1
|
Hung CH, Chiu YF, Wang WH, Chen LW, Chang PJ, Huang TY, Lin YJ, Tsai WJ, Yang CC. Interaction Between BGLF2 and BBLF1 Is Required for the Efficient Production of Infectious Epstein-Barr Virus Particles. Front Microbiol 2020; 10:3021. [PMID: 32038519 PMCID: PMC6993569 DOI: 10.3389/fmicb.2019.03021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/13/2022] Open
Abstract
BGLF2 is a tegument protein of the Epstein-Barr virus (EBV). This study finds that BGLF2 is expressed in the late stage of the EBV lytic cycle. Microscopic investigations reveal that BGLF2 is present in both the nucleus and the cytoplasm and colocalized with BBLF1 and gp350 at juxtanuclear regions in the cytoplasm. This study also finds that the basic KKK69 motif of BGLF2 and acidic DYEE31 motif of BBLF1 are crucial for the interaction between BGLF2 and BBLF1, which is required for the recruitment of BGLF2 to the BBLF1 that is anchored on the trans-Golgi-network (TGN). In addition, BGLF2 in a density gradient is co-sedimented with un-enveloped capsids, revealing that BGLF2 associates with the EBV capsid before the final envelopment. The knockout of BGLF2 expression is demonstrated to reduce the numbers of infectious virions that are released into the culture medium, but they do not affect the expression of lytic proteins and viral DNA replication. The production of infectious viral particles by a BGLF2-knockout mutant can be rescued by exogenously expressed BGLF2 but only partially rescued by BGLF2-3KA, which is a mutant with reduced ability to interact with BBLF1 but does not affect its ability to activate the MAPK pathway and the expression of the EBV lytic proteins, suggesting that the interaction of BGLF2 with BBLF1 is important to the efficient production of infectious viral particles during the maturation. The results of this study improve our understanding of how BGLF2 promotes EBV viral production.
Collapse
Affiliation(s)
- Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ya-Fang Chiu
- Department of Microbiology and Immunology, Chang-Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, Chang-Gung University, Taoyuan, Taiwan.,Department of Medical Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang-Gung University of Science and Technology, Chiayi, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Ying-Ju Lin
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Wan-Ju Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| | - Chia-Ching Yang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
A Noncanonical Basic Motif of Epstein-Barr Virus ZEBRA Protein Facilitates Recognition of Methylated DNA, High-Affinity DNA Binding, and Lytic Activation. J Virol 2019; 93:JVI.00724-19. [PMID: 31068430 DOI: 10.1128/jvi.00724-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023] Open
Abstract
The pathogenesis of Epstein-Barr virus (EBV) infection, including development of lymphomas and carcinomas, is dependent on the ability of the virus to transit from latency to the lytic phase. This conversion, and ultimately disease development, depends on the molecular switch protein, ZEBRA, a viral bZIP transcription factor that initiates transcription from promoters of viral lytic genes. By binding to the origin of viral replication, ZEBRA is also an essential replication protein. Here, we identified a novel DNA-binding motif of ZEBRA, N terminal to the canonical bZIP domain. This RRTRK motif is important for high-affinity binding to DNA and is essential for recognizing the methylation state of viral promoters. Mutations in this motif lead to deficiencies in DNA binding, recognition of DNA methylation, lytic cycle DNA replication, and viral late gene expression. This work advances our understanding of ZEBRA-dependent activation of the viral lytic cascade.IMPORTANCE The binding of ZEBRA to methylated and unmethylated viral DNA triggers activation of the EBV lytic cycle, leading to viral replication and, in some patients, cancer development. Our work thoroughly examines how ZEBRA uses a previously unrecognized basic motif to bind nonmethylated and methylated DNA targets, leading to viral lytic activation. Our findings show that two different positively charged motifs, including the canonical BZIP domain and a newly identified RRTRK motif, contribute to the mechanism of DNA recognition by a viral AP-1 protein. This work contributes to the assessment of ZEBRA as a potential therapeutic target for antiviral and oncolytic treatments.
Collapse
|
3
|
Icaritin: A Novel Natural Candidate for Hematological Malignancies Therapy. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4860268. [PMID: 31032347 PMCID: PMC6458936 DOI: 10.1155/2019/4860268] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 01/14/2023]
Abstract
Hematological malignancies including leukemia and lymphoma can severely impact human health. With the current therapies combined with chemotherapy, stem cell transplantation, radiotherapy, and immunotherapy, the prognosis of hematologic malignancies improved significantly. However, most hematological malignancies are still incurable. Therefore, research for novel treatment options was continuing with the natural product as one source. Icaritin is a compound extracted from a traditional Chinese herb, Epimedium Genus, and demonstrated an antitumor effect in various neoplasms including hematological malignancies such as leukemia, lymphoma, and multiple myeloma. In hematological malignancies, icaritin showed multiple cytotoxic effects to induce apoptosis, arrest the cell cycle, inhibit proliferation, promote differentiation, restrict metastasis and infiltration, and suppress the oncogenic virus. The proved underlying mechanisms of the cytotoxic effects of icaritin are different in various cell types of hematological malignancies but associated with the critical cell signal pathway, including PI3K/Akt, JAK/STAT3, and MAPK/ERK/JNK. Although the primary target of icaritin is still unspecified, the existing evidence indicates that icaritin is a potential novel therapeutic agent for neoplasms as with hematological malignancies. Here, in the field of hematology, we reviewed the reported activity of icaritin in hematologic malignancies and the underlying mechanisms and recognized icaritin as a candidate for therapy of hematological malignancies.
Collapse
|
4
|
Mutant Cellular AP-1 Proteins Promote Expression of a Subset of Epstein-Barr Virus Late Genes in the Absence of Lytic Viral DNA Replication. J Virol 2018; 92:JVI.01062-18. [PMID: 30021895 DOI: 10.1128/jvi.01062-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) ZEBRA protein activates the EBV lytic cycle. Cellular AP-1 proteins with alanine-to-serine [AP-1(A/S)] substitutions homologous to ZEBRA(S186) assume some functions of EBV ZEBRA. These AP-1(A/S) mutants bind methylated EBV DNA and activate expression of some EBV genes. Here, we compare expression of 67 viral genes induced by ZEBRA versus expression induced by AP-1(A/S) proteins. AP-1(A/S) activated 24 genes to high levels and 15 genes to intermediate levels; activation of 28 genes by AP-1(A/S) was severely impaired. We show that AP-1(A/S) proteins are defective at stimulating viral lytic DNA replication. The impairment of expression of many late genes compared to that of ZEBRA is likely due to the inability of AP-1(A/S) proteins to promote viral DNA replication. However, even in the absence of detectable viral DNA replication, AP-1(A/S) proteins stimulated expression of a subgroup of late genes that encode viral structural proteins and immune modulators. In response to ZEBRA, expression of this subgroup of late genes was inhibited by phosphonoacetic acid (PAA), which is a potent viral replication inhibitor. However, when the lytic cycle was activated by AP-1(A/S), PAA did not reduce expression of this subgroup of late genes. We also provide genetic evidence, using the BMRF1 knockout bacmid, that these genes are true late genes in response to ZEBRA. AP-1(A/S) binds to the promoter region of at least one of these late genes, BDLF3, encoding an immune modulator.IMPORTANCE Mutant c-Jun and c-Fos proteins selectively activate expression of EBV lytic genes, including a subgroup of viral late genes, in the absence of viral DNA replication. These findings indicate that newly synthesized viral DNA is not invariably required for viral late gene expression. While viral DNA replication may be obligatory for late gene expression driven by viral transcription factors, it does not limit the ability of cellular transcription factors to activate expression of some viral late genes. Our results show that expression of all late genes may not be strictly dependent on viral lytic DNA replication. The c-Fos A151S mutation has been identified in a human cancer. c-Fos A151S in combination with wild-type c-Jun activates the EBV lytic cycle. Our data provide proof of principle that mutant cellular transcription factors could cause aberrant regulation of viral lytic cycle gene expression and play important roles in EBV-associated diseases.
Collapse
|
5
|
Icaritin induces lytic cytotoxicity in extranodal NK/T-cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:17. [PMID: 25887673 PMCID: PMC4336495 DOI: 10.1186/s13046-015-0133-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022]
Abstract
Background Extranodal NK/T-cell lymphoma (ENKL) is an aggressive hematological malignancy associated with Epstein–Barr virus (EBV) infection. It is often resistant to conventional chemotherapy and has a poor prognosis. Icaritin, a compound derived from Chinese herbal medicine, Herba Epimedii, has been reported to exert antitumor effects on a variety of cancer cell lines. In the present study, we investigated the cytotoxic effects of Icaritin on the two EBV-positive ENKL cell lines SNK-10 and SNT-8, along with the underlying molecular mechanisms. Methods ENKL cell lines SNK-10 and SNT-8 were exposed to different concentrations of Icaritin for the indicated time. Treated cells were analyzed for cell proliferation, cell cycle, and cell apoptosis. Phosphorylation of Stat3 and Akt proteins in signaling pathways and the EBV-encoded LMP1 proteins were measured by Western blot. Expression of EBV genes was assessed by Real-Time PCR. Results Our results showed that Icaritin dose-dependently inhibits ENKL cell proliferation and induces apoptosis and cell cycle arrest at G2/M phase. Additionally, Icaritin upregulates Bax, downregulates Bcl-2 and pBad, and activates caspase-3 and caspase-9. The anti-proliferative and pro-apoptotic effects of Icaritin are likely mediated by inhibition of Stat3 and Akt pathways through LMP1 downregulation. Importantly, Icaritin induces EBV lytic gene expression in ENKL cells, and the combination of Icaritin and the antiviral drug ganciclovir (GCV) is more effective in inducing ENKL cells apoptosis than Icaritin or GCV alone. Conclusions These findings indicate that EBV-targeted approaches may have significant therapeutic potential for ENKL treatment.
Collapse
|
6
|
Lim CS, Goh SL, Krishnan G, Ng CC. Recombinant production of Epstein-Barr virus BZLF1 trans-activator and characterization of its DNA-binding specificity. Protein Expr Purif 2013; 95:8-12. [PMID: 24291446 DOI: 10.1016/j.pep.2013.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.
Collapse
Affiliation(s)
- Chun Shen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siang Ling Goh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopala Krishnan
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ching Ching Ng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Latency of Epstein-Barr virus is disrupted by gain-of-function mutant cellular AP-1 proteins that preferentially bind methylated DNA. Proc Natl Acad Sci U S A 2013; 110:8176-81. [PMID: 23625009 DOI: 10.1073/pnas.1301577110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ZEBReplication Activator (ZEBRA), a viral basic zipper protein that initiates the Epstein-Barr viral lytic cycle, binds to DNA and activates transcription through heptamer ZEBRA response elements (ZREs) related to AP-1 sites. A component of the biologic action of ZEBRA is attributable to binding methylated CpGs in ZREs present in the promoters of viral lytic cycle genes. Residue S186 of ZEBRA, Z(S186), which is absolutely required for disruption of latency, participates in the recognition of methylated DNA. We find that mutant cellular AP-1 proteins, Jun(A266S) and Fos(A151S), with alanine-to-serine substitutions homologous to Z(S186), exhibit altered DNA-binding affinity and preferentially bind methylated ZREs. These mutant AP-1 proteins acquire functions of ZEBRA; they activate expression of many viral early lytic cycle gene transcripts in cells harboring latent EBV but are selectively defective in activating expression of some viral proteins and are unable to promote viral DNA replication. Transcriptional activation by mutant c-Jun and c-Fos that have acquired the capacity to bind methylated CpG challenges the paradigm that DNA methylation represses gene expression.
Collapse
|
8
|
Functions of the Epstein-Barr virus EBNA1 protein in viral reactivation and lytic infection. J Virol 2012; 86:6146-58. [PMID: 22491455 DOI: 10.1128/jvi.00013-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
EBNA1 is the only nuclear Epstein-Barr virus (EBV) protein expressed in both latent and lytic modes of infection. While EBNA1 is known to play several important roles in latent infection, the reason for its continued expression in lytic infection is unknown. Here we identified two roles for EBNA1 in the reactivation of latent EBV to the lytic cycle in epithelial cells. First, EBNA1 depletion in latently infected cells was shown to positively contribute to spontaneous EBV reactivation, showing that EBNA1 has a role in suppressing reactivation. Second, when the lytic cycle was induced, EBNA1 depletion decreased lytic gene expression and DNA amplification, showing that it positively contributed to lytic infection. Since we have previously shown that EBNA1 disrupts promyelocytic leukemia (PML) nuclear bodies, we investigated whether this function could account for the effects of EBNA1 on lytic infection by repeating the experiments with cells lacking PML proteins. In the absence of PML, EBNA1 did not promote lytic infection, indicating that the EBNA1-mediated PML disruption is responsible for promoting lytic infection. In keeping with this conclusion, PML silencing was found to be sufficient to induce the EBV lytic cycle. Finally, by generating cells with single PML isoforms, we showed that individual PML isoforms were sufficient to suppress EBV lytic reactivation, although PML isoform IV (PML IV) was ineffective because it was most efficiently degraded by EBNA1. Our results provide the first function for EBNA1 in lytic infection and show that EBNA1 interactions with PML IV lead to a loss of PML nuclear bodies (NBs) that promotes lytic infection.
Collapse
|
9
|
Luo B, Tang X, Jia Y, Wang Y, Chao Y, Zhao C. Sequence variation of Epstein-Barr virus (EBV) BZLF1 gene in EBV-associated gastric carcinomas and nasopharyngeal carcinomas in Northern China. Microbes Infect 2011; 13:776-82. [DOI: 10.1016/j.micinf.2011.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 03/19/2011] [Accepted: 04/06/2011] [Indexed: 12/23/2022]
|
10
|
A subset of replication proteins enhances origin recognition and lytic replication by the Epstein-Barr virus ZEBRA protein. PLoS Pathog 2010; 6:e1001054. [PMID: 20808903 PMCID: PMC2924361 DOI: 10.1371/journal.ppat.1001054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/20/2010] [Indexed: 11/19/2022] Open
Abstract
ZEBRA is a site-specific DNA binding protein that functions as a transcriptional activator and as an origin binding protein. Both activities require that ZEBRA recognizes DNA motifs that are scattered along the viral genome. The mechanism by which ZEBRA discriminates between the origin of lytic replication and promoters of EBV early genes is not well understood. We explored the hypothesis that activation of replication requires stronger association between ZEBRA and DNA than does transcription. A ZEBRA mutant, Z(S173A), at a phosphorylation site and three point mutants in the DNA recognition domain of ZEBRA, namely Z(Y180E), Z(R187K) and Z(K188A), were similarly deficient at activating lytic DNA replication and expression of late gene expression but were competent to activate transcription of viral early lytic genes. These mutants all exhibited reduced capacity to interact with DNA as assessed by EMSA, ChIP and an in vivo biotinylated DNA pull-down assay. Over-expression of three virally encoded replication proteins, namely the primase (BSLF1), the single-stranded DNA-binding protein (BALF2) and the DNA polymerase processivity factor (BMRF1), partially rescued the replication defect in these mutants and enhanced ZEBRA's interaction with oriLyt. The findings demonstrate a functional role of replication proteins in stabilizing the association of ZEBRA with viral DNA. Enhanced binding of ZEBRA to oriLyt is crucial for lytic viral DNA replication. Epstein-Barr virus encodes a protein, ZEBRA, which plays an essential role in the switch between viral latency and the viral lytic cycle. ZEBRA activates transcription of early viral genes and also promotes lytic viral DNA replication. It is not understood how these two functions are discriminated. We studied five ZEBRA mutants that are impaired in activation of replication but are wild-type in the capacity to induce transcription of early viral genes. We demonstrate that these five mutants are impaired in binding to viral DNA regulatory sites. Therefore, replication required stronger interactions between ZEBRA and viral DNA than did transcription. Three components of the EBV-encoded replication machinery, including the single-stranded DNA binding protein, the polymerase processivity factor and the primase markedly enhanced the interaction of ZEBRA with viral DNA. These three components partially rescued the defect in ZEBRA mutants that were impaired in replication. The results suggest that through protein-protein interaction, replication proteins play a role in enhancing ZEBRA's association with the origin of DNA replication and other regulatory sites.
Collapse
|
11
|
Stimulus duration and response time independently influence the kinetics of lytic cycle reactivation of Epstein-Barr virus. J Virol 2009; 83:10694-709. [PMID: 19656890 DOI: 10.1128/jvi.01172-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) can be reactivated from latency into the lytic cycle by many stimuli believed to operate by different mechanisms. Cell lines containing EBV differ in their responses to inducing stimuli, yet all stimuli require de novo protein synthesis (44). A crucial step preliminary to identifying these proteins and determining when they are required is to measure the duration of stimulus and response time needed for activation of expression of EBV BRLF1 and BZLF1, the earliest viral indicators of reactivation. Here we show, with four EBV-containing cell lines that respond to different inducing agents, that stimuli that are effective at reactivating EBV can be divided into two main groups. The histone deacetylase inhibitors sodium butyrate and trichostatin A require a relatively long period of exposure, from 2 to 4 h or longer. Phorbol esters, anti-immunoglobulin G (anti-IgG), and, surprisingly, 5-aza-2'-deoxycytidine require short exposures of 15 min or less. The cell/virus background influences the response time. Expression of the EBV BZLF1 and BRLF1 genes can be detected before 2 h in Akata cells treated with anti-IgG, but both long- and short-duration stimuli required 4 or more hr to activate BZLF1 and BRLF1 expression in HH514-16, Raji, or B95-8 cells. Thus, stimulus duration and response time are independent variables. Neither stimulus duration nor response time can be predicted by the number of cells activated into the lytic cycle. These experiments shed new light on the earliest events leading to lytic cycle reactivation of EBV.
Collapse
|
12
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
13
|
Li D, Qian L, Chen C, Shi M, Yu M, Hu M, Song L, Shen B, Guo N. Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. THE JOURNAL OF IMMUNOLOGY 2009; 182:1799-809. [PMID: 19201831 DOI: 10.4049/jimmunol.0802686] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition to a pathogen by the immune system. The level of MHC class II directly influences T lymphocyte activation. The aim of this study was to identify the possible mechanisms of the down-regulation of MHC class II expression by Zta during EBV lytic cycle. The data in the present study demonstrated that ectopic expression of Zta can strongly inhibit the constitutive expression of MHC class II and CIITA in Raji cells. The negative effect of Zta on the CIITA promoter activity was also observed. Scrutiny of the DNA sequence of CIITA promoter III revealed the presence of two Zta-response element (ZRE) motifs that have complete homology to ZREs in the DR and left-hand side duplicated sequence promoters of EBV. By chromatin immunoprecipitation assays, the binding of Zta to the ZRE(221) in the CIITA promoter was verified. Site-directed mutagenesis of three conserved nucleotides of the ZRE(221) substantially disrupted Zta-mediated inhibition of the CIITA promoter activity. Oligonucleotide pull-down assay showed that mutation of the ZRE(221) dramatically abolished Zta binding. Analysis of the Zta mutant lacking DNA binding domain revealed that the DNA-binding activity of Zta is required for the trans repression of CIITA. The expression of HLA-DRalpha and CIITA was restored by Zta gene silencing. The data indicate that Zta may act as an inhibitor of the MHC class II pathway, suppressing CIITA transcription and thus interfering with the expression of MHC class II molecules.
Collapse
Affiliation(s)
- Dan Li
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ye J, Gradoville L, Daigle D, Miller G. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol 2007; 81:9279-91. [PMID: 17596302 PMCID: PMC1951462 DOI: 10.1128/jvi.00982-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are latent in cultured lymphoma cells. We asked whether reactivation from latency of either virus requires de novo protein synthesis. Using Northern blotting and quantitative reverse transcriptase PCR, we measured the kinetics of expression of the lytic cycle activator genes and determined whether abundance of mRNAs encoding these genes from either virus was reduced by treatment with cycloheximide (CHX), an inhibitor of protein synthesis. CHX blocked expression of mRNAs of EBV BZLF1 and BRLF1, the two EBV lytic cycle activator genes, when HH514-16 Burkitt lymphoma cells were treated with histone deacetylase (HDAC) inhibitors, sodium butyrate or trichostatin A, or a DNA methyltransferase inhibitor, 5-Aza-2'-deoxycytidine. CHX also inhibited EBV lytic cycle activation in B95-8 marmoset lymphoblastoid cells by phorbol ester phorbol-12-myristate-13-acetate (TPA). EBV lytic cycle induction became resistant to CHX between 4 and 6 h after application of the inducing stimulus. KSHV lytic cycle activation, as assessed by ORF50 mRNA expression, was rapidly induced by the HDAC inhibitors, sodium butyrate and trichostatin A, in HH-B2 primary effusion lymphoma cells. In HH-B2 cells, CHX did not inhibit, but enhanced, expression of the KSHV lytic cycle activator gene, ORF50. In BC-1, a primary effusion lymphoma cell line that is dually infected with EBV and KSHV, CHX blocked EBV BRLF1 lytic gene expression induced by TPA and sodium butyrate; KSHV ORF50 mRNA induced simultaneously in the same cells by the same inducing stimuli was resistant to CHX. The experiments show, for the cell lines and inducing agents studied, that the EBV BZLF1 and BRLF1 genes do not behave with "immediate-early" kinetics upon reactivation from latency. KSHV ORF50 is a true "immediate-early" gene. Our results indicate that the mechanism by which HDAC inhibitors and TPA induce lytic cycle gene expression of the two viruses differs and suggest that EBV but not KSHV requires one or more proteins to be newly synthesized between 4 and 6 h after application of an inducing stimulus.
Collapse
Affiliation(s)
- Jianjiang Ye
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
15
|
El-Guindy A, Heston L, Delecluse HJ, Miller G. Phosphoacceptor site S173 in the regulatory domain of Epstein-Barr Virus ZEBRA protein is required for lytic DNA replication but not for activation of viral early genes. J Virol 2007; 81:3303-16. [PMID: 17215287 PMCID: PMC1866087 DOI: 10.1128/jvi.02445-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Epstein-Barr virus ZEBRA protein controls the viral lytic cycle. ZEBRA activates the transcription of viral genes required for replication. ZEBRA also binds to oriLyt and interacts with components of the viral replication machinery. The mechanism that differentiates the roles of ZEBRA in regulation of transcription and initiation of lytic replication is unknown. Here we show that S173, a residue in the regulatory domain, is obligatory for ZEBRA to function as an origin binding protein but is dispensable for its role as a transcriptional activator of early genes. Serine-to-alanine substitution of this residue, which prevents phosphorylation of S173, resulted in a threefold reduction in the DNA binding affinity of ZEBRA for oriLyt, as assessed by chromatin immunoprecipitation. An independent assay based on ZEBRA solubility demonstrated a marked defect in DNA binding by the Z(S173A) mutant. The phenotype of a phosphomimetic mutant, the Z(S173D) mutant, was similar to that of wild-type ZEBRA. Our findings suggest that phosphorylation of S173 promotes viral replication by enhancing ZEBRA's affinity for DNA. The results imply that stronger DNA binding is required for ZEBRA to activate replication than that required to activate transcription.
Collapse
Affiliation(s)
- Ayman El-Guindy
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
16
|
Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. Lytic Cycle Switches of Oncogenic Human Gammaherpesviruses1. Adv Cancer Res 2007; 97:81-109. [PMID: 17419942 DOI: 10.1016/s0065-230x(06)97004-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The seminal experiments of George and Eva Klein helped to define the two life cycles of Epstein-Barr Virus (EBV), namely latency and lytic or productive infection. Their laboratories described latent nuclear antigens expressed during latency and discovered several chemicals that activated the viral lytic cycle. The mechanism of the switch between latency and the lytic cycle of EBV and Kaposi's sarcoma-associated herpesvirus (KSHV) can be studied in cultured B cell lines. Lytic cycle activation of EBV is controlled by two viral transcription factors, ZEBRA and Rta. The homologue of Rta encoded in ORF50 is the lytic cycle activator of KSHV. Control of the lytic cycle can be divided into two distinct phases. Upstream events control expression of the virally encoded lytic cycle activator genes. Downstream events represent tasks carried out by the viral proteins in driving expression of lytic cycle genes and lytic viral DNA replication. In this chapter, we report three recent groups of experiments relating to upstream and downstream events. Azacytidine (AzaC) is a DNA methyltransferase inhibitor whose lytic cycle activation capacity was discovered by G. Klein and coworkers. We find that AzaC rapidly activates the EBV lytic cycle but does not detectably alter DNA methylation or histone acetylation on the promoters of the EBV lytic cycle activator genes. AzaC probably acts via a novel, yet to be elucidated, mechanism. The lytic cycle of both EBV and KSHV can be activated by sodium butyrate (NaB), a histone deacetylase inhibitor whose activity in disrupting latency was also discovered by G. Klein and coworkers. Activation of EBV by NaB requires protein synthesis; activation of KSHV is independent of protein synthesis. Thus, NaB works by a different pathway on the two closely related viruses. ZEBRA, the major downstream mediator of EBV lytic cycle activation is both a transcription activator and an essential replication protein. We show that phosphorylation of ZEBRA at its casein kinase 2 (CK2) site separates these two functions. Phosphorylation by CK2 is required for ZEBRA to activate lytic replication but not to induce expression of early lytic cycle genes. We discuss a number of unsolved mysteries about lytic cycle activation which should provide fertile territory for future research.
Collapse
MESH Headings
- Azacitidine/pharmacology
- Cycloheximide/pharmacology
- Cytopathogenic Effect, Viral/drug effects
- Cytopathogenic Effect, Viral/genetics
- Cytopathogenic Effect, Viral/physiology
- DNA Replication
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/virology
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Herpesvirus 8, Human/drug effects
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/physiology
- Humans
- Immediate-Early Proteins/physiology
- Mutation
- Oncogenic Viruses/physiology
- Phosphorylation
- Protein Processing, Post-Translational
- Protein Structure, Tertiary
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/physiology
- Tumor Virus Infections/virology
- Virus Latency/drug effects
- Virus Latency/genetics
Collapse
Affiliation(s)
- George Miller
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
17
|
Heston L, El-Guindy A, Countryman J, Dela Cruz C, Delecluse HJ, Miller G. Amino acids in the basic domain of Epstein-Barr virus ZEBRA protein play distinct roles in DNA binding, activation of early lytic gene expression, and promotion of viral DNA replication. J Virol 2006; 80:9115-33. [PMID: 16940523 PMCID: PMC1563939 DOI: 10.1128/jvi.00909-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ZEBRA protein of Epstein-Barr virus (EBV) drives the viral lytic cycle cascade. The capacity of ZEBRA to recognize specific DNA sequences resides in amino acids 178 to 194, a region in which 9 of 17 residues are either lysine or arginine. To define the basic domain residues essential for activity, a series of 46 single-amino-acid-substitution mutants were examined for their ability to bind ZIIIB DNA, a high-affinity ZEBRA binding site, and for their capacity to activate early and late EBV lytic cycle gene expression. DNA binding was obligatory for the protein to activate the lytic cascade. Nineteen mutants that failed to bind DNA were unable to disrupt latency. A single acidic replacement of a basic amino acid destroyed DNA binding and the biologic activity of the protein. Four mutants that bound weakly to DNA were defective at stimulating the expression of Rta, the essential first target of ZEBRA in lytic cycle activation. Four amino acids, R183, A185, C189, and R190, are likely to contact ZIIIB DNA specifically, since alanine or valine substitutions at these positions drastically weakened or eliminated DNA binding. Twenty-three mutants were proficient in binding to ZIIIB DNA. Some DNA binding-proficient mutants were refractory to supershift by BZ-1 monoclonal antibody (epitope amino acids 214 to 230), likely as the result of the increased solubility of the mutants. Mutants competent to bind DNA could be separated into four functional groups: the wild-type group (eight mutants), a group defective at activating Rta (five mutants, all with mutations at the S186 site), a group defective at activating EA-D (three mutants with the R179A, S186T, and K192A mutations), and a group specifically defective at activating late gene expression (seven mutants). Three late mutants, with a Y180A, Y180E, or K188A mutation, were defective at stimulating EBV DNA replication. This catalogue of point mutants reveals that basic domain amino acids play distinct functions in binding to DNA, in activating Rta, in stimulating early lytic gene expression, and in promoting viral DNA replication and viral late gene expression. These results are discussed in relationship to the recently solved crystal structure of ZEBRA bound to an AP-1 site.
Collapse
Affiliation(s)
- Lee Heston
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
18
|
Santoni F, Lindner I, Caselli E, Goltz M, Di Luca D, Ehlers B. Molecular interactions between porcine and human gammaherpesviruses: implications for xenografts? Xenotransplantation 2006; 13:308-17. [PMID: 16768724 DOI: 10.1111/j.1399-3089.2006.00312.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reactivation of latent herpesviruses is an important cause of morbidity and mortality in human transplantation. This issue might be further complicated in the case of xenotransplantation. Zoonotic viruses could reactivate and replicate in the transplanted tissue, and interactions with homologous human viruses could take place. Since the pig is a favoured animal as donor of organs for human transplants, we analysed the possibility of interactions between porcine and human herpesviruses. Porcine lymphotropic herpesvirus 1 (PLHV-1) is a gammaherpesvirus homologous to Epstein-Barr virus (EBV) and to human herpesvirus 8 (HHV-8), is highly prevalent in pigs and is associated to lymphoproliferative disease in immunosuppressed and transplanted miniature swine. METHODS The main viral transactivators of PLHV-1, ORF50, ORF57, ORFA6/BZLF1(h), were cloned and tested for their transactivating ability on several EBV and HHV-8 promoters using reporter assays. Also the effects of HHV-8 ORF50, ORF57 and ORFK8 and EBV BRLF1/ R-transactivator (Rta) and BZLF1/ Z-transactivator (Zta) on PLHV-1 lytic promoters were analysed. RESULTS Porcine lymphotropic herpesvirus 1 ORF50 upregulated all HHV-8 promoters and PLHV-1 ORFA6/BZLF1(h) transactivated EBV promoters. Furthermore, transfection of PLHV-1 ORF50 into BC-3 cells, latently infected with HHV-8, resulted in HHV-8 reactivation. Likewise, HHV-8 ORF50 and EBV BRLF1/Rta had a strong transactivating effect on PLHV-1 promoters. Also EBV BZLF1/Zta and HHV-8 ORF57 induced PLHV-1 transactivation, but at lower levels. CONCLUSION The results suggest that reciprocal molecular interactions between human and porcine herpesviruses might occur in vivo, and support the hypothesis that PLHV-1 might have pathogenic relevance in the course of xenotransplantation.
Collapse
Affiliation(s)
- Fabio Santoni
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
19
|
El-Guindy AS, Paek SY, Countryman J, Miller G. Identification of constitutive phosphorylation sites on the Epstein-Barr virus ZEBRA protein. J Biol Chem 2005; 281:3085-95. [PMID: 16321978 DOI: 10.1074/jbc.m506076200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZEBRA, the product of the Epstein-Barr virus gene bzlf1, and a member of the AP-1 subfamily of basic zipper (bZIP) transcription factors, is necessary and sufficient to disrupt viral latency and to initiate the viral lytic cycle. Two serine residues of ZEBRA, Ser167 and Ser173, are substrates for casein kinase 2 (CK2) and are constitutively phosphorylated in vivo. Phosphorylation of ZEBRA at its CK2 sites is required for proper temporal regulation of viral gene expression. Phosphopeptide analysis indicated that ZEBRA contains additional constitutive phosphorylation sites. Here we employed a co-migration strategy to map these sites in vivo. The cornerstone of this strategy was to correlate the migration of 32P- and 35S-labeled tryptic peptides of ZEBRA. The identity of the peptides was revealed by mutagenesis of methionine and cysteine residues present in each peptide. Phosphorylation sites within the peptide were identified by mutagenesis of serines and threonines. ZEBRA was shown to be phosphorylated at serine and threonine residues, but not tyrosine. Two previously unrecognized phosphorylation sites of ZEBRA were identified in the NH2-terminal region of the transactivation domain: a cluster of weak phosphorylation sites at Ser6, Thr7, and Ser8 and a strong phosphorylation site at Thr14. Thr14 was embedded in a MAP kinase consensus sequence and could be phosphorylated in vitro by JNK, despite the absence of a canonical JNK docking site. Thus ZEBRA is now known to be constitutively phosphorylated at three distinct sites.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
20
|
Yin Q, Jupiter K, Flemington EK. The Epstein–Barr virus transactivator Zta binds to its own promoter and is required for full promoter activity during anti-Ig- and TGF-beta1-mediated reactivation. Virology 2004; 327:134-43. [PMID: 15327904 DOI: 10.1016/j.virol.2004.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 05/27/2004] [Accepted: 06/14/2004] [Indexed: 12/01/2022]
Abstract
Transcription of the immediate early gene BZLF1 is mediated initially through the activation of cellular transcription factors. Reporter-based studies have provided evidence that following this initial activation, the BZLF1 gene product Zta may be involved in an autoactivation loop through binding to its promoter Zp. In contrast, other reports have shown that transfection of a Zta expression vector in latently infected cells does not activate endogenous Zp. Using chromatin immunoprecipitation (ChIP) assays, we show here that Zta binds to endogenous Zp following induction of the lytic cycle by anti-Ig and TGF-beta1 and that binding occurs early enough to play a role in the activation of Zp. We have also generated a dominant-negative Zta and shown that it inhibits activation of endogenous Zp. These data support a two-step model for Zp activation during reactivation involving initial activation by cellular factors followed by an autoactivation step.
Collapse
Affiliation(s)
- Qinyan Yin
- Tulane Cancer Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
21
|
Wu FY, Wang SE, Chen H, Wang L, Hayward SD, Hayward GS. CCAAT/enhancer binding protein alpha binds to the Epstein-Barr virus (EBV) ZTA protein through oligomeric interactions and contributes to cooperative transcriptional activation of the ZTA promoter through direct binding to the ZII and ZIIIB motifs during induction of the EBV lytic cycle. J Virol 2004; 78:4847-65. [PMID: 15078966 PMCID: PMC387681 DOI: 10.1128/jvi.78.9.4847-4865.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Epstein-Barr virus (EBV)-encoded ZTA protein interacts strongly with and stabilizes the cellular CCAAT/enhancer binding protein alpha (C/EBPalpha), leading to the induction of p21-mediated G(1) cell cycle arrest. Despite the strong interaction between these two basic leucine zipper (bZIP) family proteins, the ZTA and C/EBPalpha subunits do not heterodimerize, as indicated by an in vitro cross-linking assay with in vitro-cotranslated (35)S-labeled C/EBPalpha and (35)S-labeled ZTA protein. Instead, they evidently form a higher-order oligomeric complex that competes with C/EBPalpha binding but not with ZTA binding in electrophoretic mobility shift assays (EMSAs). Glutathione S-transferase affinity assays with mutant ZTA proteins revealed that the basic DNA binding domain and the key leucine zipper residues required for homodimerization are all required for the interaction with C/EBPalpha. ZTA is known to bind to two ZRE sites within the ZTA promoter and to positively autoregulate its own expression in transient cotransfection assays, but there is conflicting evidence about whether it does so in vivo. Examination of the proximal ZTA upstream promoter region by in vitro EMSA analysis revealed two high-affinity C/EBP binding sites (C-2 and C-3), which overlap the ZII and ZIIIB motifs, implicated as playing a key role in lytic cycle induction. A chromatin immunoprecipitation assay confirmed the in vivo binding of both endogenous C/EBPalpha and ZTA protein to the ZTA promoter after lytic cycle induction but not during the latent state in EBV-infected Akata cells. Reporter assays revealed that cotransfected C/EBPalpha activated the ZTA promoter even more effectively than cotransfected ZTA. However, synergistic activation of the ZTA promoter was not observed when ZTA and C/EBPalpha were cotransfected together in either HeLa or DG75 cells. Mutagenesis of either the ZII or the ZIIIB sites in the ZTA promoter strongly reduced C/EBPalpha transactivation, suggesting that these sites act cooperatively. Furthermore, the introduction of exogenous C/EBPalpha into EBV-infected HeLa-BX1 cells induced endogenous ZTA mRNA and protein expression, as demonstrated by both reverse transcription-PCR and immunoblotting assays. Finally, double-label immunofluorescence assays suggested that EAD protein expression was activated even better than ZTA expression in latently infected C/EBPalpha-transfected Akata cells, perhaps because of the presence of a strong B-cell-specific repressed chromatin conformation on the ZTA promoter itself during EBV latency.
Collapse
Affiliation(s)
- Frederick Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, School of dicine, The Johns Hopkins University, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hong GK, Delecluse HJ, Gruffat H, Morrison TE, Feng WH, Sergeant A, Kenney SC. The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol 2004; 78:4983-92. [PMID: 15113878 PMCID: PMC400377 DOI: 10.1128/jvi.78.10.4983-4992.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The switch from the latent to the lytic form of Epstein-Barr virus (EBV) infection is mediated by expression of the viral immediate-early (IE) proteins, BZLF1 (Z) and BRLF1 (R). An EBV early protein, BRRF1 (Na), is encoded by the opposite strand of the BRLF1 intron, but the function of this nuclear protein in the viral life cycle is unknown. Here we demonstrate that Na enhances the R-mediated induction of lytic EBV infection in 293 cells latently infected with a recombinant EBV (R-KO) defective for the expression of both R and Na. Na also enhances R-induced lytic infections in a gastric carcinoma line (AGS) carrying the R-KO virus, although it has no effect in a Burkitt lymphoma line (BL-30) stably infected with the same mutant virus. We show that Na is a transcription factor that increases the ability of R to activate Z expression from the R-KO viral genome in 293 cells and that Na by itself activates the Z promoter (Zp) in EBV-negative cells. Na activation of Zp requires a CRE motif (ZII), and a consensus CRE motif is sufficient to transfer Na responsiveness to the heterologous E1b promoter. Furthermore, we show that Na enhances the transactivator function of a Gal4-c-Jun fusion protein but does not increase the transactivator function of other transcription factors (including ATF-1, ATF-2, and CREB) known to bind CRE motifs. Na expression in cells results in increased levels of a hyperphosphorylated form of c-Jun, suggesting a mechanism by which Na activates c-Jun. Our results indicate that Na is a transcription factor that activates the EBV Zp IE promoter through its effects on c-Jun and suggest that Na cooperates with BRLF1 to induce the lytic form of EBV infection in certain cell types.
Collapse
Affiliation(s)
- Gregory K Hong
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
El-Guindy AS, Heston L, Endo Y, Cho MS, Miller G. Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C. J Virol 2002; 76:11199-208. [PMID: 12388679 PMCID: PMC136783 DOI: 10.1128/jvi.76.22.11199-11208.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ZEBRA protein converts Epstein-Barr virus (EBV) infection from the latent to the lytic state. The ability of ZEBRA to activate this switch is strictly dependent on the presence of serine or threonine at residue 186 of the protein (A. Francis, T. Ragoczy, L. Gradoville, A. El-Guindy, and G. Miller, J. Virol. 72:4543-4551, 1999). We investigated whether phosphorylation of ZEBRA protein at this site by a serine-threonine protein kinase was required for activation of an early lytic cycle viral gene, BMRF1, as a marker of disruption of latency. Previous studies suggested that phosphorylation of ZEBRA at S186 by protein kinase C (PKC) activated the protein (M. Baumann, H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, R. Zeidler, H. J. Delecluse, and W. Hammerschmidt, J. Virol 72:8105-8114, 1998). Two residues of ZEBRA, T159 and S186, which fit the consensus for phosphorylation by PKC, were phosphorylated in vitro by this enzyme. Several isoforms of PKC (alpha, beta(1), beta(2), gamma, delta, and epsilon ) phosphorylated ZEBRA. All isoforms that phosphorylated ZEBRA in vitro were blocked by bisindolylmaleimide I, a specific inhibitor of PKC. Studies in cell culture showed that phosphorylation of T159 was not required for disruption of latency in vivo, since the T159A mutant was fully functional. Moreover, the PKC inhibitor did not block the ability of ZEBRA expressed from a transfected plasmid to activate the BMRF1 downstream gene. Of greatest importance, in vivo labeling with [(32)P]orthophosphate showed that the tryptic phosphopeptide maps of wild-type ZEBRA, Z(S186A), and the double mutant Z(T159A/S186A) were identical. Although ZEBRA is a potential target for PKC, in the absence of PKC agonists, ZEBRA is not constitutively phosphorylated in vivo by PKC at T159 or S186. Phosphorylation of ZEBRA by PKC is not essential for the protein to disrupt EBV latency.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
24
|
Gradoville L, Kwa D, El-Guindy A, Miller G. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 2002; 76:5612-26. [PMID: 11991990 PMCID: PMC137009 DOI: 10.1128/jvi.76.11.5612-5626.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase C (PKC) pathway has been considered to be essential for activation of latent Epstein-Barr virus (EBV) into the lytic cycle. The phorbol ester tetradecanoyl phorbol acetate (TPA), a PKC agonist, is one of the best understood activators of EBV lytic replication. Zp, the promoter of the EBV immediate-early gene BZLF1, whose product, ZEBRA, drives the lytic cycle, contains several phorbol ester response elements. We investigated the role of the PKC pathway in lytic cycle activation in prototype cell lines that differed dramatically in their response to inducing agents. We determined whether PKC was involved in lytic cycle induction by histone deacetylase (HDAC) inhibitors. Consistent with prevailing views, B95-8 cells were activated into the lytic cycle by the phorbol ester TPA, via a PKC-dependent mechanism. B95-8 was not inducible by HDAC inhibitors such as n-butyrate and trichostatin A (TSA). Bisindolylmaleimide I, a selective PKC inhibitor, blocked lytic cycle activation in B95-8 cells in response to TPA. In marked contrast, in HH514-16 cells, the immediate-early promoters Zp and Rp were simultaneously activated by the HDAC inhibitors; TPA by itself failed to activate lytic gene expression. Inhibition of PKC activity by bisindolylmaleimide I did not block lytic cycle activation in HH514-16 cells by n-butyrate or TSA. In an extensive exploration of the mechanism underlying these different responses we found that the variable role of the PKC pathway in the two cell lines could not be accounted for by significant polymorphisms in the promoters of the immediate-early genes, by differences in the start sites of immediate-early gene transcription, or by differences in the nucleosomal organization of EBV DNA in the region of Zp or Rp. While B95-8 cells contained more total PKC activity than did HH514-16 cells in an in vitro assay, another EBV-transformed marmoset lymphoblastoid cell line, FF41, in which the lytic cycle was not inducible by TPA, contained comparably high levels of PKC activity. Moreover, two marmoset lymphoblastoid cells lines in which the lytic cycle could not be triggered by TPA maintained the same profile of EBV latency proteins as B95-8 cells. Thus, the profile of EBV latency proteins did not account for susceptibility to induction by PKC agonists. PKC activation is neither obligatory nor sufficient for the switch between latency and lytic cycle gene expression of EBV in many cell backgrounds. Lytic cycle induction by HDAC inhibitors proceeds by a PKC-independent mechanism.
Collapse
Affiliation(s)
- Lyndle Gradoville
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
25
|
Niller HH, Salamon D, Uhlig J, Ranf S, Granz M, Schwarzmann F, Wolf H, Minarovits J. Nucleoprotein structure of immediate-early promoters Zp and Rp and of oriLyt of latent Epstein-Barr virus genomes. J Virol 2002; 76:4113-8. [PMID: 11907252 PMCID: PMC136116 DOI: 10.1128/jvi.76.8.4113-4118.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genomic footprints across Rp, Zp, and oriLyt of Epstein-Barr virus (EBV) have been conducted in a panel of latently infected B-cell lines. Close protein-base contacts were found about 360 nucleotides upstream of the Zp initiation site. Gel shifts and transient transfection assays indicated that an Sp1-NF1 locus may serve as a repressive transcriptional element against Zp induction from latent EBV genomes.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, D-93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Liao G, Wu FY, Hayward SD. Interaction with the Epstein-Barr virus helicase targets Zta to DNA replication compartments. J Virol 2001; 75:8792-802. [PMID: 11507224 PMCID: PMC115124 DOI: 10.1128/jvi.75.18.8792-8802.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zta has a dual role in the Epstein-Barr virus (EBV) lytic cycle, acting as a key regulator of EBV lytic gene expression and also being essential for lytic viral DNA replication. Zta's replication function is mediated in part through interactions with the core viral replication proteins. We now show interaction between Zta and the helicase (BBLF4) and map the binding region to within amino acids (aa) 22 to 86 of the Zta activation domain. In immunofluorescence assays, green fluorescent protein (GFP)-tagged BBLF4 localized to the cytoplasm of transfected cells. Cotransfection of Zta resulted in translocation of BBLF4-GFP into the nucleus indicating interaction between these two proteins. However, Zta with a deletion of aa 24 to 86 was unable to mediate nuclear translocation of BBLF4-GFP. Results obtained with Zta variants carrying deletions across the aa 24 to 86 region indicated more than one contact site for BBLF4 within this domain, and this was reinforced by the behavior of the four-point mutant Zta (m22/26,74/75), which was severely impaired for BBLF4 interaction. Binding of BBLF4 to Zta was confirmed using GST affinity assays. In both cotransfection-replication assays and replication assays performed in EBV-positive P3HR1 cells, the Zta (m22/26,74/75) mutant was replication defective. In Zta-transfected D98-HR1 cells, replication compartments could be detected by immunofluorescence staining using anti-BMRF1 monoclonal antibody. Cells transfected with Zta variants that were defective for helicase binding still formed replication compartments, but Zta was excluded from these compartments. These experiments reveal a role for the Zta-helicase interaction in targeting Zta to sites of viral DNA replication.
Collapse
Affiliation(s)
- G Liao
- Oncology Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
27
|
Rodriguez A, Jung EJ, Yin Q, Cayrol C, Flemington EK. Role of c-myc regulation in Zta-mediated induction of the cyclin-dependent kinase inhibitors p21 and p27 and cell growth arrest. Virology 2001; 284:159-69. [PMID: 11384216 DOI: 10.1006/viro.2001.0923] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Latency-associated Epstein-Barr virus (EBV) gene expression induces cell proliferation. Unlike the latency associated genes, lytic gene expression in EBV, as well as other herpesviruses, elicits cell cycle arrest. Previous studies have shown that the EBV immediate early lytic transactivator, Zta, induces a G(0)/G(1) cell cycle arrest through induction of the cyclin-dependent kinase inhibitors, p21 and p27. Here we show that while EBV latency is intimately linked to activation of the protooncogene, c-myc, Zta represses c-myc expression. We also show that inhibition of c-myc expression is required for Zta-mediated growth arrest and for maximal induction of p21 and p27. Nevertheless, induction of p21 and p27 is also influenced by a c-myc-independent mechanism. A detailed genetic analysis of Zta's basic/DNA binding region identified two distinct subregions that contribute to full induction of p21 and p27. One subdomain influences p21 and p27 expression through the c-myc-dependent mechanism and the other subdomain influences p21 and p27 induction through the c-myc-independent pathway. Together, these studies further our understanding of the complex nature of Zta-induced growth arrest.
Collapse
Affiliation(s)
- A Rodriguez
- Department of Pathology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
28
|
Ragoczy T, Miller G. Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol 2001; 75:5240-51. [PMID: 11333906 PMCID: PMC114930 DOI: 10.1128/jvi.75.11.5240-5251.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an essential step in the lytic cascade, the Rta homologues of gammaherpesviruses all activate their own expression. Consistent with this biologic function, the Epstein-Barr virus (EBV) Rta protein powerfully stimulates the promoter of its own gene, Rp, in EBV-positive B cells in transient-transfection reporter-based assays. We analyzed the activity of RpCAT in response to Rta by deletional and site-directed mutagenesis. Two cognate Sp1 binding sites located at -279 and -45 relative to the transcriptional start site proved crucial for Rta-mediated activation. Previously described binding sites for the cellular transcription factor Zif268 and the viral transactivator ZEBRA were found to be dispensable for activation of RpCAT by Rta. Gel shift analysis, using extracts of B cells in latency or induced into the lytic cycle, identified Sp1 and Sp3 as the predominant cellular proteins bound to Rp near -45. During the lytic cycle, ZEBRA bound Rp near the Sp1/Sp3 site. The binding of Sp1 and Sp3 to Rp correlated with the reporter activities in the mutagenesis study, establishing a direct link between transcriptional activation of Rp by Rta and DNA binding by Sp1 and/or Sp3. The relative abundance or functional state of the cellular Sp1 and Sp3 transcription factors may be altered in response to stimuli that induce the BRLF1 promoter and thereby contribute to the activation of the viral lytic cycle.
Collapse
Affiliation(s)
- T Ragoczy
- Department of Molecular Biophysics, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
29
|
Wu FY, Ahn JH, Alcendor DJ, Jang WJ, Xiao J, Hayward SD, Hayward GS. Origin-independent assembly of Kaposi's sarcoma-associated herpesvirus DNA replication compartments in transient cotransfection assays and association with the ORF-K8 protein and cellular PML. J Virol 2001; 75:1487-506. [PMID: 11152521 PMCID: PMC114054 DOI: 10.1128/jvi.75.3.1487-1506.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Six predicted Kaposi's sarcoma virus herpesvirus (KSHV) proteins have homology with other well-characterized herpesvirus core DNA replication proteins and are expected to be essential for viral DNA synthesis. Intact Flag-tagged protein products from all six were produced from genomic expression vectors, although the ORF40/41 transcript encoding a primase-helicase component proved to be spliced with a 127-bp intron. The intracellular localization of these six KSHV replication proteins and the mechanism of their nuclear translocation were investigated. SSB (single-stranded DNA binding protein, ORF6) and PPF (polymerase processivity factor, ORF59) were found to be intrinsic nuclear proteins, whereas POL (polymerase, ORF9), which localized in the cytoplasm on its own, was translocated to the nucleus when cotransfected with PPF. PAF (primase-associated factor, ORF40/41), a component of the primase-helicase tripartite subcomplex together with PRI (primase, ORF56) and HEL (helicase, ORF44), required the presence of all five other replication proteins for efficient nuclear translocation. Surprisingly, even in the absence of a lytic cycle replication origin (ori-Lyt) and any known initiator or origin binding protein, the protein products of all six KSHV core replication genes cooperated in a transient cotransfection assay to form large globular shaped pseudo-replication compartments (pseudo-RC), which excluded cellular DNA. These pseudo-RC structures were confirmed to include POL, SSB, PRI, and PAF but did not contain any newly synthesized DNA. Similar to the human cytomegalovirus system, the peripheries of these KSHV pre-RC were also found to be surrounded by punctate PML oncogenic domains (PODs). Furthermore, by transient cotransfection, the six KSHV core replication machinery proteins successfully replicated a plasmid containing EBV ori-Lyt in the presence of the Epstein-Barr virus-encoded DNA binding initiator protein, ZTA. The KSHV-encoded K8 (ORF-K8) protein, which is a distant evolutionary homologue to ZTA, was incorporated into pseudo-RC structures formed by transient cotransfection with the six core KSHV replication genes. However, unlike ZTA, K8 displayed a punctate nuclear pattern both in transfected cells and at early stages of lytic infection and colocalized with the cellular PML proteins in PODs. Finally, K8 was also found to accumulate in functional viral RC, detected by incorporation of pulse-labeled bromodeoxyuridine into newly synthesized DNA in both tetradecanoyl phorbol acetate-induced JSC-1 primary effusion lymphoblasts and in KSHV lytically infected endothelial cells.
Collapse
Affiliation(s)
- F Y Wu
- Molecular Virology Laboratories, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231-1000, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Adamson AL, Darr D, Holley-Guthrie E, Johnson RA, Mauser A, Swenson J, Kenney S. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 2000; 74:1224-33. [PMID: 10627532 PMCID: PMC111456 DOI: 10.1128/jvi.74.3.1224-1233.2000] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of either Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) or BRLF1 (R) is sufficient to convert EBV infection from the latent to lytic form. Disruption of viral latency requires transcriptional activation of the Z and R promoters. The Z and R proteins are transcriptional activators, and each immediate-early protein activates expression of the other immediate-early protein. Z activates the R promoter through a direct binding mechanism. However, R does not bind directly to the Z promoter. In this study, we demonstrate that the ZII element (a cyclic AMP response element site) in the Z promoter is required for efficient activation by R. The ZII element has been shown to be important for induction of lytic EBV infection by tetradecanoyl phorbol acetate and surface immunoglobulin cross-linking and is activated by Z through an indirect mechanism. We demonstrate that both R and Z activate the cellular stress mitogen-activated protein (MAP) kinases, p38 and JNK, resulting in phosphorylation (and activation) of the cellular transcription factor ATF2. Furthermore, we show that the ability of R to induce lytic EBV infection in latently infected cells is significantly reduced by inhibition of either the p38 kinase or JNK pathways. In contrast, inhibition of stress MAP kinase pathways does not impair the ability of Z expression vectors to disrupt viral latency, presumably because expression of Z under the control of a strong heterologous promoter bypasses the need to activate Z transcription. Thus, both R and Z can activate the Z promoter indirectly by inducing ATF2 phosphorylation, and this activity appears to be important for R-induced disruption of viral latency.
Collapse
Affiliation(s)
- A L Adamson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol 2000; 74:710-20. [PMID: 10623733 PMCID: PMC111591 DOI: 10.1128/jvi.74.2.710-720.2000] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1999] [Accepted: 10/07/1999] [Indexed: 11/20/2022] Open
Abstract
Induction of the viral BZLF1 gene has previously been shown to be one of the first steps in the reactivation of Epstein-Barr virus (EBV). Using an EBV oriP episomal vector system, we have reconstituted the regulation of the promoter for BZLF1 on stably transfected episomes, mapped promoter elements required for that regulation, and investigated mechanisms that may control the switch between latency and the lytic cycle. Changes in histone acetylation at the promoter for the BZLF1 gene appear to be a key part of the reactivation mechanism of this herpesvirus.
Collapse
Affiliation(s)
- P J Jenkins
- Ludwig Institute for Cancer Research, Imperial College School of Medicine, St. Mary's Campus, London W2 1PG, United Kingdom
| | | | | |
Collapse
|
32
|
Ragoczy T, Miller G. Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 1999; 73:9858-66. [PMID: 10559298 PMCID: PMC113035 DOI: 10.1128/jvi.73.12.9858-9866.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of the Epstein-Barr virus (EBV) lytic cycle is controlled by two immediate-early genes, BZLF1 and BRLF1. In certain epithelial and B-cell lines, their protein products, ZEBRA and Rta, stimulate their own expression, reciprocally stimulate each other's expression, and activate downstream viral targets. It has been difficult to examine the individual roles of these two transactivators in EBV-infected lymphocytes, as they are expressed simultaneously upon induction of the lytic cycle. Here we show that the Burkitt lymphoma cell line Raji represents an experimental system that allows the study of Rta's role in the lytic cycle of EBV in the absence and presence of ZEBRA. When expressed in Raji cells, exogenous Rta does not activate endogenous BZLF1 expression, yet Rta remains competent to transactivate certain downstream viral targets. Some genes, such as BaRF1, BMLF1, and a late gene, BLRF2, are maximally activated by Rta itself in the absence of detectable ZEBRA. The use of the Z(S186A) mutant form of ZEBRA, whose transactivation function is manifest only by coexpression of Rta, allows identification of a second class of lytic cycle genes, such as BMRF1 and BHRF1, that are activated in synergy by Rta and ZEBRA. It has already been documented that of the two activators, only ZEBRA stimulates the BRLF1 gene in Raji cells. Thus, there is a third class of viral genes activated by ZEBRA but not Rta. Moreover, ZEBRA exhibits an inhibitory effect on Rta's capacity to stimulate the late gene, BLRF2. Consequently ZEBRA may function to repress Rta's potential to activate some late genes. Raji cells thus allow delineation of the combinatorial roles of Rta and ZEBRA in control of several distinct classes of lytic cycle genes.
Collapse
Affiliation(s)
- T Ragoczy
- Departments Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
33
|
Rodriguez A, Armstrong M, Dwyer D, Flemington E. Genetic dissection of cell growth arrest functions mediated by the Epstein-Barr virus lytic gene product, Zta. J Virol 1999; 73:9029-38. [PMID: 10516009 PMCID: PMC112935 DOI: 10.1128/jvi.73.11.9029-9038.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the Epstein-Barr virus (EBV) latency-associated genes activates cell cycle progression and drives immortalization of the infected cell. In contrast, progression of the EBV replication program occurs most efficiently in growth-arrested cells. Previous studies showed that the EBV-encoded immediate-early transcription factor, Zta, can induce expression of the cyclin-dependent kinase inhibitors, p21 and p27, the tumor suppressor, p53, and cell growth arrest. Moreover, Zta-mediated induction of growth arrest occurs independently of its transcriptional transactivation function. Here we show that substitution of Zta's basic DNA binding domain with the analogous region of the Zta homologue, c-Fos, abrogates Zta's ability to induce growth arrest and to induce p21, p27, or p53 expression, suggesting that protein-protein interactions between this region of Zta and key cell cycle control proteins are involved in signaling cell cycle arrest. We also show that despite the crucial role for Zta's basic domain in eliciting cell growth arrest, its amino terminus is required for efficient induction of p27 and it modulates the level of p53 induction. Last, we provide evidence that Zta-mediated inductions of p21, p27, and p53 occur, at least in part, through distinct pathways. Therefore, Zta interacts with multiple growth arrest pathways, a property which may have evolved partly as a means to ensure that lytic replication occurs in a growth-arrested setting in multiple different tissues in various states of differentiation.
Collapse
Affiliation(s)
- A Rodriguez
- Harvard University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
34
|
Lukac DM, Kirshner JR, Ganem D. Transcriptional activation by the product of open reading frame 50 of Kaposi's sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 1999; 73:9348-61. [PMID: 10516043 PMCID: PMC112969 DOI: 10.1128/jvi.73.11.9348-9361.1999] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a lymphotropic virus strongly linked to the development of KS, an endothelial cell neoplasm frequent in persons with AIDS. Reactivation from latency in B cells is thought to be an important antecedent to viral spread to endothelial cells during KS pathogenesis. Earlier experiments have posited a role for the transcriptional activator encoded by KSHV open reading frame 50 (ORF50) in such reactivation, since ectopic overexpression of this protein induces reactivation in latently infected B cells. Here we have explored several aspects of the expression, structure, and function of this protein bearing on this role. The ORF50 gene is expressed very early in lytic reactivation, before several other genes implicated as candidate regulatory genes in related viruses, and its expression can upregulate their promoters in transient assays. The protein is extensively phosphorylated in vivo and bears numerous sites for phosphorylation by protein kinase C, activators of which are potent stimulators of lytic induction. The C terminus of the ORF50 protein contains a domain that can strongly activate transcription when targeted to DNA; deletion of this domain generates an allele that expresses a truncated protein which retains the ability to form multimers with full-length ORF50 and functions as a dominant-negative protein. Expression of this allele in latently infected cells ablates spontaneous reactivation from latency and strikingly suppresses viral replication induced by multiple stimuli, including phorbol ester, ionomycin, and sodium butyrate. These results indicate that the ORF50 gene product plays an essential role in KSHV lytic replication and are consistent with its action as a putative molecular switch controlling the induction of virus from latency.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology, Howard Hughes Medical Institute, San Francisco, California 94143, USA
| | | | | |
Collapse
|
35
|
Francis A, Ragoczy T, Gradoville L, Heston L, El-Guindy A, Endo Y, Miller G. Amino acid substitutions reveal distinct functions of serine 186 of the ZEBRA protein in activation of early lytic cycle genes and synergy with the Epstein-Barr virus R transactivator. J Virol 1999; 73:4543-51. [PMID: 10233912 PMCID: PMC112494 DOI: 10.1128/jvi.73.6.4543-4551.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ZEBRA protein mediates the switch between the latent and lytic life cycles of Epstein-Barr virus. Z(S186A), a point mutant in ZEBRA's basic domain in which serine 186 is changed to alanine, is unable to induce expression of lytic cycle mRNAs or proteins from the latent EBV genome even though it retains the ability to activate transcription from reporters bearing known ZEBRA-responsive promoters (A. L. Francis et al., J. Virol. 71:3054-3061, 1997). We now describe three distinct phenotypes of ZEBRA mutants bearing different amino acid substitutions at S186. These phenotypes are based on the capacity of the mutants to activate expression of the BRLF1 and BMRF1 genes, which are targets of ZEBRA's action, and to synergize with the BRLF1 gene product Rta (R transactivator) in activating expression of downstream genes. One mutant class, represented by Z(S186T), was similar to the wild type, although reduced in the capacity to activate BRLF1 and BMRF1 early lytic cycle genes from the latent virus. A second class, represented by Z(S186C) and Z(S186G), was impaired in transcriptional activation, unable to activate early lytic cycle products from the latent virus, and not rescued by overexpression of Rta. A third class, Z(S186A), although unable by itself to activate BRLF1 or other lytic cycle genes, synergized with Rta. Rta rescued the capacity of Z(S186A) to activate the BMRF1 early lytic cycle gene from the latent virus. All mutant classes bound to DNA in vitro, although their capacity to bind to different ZEBRA response elements varied. Serine 186 of ZEBRA is a critical residue that is required for the distinct activities of induction of BRLF1 expression and for synergy with Rta. Since only Z(S186T) among the mutants behaved similarly to the wild type, activation of BRLF1 likely requires phosphorylation of S186. However, since Z(S186A) could synergize with Rta, synergy with Rta does not appear to be dependent on phosphorylation of S186. S186 likely mediates DNA recognition on the BRLF1 promoter in the context of the latent virus, protein-protein interactions, or both. The Z(S186) mutants define the amino acid side chains required for these functions.
Collapse
Affiliation(s)
- A Francis
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Long JP, Pierson S, Hughes JH. Suppression of Epstein-Barr virus reactivation in lymphoblastoid cells cultured in simulated microgravity. In Vitro Cell Dev Biol Anim 1999; 35:49-54. [PMID: 10475255 DOI: 10.1007/s11626-999-0043-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rotating-wall vessels allow for the growth of cells in simulated microgravity. Lymphoblastoid cells cultured in rotating-wall vessels exhibited significant differences in the expression of both early and late Epstein-Barr Virus (EBV) antigens. Viral protein expression (as measured by indirect immunofluorescence) was significantly suppressed in cells cultured in simulated microgravity. A significantly greater percentage of P3HR-1 cells and Daudi cells were positive for the expression of BamH1-Z-DNA fragment of Epstein-Barr replication activator (ZEBRA), early antigen restricted (EA-R), and viral capsid antigen (VCA) in cells cultured in static tissue culture flasks as compared to cells cultured in rotating-wall vessels. We observed a 7, 11, and 25-fold reduction, respectively, for EA-R, VCA, and ZEBRA protein in P3HR-1 cells cultured in simulated microgravity. Additionally, suspension cultures of P3HR-1 cells exhibited significantly greater ZEBRA antigen expression than cells cultured in rotating-wall vessels. As an independent confirmation of the reduction in ZEBRA-protein production in simulated microgravity in P3HR-1 cells, ZEBRA-mRNA was quantitated by reverse transcription polymerase chain reaction. We observed between a 4 to 10-fold reduction in ZEBRA-mRNA in cells cultured in simulated microgravity as compared to cells cultured at 1 x g in tissue culture flasks. Rotating-wall vessels, by virtue of providing a simple culture environment triggering marked differences in viral activation, provide a model whereby both host and viral factors involved in regulating the maintenance of EBV latency can be examined.
Collapse
Affiliation(s)
- J P Long
- Department of Medical Microbiology, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
37
|
Adamson AL, Kenney SC. Rescue of the Epstein-Barr virus BZLF1 mutant, Z(S186A), early gene activation defect by the BRLF1 gene product. Virology 1998; 251:187-97. [PMID: 9813214 DOI: 10.1006/viro.1998.9396] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expression of the Epstein-Barr virus (EBV) immediate-early protein, BZLF1 (Z), is sufficient to disrupt viral latency. Z transcriptionally activates the EBV early genes by binding to upstream Z-responsive elements (ZREs). Recently, a serine-to-alanine mutation of Z residue 186 (within the basic DNA binding domain) was shown to inhibit the ability of Z to induce lytic infection in latently infected cells, although the Z(S186A) mutant could still bind several known ZREs and activated an early EBV promoter (BMRF1) in transient reporter gene assays (Francis, A. L., Gradoville, L., and Miller, G. (1997). J. Virol. 71, 3054-3061). We now show that a specific deficiency in the ability to bind to ZRE elements in the immediate-early BRLF1 promoter may account for the inability of Z(S186A) to activate BRLF1 expression. Furthermore, we demonstrate that the ability of Z(S186A) to induce early BMRF1 and BHRF1 gene expression is rescued by cotransfection with a BRLF1 expression vector. However, the Z(S186A)/BRLF1 (R) combination cannot induce full lytic replication, suggesting that Z(S186A) may also be deficient in a replication-specific function. These results suggest that in the context of the intact viral genome, both Z and R expression are required for activation of early gene transcription in latently infected cells.
Collapse
Affiliation(s)
- A L Adamson
- Lineberger Comprehensive Cancer Center, Departments of Medicine and Microbiology, University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599-7295, USA
| | | |
Collapse
|
38
|
Asković S, Taylor W, Baumann R. The position of the ZEBRA activation domain does not influence its biological activity. Virus Res 1998; 57:125-38. [PMID: 9870581 DOI: 10.1016/s0168-1702(98)00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which latently infects B lymphocytes. EBV encodes a unique transcriptional activator, known as ZEBRA, which can disrupt viral latency in B cells and induce lytic viral replication. Furthermore, ZEBRA has been shown to bind at the EBV origin of lytic replication, and is necessary for viral DNA replication to occur. Previously we demonstrated that heterologous activation domains can fully substitute for the ZEBRA activation domain. Here we extend those results by showing that the position of the ZEBRA activation domain or a heterologous replacement domain does not influence its ability to function in the disruption of EBV latency. In this study three novel clones were constructed in which the ZEBRA activation region was repositioned to the carboxy terminus of the protein. These mutants were used to demonstrate that the ability of ZEBRA's wild type domain to function in the complex biological process of virus activation is not compromised by altering its position within the protein.
Collapse
Affiliation(s)
- S Asković
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
39
|
Ragoczy T, Heston L, Miller G. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 1998; 72:7978-84. [PMID: 9733836 PMCID: PMC110133 DOI: 10.1128/jvi.72.10.7978-7984.1998] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition of Epstein-Barr virus (EBV) from latency into the lytic cycle is associated with the expression of two immediate-early viral genes, BZLF1 and BRLF1. Overexpression of ZEBRA, the product of BZLF1, is sufficient to disrupt latency in B lymphocytes and epithelial cells by stimulating expression of lytic cycle genes, including BRLF1. The BRLF1 product Rta functions as a transcriptional activator in both B lymphocytes and epithelial cells. However, Rta has recently been reported to disrupt latency in an epithelial specific manner (S. Zalani, E. Holley-Guthrie, and S. Kenney, Proc. Natl. Acad. Sci. USA 93:9194-9199, 1996). Here we demonstrate that expression of Rta is also sufficient for disruption of latency in a permissive B-cell line. In HH514-16 cells, transfection of Rta leads to synthesis of ZEBRA, viral DNA replication, and late gene expression. However, Rta by itself is less potent than ZEBRA in the ability to activate most early and late lytic cycle genes. In light of previous work implicating ZEBRA in the activation of Rta, we suggest a cooperative model for EBV entry into the lytic cycle. Expression of either BZLF1 or BRLF1 triggers expression of the other immediate-early factor, and together these activators act individually or in synergy on downstream targets to activate the viral lytic cycle.
Collapse
Affiliation(s)
- T Ragoczy
- Departments of Molecular Biophysics and Biochemistry, Pediatrics, and Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
40
|
Baumann M, Mischak H, Dammeier S, Kolch W, Gires O, Pich D, Zeidler R, Delecluse HJ, Hammerschmidt W. Activation of the Epstein-Barr virus transcription factor BZLF1 by 12-O-tetradecanoylphorbol-13-acetate-induced phosphorylation. J Virol 1998; 72:8105-14. [PMID: 9733851 PMCID: PMC110148 DOI: 10.1128/jvi.72.10.8105-8114.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BZLF1 is a member of the extended AP-1 family of transcription factors which binds to specific BZLF1 sequence motifs within early Epstein-Barr virus (EBV) promoters and to closely related AP-1 motifs. BZLF1's activity is regulated at the transcriptional level as well as through protein interactions and posttranslational modifications. Phorbol esters or immunoglobulin cross-linking both reactivate EBV from latently infected B cells via transactivation of BZLF1. We report here that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) is capable of inducing BZLF1's activity even further. The induction occurs at the posttranscriptional level and depends on a single serine residue located in the DNA binding domain of BZLF1. This serine residue (S186) is phosphorylated by protein kinase C in vitro and in vivo after stimulation with TPA. Phosphorylation of S186 per se interferes with the DNA binding affinity of BZLF1 in vitro but is mandatory for TPA-induced increase in DNA binding of BZLF1, as shown in gel retardation assays and reconstruction experiments with cellular extracts. In transcriptional reporter assays, S186 is essential for the activation of BZLF1 by TPA. Presumably, a yet-to-be-identified cellular factor restores the DNA binding affinity and enhances the transcriptional activity of S186-phosphorylated BZLF1, which is required to induce the lytic phase of EBV's life cycle.
Collapse
Affiliation(s)
- M Baumann
- GSF-National Research Center for Environment and Health, Institut für Klinische Molekularbiologie und Tumorgenetik, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Serio TR, Kolman JL, Miller G. Late gene expression from the Epstein-Barr virus BcLF1 and BFRF3 promoters does not require DNA replication in cis. J Virol 1997; 71:8726-34. [PMID: 9343231 PMCID: PMC192337 DOI: 10.1128/jvi.71.11.8726-8734.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Late gene expression follows and is dependent upon lytic replication of the viral genome. Although experimental evidence is lacking, lytic viral DNA replication is believed to remove modifications or binding factors from the genome which serve to repress late gene expression during latency or the early lytic cycle. We have developed a reporter assay to begin characterizing the mechanisms that regulate late gene expression in Epstein-Barr virus (EBV). In this model system, the activities of late promoter-reporter fusions are measured following transient transfection into tissue culture cells expressing EBV during different stages of the lytic cycle. This system faithfully recapitulates late expression patterns from the endogenous virus, implicating specific cis-active sequences in the control of late gene expression. In addition, these promoters respond only indirectly to the viral immediate-early transactivator, ZEBRA. This indirect response is mediated by other viral or virally induced activities downstream of ZEBRA in the lytic cascade. In this system, late gene expression is sensitive to inhibitors of the viral DNA polymerase such as phosphonoacetic acid, although the reporters lack a eukaryotic origin of replication and are not replicated under the assay conditions. Thus, replication of the transcriptional template is not a prerequisite for expression with late kinetics, a finding inconsistent with the current models which posit a cis-active relationship between lytic EBV DNA replication and late gene expression. Rather, analysis of this system has revealed a trans relationship between late gene expression and viral DNA replication and highlights the indirect and complex link between these two events.
Collapse
Affiliation(s)
- T R Serio
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
42
|
Speck SH, Chatila T, Flemington E. Reactivation of Epstein-Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 1997; 5:399-405. [PMID: 9351176 DOI: 10.1016/s0966-842x(97)01129-3] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The switch from latent infection to virus replication in Epstein-Barr virus (EBV)-infected B cells is initiated by expression of the viral BZLF1 gene. Recent studies have identified the key cellular transcription factors involved in regulating this switch in viral programs and the signal transduction pathways to which they respond. Understanding this switch may facilitate development of strategies to interfere with EBV infection.
Collapse
Affiliation(s)
- S H Speck
- Dept of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
43
|
Asković S, Baumann R. Activation domain requirements for disruption of Epstein-Barr virus latency by ZEBRA. J Virol 1997; 71:6547-54. [PMID: 9261375 PMCID: PMC191931 DOI: 10.1128/jvi.71.9.6547-6554.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Latent infection of B lymphocytes by Epstein-Barr virus (EBV) can be disrupted by expression of the EBV ZEBRA protein. ZEBRA, a transcriptional activator, initiates the EBV lytic cascade by activating viral gene expression. ZEBRA is also indispensable for viral replication and binds directly to the EBV lytic origin of replication. The studies described herein demonstrate that the activation domain. ZEBRA activation can be replaced by a heterologous acidic, proline-rich, or glutamine-rich activation domain. ZEBRA activation domain swap constructs retain ZEBRA's native abilities to activate specific EBV promoters, to disrupt EBV latency, and to stimulate replication at the EBV lytic origin. Additional work, employing sequential and internal deletions of ZEBRA's N-terminal activation domain, indicates that its separate activities are not attributable to specific subdomains but are spread throughout its N terminus and therefore cannot be inactivated by deleting localized regions.
Collapse
Affiliation(s)
- S Asković
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216, USA
| | | |
Collapse
|
44
|
Francis AL, Gradoville L, Miller G. Alteration of a single serine in the basic domain of the Epstein-Barr virus ZEBRA protein separates its functions of transcriptional activation and disruption of latency. J Virol 1997; 71:3054-61. [PMID: 9060666 PMCID: PMC191435 DOI: 10.1128/jvi.71.4.3054-3061.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ZEBRA protein from Epstein-Barr virus (EBV) activates a switch from the latent to the lytic expression program of the virus. ZEBRA, a member of the bZIP family of DNA-binding proteins, is a transcriptional activator capable of inducing expression from viral lytic cycle promoters. It had previously been thought that ZEBRA's capacity to disrupt EBV latency resided primarily in its ability to activate transcription of genes that encode products required for lytic replication. We generated a point mutant of ZEBRA, Z(S186A), that was not impaired in its ability to activate transcription; however, this mutation abolished its ability to initiate the viral lytic cascade. The mutant, containing a serine-to-alanine substitution in the DNA-binding domain of the protein, bound to several known ZEBRA-binding sites and activated transcription from reporters bearing known ZEBRA-responsive promoters but did not disrupt latency in EBV-infected cell lines. Therefore, initiation of the EBV lytic cycle by the ZEBRA protein requires a function in addition to transcriptional activation; a change of serine 186 to alanine in the DNA-binding domain of ZEBRA abolished this additional function and uncovered a new role for the ZEBRA protein in disruption of EBV latency. The additional function that is required for initiation of the lytic viral life cycle is likely to require phosphorylation of serine 186 of the ZEBRA protein, which may influence either DNA recognition or transcriptional activation of lytic viral promoters in a chromatinized viral episome.
Collapse
Affiliation(s)
- A L Francis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
45
|
Sarisky RT, Gao Z, Lieberman PM, Fixman ED, Hayward GS, Hayward SD. A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 1996; 70:8340-7. [PMID: 8970953 PMCID: PMC190921 DOI: 10.1128/jvi.70.12.8340-8347.1996] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Zta transactivator is crucial for both Epstein-Barr virus (EBV) lytic gene expression and lytic DNA replication. We have used a cotransfection-replication assay to examine the effect of mutations in the Zta activation domain (amino acids [aa] 1 to 167) on Zta replication activity. Deletion of Zta aa 25 to 86, which are critical for transcriptional activation of ori-Lyt, or aa 93 to 141 did not adversely affect replication of an ori-Lyt-containing target plasmid. However, removal of aa 2 to 25 (delta2-25) abolished replication activity. Within this subdomain, deletion of aa 2 to 10 (delta2-10) or mutation of codons 18 and 19 (m18/19) or 22 and 26 (m22/26) did not affect replication competency, while deletion of codons 13 to 19 (delta13-19) or mutation at codons 12 and 13 (m12/13) impaired Zta replication function. Each of the replication-negative Zta variants was capable of transactivating expression from both BHLF1 promoter-chloramphenicol acetyltransferase constructions and the BMRF1 promoter on endogenous EBV genomes in Raji cells with efficiency comparable to that of the wild-type polypeptide. Thus, a replication contribution of Zta was functionally separable from its transactivation activity and was supplied by the N-terminal region encompassing aa 11 to 25. Replication by a subset of the impaired Zta mutants was partially rescued upon the addition of Rta to the replication assay. The contribution of Rta mapped to domain II of the Rta activation domain and was specific for this region. A chimeric Rta-EBNA-2 transactivation domain fusion, which retains the DNA-binding and transactivation properties associated with wild-type Rta, failed to rescue replication-deficient Zta. Our data suggest that Rta may act as an ancillary replication factor in EBV ori-Lyt DNA synthesis by stabilizing Zta-replisome interactions.
Collapse
Affiliation(s)
- R T Sarisky
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | | | | | | | |
Collapse
|
46
|
Serio TR, Angeloni A, Kolman JL, Gradoville L, Sun R, Katz DA, Van Grunsven W, Middeldorp J, Miller G. Two 21-kilodalton components of the Epstein-Barr virus capsid antigen complex and their relationship to ZEBRA-associated protein p21 (ZAP21). J Virol 1996; 70:8047-54. [PMID: 8892929 PMCID: PMC190878 DOI: 10.1128/jvi.70.11.8047-8054.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The viral capsid antigen complex of Epstein-Barr virus (EBV), an important serodiagnostic marker of infection with the virus, consists of at least four components, with molecular masses of 150, 110, 40, and 21 kDa. Here we show that the 21-kDa component of the viral capsid antigen consists of products of two EBV genes, BFRF3 and BLRF2. Both products were expressed from late transcripts, were recognized by human antisera, and were present in virions. The BFRF3 product, but not that of BLRF2, fulfilled the definition of ZEBRA-associated protein p21 (ZAP21). In cells in which EBV was lytically replicating, BFRF3 protein was coimmunoprecipitated together with ZEBRA by a rabbit antiserum directed against amino acids 197 to 245 of BZLF1. In EBV-negative cells cotransfected with BZLF1 and BFRF3 expression vectors, BFRF3 was also coimmunoprecipitated with this antiserum. Although this antiserum could not detect BFRF3 on an immunoblot, it was able to immunoprecipitate BFRF3 in the absence of ZEBRA expression. The rabbit antiserum to amino acids 197 to 245 of BZLF1 was found to detect the same epitope at the carboxy end of BFRF3 as was recognized by rabbit antiserum to BFRF3 itself. Thus, coimmunoprecipitation of BFRF3 p21 with ZEBRA appeared to be due to cross-reactivity of the immunoprecipitating antiserum rather than to direct association of ZEBRA and BFRF3 p21.
Collapse
Affiliation(s)
- T R Serio
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zalani S, Holley-Guthrie E, Kenney S. Epstein-Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci U S A 1996; 93:9194-9. [PMID: 8799177 PMCID: PMC38618 DOI: 10.1073/pnas.93.17.9194] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, is a human herpesvirus associated with epithelial cell malignancies (nasopharyngeal carcinoma) as well as B-cell malignancies. Understanding how viral latency is disrupted is a central issue in herpesvirus biology. Epithelial cells are the major site of lytic EBV replication within the human host, and viral reactivation occurs in EBV-associated nasopharyngeal carcinomas. It is known that expression of a single viral immediate-early protein, BZLF1, is sufficient to initiate the switch from latent to lytic infection in B cells. Cellular regulation of BZLF1 transcription is therefore thought to play a key role in regulating the stringency of viral latency. Here we show that, unexpectedly, expression of another viral immediate-early protein, BRLF1, can disrupt viral latency in an epithelial cell-specific fashion. Therefore, the mechanisms leading to disruption of EBV latency appear to be cell-type specific.
Collapse
Affiliation(s)
- S Zalani
- Department of Medicine, University of North Carolina 27599, USA
| | | | | |
Collapse
|
48
|
Zhang Q, Hong Y, Dorsky D, Holley-Guthrie E, Zalani S, Elshiekh NA, Kiehl A, Le T, Kenney S. Functional and physical interactions between the Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1: Effects on EBV transcription and lytic replication. J Virol 1996; 70:5131-42. [PMID: 8764021 PMCID: PMC190468 DOI: 10.1128/jvi.70.8.5131-5142.1996] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Epstein-Barr virus (EBV) proteins BZLF1 and BMRF1 are both essential for lytic EBV replication. BZLF1 is a transcriptional activator which binds directly to the lytic origin of replication (oriLyt) and plays a critical role in the disruption of viral latency. The BMRF1 protein is required for viral polymerase processivity. Here we demonstrate that the BMRF1 gene product functions as a transcriptional activator and has direct (as well as indirect) interactions with the BZLF1 gene product. The BMRF1 gene product activates an essential oriLyt promoter, BHLF1, but does not activate two other early EBV promoters (BMRF1 and BHRF1). Direct interaction between the BMRF1 and BZLF1 gene products requires the first 45 amino acids of BMRF1 and the bZip domain of BZLF1. The effect of the BZLF1-BMRF1 interaction on early EBV transcription is complex and is promoter specific. The oriLyt BHLF1 promoter is activated by either the BZLF1 or BMRF1 gene product alone and is further activated by the combination of the BZLF1 and BMRF1 gene products. Enhanced activation of BHLF1 transcription by the BMRF1-BZLF1 combination does not require direct interaction between these proteins. In contrast, BZLF1-induced activation of the BMRF1 promoter is inhibited in the presence of the BMRF1 gene product. A point mutation in the BZLF1 protein (amino acid 200), which prevents in vitro interaction with the BMRF1 protein but which does not reduce BZLF1 transactivator function, allows the BZLF1 protein to activate the BMRF1 promoter equally well in the presence or absence of the BMRF1 gene product. Therefore, direct interaction between the BZLF1 and BMRF1 proteins may inhibit BZLF1-induced transcription of the BMRF1 promoter. BZLF1 mutated at amino acid 200 is as efficient as wild-type BZLF1 in promoting replication of an oriLyt plasmid. However, this mutation reduces the ability of BZLF1 to induce lytic replication of the endogenous viral genome in D98/HE-R-1 cells. Our results indicate that functional and physical interactions between the BMRF1 and BZLF1 proteins may modulate the efficiency of lytic EBV infection. The BMRF1 gene product clearly has a transcriptional, as well as replicative, role during lytic EBV infection.
Collapse
Affiliation(s)
- Q Zhang
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill 27514, USA
| | | | | | | | | | | | | | | | | |
Collapse
|