory potential in the development of vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - Simone Spaudau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Christopher S. Anderson
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, OR 97331
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
4
|
Madi N, Sadeq M, Essa S, Safar HA, Al-Adwani A, Al-Khabbaz M. Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021. Pathogens 2022; 11:pathogens11090985. [PMID: 36145416 PMCID: PMC9505955 DOI: 10.3390/pathogens11090985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), which was first identified in Wuhan, China, in December 2019. With the global transmission of the virus, many SARS-CoV-2 variants have emerged due to the alterations of the spike glycoprotein. Therefore, the S glycoprotein encoding gene has widely been used for the molecular analysis of SARS-Co-2 due to its features affecting antigenicity and immunogenicity. We analyzed the S gene sequences of 35 SARS-CoV-2 isolates in Kuwait from March 2020 to February 2021 using the Sanger method and MinION nanopore technology to confirm novel nucleotide alterations. Our results show that the Kuwaiti strains from clade 19A and B were the dominant variants early in the pandemic, while clade 20I (Alpha, V1) was the dominant variant from February 2021 onward. Besides the known mutations, 21 nucleotide deletions in the S glycoprotein in one Kuwaiti strain were detected, which might reveal a recombinant SARS-CoV-2 with the defective viral genome (DVG). This study emphasizes the importance of closely perceiving the emerging clades with these mutations during this continuous pandemic as some may influence the specificity of diagnostic tests, such as RT-PCR and even vaccine design directing these positions.
Collapse
Affiliation(s)
- Nada Madi
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Correspondence: ; Tel.: +965-99736265; Fax: +965-25332719
| | - Mohammad Sadeq
- Jaber Al-Ahmad Armed Forces Hospital, Sabhan 91710, Kuwait
| | - Sahar Essa
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Hussain A. Safar
- Research Core Facility and OMICS Research Unit, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Anfal Al-Adwani
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Marwa Al-Khabbaz
- Virology Unit, Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
5
|
RNA Structures and Their Role in Selective Genome Packaging. Viruses 2021; 13:v13091788. [PMID: 34578369 PMCID: PMC8472981 DOI: 10.3390/v13091788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
To generate infectious viral particles, viruses must specifically select their genomic RNA from milieu that contains a complex mixture of cellular or non-genomic viral RNAs. In this review, we focus on the role of viral encoded RNA structures in genome packaging. We first discuss how packaging signals are constructed from local and long-range base pairings within viral genomes, as well as inter-molecular interactions between viral and host RNAs. Then, how genome packaging is regulated by the biophysical properties of RNA. Finally, we examine the impact of RNA packaging signals on viral evolution.
Collapse
|
6
|
Gribble J, Stevens LJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Pruijssers AJ, Routh AL, Denison MR. The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathog 2021; 17:e1009226. [PMID: 33465137 PMCID: PMC7846108 DOI: 10.1371/journal.ppat.1009226] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Anderson-Daniels
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas–Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas–Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
7
|
The Characterization of chIFITMs in Avian Coronavirus Infection In Vivo, Ex Vivo and In Vitro. Genes (Basel) 2020; 11:genes11080918. [PMID: 32785186 PMCID: PMC7464837 DOI: 10.3390/genes11080918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
The coronaviruses are a large family of enveloped RNA viruses that commonly cause gastrointestinal or respiratory illnesses in the infected host. Avian coronavirus infectious bronchitis virus (IBV) is a highly contagious respiratory pathogen of chickens that can affect the kidneys and reproductive systems resulting in bird mortality and decreased reproductivity. The interferon-inducible transmembrane (IFITM) proteins are activated in response to viral infections and represent a class of cellular restriction factors that restrict the replication of many viral pathogens. Here, we characterize the relative mRNA expression of the chicken IFITM genes in response to IBV infection, in vivo, ex vivo and in vitro using the pathogenic M41-CK strain, the nephropathogenic QX strain and the nonpathogenic Beaudette strain. In vivo we demonstrate a significant upregulation of chIFITM1, 2, 3 and 5 in M41-CK- and QX-infected trachea two days post-infection. In vitro infection with Beaudette, M41-CK and QX results in a significant upregulation of chIFITM1, 2 and 3 at 24 h post-infection. We confirmed a differential innate response following infection with distinct IBV strains and believe that our data provide new insights into the possible role of chIFITMs in early IBV infection.
Collapse
|
8
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 DOI: 10.1101/483693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called "quasispecies." Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
9
|
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Hölzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res 2019; 29:1545-1554. [PMID: 31439691 PMCID: PMC6724671 DOI: 10.1101/gr.247064.118] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
Abstract
Sequence analyses of RNA virus genomes remain challenging owing to the exceptional genetic plasticity of these viruses. Because of high mutation and recombination rates, genome replication by viral RNA-dependent RNA polymerases leads to populations of closely related viruses, so-called “quasispecies.” Standard (short-read) sequencing technologies are ill-suited to reconstruct large numbers of full-length haplotypes of (1) RNA virus genomes and (2) subgenome-length (sg) RNAs composed of noncontiguous genome regions. Here, we used a full-length, direct RNA sequencing (DRS) approach based on nanopores to characterize viral RNAs produced in cells infected with a human coronavirus. By using DRS, we were able to map the longest (∼26-kb) contiguous read to the viral reference genome. By combining Illumina and Oxford Nanopore sequencing, we reconstructed a highly accurate consensus sequence of the human coronavirus (HCoV)-229E genome (27.3 kb). Furthermore, by using long reads that did not require an assembly step, we were able to identify, in infected cells, diverse and novel HCoV-229E sg RNAs that remain to be characterized. Also, the DRS approach, which circumvents reverse transcription and amplification of RNA, allowed us to detect methylation sites in viral RNAs. Our work paves the way for haplotype-based analyses of viral quasispecies by showing the feasibility of intra-sample haplotype separation. Even though several technical challenges remain to be addressed to exploit the potential of the nanopore technology fully, our work illustrates that DRS may significantly advance genomic studies of complex virus populations, including predictions on long-range interactions in individual full-length viral RNA haplotypes.
Collapse
Affiliation(s)
- Adrian Viehweger
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Sebastian Krautwurst
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - John Ziebuhr
- European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Institute of Medical Virology, Justus Liebig University Gießen, 35390 Gießen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany.,European Virus Bioinformatics Center, Friedrich Schiller University Jena, 07743 Jena, Germany.,Leibniz Institute on Aging-Fritz Lipmann Institute, 07743 Jena, Germany
| |
Collapse
|
10
|
Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol 2019; 4:1075-1087. [PMID: 31160826 PMCID: PMC7097797 DOI: 10.1038/s41564-019-0465-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Viruses survive often harsh host environments, yet we know little about the strategies they utilize to adapt and subsist given their limited genomic resources. We are beginning to appreciate the surprising versatility of viral genomes and how replication-competent and -defective virus variants can provide means for adaptation, immune escape and virus perpetuation. This Review summarizes current knowledge of the types of defective viral genomes generated during the replication of RNA viruses and the functions that they carry out. We highlight the universality and diversity of defective viral genomes during infections and discuss their predicted role in maintaining a fit virus population, their impact on human and animal health, and their potential to be harnessed as antiviral tools. This Review describes recent findings on the biogenesis and the role of defective viral genomes during replication of RNA viruses and discusses their impact on viral dynamics and evolution.
Collapse
|
11
|
Bickerton E, Dowgier G, Britton P. Recombinant infectious bronchitis viruses expressing heterologous S1 subunits: potential for a new generation of vaccines that replicate in Vero cells. J Gen Virol 2018; 99:1681-1685. [PMID: 30355423 DOI: 10.1099/jgv.0.001167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spike glycoprotein (S) of infectious bronchitis virus (IBV) comprises two subunits, S1 and S2. We have previously demonstrated that the S2 subunit of the avirulent Beau-R strain is responsible for its extended cellular tropism for Vero cells. Two recombinant infectious bronchitis viruses (rIBVs) have been generated; the immunogenic S1 subunit is derived from the IBV vaccine strain, H120, or the virulent field strain, QX, within the genetic background of Beau-R. The rIBVs BeauR-H120(S1) and BeauR-QX(S1) are capable of replicating in primary chicken kidney cell cultures and in Vero cells. These results demonstrate that rIBVs are able to express S1 subunits from genetically diverse strains of IBV, which will enable the rational design of a future generation of IBV vaccines that may be grown in Vero cells.
Collapse
Affiliation(s)
- Erica Bickerton
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Giulia Dowgier
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Paul Britton
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
12
|
Bickerton E, Maier HJ, Stevenson-Leggett P, Armesto M, Britton P. The S2 Subunit of Infectious Bronchitis Virus Beaudette Is a Determinant of Cellular Tropism. J Virol 2018; 92:e01044-18. [PMID: 30021894 PMCID: PMC6146808 DOI: 10.1128/jvi.01044-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The spike (S) glycoprotein of the avian gammacoronavirus infectious bronchitis virus (IBV) is comprised of two subunits (S1 and S2), has a role in virulence in vivo, and is responsible for cellular tropism in vitro We have previously demonstrated that replacement of the S glycoprotein ectodomain from the avirulent Beaudette strain of IBV with the corresponding region from the virulent M41-CK strain resulted in a recombinant virus, BeauR-M41(S), with the in vitro cell tropism of M41-CK. The IBV Beaudette strain is able to replicate in both primary chick kidney cells and Vero cells, whereas the IBV M41-CK strain replicates in primary cells only. In order to investigate the region of the IBV S responsible for growth in Vero cells, we generated a series of recombinant IBVs expressing chimeric S glycoproteins, consisting of regions from the Beaudette and M41-CK S gene sequences, within the genomic background of Beaudette. The S2, but not the S1, subunit of the Beaudette S was found to confer the ability to grow in Vero cells. Various combinations of Beaudette-specific amino acids were introduced into the S2 subunit of M41 to determine the minimum requirement to confer tropism for growth in Vero cells. The ability of IBV to grow and produce infectious progeny virus in Vero cells was subsequently narrowed down to just 3 amino acids surrounding the S2' cleavage site. Conversely, swapping of the 3 Beaudette-associated amino acids with the corresponding ones from M41 was sufficient to abolish Beaudette growth in Vero cells.IMPORTANCE Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines, both live attenuated and inactivated, are currently grown on embryonated hen's eggs, a cumbersome and expensive process due to the fact that most IBV strains do not grow in cultured cells. The reverse genetics system for IBV creates the opportunity for generating rationally designed and more effective vaccines. The observation that IBV Beaudette has the additional tropism for growth on Vero cells also invokes the possibility of generating IBV vaccines produced from cultured cells rather than by the use of embryonated eggs. The regions of the IBV Beaudette S glycoprotein involved in the determination of extended cellular tropism were identified in this study. This information will enable the rational design of a future generation of IBV vaccines that may be grown on Vero cells.
Collapse
|
13
|
Bentley K, Evans DJ. Mechanisms and consequences of positive-strand RNA virus recombination. J Gen Virol 2018; 99:1345-1356. [PMID: 30156526 DOI: 10.1099/jgv.0.001142] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genetic recombination in positive-strand RNA viruses is a significant evolutionary mechanism that drives the creation of viral diversity by the formation of novel chimaeric genomes. The process and its consequences, for example the generation of viruses with novel phenotypes, has historically been studied by analysis of the end products. More recently, with an appreciation that there are both replicative and non-replicative mechanisms at work, and with new approaches and techniques to analyse intermediate products, the viral and cellular factors that influence the process are becoming understood. The major influence on replicative recombination is the fidelity of viral polymerase, although RNA structures and sequences may also have an impact. In replicative recombination the viral polymerase is necessary and sufficient, although roles for other viral or cellular proteins may exist. In contrast, non-replicative recombination appears to be mediated solely by cellular components. Despite these insights, the relative importance of replicative and non-replicative mechanisms is not clear. Using single-stranded positive-sense RNA viruses as exemplars, we review the current state of understanding of the processes and consequences of recombination.
Collapse
Affiliation(s)
- Kirsten Bentley
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| | - David J Evans
- Biomedical Sciences Research Complex and School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
14
|
Abstract
Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.
Collapse
Affiliation(s)
- R Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - M Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - M Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany; FLI Leibniz Institute for Age Research, Jena, Germany
| | - J Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
15
|
Madhugiri R, Fricke M, Marz M, Ziebuhr J. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 2014; 194:76-89. [PMID: 25307890 PMCID: PMC7114417 DOI: 10.1016/j.virusres.2014.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 02/07/2023]
Abstract
Review of current knowledge of cis-acting RNA elements essential to coronavirus replication. Identification of RNA structural elements in alphacoronavirus terminal genome regions. Discussion of intra- and intergeneric conservation of genomic cis-acting RNA elements in alpha- and betacoronaviruses.
Coronavirus genome replication is mediated by a multi-subunit protein complex that is comprised of more than a dozen virally encoded and several cellular proteins. Interactions of the viral replicase complex with cis-acting RNA elements located in the 5′ and 3′-terminal genome regions ensure the specific replication of viral RNA. Over the past years, boundaries and structures of cis-acting RNA elements required for coronavirus genome replication have been extensively characterized in betacoronaviruses and, to a lesser extent, other coronavirus genera. Here, we review our current understanding of coronavirus cis-acting elements located in the terminal genome regions and use a combination of bioinformatic and RNA structure probing studies to identify and characterize putative cis-acting RNA elements in alphacoronaviruses. The study suggests significant RNA structure conservation among members of the genus Alphacoronavirus but also across genus boundaries. Overall, the conservation pattern identified for 5′ and 3′-terminal RNA structural elements in the genomes of alpha- and betacoronaviruses is in agreement with the widely used replicase polyprotein-based classification of the Coronavirinae, suggesting co-evolution of the coronavirus replication machinery with cognate cis-acting RNA elements.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
16
|
Su YP, Fan YH, Brian DA. Dependence of coronavirus RNA replication on an NH2-terminal partial nonstructural protein 1 in cis. J Virol 2014; 88:8868-82. [PMID: 24872586 PMCID: PMC4136265 DOI: 10.1128/jvi.00738-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/21/2014] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Genomes of positive (+)-strand RNA viruses use cis-acting signals to direct both translation and replication. Here we examine two 5'-proximal cis-replication signals of different character in a defective interfering (DI) RNA of the bovine coronavirus (BCoV) that map within a 322-nucleotide (nt) sequence (136 nt from the genomic 5' untranslated region and 186 nt from the nonstructural protein 1 [nsp1]-coding region) not found in the otherwise-identical nonreplicating subgenomic mRNA7 (sgmRNA7). The natural DI RNA is structurally a fusion of the two ends of the BCoV genome that results in a single open reading frame between a partial nsp1-coding region and the entire N gene. (i) In the first examination, mutation analyses of a recently discovered long-range RNA-RNA base-paired structure between the 5' untranslated region and the partial nsp1-coding region showed that it, possibly in concert with adjacent stem-loops, is a cis-acting replication signal in the (+) strand. We postulate that the higher-order structure promotes (+)-strand synthesis. (ii) In the second examination, analyses of multiple frame shifts, truncations, and point mutations within the partial nsp1-coding region showed that synthesis of a PEFP core amino acid sequence within a group A lineage betacoronavirus-conserved NH2-proximal WAPEFPWM domain is required in cis for DI RNA replication. We postulate that the nascent protein, as part of an RNA-associated translating complex, acts to direct the DI RNA to a critical site, enabling RNA replication. We suggest that these results have implications for viral genome replication and explain, in part, why coronavirus sgmRNAs fail to replicate. IMPORTANCE cis-Acting RNA and protein structures that regulate (+)-strand RNA virus genome synthesis are potential sites for blocking virus replication. Here we describe two: a previously suspected 5'-proximal long-range higher-order RNA structure and a novel nascent NH2-terminal protein component of nsp1 that are common among betacoronaviruses of group A lineage.
Collapse
Affiliation(s)
- Yu-Pin Su
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - Yi-Hsin Fan
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| | - David A Brian
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, Tennessee, USA
| |
Collapse
|
17
|
Bentley K, Armesto M, Britton P. Infectious Bronchitis Virus as a Vector for the Expression of Heterologous Genes. PLoS One 2013; 8:e67875. [PMID: 23840781 PMCID: PMC3694013 DOI: 10.1371/journal.pone.0067875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/31/2023] Open
Abstract
The avian coronavirus infectious bronchitis virus (IBV) is the causative agent of the respiratory disease infectious bronchitis of domestic fowl, and is controlled by routine vaccination. To explore the potential use of IBV as a vaccine vector a reverse genetics system was utilised to generate infectious recombinant IBVs (rIBVs) expressing the reporter genes enhanced green fluorescent protein (eGFP) or humanised Renilla luciferase (hRluc). Infectious rIBVs were obtained following the replacement of Gene 5 or the intergenic region (IR) with eGFP or hRluc, or the replacement of ORFs 3a and 3b with hRluc. The replacement of Gene 5 with an IBV codon-optimised version of the hRluc gene also resulted in successful rescue of infectious rIBV. Reporter gene expression was confirmed by fluorescence microscopy, or luciferase activity assays, for all successfully rescued rIBVs following infection of primary chick kidney (CK) cells. The genetic stability of rIBVs was analysed by serial passage on CK cells. Recombinant IBV stability varied depending on the genome region being replaced, with the reporter genes maintained up to at least passage 8 (P8) following replacement of Gene 5, P7 for replacement of the IR and P5 for replacement of ORFs 3a and 3b. Codon-optimisation of the hRluc gene, when replacing Gene 5, resulted in an increase in genome stability, with hRluc expression stable up to P10 compared to P8 for standard hRluc. Repeated passaging of rIBVs expressing hRluc at an MOI of 0.01 demonstrated an increase in stability, with hRluc expression stable up to at least P12 following the replacement of Gene 5. This study has demonstrated that heterologous genes can be incorporated into, and expressed from a range of IBV genome locations and that replacement of accessory Gene 5 offers a promising target for realising the potential of IBV as a vaccine vector for other avian pathogens.
Collapse
Affiliation(s)
- Kirsten Bentley
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Maria Armesto
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Compton Laboratory, Avian Viral Diseases, The Pirbright Institute, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Armesto M, Cavanagh D, Britton P. The replicase gene of avian coronavirus infectious bronchitis virus is a determinant of pathogenicity. PLoS One 2009; 4:e7384. [PMID: 19816578 PMCID: PMC2754531 DOI: 10.1371/journal.pone.0007384] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023] Open
Abstract
We have previously demonstrated that the replacement of the S gene from an avirulent strain (Beaudette) of infectious bronchitis virus (IBV) with an S gene from a virulent strain (M41) resulted in a recombinant virus (BeauR-M41(S)) with the in vitro cell tropism of the virulent virus but that was still avirulent. In order to investigate whether any of the other structural or accessory genes played a role in pathogenicity we have now replaced these from the Beaudette strain with those from M41. The recombinant IBV was in effect a chimaeric virus with the replicase gene derived from Beaudette and the rest of the genome from M41. This demonstrated that it is possible to exchange a large region of the IBV genome, approximately 8.4 kb, using our transient dominant selection method. Recovery of a viable recombinant IBV also demonstrated that it is possible to interchange a complete replicase gene as we had in effect replaced the M41 replicase gene with the Beaudette derived gene. Analysis of the chimaeric virus showed that it was avirulent indicating that none of the structural or accessory genes derived from a virulent isolate of IBV were able to restore virulence and that therefore, the loss of virulence associated with the Beaudette strain resides in the replicase gene.
Collapse
Affiliation(s)
- Maria Armesto
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Dave Cavanagh
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
| | - Paul Britton
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Frieman M, Baric R. Mechanisms of severe acute respiratory syndrome pathogenesis and innate immunomodulation. Microbiol Mol Biol Rev 2008; 72:672-85, Table of Contents. [PMID: 19052324 PMCID: PMC2593566 DOI: 10.1128/mmbr.00015-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of the immune response is a common practice of many highly pathogenic viruses. The emergence of the highly pathogenic coronavirus severe acute respiratory virus (SARS-CoV) serves as a robust model system to elucidate the virus-host interactions that mediate severe end-stage lung disease in humans and animals. Coronaviruses encode the largest positive-sense RNA genome of approximately 30 kb, encode a variety of replicase and accessory open reading frames that are structurally unique, and encode novel enzymatic functions among RNA viruses. These viruses have broad or specific host ranges, suggesting the possibility of novel strategies for targeting and regulating host innate immune responses following virus infection. Using SARS-CoV as a model, we review the current literature on the ability of coronaviruses to interact with and modify the host intracellular environment during infection. These studies are revealing a rich set of novel viral proteins that engage, modify, and/or disrupt host cell signaling and nuclear import machinery for the benefit of virus replication.
Collapse
Affiliation(s)
- Matthew Frieman
- University of North Carolina, 210 McGaveran-Greenberg Hall, CB 7435, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
20
|
Liu P, Li L, Millership JJ, Kang H, Leibowitz JL, Giedroc DP. A U-turn motif-containing stem-loop in the coronavirus 5' untranslated region plays a functional role in replication. RNA (NEW YORK, N.Y.) 2007; 13:763-80. [PMID: 17353353 PMCID: PMC1852815 DOI: 10.1261/rna.261807] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/29/2007] [Indexed: 05/14/2023]
Abstract
The 5' untranslated region (UTR) of the mouse hepatitis virus (MHV) genome contains cis-acting sequences necessary for transcription and replication. A consensus secondary structural model of the 5' 140 nucleotides of the 5' UTRs of nine coronaviruses (CoVs) derived from all three major CoV groups is presented and characterized by three major stem-loops, SL1, SL2, and SL4. NMR spectroscopy provides structural support for SL1 and SL2 in three group 2 CoVs, including MHV, BCoV, and HCoV-OC43. SL2 is conserved in all CoVs, typically containing a pentaloop (C47-U48-U49-G50-U51 in MHV) stacked on a 5 base-pair stem, with some sequences containing an additional U 3' to U51; SL2 therefore possesses sequence features consistent with a U-turn-like conformation. The imino protons of U48 in the wild-type RNA, and G48 in the U48G SL2 mutant RNA, are significantly protected from exchange with solvent, consistent with a hydrogen bonding interaction critical to the hairpin loop architecture. SL2 is required for MHV replication; MHV genomes containing point substitutions predicted to perturb the SL2 structure (U48C, U48A) were not viable, while those that maintain the structure (U48G and U49A) were viable. The U48C MHV mutant supports both positive- and negative-sense genome-sized RNA synthesis, but fails to direct the synthesis of positive- or negative-sense subgenomic RNAs. These data support the existence of the SL2 in our models, and further suggest a critical role in coronavirus replication.
Collapse
Affiliation(s)
- Pinghua Liu
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System, College of Medicine, College Station, Texas 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
21
|
Perlman S, Holmes KV. Replication and expression analysis of PRRSV defective RNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 581:445-8. [PMID: 17037576 PMCID: PMC7123548 DOI: 10.1007/978-0-387-33012-9_80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
22
|
Casais R, Davies M, Cavanagh D, Britton P. Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 2005; 79:8065-78. [PMID: 15956552 PMCID: PMC1143771 DOI: 10.1128/jvi.79.13.8065-8078.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/16/2005] [Indexed: 11/20/2022] Open
Abstract
The avian coronavirus Infectious bronchitis virus (IBV), like other coronaviruses, expresses several small nonstructural (ns) proteins in addition to those from gene 1 (replicase) and the structural proteins. These coronavirus ns genes differ both in number and in amino acid similarity between the coronavirus groups but show some concordance within a group or subgroup. The functions and requirements of the small ns gene products remain to be elucidated. With the advent of reverse genetics for coronaviruses, the first steps in elucidating their role can be investigated. We have used our reverse genetics system for IBV (R. Casais, V. Thiel, S. G. Siddell, D. Cavanagh, and P. Britton, J. Virol. 75:12359-12369, 2001) to investigate the requirement of IBV gene 5 for replication in vivo, in ovo, and ex vivo. We produced a series of recombinant viruses, with an isogenic background, in which complete expression of gene 5 products was prevented by the inactivation of gene 5 following scrambling of the transcription-associated sequence, thereby preventing the expression of IBV subgenomic mRNA 5, or scrambling either separately or together of the translation initiation codons for the two gene 5 products. As all of the recombinant viruses replicated very similarly to the wild-type virus, Beau-R, we conclude that the IBV gene 5 products are not essential for IBV replication per se and that they are accessory proteins.
Collapse
Affiliation(s)
- Rosa Casais
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
23
|
Abstract
In addition to the SARS coronavirus (treated separately elsewhere in this volume), the complete genome sequences of six species in the coronavirus genus of the coronavirus family [avian infectious bronchitis virus-Beaudette strain (IBV-Beaudette), bovine coronavirus-ENT strain (BCoV-ENT), human coronavirus-229E strain (HCoV-229E), murine hepatitis virus-A59 strain (MHV-A59), porcine transmissible gastroenteritis-Purdue 115 strain (TGEV-Purdue 115), and porcine epidemic diarrhea virus-CV777 strain (PEDV-CV777)] have now been reported. Their lengths range from 27,317 nt for HCoV-229E to 31,357 nt for the murine hepatitis virus-A59, establishing the coronavirus genome as the largest known among RNA viruses. The basic organization of the coronavirus genome is shared with other members of the Nidovirus order (the torovirus genus, also in the family Coronaviridae, and members of the family Arteriviridae) in that the nonstructural proteins involved in proteolytic processing, genome replication, and subgenomic mRNA synthesis (transcription) (an estimated 14–16 end products for coronaviruses) are encoded within the 5′-proximal two-thirds of the genome on gene 1 and the (mostly) structural proteins are encoded within the 3′-proximal one-third of the genome (8–9 genes for coronaviruses). Genes for the major structural proteins in all coronaviruses occur in the 5′ to 3′ order as S, E, M, and N. The precise strategy used by coronaviruses for genome replication is not yet known, but many features have been established. This chapter focuses on some of the known features and presents some current questions regarding genome replication strategy, the cis-acting elements necessary for genome replication [as inferred from defective interfering (DI) RNA molecules], the minimum sequence requirements for autonomous replication of an RNA replicon, and the importance of gene order in genome replication.
Collapse
Affiliation(s)
- D A Brian
- Departments of Microbiology and Pathobiology, University of Tennessee, College of Veterinary Medicine, Knoxville, TN 37996-0845, USA.
| | | |
Collapse
|
24
|
Britton P, Evans S, Dove B, Davies M, Casais R, Cavanagh D. Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods 2005; 123:203-11. [PMID: 15620403 PMCID: PMC7112893 DOI: 10.1016/j.jviromet.2004.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 09/22/2004] [Accepted: 09/29/2004] [Indexed: 02/08/2023]
Abstract
A reverse genetics system for the avian coronavirus infectious bronchitis virus (IBV) has been described in which a full-length cDNA, corresponding to the IBV (Beaudette-CK) genome, was inserted into the vaccinia virus genome following in vitro assembly of three contiguous cDNAs [Casais, R., Thiel, V., Siddell, S.G., Cavanagh, D., Britton, P., 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J. Virol. 75, 12359-12369]. The method has subsequently been used to generate a recombinant IBV expressing a chimaeric S gene [Casais, R., Dove, B., Cavanagh, D., Britton, P., 2003. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77, 9084-9089]. Use of vaccinia virus as a vector for the full-length cDNA of the IBV genome has the advantage that modifications can be made to the IBV cDNA using homologous recombination, a method frequently used to insert and delete sequences from the vaccinia virus genome. We describe the use of homologous recombination as a method for modifying the Beaudette full-length cDNA, within the vaccinia virus genome, without the requirement for in vitro assembly of the IBV cDNA. To demonstrate the feasibility of the method we exchanged the ectodomain of the Beaudette spike gene for the corresponding region from IBV M41 and generated two recombinant infectious bronchitis viruses (rIBVs) expressing the chimaeric S protein, validating the method as an alternative way for generating rIBVs.
Collapse
Affiliation(s)
- Paul Britton
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Enjuanes L, Sola I, Alonso S, Escors D, Zúñiga S. Coronavirus reverse genetics and development of vectors for gene expression. Curr Top Microbiol Immunol 2005; 287:161-97. [PMID: 15609512 PMCID: PMC7120368 DOI: 10.1007/3-540-26765-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Knowledge of coronavirus replication, transcription, and virus-host interaction has been recently improved by engineering of coronavirus infectious cDNAs. With the transmissible gastroenteritis virus (TGEV) genome the efficient (>40 microg per 106 cells) and stable (>20 passages) expression of the foreign genes has been shown. Knowledge of the transcription mechanism in coronaviruses has been significantly increased, making possible the fine regulation of foreign gene expression. A new family of vectors based on single coronavirus genomes, in which essential genes have been deleted, has emerged including replication-competent, propagation-deficient vectors. Vector biosafety is being increased by relocating the RNA packaging signal to the position previously occupied by deleted essential genes, to prevent the rescue of fully competent viruses that might arise from recombination events with wild-type field coronaviruses. The large cloning capacity of coronaviruses (>5 kb) and the possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, has increased the potential of coronaviruses as vectors for vaccine development and, possibly, gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
26
|
Chen H, Gill A, Dove BK, Emmett SR, Kemp CF, Ritchie MA, Dee M, Hiscox JA. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J Virol 2005; 79:1164-79. [PMID: 15613344 PMCID: PMC538594 DOI: 10.1128/jvi.79.2.1164-1179.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 07/05/2004] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation of the coronavirus nucleoprotein (N protein) has been predicted to play a role in RNA binding. To investigate this hypothesis, we examined the kinetics of RNA binding between nonphosphorylated and phosphorylated infectious bronchitis virus N protein with nonviral and viral RNA by surface plasmon resonance (Biacore). Mass spectroscopic analysis of N protein identified phosphorylation sites that were proximal to RNA binding domains. Kinetic analysis, by surface plasmon resonance, indicated that nonphosphorylated N protein bound with the same affinity to viral RNA as phosphorylated N protein. However, phosphorylated N protein bound to viral RNA with a higher binding affinity than nonviral RNA, suggesting that phosphorylation of N protein determined the recognition of virus RNA. The data also indicated that a known N protein binding site (involved in transcriptional regulation) consisting of a conserved core sequence present near the 5' end of the genome (in the leader sequence) functioned by promoting high association rates of N protein binding. Further analysis of the leader sequence indicated that the core element was not the only binding site for N protein and that other regions functioned to promote high-affinity binding.
Collapse
Affiliation(s)
- Hongying Chen
- School of Animal and Microbial Sciences, University of Reading, Reading, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yuan S, Murtaugh MP, Schumann FA, Mickelson D, Faaberg KS. Characterization of heteroclite subgenomic RNAs associated with PRRSV infection. Virus Res 2004; 105:75-87. [PMID: 15325083 DOI: 10.1016/j.virusres.2004.04.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/21/2004] [Accepted: 04/21/2004] [Indexed: 11/30/2022]
Abstract
In this study, porcine reproductive and respiratory syndrome virus (PRRSV) heteroclite (uncommon forms) RNAs were characterized. Nucleotide sequencing of 11 additional defective RNA species verified that heteroclites are formed between the 5' and 3' termini of PRRSV at short stretches of identity, with variability seen between the junction sites utilized. Northern blot and RT-PCR analyses indicated that heteroclite RNA species were likely to be packaged into purified virions. To study whether heteroclite RNAs and viral genomic RNAs could be packaged into the same virions, PRRSV strain VR-2332 was purified by sucrose density gradient centrifugation. RT-PCR amplification of the viral RNAs isolated from three distinct gradient bands, using genomic- and heteroclite-specific primer pairs, demonstrated that heteroclite RNAs could not be readily dissociated from genomic RNA. Partial segregation of full-length and larger heteroclite genomes to the upper two gradient bands was seen, but smaller species could be found in all three fractions. These results strongly suggest that heteroclite RNAs retain the PRRSV RNA packaging signal. In vitro transcription and translation of one heteroclite cDNA clone verified that the RNA could express a predicted 32.6 kDa protein, indicating that these RNA species have the potential to produce abnormal proteins in infected cells.
Collapse
Affiliation(s)
- Shishan Yuan
- Department of Veterinary PathoBiology, University of Minnesota, 205 Veterinary Science Building, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
28
|
Dove B, Cavanagh D, Britton P. Presence of an encephalomyocarditis virus internal ribosome entry site sequence in avian infectious bronchitis virus defective RNAs abolishes rescue by helper virus. J Virol 2004; 78:2711-21. [PMID: 14990691 PMCID: PMC353753 DOI: 10.1128/jvi.78.6.2711-2721.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/18/2003] [Indexed: 11/20/2022] Open
Abstract
Avian infectious bronchitis virus (IBV) defective RNAs (D-RNAs) have been used for the expression of heterologous genes in a helper-virus-dependent expression system. The heterologous genes were expressed under the control of an IBV transcription-associated sequence (TAS) derived from gene 5 of IBV Beaudette. However, coronavirus D-RNA expression vectors display an inherent instability following serial passage with helper virus, resulting in the eventual loss of the heterologous genes. The use of the picornavirus encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) sequence to initiate gene translation was investigated as an alternative method to the coronavirus-mediated TAS-controlled heterologous gene expression system. IBV D-RNAs containing the chloramphenicol acetyltransferase (CAT) reporter gene, under EMCV IRES control, were assessed for IRES-mediated CAT protein translation. CAT protein was detected from T7-derived IBV D-RNA transcripts in a cell-free protein synthesis system and in situ in avian chick kidney (CK) cells following T7-derived D-RNA synthesis from a recombinant fowlpox virus expressing the bacteriophage T7 DNA-dependent RNA polymerase. However, CAT protein was not detected in CK cells from IRES-containing IBV D-RNAs, in which the IRES-CAT construct was inserted at two different positions within the D-RNA, in the presence of helper IBV. Northern blot analysis demonstrated that the IRES-containing D-RNAs were not rescued on serial passage with helper virus, indicating that the EMCV IRES sequence had a detrimental effect on IBV D-RNA rescue.
Collapse
Affiliation(s)
- Brian Dove
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | |
Collapse
|
29
|
Che X, Dawson WO, Bar-Joseph M. Defective RNAs of Citrus tristeza virus analogous to Crinivirus genomic RNAs. Virology 2003; 310:298-309. [PMID: 12781717 DOI: 10.1016/s0042-6822(03)00127-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The family Closteroviridae includes the genera Closterovirus and Ampelovirus with monopartite genomes and the genus Crinivirus with bipartite genomes. Plants infected with the Closterovirus, Citrus tristeza virus (CTV), often contain one or more populations of defective RNAs (dRNAs). Although most dRNAs are comparatively small (2-5 kb) consisting of the genomic RNA termini with large internal deletions, we recently characterized large dRNAs of approximately 12 kb that retained the open reading frames (ORFs) 1a plus 1b. These were self-replicating RNAs and appeared to be analogous to the genomic RNA 1 of the bipartite criniviruses. The present report describes the finding of an additional group of large dRNAs (LdRNAs) that retained all or most of the 10 3' ORFs and appeared to be analogous to genomic RNA 2 of criniviruses. Isolates associated with LdRNAs were found associated with double-recombinant dRNAs (DR-dRNAs) of various sizes (1.7 to 5.1 kb) that comprised the two termini and a noncontiguous internal sequence from ORF2. The genetic and epidemiological implications of the architectural identities of LdRNAs and DR dRNAs and their apparent analogy with the genomic RNA 2 of criniviruses are discussed.
Collapse
Affiliation(s)
- Xibing Che
- The S. Tolkowsky Laboratory, Department of Virology, Agricultural Research Organization, the Volcani Center, Bet Dagan, Israel
| | | | | |
Collapse
|
30
|
Hackney K, Cavanagh D, Kaiser P, Britton P. In vitro and in ovo expression of chicken gamma interferon by a defective RNA of avian coronavirus infectious bronchitis virus. J Virol 2003; 77:5694-702. [PMID: 12719562 PMCID: PMC154032 DOI: 10.1128/jvi.77.10.5694-5702.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronavirus defective RNAs (D-RNAs) have been used for site-directed mutagenesis of coronavirus genomes and for expression of heterologous genes. D-RNA CD-61 derived from the avian coronavirus infectious bronchitis virus (IBV) was used as an RNA vector for the expression of chicken gamma interferon (chIFN-gamma). D-RNAs expressing chIFN-gamma were shown to be capable of rescue, replication, and packaging into virions in a helper virus-dependent system following electroporation of in vitro-derived T7 RNA transcripts into IBV-infected cells. Secreted chIFN-gamma, under the control of an IBV transcription-associated sequence derived from gene 5 of the Beaudette strain, was expressed from two different positions within CD-61 and shown to be biologically active. In addition, following infection of 10-day-old chicken embryos with IBV containing D-RNAs expressing chIFN-gamma, the allantoic fluid was shown to contain biologically active chIFN-gamma, demonstrating that IBV D-RNAs can express heterologous genes in vivo.
Collapse
Affiliation(s)
- Karen Hackney
- Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
31
|
Neuman B, Cavanagh D, Britton P. Use of defective RNAs containing reporter genes to investigate targeted recombination for avian infectious bronchitis virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:513-8. [PMID: 11774516 DOI: 10.1007/978-1-4615-1325-4_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- B Neuman
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK
| | | | | |
Collapse
|
32
|
Britton P, Stirrups K, Dalton K, Shaw K, Evans S, Neuman B, Dove B, Casais R, Cavanagh D. Use of an infectious bronchitis virus D-RNA as an RNA vector. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:507-12. [PMID: 11774515 DOI: 10.1007/978-1-4615-1325-4_73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- P Britton
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dove B, Shaw K, Hiscox J, Cavanagh D, Britton P. Enhancement of defective RNA expression vectors as potential vaccine delivery systems for avian infectious bronchitis virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:407-9. [PMID: 11774500 DOI: 10.1007/978-1-4615-1325-4_60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- B Dove
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire, RG20 7NN, UK
| | | | | | | | | |
Collapse
|
34
|
Enjuanes L, Sola I, Almazan F, Izeta A, Gonzalez JM, Alonso S. Coronavirus derived expression systems. Progress and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:309-21. [PMID: 11774485 DOI: 10.1007/978-1-4615-1325-4_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- L Enjuanes
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Dalton K, Casais R, Shaw K, Stirrups K, Evans S, Brown TD, Britton P, Cavanagh D. Sequences required for replication and packaging of IBV RNA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:553-6. [PMID: 11774523 DOI: 10.1007/978-1-4615-1325-4_81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K Dalton
- Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Brian DA. Nidovirus genome replication and subgenomic mRNA synthesis. Pathways followed and cis-acting elements required. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 494:415-28. [PMID: 11774502 DOI: 10.1007/978-1-4615-1325-4_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- D A Brian
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
37
|
Abstract
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.
Collapse
Affiliation(s)
- David A Brian
- Department of Microbiology, College of Veterinary Medicine, M409 Walters Life Sciences Building, University of Tennessee, Knoxville, Tennessee, 37996-0845
| | - Willy J M Spaan
- Department of Virology, Institute of Medical Microbiology, Leiden University, 2300, RC Leiden, The Netherlands
| |
Collapse
|
38
|
Alonso S, Izeta A, Sola I, Enjuanes L. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. J Virol 2002; 76:1293-308. [PMID: 11773405 PMCID: PMC135778 DOI: 10.1128/jvi.76.3.1293-1308.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2001] [Accepted: 10/19/2001] [Indexed: 11/20/2022] Open
Abstract
The transcription regulatory sequences (TRSs) of the coronavirus transmissible gastroenteritis virus (TGEV) have been characterized by using a helper virus-dependent expression system based on coronavirus-derived minigenomes to study the synthesis of subgenomic mRNAs. The TRSs are located at the 5' end of TGEV genes and include a highly conserved core sequence (CS), 5'-CUAAAC-3', that is essential for mediating a 100- to 1,000-fold increase in mRNA synthesis when it is located in the appropriate context. The relevant sequences contributing to TRS activity have been studied by extending the CS 5' upstream and 3' downstream. Sequences from virus genes flanking the CS influenced transcription levels from moderate (10- to 20-fold variation) to complete mRNA synthesis silencing, as shown for a canonical CS at nucleotide (nt) 120 from the initiation codon of the S gene that did not lead to the production of the corresponding mRNA. An optimized TRS has been designed comprising 88 nt from the N gene TRS, the CS, and 3 nt 3' to the M gene CS. Further extension of the 5'-flanking nucleotides (i.e., by 176 nt) decreased subgenomic RNA levels. The expression of a reporter gene (beta-glucuronidase) by using the selected TRS led to the production of 2 to 8 microg of protein per 10(6) cells. The presence of an appropriate Kozak context led to a higher level of protein expression. Virus protein levels were shown to be dependent on transcription and translation regulation.
Collapse
MESH Headings
- 3' Flanking Region/physiology
- 5' Flanking Region/physiology
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence/physiology
- Coronavirus M Proteins
- Coronavirus Nucleocapsid Proteins
- DNA, Viral
- Gene Expression Regulation, Viral
- Genes, Viral
- Genome, Viral
- Male
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nucleocapsid/genetics
- Nucleocapsid Proteins
- Open Reading Frames
- RNA, Messenger/biosynthesis
- RNA, Viral/biosynthesis
- Regulatory Sequences, Nucleic Acid/physiology
- Spike Glycoprotein, Coronavirus
- Swine
- Transcription, Genetic
- Transmissible gastroenteritis virus/genetics
- Viral Envelope Proteins/genetics
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- Sara Alonso
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 2001; 75:12359-69. [PMID: 11711626 PMCID: PMC116132 DOI: 10.1128/jvi.75.24.12359-12369.2001] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Accepted: 09/06/2001] [Indexed: 11/20/2022] Open
Abstract
Major advances in the study of the molecular biology of RNA viruses have resulted from the ability to generate and manipulate full-length genomic cDNAs of the viral genomes with the subsequent synthesis of infectious RNA for the generation of recombinant viruses. Coronaviruses have the largest RNA virus genomes and, together with genetic instability of some cDNA sequences in Escherichia coli, this has hampered the generation of a reverse-genetics system for this group of viruses. In this report, we describe the assembly of a full-length cDNA from the positive-sense genomic RNA of the avian coronavirus, infectious bronchitis virus (IBV), an important poultry pathogen. The IBV genomic cDNA was assembled immediately downstream of a T7 RNA polymerase promoter by in vitro ligation and cloned directly into the vaccinia virus genome. Infectious IBV RNA was generated in situ after the transfection of restricted recombinant vaccinia virus DNA into primary chick kidney cells previously infected with a recombinant fowlpox virus expressing T7 RNA polymerase. Recombinant IBV, containing two marker mutations, was recovered from the transfected cells. These results describe a reverse-genetics system for studying the molecular biology of IBV and establish a paradigm for generating genetically defined vaccines for IBV.
Collapse
Affiliation(s)
- R Casais
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Enjuanes L, Sola I, Almazan F, Ortego J, Izeta A, Gonzalez JM, Alonso S, Sanchez JM, Escors D, Calvo E, Riquelme C, Sanchez C. Coronavirus derived expression systems. J Biotechnol 2001; 88:183-204. [PMID: 11434966 PMCID: PMC7126887 DOI: 10.1016/s0168-1656(01)00281-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Revised: 04/12/2001] [Accepted: 04/23/2001] [Indexed: 11/18/2022]
Abstract
Both helper dependent expression systems, based on two components, and single genomes constructed by targeted recombination, or by using infectious cDNA clones, have been developed. The sequences that regulate transcription have been characterized mainly using helper dependent expression systems and it will now be possible to validate them using single genomes. The genome of coronaviruses has been engineered by modification of the infectious cDNA leading to an efficient (>20 microg ml(-1)) and stable (>20 passages) expression of the foreign gene. The possibility of engineering the tissue and species tropism to target expression to different organs and animal species, including humans, increases the potential of coronaviruses as vectors. Thus, coronaviruses are promising virus vectors for vaccine development and, possibly, for gene therapy.
Collapse
Affiliation(s)
- L Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yuan W, Hillman BI. In vitro translational analysis of genomic, defective, and satellite RNAs of Cryphonectria hypovirus 3-GH2. Virology 2001; 281:117-23. [PMID: 11222102 DOI: 10.1006/viro.2000.0806] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryphonectria hypovirus 3-GH2 (CHV3-GH2) is a member of the fungal virus family Hypoviridae that differs from previously characterized members in having a single large open reading frame with the potential to encode a protein of 326 kDa from its 9.8-kb genome. The N-terminal portion of the ORF contains sequence motifs that are somewhat similar to papain-like proteinases identified in other hypoviruses. Translation of the ORF is predicted to release autocatalytically a 32.5-kDa protein. A defective RNA, predicted to encode a 91.6-kDa protein representing most of the N-terminal proteinase fused to the entire putative helicase domain, and two satellite RNAs, predicted to encode very small proteins, also are associated with CHV3-GH2 infected fungal cultures. We performed in vitro translation experiments to examine expression of these RNAs. Translation of three RT-PCR clones representing different lengths of the amino-terminal portion of the ORF of the genomic RNA resulted in autocatalytic release of the predicted 32.5-kDa protein. Site-directed mutagenesis was used to map the processing site between Gly(297) and Thr(298). In vitro translation of multiple independent cDNA clones of CHV3-GH2-defective RNA 2 resulted in protein products of approximately 92 kDa, predicted to be the full-length translation product, 32 kDa, predicted to represent the N-terminal proteinase, and 60 kDa, predicted to represent the C-terminal two-thirds of the full-length product. In vitro translation of cDNA clones representing satellite RNA 4 resulted in products of slightly less than 10 kDa, consistent with the predicted 9.4 kDa product.
Collapse
Affiliation(s)
- W Yuan
- Department of Plant Pathology, Cook College, Foran Hall, Rutgers University, 59 Dudley Rd., New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
42
|
Dalton K, Casais R, Shaw K, Stirrups K, Evans S, Britton P, Brown TD, Cavanagh D. cis-acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J Virol 2001; 75:125-33. [PMID: 11119581 PMCID: PMC113905 DOI: 10.1128/jvi.75.1.125-133.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The parts of the RNA genome of infectious bronchitis virus (IBV) required for replication and packaging of the RNA were investigated using deletion mutagenesis of a defective RNA (D-RNA) CD-61 (6.1 kb) containing a chloramphenicol acetyltransferase reporter gene. A D-RNA with the first 544, but not as few as 338, nucleotides (nt) of the 5' terminus was replicated; the 5' untranslated region (UTR) comprises 528 nt. Region I of the 3' UTR, adjacent to the nucleocapsid protein gene, comprised 212 nt and could be removed without impairment of replication or packaging of D-RNAs. A D-RNA with the final 338 nt, including the 293 nt in the highly conserved region II of the 3' UTR, was replicated. Thus, the 5'-terminal 544 nt and 3'-terminal 338 nt contained the necessary signals for RNA replication. Phylogenetic analysis of 19 strains of IBV and 3 strains of turkey coronavirus predicted a conserved stem-loop structure at the 5' end of region II of the 3' UTR. Removal of the predicted stem-loop structure abolished replication of the D-RNAs. D-RNAs in which replicase gene 1b-derived sequences had been removed or replaced with all the downstream genes were replicated well but were rescued poorly, suggesting inefficient packaging. However, no specific part of the 1b gene was required for efficient packaging.
Collapse
Affiliation(s)
- K Dalton
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Evans S, Cavanagh D, Britton P. Utilizing fowlpox virus recombinants to generate defective RNAs of the coronavirus infectious bronchitis virus. J Gen Virol 2000; 81:2855-2865. [PMID: 11086116 DOI: 10.1099/0022-1317-81-12-2855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coronavirus defective RNAs (D-RNAs) have been used as RNA vectors for the expression of heterologous genes and as vehicles for reverse genetics by modifying coronavirus genomes by targetted recombination. D-RNAs based on the avian coronavirus infectious bronchitis virus (IBV) D-RNA CD-61 have been rescued (replicated and packaged into virions) in a helper virus-dependent manner following electroporation of in vitro-generated T7 transcripts into IBV-infected cells. In order to increase the efficiency of rescue of IBV D-RNAs, cDNAs based on CD-61, under the control of a T7 promoter, were integrated into the fowlpox virus (FPV) genome. The 3'-UTR of the D-RNAs was flanked by a hepatitis delta antigenomic ribozyme and T7 terminator sequence to generate suitable 3' ends for rescue by helper IBV. Cells were co-infected simultaneously with IBV, the recombinant FPV (rFPV) containing the D-RNA sequence and a second rFPV expressing T7 RNA polymerase for the initial expression of the D-RNA transcript, subsequently rescued by helper IBV. Rescue of rFPV-derived CD-61 occurred earlier and with higher efficiency than demonstrated previously for electroporation of in vitro T7-generated RNA transcripts in avian cells. Rescue of CD-61 was also demonstrated for the first time in mammalian cells. The rescue of rFPV-derived CD-61 by M41 helper IBV resulted in leader switching, in which the Beaudette-type leader sequence on CD-61 was replaced with the M41 leader sequence, confirming that helper IBV virus replicated the rFPV-derived D-RNA. An rFPV-derived D-RNA containing the luciferase gene under the control of an IBV transcription-associated sequence was also rescued and expressed luciferase on serial passage.
Collapse
MESH Headings
- Animals
- Bacteriophage T7/genetics
- Base Sequence
- Cell Line
- Chickens
- Chlorocebus aethiops
- DNA, Recombinant/genetics
- DNA, Viral/genetics
- Defective Viruses/genetics
- Defective Viruses/physiology
- Fowlpox virus/genetics
- Fowlpox virus/physiology
- Gene Expression Regulation, Viral
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Genetic Complementation Test
- Genetic Vectors/genetics
- Genetic Vectors/physiology
- Helper Viruses/genetics
- Helper Viruses/physiology
- Infectious bronchitis virus/genetics
- Infectious bronchitis virus/physiology
- Kidney/cytology
- Kidney/virology
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Terminator Regions, Genetic/genetics
- Vero Cells
- Virus Assembly
Collapse
Affiliation(s)
- Sharon Evans
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK1
| | - David Cavanagh
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK1
| | - Paul Britton
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK1
| |
Collapse
|
44
|
Molenkamp R, Greve S, Spaan WJ, Snijder EJ. Efficient homologous RNA recombination and requirement for an open reading frame during replication of equine arteritis virus defective interfering RNAs. J Virol 2000; 74:9062-70. [PMID: 10982351 PMCID: PMC102103 DOI: 10.1128/jvi.74.19.9062-9070.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 07/10/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156-3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3'- and 5'-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5'-proximal region was found to be approximately 100-fold lower than that in the 3'-proximal part of the genome.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
45
|
Stirrups K, Shaw K, Evans S, Dalton K, Casais R, Cavanagh D, Britton P. Expression of reporter genes from the defective RNA CD-61 of the coronavirus infectious bronchitis virus. J Gen Virol 2000; 81:1687-98. [PMID: 10859373 DOI: 10.1099/0022-1317-81-7-1687] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The defective RNA (D-RNA) CD-61, derived from the Beaudette strain of the avian coronavirus infectious bronchitis virus (IBV), was used as an RNA vector for the expression of two reporter genes, luciferase and chloramphenicol acetyltransferase (CAT). D-RNAs expressing the CAT gene were demonstrated to be capable of producing CAT protein in a helper-dependent expression system to about 1.6 microgram per 10(6) cells. The reporter genes were expressed from two different sites within the CD-61 sequence and expression was not affected by interruption of the CD-61-specific ORF. Expression of the reporter genes was under the control of a transcription-associated sequence (TAS) derived from the Beaudette gene 5, normally used for the transcription of IBV subgenomic mRNA 5. The Beaudette gene 5 TAS is composed of two tandem repeats of the IBV canonical consensus sequence involved in the acquisition of a leader sequence during the discontinuous transcription of IBV subgenomic mRNAs. It is demonstrated that only one canonical sequence is required for expression of mRNA 5 or for the expression of an mRNA from a D-RNA and that either sequence can function as an acceptor site for acquisition of the leader sequence.
Collapse
Affiliation(s)
- K Stirrups
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Spagnolo JF, Hogue BG. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. J Virol 2000; 74:5053-65. [PMID: 10799579 PMCID: PMC110857 DOI: 10.1128/jvi.74.11.5053-5065.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1999] [Accepted: 03/01/2000] [Indexed: 11/20/2022] Open
Abstract
RNA viruses have 5' and 3' untranslated regions (UTRs) that contain specific signals for RNA synthesis. The coronavirus genome is capped at the 5' end and has a 3' UTR that consists of 300 to 500 nucleotides (nt) plus a poly(A) tail. To further our understanding of coronavirus replication, we have begun to examine the involvement of host factors in this process for two group II viruses, bovine coronavirus (BCV) and mouse hepatitis coronavirus (MHV). Specific host protein interactions with the BCV 3' UTR [287 nt plus poly(A) tail] were identified using gel mobility shift assays. Competition with the MHV 3' UTR [301 nt plus poly(A) tail] suggests that the interactions are conserved for the two viruses. Proteins with molecular masses of 99, 95, and 73 kDa were detected in UV cross-linking experiments. Less heavily labeled proteins were also detected in the ranges of 40 to 50 and 30 kDa. The poly(A) tail was required for binding of the 73-kDa protein. Immunoprecipitation of UV-cross-linked proteins identified the 73-kDa protein as the cytoplasmic poly(A)-binding protein (PABP). Replication of the defective genomes BCV Drep and MHV MIDI-C, along with several mutants, was used to determine the importance of the poly(A) tail. Defective genomes with shortened poly(A) tails consisting of 5 or 10 A residues were replicated after transfection into helper virus-infected cells. BCV Drep RNA that lacked a poly(A) tail did not replicate, whereas replication of MHV MIDI-C RNA with a deleted tail was detected after several virus passages. All mutants exhibited delayed kinetics of replication. Detectable extension or addition of the poly(A) tail to the mutants correlated with the appearance of these RNAs in the replication assay. RNAs with shortened poly(A) tails exhibited less in vitro PABP binding, suggesting that decreased interactions with the protein may affect RNA replication. The data strongly indicate that the poly(A) tail is an important cis-acting signal for coronavirus replication.
Collapse
Affiliation(s)
- J F Spagnolo
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
47
|
Molenkamp R, Rozier BC, Greve S, Spaan WJ, Snijder EJ. Isolation and characterization of an arterivirus defective interfering RNA genome. J Virol 2000; 74:3156-65. [PMID: 10708432 PMCID: PMC111816 DOI: 10.1128/jvi.74.7.3156-3165.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/1999] [Accepted: 01/05/2000] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV), the type member of the family Arteriviridae, is a single-stranded RNA virus with a positive-stranded genome of approximately 13 kb. EAV uses a discontinuous transcription mechanism to produce a nested set of six subgenomic mRNAs from which its structural genes are expressed. We have generated the first documented arterivirus defective interfering (DI) RNAs by serial undiluted passaging of a wild-type EAV stock in BHK-21 cells. A cDNA copy of the smallest DI RNA (5.6 kb) was cloned. Upon transfection into EAV-infected BHK-21 cells, transcripts derived from this clone (pEDI) were replicated and packaged. Sequencing of pEDI revealed that the DI RNA was composed of three segments of the EAV genome (nucleotides 1 to 1057, 1388 to 1684, and 8530 to 12704) which were fused in frame with respect to the replicase reading frame. Remarkably, this DI RNA has retained all of the sequences encoding the structural proteins. By insertion of the chloramphenicol acetyltransferase reporter gene in the DI RNA genome, we were able to delimitate the sequences required for replication/DI-based transcription and packaging of EAV DI RNAs and to reduce the maximal size of a replication-competent EAV DI RNA to approximately 3 kb.
Collapse
Affiliation(s)
- R Molenkamp
- Department of Virology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Stirrups K, Shaw K, Evans S, Dalton K, Cavanagh D, Britton P. Leader switching occurs during the rescue of defective RNAs by heterologous strains of the coronavirus infectious bronchitis virus. J Gen Virol 2000; 81:791-801. [PMID: 10675417 DOI: 10.1099/0022-1317-81-3-791] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A defective RNA (D-RNA), CD-61, derived from the Beaudette strain of the avian coronavirus infectious bronchitis virus (IBV), was rescued (replicated and packaged) using four heterologous strains of IBV as helper virus. Sequence analysis of the genomic RNA from the four heterologous IBV strains (M41, H120, HV10 and D207) identified nucleotide differences of up to 17% within the leader sequence and up to 4.3% within the whole of the adjacent 5' untranslated region (UTR). Analysis of the 5' ends of the rescued D-RNAs showed that the Beaudette leader sequence, present on the initial CD-61, had been replaced with the corresponding leader sequence from the helper IBV strain but the adjacent 5' UTR sequence of the rescued D-RNAs corresponded to the original CD-61 Beaudette sequence. These results demonstrated that the phenomenon of leader switching previously identified for the coronaviruses murine hepatitis virus and bovine coronavirus (BCoV) also occurred during the replication of IBV D-RNAs. Three predicted stem-loop structures were identified within the 5' UTR of IBV. Stem-loop I showed a high degree of covariance amongst the IBV strains providing phylogenetic evidence that this structure exists and is potentially involved in replication, supporting previous observations that a BCoV stem-loop homologue was essential for replication of BCoV defective interfering RNAs.
Collapse
Affiliation(s)
- K Stirrups
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury, Berkshire RG20 7NN, UK
| | | | | | | | | | | |
Collapse
|
49
|
Zhou M, Collisson EW. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3' genomic RNA. Virus Res 2000; 67:31-9. [PMID: 10773316 PMCID: PMC7125745 DOI: 10.1016/s0168-1702(00)00126-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Previous studies indicated that the nucleocapsid (N) protein of infectious bronchitis virus (IBV) interacted with specific sequences in the 3' non-coding region of IBV RNA. In order to identify domains in the N protein that bind to RNA, the whole protein (409 amino acids) and six overlapping fragments were expressed as fusion polypeptides with six histidine-tags. Using gel shift assays, the intact N protein and amino polypeptides, from residues 1 to 171 and residues 1 to 274, and carboxyl polypeptides, extending from residues 203 to 409 and residues 268 to 407, were found to interact with positive-stranded IBV RNA representing the 3' end of the genome. The two 32P-labeled probes that interacted with N and the amino and carboxyl fragments of N were RNA consisting of the IBV N gene and adjacent 3' non-coding terminus, and RNA consisting of the 155-nucleotide sequences at the 3' end of the 504-nt 3' untranslated region. In contrast, the polypeptide fragment from the middle region, residues 101-283, did not interact with these 3' IBV RNAs. The binding site in the amino region of N was either not present or only partially present in the first 91 residues because no interaction with RNA was observed with the polypeptide incorporating these residues. Cache Valley virus N expressed with a histidine tag, bovine serum albumin, and the basic lysozyme protein did not shift the IBV RNA. The lower molarities of the carboxyl fragment compared with residue 1-274 fragment needed for equivalent shifts suggested that the binding avidity for RNA at the carboxyl domain was greater than the amino domain.
Collapse
Affiliation(s)
- M Zhou
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4467, USA
| | | |
Collapse
|
50
|
Abstract
A region of the bovine coronavirus (BCV) genome that functions as a packaging signal has been cloned. The 291-nucleotide clone shares 72% homology with the region of mouse hepatitis coronavirus (MHV) gene 1b that contains the packaging signal. RNA transcripts were packaged into both BCV and MHV virions when the cloned region was appended to a noncoronavirus RNA. This is the first identification of a BCV packaging signal. The data demonstrate that the BCV genome contains a sequence that is conserved at both the sequence and functional levels, thus broadening our insight into coronavirus packaging.
Collapse
Affiliation(s)
- R Cologna
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|