1
|
Matoušková M, Plachý J, Kučerová D, Pecnová Ľ, Reinišová M, Geryk J, Karafiát V, Hron T, Hejnar J. Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance. PLoS Pathog 2024; 20:e1012468. [PMID: 39146367 PMCID: PMC11349186 DOI: 10.1371/journal.ppat.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/27/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Genetic editing of the germline using CRISPR/Cas9 technology has made it possible to alter livestock traits, including the creation of resistance to viral diseases. However, virus adaptability could present a major obstacle in this effort. Recently, chickens resistant to avian leukosis virus subgroup J (ALV-J) were developed by deleting a single amino acid, W38, within the ALV-J receptor NHE1 using CRISPR/Cas9 genome editing. This resistance was confirmed both in vitro and in vivo. In vitro resistance of W38-/- chicken embryonic fibroblasts to all tested ALV-J strains was shown. To investigate the capacity of ALV-J for further adaptation, we used a retrovirus reporter-based assay to select adapted ALV-J variants. We assumed that adaptive mutations overcoming the cellular resistance would occur within the envelope protein. In accordance with this assumption, we isolated and sequenced numerous adapted virus variants and found within their envelope genes eight independent single nucleotide substitutions. To confirm the adaptive capacity of these substitutions, we introduced them into the original retrovirus reporter. All eight variants replicated effectively in W38-/- chicken embryonic fibroblasts in vitro while in vivo, W38-/- chickens were sensitive to tumor induction by two of the variants. Importantly, receptor alleles with more extensive modifications have remained resistant to the virus. These results demonstrate an important strategy in livestock genome engineering towards antivirus resistance and illustrate that cellular resistance induced by minor receptor modifications can be overcome by adapted virus variants. We conclude that more complex editing will be necessary to attain robust resistance.
Collapse
Affiliation(s)
- Magda Matoušková
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Plachý
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Reinišová
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Geryk
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Vít Karafiát
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Hron
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Department of Viral and Cellular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Chen J, Li J, Dong X, Liao M, Cao W. The key amino acid sites 199-205, 269, 319, 321 and 324 of ALV-K env contribute to the weaker replication capacity of ALV-K than ALV-A. Retrovirology 2022; 19:19. [PMID: 36002842 PMCID: PMC9400301 DOI: 10.1186/s12977-022-00598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Avian leukosis virus (ALV) is an infectious retrovirus, that mainly causes various forms of tumours, immunosuppression, a decreased egg production rate and slow weight gain in poultry. ALV consists of 11 subgroups, A-K, among which ALV-K is an emerging subgroup that has become prevalent in the past 10 years. Most ALV-K isolates showed weak replication ability and pathogenicity. In this study, the weak replication ability of ALV-K was explored from the perspective of the interaction between ALV-K gp85 and the Tva receptor. METHODS Fourteen soluble recombinant ALV-A/K gp85 chimeric proteins were constructed by substituting the sequence difference regions (hr1, hr2 and vr3) of the ALV-A gp85 protein with the skeleton ALV-K gp85 protein for co-IP and competitive blocking tests. RESULTS The binding capacity of ALV-K gp85 to Tva was significantly weaker than that of ALV-A gp85 (P < 0.05) and the key amino acid sites 199-205, 269, 319, 321 and 324 of ALV-K env contributed to the weaker replication capacity of ALV-K than ALV-A. CONCLUSIONS This is the first study to reveal the molecular factors of the weak replication ability of ALV-K from the perspective of the interaction of ALV-K gp85 to Tva, providing a basis for further elucidation of the infection mechanism of ALV-K.
Collapse
Affiliation(s)
- Jian Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642 China
| | - Jinqun Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642 China
| | - Xinyi Dong
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642 China
| | - Ming Liao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642 China ,Key Laboratory of Zoonosis of the Ministry of Agriculture, Guangzhou, 510642 China ,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, 510642 China ,grid.464259.80000 0000 9633 0629National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642 China
| | - Weisheng Cao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, 510642 China ,Key Laboratory of Zoonosis of the Ministry of Agriculture, Guangzhou, 510642 China ,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, 510642 China ,grid.464259.80000 0000 9633 0629National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, 510642 China
| |
Collapse
|
3
|
Geographic patterns of koala retrovirus genetic diversity, endogenization, and subtype distributions. Proc Natl Acad Sci U S A 2022; 119:e2122680119. [PMID: 35943984 PMCID: PMC9388103 DOI: 10.1073/pnas.2122680119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Koala retrovirus (KoRV) subtype A (KoRV-A) is currently in transition from exogenous virus to endogenous viral element, providing an ideal system to elucidate retroviral-host coevolution. We characterized KoRV geography using fecal DNA from 192 samples across 20 populations throughout the koala's range. We reveal an abrupt change in KoRV genetics and incidence at the Victoria/New South Wales state border. In northern koalas, pol gene copies were ubiquitously present at above five per cell, consistent with endogenous KoRV. In southern koalas, pol copies were detected in only 25.8% of koalas and always at copy numbers below one, while the env gene was detected in all animals and in a majority at copy numbers above one per cell. These results suggest that southern koalas carry partial endogenous KoRV-like sequences. Deep sequencing of the env hypervariable region revealed three putatively endogenous KoRV-A sequences in northern koalas and a single, distinct sequence present in all southern koalas. Among northern populations, env sequence diversity decreased with distance from the equator, suggesting infectious KoRV-A invaded the koala genome in northern Australia and then spread south. The exogenous KoRV subtypes (B to K), two novel subtypes, and intermediate subtypes were detected in all northern koala populations but were strikingly absent from all southern animals tested. Apart from KoRV subtype D, these exogenous subtypes were generally locally prevalent but geographically restricted, producing KoRV genetic differentiation among northern populations. This suggests that sporadic evolution and local transmission of the exogenous subtypes have occurred within northern Australia, but this has not extended into animals within southern Australia.
Collapse
|
4
|
Hötzel I. Deep-Time Structural Evolution of Retroviral and Filoviral Surface Envelope Proteins. J Virol 2022; 96:e0006322. [PMID: 35319227 PMCID: PMC9006886 DOI: 10.1128/jvi.00063-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
The retroviral surface envelope protein subunit (SU) mediates receptor binding and triggers membrane fusion by the transmembrane (TM) subunit. SU evolves rapidly under strong selective conditions, resulting in seemingly unrelated SU structures in highly divergent retroviruses. Structural modeling of the SUs of several retroviruses and related endogenous retroviral elements with AlphaFold 2 identifies a TM-proximal SU β-sandwich structure that has been conserved in the orthoretroviruses for at least 110 million years. The SU of orthoretroviruses diversified by the differential expansion of the β-sandwich core to form domains involved in virus-host interactions. The β-sandwich domain is also conserved in the SU equivalent GP1 of Ebola virus although with a significantly different orientation in the trimeric envelope protein structure relative to the β-sandwich of human immunodeficiency virus type 1 gp120, with significant evidence for divergent rather than convergent evolution. The unified structural view of orthoretroviral SU and filoviral GP1 identifies an ancient, structurally conserved, and evolvable domain underlying the structural diversity of orthoretroviral SU and filoviral GP1. IMPORTANCE The structural relationships of SUs of retroviral groups are obscured by the high rate of sequence change of SU and the deep-time divergence of retroviral lineages. Previous data showed no structural or functional relationships between the SUs of type C gammaretroviruses and lentiviruses. A deeper understanding of structural relationships between the SUs of different retroviral lineages would allow the generalization of critical processes mediated by these proteins in host cell infection. Modeling of SUs with AlphaFold 2 reveals a conserved core domain underlying the structural diversity of orthoretroviral SUs. Definition of the conserved SU structural core allowed the identification of a homologue structure in the SU equivalent GP1 of filoviruses that most likely shares an origin, unifying the SU of orthoretroviruses and GP1 of filoviruses into a single protein family. These findings will allow an understanding of the structural basis for receptor-mediated membrane fusion mechanisms in a broad range of biomedically important retroviruses.
Collapse
Affiliation(s)
- Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, California, USA
| |
Collapse
|
5
|
Chen J, Li J, Li L, Liu P, Xiang Y, Cao W. Single Amino Acids G196 and R198 in hr1 of Subgroup K Avian Leukosis Virus Glycoprotein Are Critical for Tva Receptor Binding. Front Microbiol 2020; 11:596586. [PMID: 33391214 PMCID: PMC7772352 DOI: 10.3389/fmicb.2020.596586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis viruses (ALVs), a type of retrovirus responsible for various tumor diseases in chickens, are divided into 11 subgroups: ALV-A to ALV-K. After the envelope glycoproteins of ALV interact with the cellular receptor to initiate viral invasion, alterations in a few amino acids of the viral glycoproteins or cell receptors may trigger changes in their conformation and binding affinity. To identify the functional determinants of the ALV-K envelope protein that binds to Tva (a recently identified cellular receptor of ALV-K), using the strategy of continuous, segment-by-segment substitution of the gp85-encoded surface glycoprotein (SU) of ALV-K GDFX0602 with ALV-E ev-1 (using Tvb as the receptor), a series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and a series of recombinant viruses with replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) as their skeleton were created for transfecting to DF-1 cells and titer determination. The co-IP analysis, fluorescence-activated cell sorting, and virus titer measurements revealed that the substitution of residues 194–198, 206–216 of hr1, residues 251–256 between hr1 and hr2, and residues 269–280 of hr2 were identified to reduce the binding of gp85 to Tva. The substitution of residues 194–221 in hr1 nullified the infectiveness of these viruses, similar to the effect of single amino acid mutations in K251E and L252I located between hr1 and hr2; continuous amino acid mutations in hr2 could not produce the same effect despite reducing their infectiveness. Finally, single amino acid mutations G196A and R198H nearly abolished the binding of gp85 to Tva and nullified the infectiveness of these viruses to DF-1. This study paves the way for exploring the molecular mechanisms of the binding of Tva to ALV-K SU.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lizhen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
6
|
Payne L. Avian leukosis virus – new mutations: a threat for the upcoming century. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps20010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- L.N. Payne
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK
| |
Collapse
|
7
|
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J Virol 2019; 93:JVI.00580-19. [PMID: 31217247 DOI: 10.1128/jvi.00580-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023] Open
Abstract
Avian leukosis virus subgroup K (ALV-K) is composed of newly emerging isolates, which, in sequence analyses, cluster separately from the well-characterized subgroups A, B, C, D, E, and J. However, it remains unclear whether ALV-K represents an independent ALV subgroup with regard to receptor usage, host range, and superinfection interference. In the present study, we examined the host range of the Chinese infectious isolate JS11C1, an ALV-K prototype, and we found substantial overlap of species that were either resistant or susceptible to ALV-A and JS11C1. Ectopic expression of the chicken tva gene in mammalian cells conferred susceptibility to JS11C1, while genetic ablation of the tva gene rendered chicken DF-1 cells resistant to infection by JS11C1. Thus, tva expression is both sufficient and necessary for JS11C1 entry. Receptor sharing was also manifested in superinfection interference, with preinfection of cells with ALV-A, but not ALV-B or ALV-J, blocking subsequent JS11C1 infection. Finally, direct binding of JS11C1 and Tva was demonstrated by preincubation of the virus with soluble Tva, which substantially decreased viral infectivity in susceptible chicken cells. Collectively, these findings indicate that JS11C1 represents a new and bona fide ALV subgroup that utilizes Tva for cell entry and binds to a site other than that for ALV-A.IMPORTANCE ALV consists of several subgroups that are particularly characterized by their receptor usage, which subsequently dictates the host range and tropism of the virus. A few newly emerging and highly pathogenic Chinese ALV strains have recently been suggested to be an independent subgroup, ALV-K, based solely on their genomic sequences. Here, we performed a series of experiments with the ALV-K strain JS11C1, which showed its dependence on the Tva cell surface receptor. Due to the sharing of this receptor with ALV-A, both subgroups were able to interfere with superinfection. Because ALV-K could become an important pathogen and a significant threat to the poultry industry in Asia, the identification of a specific receptor could help in the breeding of resistant chicken lines with receptor variants with decreased susceptibility to the virus.
Collapse
|
8
|
Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses 2019; 11:v11060497. [PMID: 31151254 PMCID: PMC6630264 DOI: 10.3390/v11060497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
The initial step of retrovirus entry—the interaction between the virus envelope glycoprotein trimer and a cellular receptor—is complex, involving multiple, noncontiguous determinants in both proteins that specify receptor choice, binding affinity and the ability to trigger conformational changes in the viral glycoproteins. Despite the complexity of this interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins to use a different cellular protein as receptors. The highly homologous subgroup A to E Avian Sarcoma and Leukosis Virus (ASLV) glycoproteins belong to the group of class 1 viral fusion proteins with a two-step triggering mechanism that allows experimental access to intermediate structures during the fusion process. We and others have taken advantage of replication-competent ASLVs and exploited genetic selection strategies to force the ASLVs to naturally evolve and acquire envelope glycoprotein mutations to escape the pressure on virus entry and still yield a functional replicating virus. This approach allows for the simultaneous selection of multiple mutations in multiple functional domains of the envelope glycoprotein that may be required to yield a functional virus. Here, we review the ASLV family and experimental system and the reverse engineering approaches used to understand the evolution of ASLV receptor usage.
Collapse
|
9
|
Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 2017; 114:E5148-E5157. [PMID: 28607078 DOI: 10.1073/pnas.1704750114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Collapse
|
10
|
Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J, Svoboda J, Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol 2012; 86:2021-30. [PMID: 22171251 PMCID: PMC3302400 DOI: 10.1128/jvi.05771-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/30/2011] [Indexed: 01/10/2023] Open
Abstract
The group of closely related avian sarcoma and leukosis viruses (ASLVs) evolved from a common ancestor into multiple subgroups, A to J, with differential host range among galliform species and chicken lines. These subgroups differ in variable parts of their envelope glycoproteins, the major determinants of virus interaction with specific receptor molecules. Three genetic loci, tva, tvb, and tvc, code for single membrane-spanning receptors from diverse protein families that confer susceptibility to the ASLV subgroups. The host range expansion of the ancestral virus might have been driven by gradual evolution of resistance in host cells, and the resistance alleles in all three receptor loci have been identified. Here, we characterized two alleles of the tva receptor gene with similar intronic deletions comprising the deduced branch-point signal within the first intron and leading to inefficient splicing of tva mRNA. As a result, we observed decreased susceptibility to subgroup A ASLV in vitro and in vivo. These alleles were independently found in a close-bred line of domestic chicken and Indian red jungle fowl (Gallus gallus murghi), suggesting that their prevalence might be much wider in outbred chicken breeds. We identified defective splicing to be a mechanism of resistance to ASLV and conclude that such a type of mutation could play an important role in virus-host coevolution.
Collapse
Affiliation(s)
- Markéta Reinišová
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Enveloped viruses penetrate their cell targets following the merging of their membrane with that of the cell. This fusion process is catalyzed by one or several viral glycoproteins incorporated on the membrane of the virus. These envelope glycoproteins (EnvGP) evolved in order to combine two features. First, they acquired a domain to bind to a specific cellular protein, named "receptor." Second, they developed, with the help of cellular proteins, a function of finely controlled fusion to optimize the replication and preserve the integrity of the cell, specific to the genus of the virus. Following the activation of the EnvGP either by binding to their receptors and/or sometimes the acid pH of the endosomes, many changes of conformation permit ultimately the action of a specific hydrophobic domain, the fusion peptide, which destabilizes the cell membrane and leads to the opening of the lipidic membrane. The comprehension of these mechanisms is essential to develop medicines of the therapeutic class of entry inhibitor like enfuvirtide (Fuzeon) against human immunodeficiency virus (HIV). In this chapter, we will summarize the different envelope glycoprotein structures that viruses develop to achieve membrane fusion and the entry of the virus. We will describe the different entry pathways and cellular proteins that viruses have subverted to allow infection of the cell and the receptors that are used. Finally, we will illustrate more precisely the recent discoveries that have been made within the field of the entry process, with a focus on the use of pseudoparticles. These pseudoparticles are suitable for high-throughput screenings that help in the development of natural or artificial inhibitors as new therapeutics of the class of entry inhibitors.
Collapse
Affiliation(s)
- François-Loic Cosset
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Dimitri Lavillette
- Université de Lyon, UCB-Lyon1, IFR128, Lyon, France,INSERM, U758, Lyon, France,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
12
|
Babel AR, Bruce J, Young JA. The hr1 and fusion peptide regions of the subgroup B avian sarcoma and leukosis virus envelope glycoprotein influence low pH-dependent membrane fusion. PLoS One 2007; 2:e171. [PMID: 17245447 PMCID: PMC1764858 DOI: 10.1371/journal.pone.0000171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/22/2006] [Indexed: 11/18/2022] Open
Abstract
The avian sarcoma and leukosis virus (ASLV) envelope glycoprotein (Env) is activated to trigger fusion by a two-step mechanism involving receptor-priming and low pH fusion activation. In order to identify regions of ASLV Env that can regulate this process, a genetic selection method was used to identify subgroup B (ASLV-B) virus-infected cells resistant to low pH-triggered fusion when incubated with cells expressing the cognate TVB receptor. The subgroup B viral Env (envB) genes were then isolated from these cells and characterized by DNA sequencing. This led to identification of two frequent EnvB alterations which allowed TVB receptor-binding but altered the pH-threshold of membrane fusion activation: a 13 amino acid deletion in the host range 1 (hr1) region of the surface (SU) EnvB subunit, and the A32V amino acid change within the fusion peptide of the transmembrane (TM) EnvB subunit. These data indicate that these two regions of EnvB can influence the pH threshold of fusion activation.
Collapse
Affiliation(s)
- Angeline Rose Babel
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Bruce
- Institute for Molecular Virology, Bock Laboratories, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - John A.T. Young
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Rainey GJA, Coffin JM. Evolution of broad host range in retroviruses leads to cell death mediated by highly cytopathic variants. J Virol 2006; 80:562-70. [PMID: 16378958 PMCID: PMC1346834 DOI: 10.1128/jvi.80.2.562-570.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 10/17/2005] [Indexed: 12/25/2022] Open
Abstract
The ability of many retroviruses to cause disease can be correlated to their cytopathic effect (CPE) in tissue culture characterized by an acute period of cell death and viral DNA accumulation. Here, we show that mutants of a subgroup B avian retrovirus (Alpharetrovirus) cause a very dramatic CPE in certain susceptible avian cells that is coincident with elevated levels of apoptosis, as measured by nuclear morphology, and persistent viral DNA accumulation. These mutants also have a broadly extended host range that includes rodent, cat, dog, monkey, and human cells (31). Previously, we have shown that the mutants exhibit diminished resistance to superinfection. The results presented here have important implications for the process of evolution of retroviruses to use distinct cellular receptors.
Collapse
Affiliation(s)
- G Jonah A Rainey
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
14
|
Pepin KM, Samuel MA, Wichman HA. Variable pleiotropic effects from mutations at the same locus hamper prediction of fitness from a fitness component. Genetics 2005; 172:2047-56. [PMID: 16361237 PMCID: PMC1456406 DOI: 10.1534/genetics.105.049817] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship of genotype, fitness components, and fitness can be complicated by genetic effects such as pleiotropy and epistasis and by heterogeneous environments. However, because it is often difficult to measure genotype and fitness directly, fitness components are commonly used to estimate fitness without regard to genetic architecture. The small bacteriophage X174 enables direct evaluation of genetic and environmental effects on fitness components and fitness. We used 15 mutants to study mutation effects on attachment rate and fitness in six hosts. The mutants differed from our lab strain of X174 by only one or two amino acids in the major capsid protein (gpF, sites 101 and 102). The sites are variable in natural and experimentally evolved X174 populations and affect phage attachment rate. Within the limits of detection of our assays, all mutations were neutral or deleterious relative to the wild type; 11 mutants had decreased host range. While fitness was predictable from attachment rate in most cases, 3 mutants had rapid attachment but low fitness on most hosts. Thus, some mutations had a pleiotropic effect on a fitness component other than attachment rate. In addition, on one host most mutants had high attachment rate but decreased fitness, suggesting that pleiotropic effects also depended on host. The data highlight that even in this simple, well-characterized system, prediction of fitness from a fitness component depends on genetic architecture and environment.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844-3051, USA.
| | | | | |
Collapse
|
15
|
Elleder D, Stepanets V, Melder DC, Senigl F, Geryk J, Pajer P, Plachý J, Hejnar J, Svoboda J, Federspiel MJ. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol 2005; 79:10408-19. [PMID: 16051833 PMCID: PMC1182627 DOI: 10.1128/jvi.79.16.10408-10419.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The five highly related envelope subgroups of the avian sarcoma and leukosis viruses (ASLVs), subgroup A [ASLV(A)] to ASLV(E), are thought to have evolved from an ancestral envelope glycoprotein yet utilize different cellular proteins as receptors. Alleles encoding the subgroup A ASLV receptors (Tva), members of the low-density lipoprotein receptor family, and the subgroup B, D, and E ASLV receptors (Tvb), members of the tumor necrosis factor receptor family, have been identified and cloned. However, alleles encoding the subgroup C ASLV receptors (Tvc) have not been cloned. Previously, we established a genetic linkage between tvc and several other nearby genetic markers on chicken chromosome 28, including tva. In this study, we used this information to clone the tvc gene and identify the Tvc receptor. A bacterial artificial chromosome containing a portion of chicken chromosome 28 that conferred susceptibility to ASLV(C) infection was identified. The tvc gene was identified on this genomic DNA fragment and encodes a 488-amino-acid protein most closely related to mammalian butyrophilins, members of the immunoglobulin protein family. We subsequently cloned cDNAs encoding Tvc that confer susceptibility to infection by subgroup C viruses in chicken cells resistant to ASLV(C) infection and in mammalian cells that do not normally express functional ASLV receptors. In addition, normally susceptible chicken DT40 cells were resistant to ASLV(C) infection after both tvc alleles were disrupted by homologous recombination. Tvc binds the ASLV(C) envelope glycoproteins with low-nanomolar affinity, an affinity similar to that of binding of Tva and Tvb with their respective envelope glycoproteins. We have also identified a mutation in the tvc gene in line L15 chickens that explains why this line is resistant to ASLV(C) infection.
Collapse
Affiliation(s)
- Daniel Elleder
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Barrett RDH, MacLean RC, Bell G. Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am Nat 2005; 166:470-80. [PMID: 16224703 DOI: 10.1086/444440] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/30/2005] [Indexed: 11/04/2022]
Abstract
In complex environments that contain several substitutable resources, lineages may become specialized to consume only one or a few of them. Here we investigate the importance of environmental complexity in determining the evolution of niche width over approximately 900 generations in a chemically defined experimental system. We propagated 120 replicate lines of the bacterium Pseudomonas fluorescens in environments of different complexity by using between one and eight carbon substrates in each environment. Genotypes from populations selected in complex environments evolved greater mean and variance in fitness than those from populations selected in simple environments. Thus, lineages were able to adapt to several substrates simultaneously without any appreciable loss of function with respect to other substrates present in the media. There was greater genetic and genotype-by-environment interaction variance for fitness within populations selected in complex environments. It is likely that genetic variance in populations grown on complex media was maintained because the identity of the fittest genotype varied among carbon substrates. Our results suggest that evolution in complex environments will result neither in narrow specialists nor in complete generalists but instead in overlapping imperfect generalists, each of which has become adapted to a certain range of substrates but not to all.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Biology, McGill University, 1205 Avenue Doctor Penfield, Montreal, Quebec H3A 1B1, Canada.
| | | | | |
Collapse
|
17
|
Elleder D, Melder DC, Trejbalova K, Svoboda J, Federspiel MJ. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J Virol 2004; 78:13489-500. [PMID: 15564460 PMCID: PMC533904 DOI: 10.1128/jvi.78.24.13489-13500.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The subgroup A to E avian sarcoma and leukosis viruses (ASLVs) are highly related and are thought to have evolved from a common ancestor. These viruses use distinct cell surface proteins as receptors to gain entry into avian cells. Chickens have evolved resistance to infection by the ASLVs. We have identified the mutations responsible for the block to virus entry in chicken lines resistant to infection by subgroup A ASLVs [ASLV(A)]. The tva genetic locus determines the susceptibility of chicken cells to ASLV(A) viruses. In quail, the ASLV(A) susceptibility allele tva(s) encodes two forms of the Tva receptor; these proteins are translated from alternatively spliced mRNAs. The normal cellular function of the Tva receptor is unknown; however, the extracellular domain contains a 40-amino-acid, cysteine-rich region that is homologous to the ligand binding region of the low-density lipoprotein receptor (LDLR) proteins. The chicken tva(s) cDNAs had not yet been fully characterized; we cloned the chicken tva cDNAs from two lines of subgroup A-susceptible chickens, line H6 and line 0. Two types of chicken tva(s) cDNAs were obtained. These cDNAs encode a longer and shorter form of the Tva receptor homologous to the Tva forms in quail. Two different defects were identified in cDNAs cloned from two different ASLV(A)-resistant inbred chickens, line C and line 7(2). Line C tva(r) contains a single base pair substitution, resulting in a cysteine-to-tryptophan change in the LDLR-like region of Tva. This mutation drastically reduces the binding affinity of Tva(R) for the ASLV(A) envelope glycoproteins. Line 7(2) tva(r2) contains a 4-bp insertion in exon 1 that causes a change in the reading frame, which blocks expression of the Tva receptor.
Collapse
Affiliation(s)
- Daniel Elleder
- Department of Cellular and Viral Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | |
Collapse
|
18
|
Baranowski E, Ruiz-Jarabo CM, Pariente N, Verdaguer N, Domingo E. Evolution of cell recognition by viruses: a source of biological novelty with medical implications. Adv Virus Res 2004; 62:19-111. [PMID: 14719364 PMCID: PMC7119103 DOI: 10.1016/s0065-3527(03)62002-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The picture beginning to form from genome analyses of viruses, unicellular organisms, and multicellular organisms is that viruses have shared functional modules with cells. A process of coevolution has probably involved exchanges of genetic information between cells and viruses for long evolutionary periods. From this point of view present-day viruses show flexibility in receptor usage and a capacity to alter through mutation their receptor recognition specificity. It is possible that for the complex DNA viruses, due to a likely limited tolerance to generalized high mutation rates, modifications in receptor specificity will be less frequent than for RNA viruses, albeit with similar biological consequences once they occur. It is found that different receptors, or allelic forms of one receptor, may be used with different efficiency and receptor affinities are probably modified by mutation and selection. Receptor abundance and its affinity for a virus may modulate not only the efficiency of infection, but also the capacity of the virus to diffuse toward other sites of the organism. The chapter concludes that receptors may be shared by different, unrelated viruses and that one virus may use several receptors and may expand its receptor specificity in ways that, at present, are largely unpredictable.
Collapse
Affiliation(s)
- Eric Baranowski
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Abstract
Infection by all enveloped viruses occurs via the fusion of viral and cellular membranes and delivery of the viral nucleocapsid into the cell cytoplasm, after association of the virus with cognate receptors at the cell surface. This process is mediated by viral fusion proteins anchored in the viral envelope and can be defined based on the requirement for low pH to trigger membrane fusion. In viruses that utilize a pH-dependent entry mechanism, such as influenza virus, viral fusion is triggered by the acidic environment of intracellular organelles after uptake of the virus from the cell surface and trafficking to a low-pH compartment. In contrast, in viruses that utilize a pH-independent entry mechanism, such as most retroviruses, membrane fusion is triggered solely by the interaction of the envelope glycoprotein with cognate receptors, often at the cell surface. However, recent work has indicated that the alpharetrovirus, avian sarcoma and leukosis virus (ASLV), utilizes a novel entry mechanism that combines aspects of both pH-independent and pH-dependent entry. In ASLV infection, the interaction of the envelope glycoprotein (Env) with cognate receptors at the cell surface causes an initial conformational change that primes (activates) Env and renders it sensitive to subsequent low-pH triggering from an intracellular compartment. Thus unlike other pH-dependent viruses, ASLV Env is only sensitive to low-pH triggering following interaction with its cognate receptor. In this manuscript we review current research on ASLV Env-receptor interactions and focus on the specific molecular requirements of both the viral fusion protein and cognate receptors for ASLV entry. In addition, we review data pertaining to the novel two-step entry mechanism of ASLV entry and propose a model by which ASLV Env elicits membrane fusion.
Collapse
Affiliation(s)
- R J O Barnard
- McArdle Laboratories for Cancer Research, Department of Oncology, University of Wisconsin Madison, 1400 University Ave, Madison, WI 53706, USA
| | | |
Collapse
|
20
|
Tailor CS, Lavillette D, Marin M, Kabat D. Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 2003; 281:29-106. [PMID: 12932075 DOI: 10.1007/978-3-642-19012-4_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evidence obtained during the last few years has greatly extended our understanding of the cell surface receptors that mediate infections of retroviruses and has provided many surprising insights. In contrast to other cell surface components such as lectins or proteoglycans that influence infections indirectly by enhancing virus adsorption onto specific cells, the true receptors induce conformational changes in the viral envelope glycoproteins that are essential for infection. One surprise is that all of the cell surface receptors for gamma-retroviruses are proteins that have multiple transmembrane (TM) sequences, compatible with their identification in known instances as transporters for important solutes. In striking contrast, almost all other animal viruses use receptors that exclusively have single TM sequences, with the sole proven exception we know of being the coreceptors used by lentiviruses. This evidence strongly suggests that virus genera have been prevented because of their previous evolutionary adaptations from switching their specificities between single-TM and multi-TM receptors. This evidence also implies that gamma-retroviruses formed by divergent evolution from a common origin millions of years ago and that individual viruses have occasionally jumped between species (zoonoses) while retaining their commitment to using the orthologous receptor of the new host. Another surprise is that many gamma-retroviruses use not just one receptor but pairs of closely related receptors as alternatives. This appears to have enhanced viral survival by severely limiting the likelihood of host escape mutations. All of the receptors used by gamma-retroviruses contain hypervariable regions that are often heavily glycosylated and that control the viral host range properties, consistent with the idea that these sequences are battlegrounds of virus-host coevolution. However, in contrast to previous assumptions, we propose that gamma-retroviruses have become adapted to recognize conserved sites that are important for the receptor's natural function and that the hypervariable sequences have been elaborated by the hosts as defense bulwarks that surround the conserved viral attachment sites. Previously, it was believed that binding to receptors directly triggers a series of conformational changes in the viral envelope glycoproteins that culminate in fusion of the viral and cellular membranes. However, new evidence suggests that gamma-retroviral association with receptors triggers an obligatory interaction or cross-talk between envelope glycoproteins on the viral surface. If this intermediate step is prevented, infection fails. Conversely, in several circumstances this cross-talk can be induced in the absence of a cell surface receptor for the virus, in which case infection can proceed efficiently. This new evidence strongly implies that the role of cell surface receptors in infections of gamma-retroviruses (and perhaps of other enveloped animal viruses) is more complex and interesting than was previously imagined. Recently, another gammaretroviral receptor with multiple transmembrane sequences was cloned. See Prassolov, Y., Zhang, D., Ivanov, D., Lohler, J., Ross, S.R., and Stocking, C. Sodium-dependent myo-inositol transporter 1 is a receptor for Mus cervicolor M813 murine leukemia virus.
Collapse
Affiliation(s)
- C S Tailor
- Infection, Immunity Injury and Repair Program, Hospital for Sick Children, Toronto, ON M5G 1XB, Canada
| | | | | | | |
Collapse
|
21
|
Denner J, Specke V, Thiesen U, Karlas A, Kurth R. Genetic alterations of the long terminal repeat of an ecotropic porcine endogenous retrovirus during passage in human cells. Virology 2003; 314:125-33. [PMID: 14517066 DOI: 10.1016/s0042-6822(03)00428-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human-tropic porcine endogenous retroviruses (PERV) such as PERV-A and PERV-B can infect human cells and are therefore a potential risk to recipients of xenotransplants. A similar risk is posed by recombinant viruses containing the receptor-binding site of PERV-A and large parts of the genome of the ecotropic PERV-C including its long terminal repeat (LTR). We describe here the unique organization of the PERV-C LTR and its changes during serial passage of recombinant virus in human cells. An increase in virus titer correlated with an increase in LTR length, caused by multiplication of 37-bp repeats containing nuclear factor Y binding sites. Luciferase dual reporter assays revealed a correlation between the number of repeats and the extent of expression. No alterations have been observed in the receptor-binding site, indicating that the increased titer is due to the changes in the LTR. These data indicate that recombinant PERVs generated during infection of human cells can adapt and subsequently replicate with greater efficiency.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch-Institute, Nordufer 20, D-13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|
22
|
Melder DC, Pankratz VS, Federspiel MJ. Evolutionary pressure of a receptor competitor selects different subgroup a avian leukosis virus escape variants with altered receptor interactions. J Virol 2003; 77:10504-14. [PMID: 12970435 PMCID: PMC228527 DOI: 10.1128/jvi.77.19.10504-10514.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2002] [Accepted: 06/28/2003] [Indexed: 11/20/2022] Open
Abstract
A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this study, we demonstrate that evolutionary pressure on subgroup A ALV [ALV(A)] entry exerted by the presence of a competitive inhibitor, a soluble form of the ALV(A) Tva receptor linked to a mouse immunoglobulin G tag (quail sTva-mIgG), can select different populations of escape variants. This escape population contained three abundant ALV(A) variant viruses, all with mutations in the surface glycoprotein hypervariable regions: a previously identified variant containing the Y142N mutation in the hr1 region; a new variant with two mutations, W141G in hr1 and K261E in vr3; and another new variant with two mutations, W145R in hr1 and K261E. The W141G K261E and W145R K261E viruses escape primarily by lowering their binding affinities for the quail Tva receptor competitive inhibitor while retaining wild-type levels of binding affinity for the chicken Tva receptor. A secondary phenotype of the new variants was an alteration in receptor interference patterns from that of wild-type ALV(A), indicating that the mutant glycoproteins are possibly interacting with other cellular proteins. One result of these altered interactions was that the variants caused a transient period of cytotoxicity. We could also directly demonstrate that the W141G K261E variant glycoproteins bound significant levels of a soluble form of the Tvb(S3) ALV receptor in a binding assay. Alterations in the normally extreme specificity of the ALV(A) glycoproteins for Tva may represent an evolutionary first step toward expanding viral receptor usage in response to inefficient viral entry.
Collapse
Affiliation(s)
- Deborah C Melder
- Department of Health Sciences Research, Section of Biostatistics, Mayo Clinic Rochester, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
23
|
Abstract
Alpharetroviruses provide a useful system for the study of the molecular mechanisms of host range and receptor interaction. These viruses can be divided into subgroups based on diverse receptor usage due to variability within the two host range determining regions, hr1 and hr2, in their envelope glycoprotein SU (gp85). In previous work, our laboratory described selection from a subgroup B avian sarcoma-leukosis virus of an extended-host-range variant (LT/SI) with two adjacent amino acid substitutions in hr1. This virus retains its ability to use the subgroup BD receptor but can also infect QT6/BD cells, which bear a related subgroup E receptor (R. A. Taplitz and J. M. Coffin, J. Virol 71:7814-7819, 1997). Here, we report further analysis of this unusual variant. First, one (L154S) of the two substitutions is sufficient for host range extension, while the other (T155I) does not alter host range. Second, these mutations extend host range to non-avian cell types, including human, dog, cat, mouse, rat, and hamster. Third, interference experiments imply that the mutants interact efficiently with the subgroup BD receptor and possibly the related subgroup E receptor, but they have another means of entry that is not dependent on these interactions. Fourth, binding studies indicate that the mutant SU proteins retain the ability to interact as monomers with subgroup BD and BDE receptors but only bind the subgroup E receptor in the context of an Env trimer. Further, the mutant SU proteins bind well to chicken cells but do not bind any better than wild-type subgroup B to QT6 or human cells, even though the corresponding viruses are capable of infecting these cells.
Collapse
Affiliation(s)
- G Jonah A Rainey
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
24
|
Bagnarelli P, Fiorelli L, Vecchi M, Monachetti A, Menzo S, Clementi M. Analysis of the functional relationship between V3 loop and gp120 context with regard to human immunodeficiency virus coreceptor usage using naturally selected sequences and different viral backbones. Virology 2003; 307:328-40. [PMID: 12667802 DOI: 10.1016/s0042-6822(02)00077-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) gp120 V3 loop plays a predominant role in chemokine receptor usage; however, other linear and nonlinear gp120 domains are involved in this step of the HIV-1 replication cycle. At present, the functional relationship between V3 and these domains with regard to coreceptor usage is unclear. To gain insights into the nature of this relationship in naturally selected viral variants, we developed a recombinant strategy based on two different gp120 backbones derived from CXCR4 (X4)- and CCR5 (R5)-tropic viral strains, respectively. Using this recombinant model system, we evaluated the phenotype patterns conferred to chimeric viruses by exogenous V3 loops from reference molecular clones and samples from infected subjects. In 13 of 17 recombinants (76%), a comparable phenotype was observed independently of the gp120 backbone, whereas in a minority of the recombinant viruses (4/17, 24%) viral infectivity depended on the gp120 context. No case of differential tropism using identical V3 sequence in the two gp120 contexts was observed. Site-directed mutagenesis experiments were performed to evaluate the phenotypic impact of specific V3 motifs. The data indicate that while the interaction of HIV-1 with chemokine receptors is driven by V3 loop and influenced by its evolutionary potential, the gp120 context plays a role in influencing the replication competence of the variants, suggesting that compensatory mutations occurring at sites other than V3 are necessary in some cases.
Collapse
|
25
|
|
26
|
|
27
|
Abstract
Evolution of receptor specificity by viruses has several implications for viral pathogenesis, host range, virus-mediated gene targeting, and viral adaptation after organ transplantation and xenotransplantation, as well as for the emergence of viral diseases. Recent evidence suggests that minimal changes in viral genomes may trigger a shift in receptor usage for virus entry, even into the same cell type. A capacity to exploit alternative entry pathways may reflect the ancient evolutionary origins of viruses and a possible role as agents of horizontal gene transfers among cells.
Collapse
Affiliation(s)
- E Baranowski
- Centro de Biología Molecular "Severo Ochoa," Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
28
|
Holmen SL, Melder DC, Federspiel MJ. Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. J Virol 2001; 75:726-37. [PMID: 11134286 PMCID: PMC113969 DOI: 10.1128/jvi.75.2.726-737.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 10/13/2000] [Indexed: 11/20/2022] Open
Abstract
To better understand retroviral entry, we have characterized the interactions between subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and Tva, the receptor for ALV(A), that result in receptor interference. We have recently shown that soluble forms of the chicken and quail Tva receptor (sTva), expressed from genes delivered by retroviral vectors, block ALV(A) infection of cultured chicken cells ( approximately 200-fold antiviral effect) and chickens (>98% of the birds were not infected). We hypothesized that inhibition of viral replication by sTva would select virus variants with mutations in the surface glycoprotein (SU) that altered the binding affinity of the subgroup A SU for the sTva protein and/or altered the normal receptor usage of the virus. Virus propagation in the presence of quail sTva-mIgG, the quail Tva extracellular region fused to the constant region of the mouse immunoglobulin G (IgG) protein, identified viruses with three mutations in the subgroup A hr1 region of SU, E149K, Y142N, and Y142N/E149K. These mutations reduced the binding affinity of the subgroup A envelope glycoproteins for quail sTva-mIgG (32-, 324-, and 4,739-fold, respectively) but did not alter their binding affinity for chicken sTva-mIgG. The ALV(A) mutants efficiently infected cells expressing the chicken Tva receptor but were 2-fold (E149K), 10-fold (Y142N), and 600-fold (Y142N/E149K) less efficient at infecting cells expressing the quail Tva receptor. These mutations identify key determinants of the interaction between the ALV(A) glycoproteins and the Tva receptor. We also conclude from these results that, at least for the wild-type and variant ALV(A)s tested, the receptor binding affinity was directly related to infection efficiency.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
29
|
Holmen SL, Federspiel MJ. Selection of a subgroup A avian leukosis virus [ALV(A)] envelope resistant to soluble ALV(A) surface glycoprotein. Virology 2000; 273:364-73. [PMID: 10915607 DOI: 10.1006/viro.2000.0424] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The host developing resistance to retroviral infection is believed to be a major force in the evolution of multiple receptor usage by retroviruses. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a powerful system for studying the envelope-receptor interactions involved in retrovirus entry; different members of this group of closely related viruses use distinct cellular receptors. Analysis of the ALV envelope subgroups suggests that the different ALVs evolved from a common ancestor by mutations in the env gene. Cells and animals that express subgroup A ALV envelope glycoproteins are highly resistant to ALV(A) infection due to receptor interference. In this study, we tested whether expression of a soluble form of subgroup A surface glycoprotein (SU) would result in receptor interference and whether this interference would select for resistant viruses with altered receptor usage. Chicken cells expressing the secreted ALV(A) SU immunoadhesin SU(A)-rIgG, which contains the subgroup A SU domain fused to the constant region of a rabbit immunoglobulin (IgG) heavy chain, showed significant receptor interference. A variant virus resistant to SU(A)-rIgG receptor interference was obtained. This virus had a six-amino-acid deletion in the subgroup A hr1 that altered receptor usage. This approach may identify regions of SU that play a critical role in receptor specificity.
Collapse
Affiliation(s)
- S L Holmen
- Molecular Medicine Program, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
30
|
Wilson CA, Wong S, VanBrocklin M, Federspiel MJ. Extended analysis of the in vitro tropism of porcine endogenous retrovirus. J Virol 2000; 74:49-56. [PMID: 10590090 PMCID: PMC111512 DOI: 10.1128/jvi.74.1.49-56.2000] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that mitogenic activation of porcine peripheral blood mononuclear cells resulted in production of porcine endogenous retrovirus(es) (PERV[s]) capable of productively infecting human cells (C. Wilson et al., J. Virol. 72:3082-3087, 1998). We now extend that analysis to show that additional passage of isolated virus, named here PERV-NIH, through a human cell line yielded a viral population with a higher titer of infectious virus on human cells than the initial isolate. We show that in a single additional passage on a human cell line, the increase in infectivity for human cells is accounted for by selection against variants carrying pig-tropic envelope sequences (PERV-C) as well as by enrichment for replication-competent genomes. Sequence analysis of the envelope cDNA present in virions demonstrated that the envelope sequence of PERV-NIH is related to but distinct from previously reported PERV envelopes. The in vitro host range of PERV was studied in human primary cells and cell lines, as well as in cell lines from nonhuman primate and other species. This analysis reveals three patterns of susceptibility to infection among these host cells: (i) cells are resistant to infection in our assay; (ii) cells are infected by virus, as viral RNA is detected in the supernatant by reverse transcription-PCR, but the cells are not permissive to productive replication and spread; and (iii) cells are permissive to low-level productive replication. Certain cell lines were permissive for efficient productive infection and spread. These results may prove useful in designing appropriate animal models to assess the in vivo infectivity properties of PERV.
Collapse
Affiliation(s)
- C A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
31
|
Ruis BL, Benson SJ, Conklin KF. Genome structure and expression of the ev/J family of avian endogenous viruses. J Virol 1999; 73:5345-55. [PMID: 10364281 PMCID: PMC112590 DOI: 10.1128/jvi.73.7.5345-5355.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported the identification of sequences in the chicken genome that show over 95% identity to the novel envelope gene of the subgroup J avian leukosis virus (S. J. Benson, B. L. Ruis, A. M. Fadly, and K. F. Conklin, J. Virol. 72:10157-10164, 1998). Based on the fact that the endogenous subgroup J-related env genes were associated with long terminal repeats (LTRs), we concluded that these LTR-env sequences defined a new family of avian endogenous viruses that we designated the ev/J family. In this report, we have further characterized the content and expression of the ev/J proviruses. The data obtained indicate that there are between 6 and 11 copies of ev/J proviruses in all chicken cells examined and that these proviruses fall into six classes. Of the 18 proviruses examined, all share a high degree of sequence identity and all contain an internal deletion that removes all of the pol gene and various amounts of gag and env gene sequences. Sequencing of the gag genes, LTRs, and untranslated regions of several ev/J proviruses revealed a high level of identity between isolates, indicating that they have not undergone significant sequence variation since their introduction into the avian germ line. Although the ev/J gag gene showed a relatively weak relationship (46% identity and 61% similarity at the amino acid level) to that of the avian leukosis-sarcoma virus family, it retains several sequences of demonstrated importance for virus assembly, budding, and/or infectivity. Finally, evidence was obtained that at least some members of the ev/J family are expressed and, if translated, could encode Gag- and Env-related polypeptides.
Collapse
Affiliation(s)
- B L Ruis
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
32
|
Benson SJ, Ruis BL, Garbers AL, Fadly AM, Conklin KF. Independent isolates of the emerging subgroup J avian leukosis virus derive from a common ancestor. J Virol 1998; 72:10301-4. [PMID: 9811780 PMCID: PMC110618 DOI: 10.1128/jvi.72.12.10301-10304.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new subgroup of avian leukosis virus (ALV) that includes a unique env gene, designated J, was identified recently in England. Sequence analysis of prototype English isolate HPRS-103 revealed several other unique genetic characteristics of this strain and provided information that it arose by recombination between exogenous and endogenous virus sequences. In the past several years, ALV J type viruses (ALV-J) have been isolated from broiler breeder flocks in the United States. We were interested in determining the relationship between the U.S. and English isolates of ALV-J. Based on sequence data from two independently derived U.S. field isolates, we conclude that the U.S. and English isolates of ALV-J derive from a common ancestor and are not the result of independent recombination events.
Collapse
Affiliation(s)
- S J Benson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
33
|
Benson SJ, Ruis BL, Fadly AM, Conklin KF. The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol 1998; 72:10157-64. [PMID: 9811756 PMCID: PMC110557 DOI: 10.1128/jvi.72.12.10157-10164.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1998] [Accepted: 09/11/1998] [Indexed: 11/20/2022] Open
Abstract
A new subgroup of avian leukosis virus (ALV), designated subgroup J, was identified recently. Viruses of this subgroup do not cross-interfere with viruses of the avian A, B, C, D, and E subgroups, are not neutralized by antisera raised against the other virus subgroups, and have a broader host range than the A to E subgroups. Sequence comparisons reveal that while the subgroup J envelope gene includes some regions that are related to those found in env genes of the A to E subgroups, the majority of the subgroup J gene is composed of sequences either that are more similar to those of a member (E51) of the ancient endogenous avian virus (EAV) family of proviruses or that appear unique to subgroup J viruses. These data led to the suggestion that the ALV-J env gene might have arisen by multiple recombination events between one or more endogenous and exogenous viruses. We initiated studies to investigate the origin of the subgroup J envelope gene and in particular to determine the identity of endogenous sequences that may have contributed to its generation. Here we report the identification of a novel family of avian endogenous viruses that include env coding sequences that are over 95% identical to both the gp85 and gp37 coding regions of subgroup J viruses. We call these viruses the ev/J family. We also report the isolation of ev/J-encoded cDNAs, indicating that at least some members of this family are expressed. These data support the hypothesis that the subgroup J envelope gene was acquired by recombination with expressed endogenous sequences and are consistent with acquisition of this gene by only one recombination event.
Collapse
Affiliation(s)
- S J Benson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|