1
|
Hofstadter WA, Park JW, Lum KK, Chen S, Cristea IM. HCMV strain- and cell type-specific alterations in membrane contact sites point to the convergent regulation of organelle remodeling. J Virol 2024; 98:e0109924. [PMID: 39480111 PMCID: PMC11575408 DOI: 10.1128/jvi.01099-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Viruses are ubiquitous entities that infect organisms across the kingdoms of life. While viruses can infect a range of cells, tissues, and organisms, this aspect is often not explored in cell culture analyses. There is limited information about which infection-induced changes are shared or distinct in different cellular environments. The prevalent pathogen human cytomegalovirus (HCMV) remodels the structure and function of subcellular organelles and their interconnected networks formed by membrane contact sites (MCSs). A large portion of this knowledge has been derived from fibroblasts infected with a lab-adapted HCMV strain. Here, we assess strain- and cell type-specific alterations in MCSs and organelle remodeling induced by HCMV. Integrating quantitative mass spectrometry, super-resolution microscopy, and molecular virology assays, we compare infections with lab-adapted and low-passage HCMV strains in fibroblast and epithelial cells. We determine that, despite baseline proteome disparities between uninfected fibroblast and epithelial cells, infection induces convergent changes and is remarkably similar. We show that hallmarks of HCMV infection in fibroblasts, mitochondria-endoplasmic reticulum (ER) encapsulations and peroxisome proliferation, are also conserved in infected epithelial and macrophage-like cells. Exploring cell type-specific differences, we demonstrate that fibroblasts rely on endosomal cholesterol transport while epithelial cells rely on cholesterol from the Golgi. Despite these mechanistic differences, infections in both cell types result in phenotypically similar cholesterol accumulation at the viral assembly complex. Our findings highlight the adaptability of HCMV, in that infections can be tailored to the initial cell state by inducing both shared and unique proteome alterations, ultimately promoting a unified pro-viral environment.IMPORTANCEHuman cytomegalovirus (HCMV) establishes infections in diverse cell types throughout the body and is connected to a litany of diseases associated with each of these tissues. However, it is still not fully understood how HCMV replication varies in distinct cell types. Here, we compare HCMV replication with lab-adapted and low-passage strains in two primary sites of infection, lung fibroblasts and retinal epithelial cells. We discover that, despite displaying disparate protein compositions prior to infection, these cell types undergo convergent alterations upon HCMV infection, reaching a more similar cellular state late in infection. We find that remodeling of the subcellular landscape is a pervasive feature of HCMV infection, through alterations to both organelle structure-function and the interconnected networks they form via membrane contact sites. Our findings show how HCMV infection in different cell types induces both shared and divergent changes to cellular processes, ultimately leading to a more unified state.
Collapse
Affiliation(s)
| | - Ji Woo Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Krystal K. Lum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Sophia Chen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Repair of an Attenuated Low-Passage Murine Cytomegalovirus Bacterial Artificial Chromosome Identifies a Novel Spliced Gene Essential for Salivary Gland Tropism. J Virol 2020; 94:JVI.01456-20. [PMID: 32847854 DOI: 10.1128/jvi.01456-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/23/2020] [Indexed: 01/22/2023] Open
Abstract
The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.
Collapse
|
3
|
Koshizuka T, Tanaka K, Suzutani T. Degradation of host ubiquitin E3 ligase Itch by human cytomegalovirus UL42. J Gen Virol 2016; 97:196-208. [DOI: 10.1099/jgv.0.000336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tetsuo Koshizuka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Keiichiro Tanaka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
4
|
Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014; 6:1049-72. [PMID: 24603756 PMCID: PMC3970138 DOI: 10.3390/v6031049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/11/2014] [Accepted: 02/11/2014] [Indexed: 01/08/2023] Open
Abstract
The complete genome of human cytomegalovirus (HCMV) was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.
Collapse
Affiliation(s)
- Steven Sijmons
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| | - Piet Maes
- Laboratory of Clinical Virology, Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven BE-3000, Belgium.
| |
Collapse
|
5
|
Abstract
Advances in vaccine technology over the past two centuries have facilitated far-reaching impact in the control of many infections, and today's emerging vaccines could likewise open new opportunities in the control of several diseases. Here we consider the potential, population-level effects of a particular class of emerging vaccines that use specific viral vectors to establish long-term, intermittent antigen presentation within a vaccinated host: in essence, "self-boosting" vaccines. In particular, we use mathematical models to explore the potential role of such vaccines in situations where current immunization raises only relatively short-lived protection. Vaccination programs in such cases are generally limited in their ability to raise lasting herd immunity. Moreover, in certain cases mass vaccination can have the counterproductive effect of allowing an increase in severe disease, through reducing opportunities for immunity to be boosted through natural exposure to infection. Such dynamics have been proposed, for example, in relation to pertussis and varicella-zoster virus. In this context we show how self-boosting vaccines could open qualitatively new opportunities, for example by broadening the effective duration of herd immunity that can be achieved with currently used immunogens. At intermediate rates of self-boosting, these vaccines also alleviate the potential counterproductive effects of mass vaccination, through compensating for losses in natural boosting. Importantly, however, we also show how sufficiently high boosting rates may introduce a new regime of unintended consequences, wherein the unvaccinated bear an increased disease burden. Finally, we discuss important caveats and data needs arising from this work.
Collapse
|
6
|
Prochnau D, Lehmann M, Straube E, Figulla H, Rödel J. Human cytomegalovirus induces MMP-1 and MMP-3 expression in aortic smooth muscle cells. Acta Microbiol Immunol Hung 2011; 58:303-17. [PMID: 22207289 DOI: 10.1556/amicr.58.2011.4.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human cytomegalovirus (HCMV) infection may be involved in the pathogenesis of atherosclerosis by modulating functions of smooth muscle cells (SMC). In this study, we performed an oligonucleotide microarray screening of 780 inflammation-associated genes in HCMV-infected aortic SMC (AoSMC). The expression of 31 genes was stimulated and 24 genes were down-regulated following infection with HCMV strain DC-134. Following infection with HCMV strain AD-169 infection, we found 24 genes to be stimulated and 32 genes to be down-regulated. Among these were primarily genes encoding for CC and CXC chemokines, adhesion molecules, and tumor necrosis factor (TNF) receptor superfamily members, apoptosis-related factors, signal transduction molecules and transcription regulators. The up-regulated genes included matrix metalloproteinase (MMP)-1 and MMP-3 in HCMV infected cells. Using RT-PCR and enzyme immunoassay we found stimulated expression of MMP-1 (3.2-fold expression) and MMP-3 (334-fold expression) in HCMV strain DC-134-infected AoSMC at 72 h following infection.The findings of our study suggest that HCMV infection of AoSMC cause an activation of atherosclerosis-relevant factors in SMC. The increased expression of MMPs which have been shown to be involved in atherosclerotic plaque rupture and myocardial infarction is in agreement with the hypothesis that this pathogen might contribute to plaque inflammation in atherosclerotic disease.
Collapse
Affiliation(s)
- Dirk Prochnau
- 1 Friedrich-Schiller-University of Jena Department of Internal Medicine/Cardiology Jena Germany
| | | | - Eberhard Straube
- 2 Friedrich-Schiller-University of Jena Institute of Medical Microbiology Jena Germany
| | - Hans Figulla
- 1 Friedrich-Schiller-University of Jena Department of Internal Medicine/Cardiology Jena Germany
| | - Jürgen Rödel
- 2 Friedrich-Schiller-University of Jena Institute of Medical Microbiology Jena Germany
| |
Collapse
|
7
|
Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GWG. Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 2010; 120:3191-208. [PMID: 20679731 DOI: 10.1172/jci42955] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 06/23/2010] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) in clinical material cannot replicate efficiently in vitro until it has adapted by mutation. Consequently, wild-type HCMV differ fundamentally from the passaged strains used for research. To generate a genetically intact source of HCMV, we cloned strain Merlin into a self-excising BAC. The Merlin BAC clone had mutations in the RL13 gene and UL128 locus that were acquired during limited replication in vitro prior to cloning. The complete wild-type HCMV gene complement was reconstructed by reference to the original clinical sample. Characterization of viruses generated from repaired BACs revealed that RL13 efficiently repressed HCMV replication in multiple cell types; moreover, RL13 mutants rapidly and reproducibly emerged in transfectants. Virus also acquired mutations in genes UL128, UL130, or UL131A, which inhibited virus growth specifically in fibroblast cells in wild-type form. We further report that RL13 encodes a highly glycosylated virion envelope protein and thus has the potential to modulate tropism. To overcome rapid emergence of mutations in genetically intact HCMV, we developed a system in which RL13 and UL131A were conditionally repressed during virus propagation. This technological advance now permits studies to be undertaken with a clonal, characterized HCMV strain containing the complete wild-type gene complement and promises to enhance the clinical relevance of fundamental research on HCMV.
Collapse
Affiliation(s)
- Richard J Stanton
- Section of Medical Microbiology, Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bradley AJ, Lurain NS, Ghazal P, Trivedi U, Cunningham C, Baluchova K, Gatherer D, Wilkinson GWG, Dargan DJ, Davison AJ. High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169. J Gen Virol 2009; 90:2375-2380. [PMID: 19553388 PMCID: PMC2885757 DOI: 10.1099/vir.0.013250-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (UL/b′) at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in UL/b′ and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in UL/b′ except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2.
Collapse
Affiliation(s)
- Amanda J Bradley
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Nell S Lurain
- Department of Immunology and Microbiology, Rush University Medical Center, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Peter Ghazal
- Division of Pathway Medicine, University of Edinburgh Medical School, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Urmi Trivedi
- The Gene Pool, Ashworth Laboratories, Institute of Evolutionary Biology, King's Buildings, Edinburgh EH9 3JT, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Katarina Baluchova
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Gavin W G Wilkinson
- Department of Medical Microbiology, Tenovus Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XX, UK
| | - Derrick J Dargan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
9
|
Brondke H, Schmitz B, Doerfler W. Nucleotide sequence comparisons between several strains and isolates of human cytomegalovirus reveal alternate start codon usage. Arch Virol 2007; 152:2035-46. [PMID: 17653620 DOI: 10.1007/s00705-007-1026-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
Mutations abound in all viral populations, which are thus rendered adaptable to changes in environmental conditions. Human cytomegalovirus (HCMV) is an important human pathogen for investigating nucleotide sequence variations because they can affect its potential to cause disease. We have determined part of the nucleotide sequence of the Toledo strain and compared it to the published sequences of the strains AD169, Toledo, and Towne and of three clinical isolates. Overall nucleotide sequence divergence between strains AD169 and Toledo amounts to roughly 2%, with considerable variations across the viral genome. In aligning the Toledo nucleotide sequences with those of the other strains and clinical isolates, numerous amino-terminal extensions of the known open reading frames (ORFs) have been noted. These extensions carry additional AUG or non-canonical CUG or GUG translational initiation codons. CUG and GUG have previously been shown to serve as translational start codons in prokaryotic and eukaryotic systems. Six of the more closely inspected extensions start with an AUG, 26 with a CUG, and 26 with a GUG. Some of these extended sequences might bestow altered biological properties upon HCMV proteins. These ORF extensions are common to the sequenced genomes of most of the HCMV strains or isolates. Supporting evidence for their functionality comes from studies on HCMV mRNAs that were isolated from HCMV-infected human cells. Several of these viral mRNA sequences carry the identified ORF extensions. Moreover, in the amino-terminal ORF extensions, codon usage in general resembles that in the main parts of several of the HCMV genes analyzed for this property.
Collapse
Affiliation(s)
- H Brondke
- Institut für Klinische und Molekulare Virologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
10
|
Montag C, Wagner J, Gruska I, Hagemeier C. Human cytomegalovirus blocks tumor necrosis factor alpha- and interleukin-1beta-mediated NF-kappaB signaling. J Virol 2006; 80:11686-98. [PMID: 17005669 PMCID: PMC1642604 DOI: 10.1128/jvi.01168-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/12/2006] [Indexed: 12/14/2022] Open
Abstract
NF-kappaB plays an important role in the early cellular response to pathogens by activating genes involved in inflammation, immune response, and cell proliferation and survival. NF-kappaB is also utilized by many viral pathogens, like human cytomegalovirus (HCMV), to activate their own gene expression programs, reflecting intricate roles for NF-kappaB in both antiviral defense mechanisms and viral physiology. Here we show that the NF-kappaB signaling pathway stimulated by proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta) becomes inhibited in HCMV-infected cells. The block to NF-kappaB signaling is first noticeable during the early phase of infection but is fully established only at later times. Biochemical and genetic evidence demonstrates that the viral inhibition of proinflammatory signaling by distinct cytokines occurs upstream of the convergence point of NF-kappaB-activating pathways, i.e., the IkappaB kinase complex, and that it is mediated via different mechanisms. Consistent with this, we further show that an HCMV variant that has lost the ability to downregulate TNF-alpha-induced NF-kappaB signaling also fails to downregulate surface expression of TNF receptor 1, thereby mechanistically linking the inhibition of TNF-alpha-induced NF-kappaB signaling by HCMV to TNF receptor targeting. Our data support a model whereby HCMV inhibits cytokine-induced NF-kappaB signaling at later times during infection, and we suggest that this contributes to the inhibition of the cell's antiviral defense program.
Collapse
Affiliation(s)
- Christina Montag
- Laboratory of Molecular Biology, Children's Hospital, Charité-CCM, Ziegelstrasse 5-9, Humboldt University Berlin, D-10098 Berlin, Germany
| | | | | | | |
Collapse
|
11
|
Feng X, Schröer J, Yu D, Shenk T. Human cytomegalovirus pUS24 is a virion protein that functions very early in the replication cycle. J Virol 2006; 80:8371-8. [PMID: 16912288 PMCID: PMC1563874 DOI: 10.1128/jvi.00399-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized the function of the human cytomegalovirus US24 gene, a US22 gene family member. Two US24-deficient mutants (BADinUS24 and BADsubUS24) exhibited a 20- to 30-fold growth defect, compared to their wild-type parent (BADwt), after infection at a relatively low (0.01 PFU/cell) or high (1 PFU/cell) input multiplicity. Representative virus-encoded proteins and viral DNA accumulated with normal kinetics to wild-type levels after infection with mutant virus when cells received equal numbers of mutant and wild-type infectious units. Further, the proteins were properly localized and no ultrastructural differences were found by electron microscopy in mutant-virus-infected cells compared to wild-type-virus-infected cells. However, virions produced by US24-deficient mutants had a 10-fold-higher genome-to-PFU ratio than wild-type virus. When infections were performed using equal numbers of input virus particles, the expression of immediate-early, early, and late viral proteins was substantially delayed and decreased in the absence of US24 protein. This delay is not due to inefficient virus entry, since two tegument proteins and viral DNA moved to the nucleus equally well in mutant- and wild-type-virus-infected cells. In summary, US24 is a virion protein and virions produced by US24-deficient viruses exhibit a block to the human cytomegalovirus replication cycle after viral DNA reaches the nucleus and before immediate-early mRNAs are transcribed.
Collapse
Affiliation(s)
- Xuyan Feng
- Department of Molecular Biology, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
12
|
Tang Q, Murphy EA, Maul GG. Experimental confirmation of global murine cytomegalovirus open reading frames by transcriptional detection and partial characterization of newly described gene products. J Virol 2006; 80:6873-82. [PMID: 16809293 PMCID: PMC1489029 DOI: 10.1128/jvi.00275-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Murine cytomegalovirus (MCMV) and human CMV (HCMV) share many features making the mouse system a potential small-animal model for HCMV. Although the genomic DNA sequence and the predicted open reading frames (ORFs) of MCMV have been determined, experimental evidence that the ORFs are actually transcribed has been lacking. We developed an MCMV global-DNA microarray that includes all previously predicted ORFs and 14 potential ones. A total of 172 ORFs were confirmed to be transcribed, including 7 newly discovered ORFs not previously predicted. No gene products from 10 previously predicted ORFs were detected by either DNA microarray analysis or reverse transcriptase PCR in MCMV-infected mouse fibroblasts, although 2 of those were expressed in a macrophage cell line, suggesting that potential gene products from these open reading frames are silenced in fibroblasts and required in macrophages. Immunohistochemical localization of the six newly described ORF products and three recently identified ones in cells transfected with the respective construct revealed four of the products in the nucleus and five in mitochondria. Analysis of two ORFs using site-directed mutagenesis showed that deletion of one of the mitochondrion-localized gene products led to significantly decreased replication in fibroblasts.
Collapse
Affiliation(s)
- Qiyi Tang
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
13
|
Rivailler P, Kaur A, Johnson RP, Wang F. Genomic sequence of rhesus cytomegalovirus 180.92: insights into the coding potential of rhesus cytomegalovirus. J Virol 2006; 80:4179-82. [PMID: 16571834 PMCID: PMC1440457 DOI: 10.1128/jvi.80.8.4179-4182.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pathogenic isolate of rhesus cytomegalovirus (rhCMV 180.92) was cloned, sequenced, and annotated. Comparisons with the published rhCMV 68.1 genome revealed 8 open reading frames (ORFs) in isolate 180.92 that are absent in 68.1, 10 ORFs in 68.1 that are absent in 180.92, and 34 additional ORFs that were not previously annotated. Most of the differences appear to be due to genetic rearrangements in both isolates from a region that is frequently altered in human CMV (hCMV) during in vitro passage. These results indicate that the rhCMV ORF repertoire is larger than previously recognized. Like hCMV, understanding of the complete coding capacity of rhCMV is complicated by genomic instability and may require comparisons with additional isolates in vitro and in vivo.
Collapse
Affiliation(s)
- Pierre Rivailler
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
14
|
Wang D, Shenk T. Human cytomegalovirus UL131 open reading frame is required for epithelial cell tropism. J Virol 2005; 79:10330-8. [PMID: 16051825 PMCID: PMC1182637 DOI: 10.1128/jvi.79.16.10330-10338.2005] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion.
Collapse
Affiliation(s)
- Dai Wang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
15
|
Brocchieri L, Kledal TN, Karlin S, Mocarski ES. Predicting coding potential from genome sequence: application to betaherpesviruses infecting rats and mice. J Virol 2005; 79:7570-96. [PMID: 15919911 PMCID: PMC1143683 DOI: 10.1128/jvi.79.12.7570-7596.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prediction of protein-coding regions and other features of primary DNA sequence have greatly contributed to experimental biology. Significant challenges remain in genome annotation methods, including the identification of small or overlapping genes and the assessment of mRNA splicing or unconventional translation signals in expression. We have employed a combined analysis of compositional biases and conservation together with frame-specific G+C representation to reevaluate and annotate the genome sequences of mouse and rat cytomegaloviruses. Our analysis predicts that there are at least 34 protein-coding regions in these genomes that were not apparent in earlier annotation efforts. These include 17 single-exon genes, three new exons of previously identified genes, a newly identified four-exon gene for a lectin-like protein (in rat cytomegalovirus), and 10 probable frameshift extensions of previously annotated genes. This expanded set of candidate genes provides an additional basis for investigation in cytomegalovirus biology and pathogenesis.
Collapse
Affiliation(s)
- Luciano Brocchieri
- Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA.
| | | | | | | |
Collapse
|
16
|
Dolan A, Cunningham C, Hector RD, Hassan-Walker AF, Lee L, Addison C, Dargan DJ, McGeoch DJ, Gatherer D, Emery VC, Griffiths PD, Sinzger C, McSharry BP, Wilkinson GWG, Davison AJ. Genetic content of wild-type human cytomegalovirus. J Gen Virol 2004; 85:1301-1312. [PMID: 15105547 DOI: 10.1099/vir.0.79888-0] [Citation(s) in RCA: 437] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic content of wild-type human cytomegalovirus was investigated by sequencing the 235 645 bp genome of a low passage strain (Merlin). Substantial regions of the genome (genes RL1-UL11, UL105-UL112 and UL120-UL150) were also sequenced in several other strains, including two that had not been passaged in cell culture. Comparative analyses, which employed the published genome sequence of a high passage strain (AD169), indicated that Merlin accurately reflects the wild-type complement of 165 genes, containing no obvious mutations other than a single nucleotide substitution that truncates gene UL128. A sizeable subset of genes exhibits unusually high variation between strains, and comprises many, but not all, of those that encode proteins known or predicted to be secreted or membrane-associated. In contrast to unpassaged strains, all of the passaged strains analysed have visibly disabling mutations in one or both of two groups of genes that may influence cell tropism. One comprises UL128, UL130 and UL131A, which putatively encode secreted proteins, and the other contains RL5A, RL13 and UL9, which are members of the RL11 glycoprotein gene family. The case in support of a lack of protein-coding potential in the region between UL105 and UL111A was also strengthened.
Collapse
Affiliation(s)
- Aidan Dolan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Ralph D Hector
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Aycan F Hassan-Walker
- Department of Virology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2QG, UK
| | - Lydia Lee
- Department of Virology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2QG, UK
| | - Clare Addison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derrick J Dargan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Duncan J McGeoch
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Vincent C Emery
- Department of Virology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2QG, UK
| | - Paul D Griffiths
- Department of Virology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2QG, UK
| | - Christian Sinzger
- Institut für Medizinische Virologie und Epidemiologie der Viruskrankheiten, Universität Tübingen, 72076 Tübingen, Germany
| | - Brian P McSharry
- Section of Infection and Immunity, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Gavin W G Wilkinson
- Section of Infection and Immunity, University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| |
Collapse
|
17
|
Brune W, Nevels M, Shenk T. Murine cytomegalovirus m41 open reading frame encodes a Golgi-localized antiapoptotic protein. J Virol 2003; 77:11633-43. [PMID: 14557649 PMCID: PMC229354 DOI: 10.1128/jvi.77.21.11633-11643.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved various strategies to prevent premature apoptosis of infected host cells. Some of the viral genes mediating antiapoptotic functions have been identified by their homology to cellular genes, but others are structurally unrelated to genes of known function. In this study, we used a random, unbiased approach to identify such genes in the murine cytomegalovirus genome. From a library of random transposon insertion mutants, a mutant virus that caused premature cell death was isolated. The transposon was inserted within open reading frame m41. An independently constructed m41 deletion mutant showed the same phenotype, whereas deletion mutants lacking the adjacent genes m40 and M42 did not. Apoptosis occurred in different cell types, could be blocked by caspase inhibitors, and did not require p53. Within the murine cytomegalovirus genome, m41, m40, and m39 form a small cluster of genes of unknown function. They are homologous to r41, r40, and r39 of rat cytomegalovirus, but lack sequence homology to UL41, UL40, and UL37 exon 1 (UL37x1) which are located at the corresponding positions of the human cytomegalovirus genome. Unlike UL37x1 of human cytomegalovirus, which encodes a mitochondrion-localized inhibitor of apoptosis that is essential for virus replication, m41 encodes a protein that localizes to the Golgi apparatus. The murine cytomegalovirus m41 product is the first example of a Golgi-localized protein that prevents premature apoptosis and thus extends the life span of infected cells.
Collapse
Affiliation(s)
- Wolfram Brune
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
18
|
McSharry BP, Tomasec P, Neale ML, Wilkinson GWG. The most abundantly transcribed human cytomegalovirus gene (beta 2.7) is non-essential for growth in vitro. J Gen Virol 2003; 84:2511-2516. [PMID: 12917473 DOI: 10.1099/vir.0.19298-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The most abundantly transcribed HCMV gene (beta 2.7) encodes a 2.7 kb polyadenylated RNA. Although the laboratory-adapted HCMV strains AD169 and Towne possess two copies of the beta 2.7 gene within an expanded b sequence element, the low passage strain Toledo and all clinical isolates analysed contain only a single copy located within the U(L) region. A beta 2.7 deletion mutant constructed based on a strain Toledo background was shown to replicate with kinetics comparable to those of the parental virus; the beta2.7 gene is therefore not essential for virus replication in vitro. Sequencing the beta 2.7 gene from HCMV clinical isolates and the Toledo strain reveals that although the overall gene sequence is highly conserved (>99 %), the RL4 frame originally assigned in strain AD169 was disrupted in each of these viruses. Consequently, the beta 2.7 transcript does not encode any obvious translation product and thus may not function as an mRNA.
Collapse
Affiliation(s)
- Brian P McSharry
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Peter Tomasec
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - M Lynne Neale
- Department of Medical Microbiology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| | - Gavin W G Wilkinson
- Section of Infection and Immunity, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XY, UK
| |
Collapse
|
19
|
Gerna G, Percivalle E, Sarasini A, Baldanti F, Campanini G, Revello MG. Rescue of human cytomegalovirus strain AD169 tropism for both leukocytes and human endothelial cells. J Gen Virol 2003; 84:1431-1436. [PMID: 12771411 DOI: 10.1099/vir.0.19055-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endothelial cell-tropism- and leukocyte- (polymorphonuclear- and monocyte-) tropism (leukotropism) are two important biological properties shared by all recent clinical isolates of human cytomegalovirus (HCMV). These properties are lost during extensive propagation of HCMV isolates in human fibroblasts, as shown by reference laboratory-adapted strains AD169 and Towne. Here we show that strain AD169 may reacquire both properties in vitro, endothelial (both venous and arterial) cell-tropism preceding leukotropism (predominantly involving monocytes). Restriction fragment length polymorphism analysis and sequencing performed on the original virus inoculum from human fibroblasts and serial passages on endothelial cells confirmed virus identity. Thus, fundamental biological properties may be lost and reacquired in vitro according to the cell culture system employed. The lack of a 15 kb DNA fragment in the strain AD169 genome does not prevent the rescue of these biological functions, thus indicating that they are likely to be encoded by viral genes located elsewhere.
Collapse
Affiliation(s)
- Giuseppe Gerna
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Elena Percivalle
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Fausto Baldanti
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Giulia Campanini
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - M Grazia Revello
- Servizio di Virologia, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
20
|
Rigoutsos I, Novotny J, Huynh T, Chin-Bow ST, Parida L, Platt D, Coleman D, Shenk T. In silico pattern-based analysis of the human cytomegalovirus genome. J Virol 2003; 77:4326-44. [PMID: 12634390 PMCID: PMC150618 DOI: 10.1128/jvi.77.7.4326-4344.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Accepted: 12/23/2002] [Indexed: 11/20/2022] Open
Abstract
More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).
Collapse
Affiliation(s)
- Isidore Rigoutsos
- Bioinformatics and Pattern Discovery Group, IBM TJ Watson Research Center, Yorktown Heights, New York 10598, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hahn G, Rose D, Wagner M, Rhiel S, McVoy MA. Cloning of the genomes of human cytomegalovirus strains Toledo, TownevarRIT3, and Towne long as BACs and site-directed mutagenesis using a PCR-based technique. Virology 2003; 307:164-77. [PMID: 12667824 DOI: 10.1016/s0042-6822(02)00061-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 230-kb human cytomegalovirus genome is among the largest of the known viruses. Experiments to determine the genetic determinants of attenuation, pathogenesis, and tissue tropism are underway; however, a lack of complete sequence data for multiple strains and substantial problems with genetic instability during in vitro propagation create serious complications for such studies. For example, recent findings suggest that common laboratory strains Towne and AD169 passaged in cultured human fibroblasts are missing up to 15 kb of genetic information relative to clinical isolates. To establish standard, genetically stable genomes that can be sequenced, disseminated, and repeatedly reconstituted to produce virus stocks, we have undertaken to clone two variants of Towne, designated Towne(long) and Towne(short) (referred to as TownevarRIT3) (A., Proc. Natl. Acad. Sci. USA 98, 7829-7834), and the pathogenic strain Toledo into bacterial artificial chromosomes (BACs). We further demonstrate the ease with which mutagenesis can be achieved by deleting 13.5 kb from the Toledo genome using a PCR-based technique.
Collapse
Affiliation(s)
- Gabriele Hahn
- Max von Pettenkofer Institut, Abteilung für Virologie, Ludwig-Maximilians-Universitt München, Pettenkoferstrasse 9A, D-80336 Munich, Germany.
| | | | | | | | | |
Collapse
|
22
|
Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ, Hayward GS. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 2003; 84:17-28. [PMID: 12533697 DOI: 10.1099/vir.0.18606-0] [Citation(s) in RCA: 297] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The gene complement of wild-type human cytomegalovirus (HCMV) is incompletely understood, on account of the size and complexity of the viral genome and because laboratory strains have undergone deletions and rearrangements during adaptation to growth in culture. We have determined the sequence (241 087 bp) of chimpanzee cytomegalovirus (CCMV) and have compared it with published HCMV sequences from the laboratory strains AD169 and Toledo, with the aim of clarifying the gene content of wild-type HCMV. The HCMV and CCMV genomes are moderately diverged and essentially collinear. On the basis of conservation of potential protein-coding regions and other sequence features, we have discounted 51 previously proposed HCMV ORFs, modified the interpretations for 24 (including assignments of multiple exons) and proposed ten novel genes. Several errors were detected in the published HCMV sequences. We presently recognize 165 genes in CCMV and 145 in AD169; this compares with an estimate of 189 unique genes for AD169 made in 1990. Our best estimate for the complement of wild-type HCMV is 164 to 167 genes.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Aidan Dolan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Parvis Akter
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Clare Addison
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Derrick J Dargan
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Donald J Alcendor
- Molecular Virology Laboratories, Oncology Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Duncan J McGeoch
- MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK
| | - Gary S Hayward
- Molecular Virology Laboratories, Oncology Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
23
|
Hahn G, Khan H, Baldanti F, Koszinowski UH, Revello MG, Gerna G. The human cytomegalovirus ribonucleotide reductase homolog UL45 is dispensable for growth in endothelial cells, as determined by a BAC-cloned clinical isolate of human cytomegalovirus with preserved wild-type characteristics. J Virol 2002; 76:9551-5. [PMID: 12186938 PMCID: PMC136448 DOI: 10.1128/jvi.76.18.9551-9555.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An endothelial cell-tropic and leukotropic human cytomegalovirus (HCMV) clinical isolate was cloned as a fusion-inducing factor X-bacterial artificial chromosome in Escherichia coli, and the ribonucleotide reductase homolog UL45 was deleted. Reconstituted virus RVFIX and RV Delta UL45 grew equally well in human fibroblasts and human endothelial cells. Thus, UL45 is dispensable for growth of HCMV in both cell types.
Collapse
Affiliation(s)
- Gabriele Hahn
- Max von Pettenkofer Institut für Virologie, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Adair R, Douglas ER, Maclean JB, Graham SY, Aitken JD, Jamieson FE, Dargan DJ. The products of human cytomegalovirus genes UL23, UL24, UL43 and US22 are tegument components. J Gen Virol 2002; 83:1315-1324. [PMID: 12029146 DOI: 10.1099/0022-1317-83-6-1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the human cytomegalovirus (HCMV) US22 gene family members UL23, UL24, UL43 and US22. Specific antibodies were generated to identify pUL23 (33 kDa), pUL24 (40 kDa) and pUL43 (48 kDa), while pUS22 was identified by monoclonal antibody HWLF1. A C-terminally truncated UL43 product (pUL43t; 21 kDa) produced by a deletion mutant was also investigated. The UL24 and UL43 genes were expressed with early-late (gamma1) and true-late (gamma2) kinetics, respectively. Immunoblot and immuno-EM studies demonstrated that pUL23, pUL24, pUL43 and pUS22 were virion tegument components. Immunofluorescence and immuno-EM studies showed that pUL23, pUL24, pUL43 and pUL43t were located in cytoplasmic protein aggregates, manifesting two forms: complex juxtanuclear structures and smaller, membrane-bound aggregates resembling dense bodies. The complex-type aggregate is a putative site of particle maturation. Because pUL43t was present in protein aggregates, but under-represented in virus particles compared to pUL43, it was concluded that N-terminal sequences target pUL43 to protein aggregates and that C-terminal sequences are important for incorporation into particles. Since three other US22 family products (pUL36, pTRS1 and pIRS1) are documented tegument components, at least seven of the twelve US22 family genes encode tegument proteins, suggesting that the products of the remaining five genes might be similarly located. These findings demonstrate a common biological feature among most, if not all, US22 family proteins and implicate the family in events occurring immediately after virus penetration.
Collapse
Affiliation(s)
- Richard Adair
- MRC Virology Unit, Church Street, Glasgow G11 5JR, UK1
| | | | | | | | - James D Aitken
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church Street, Glasgow G11 5JR, UK2
| | | | | |
Collapse
|
25
|
Paterson DA, Dyer AP, Milne RSB, Sevilla-Reyes E, Gompels UA. A role for human cytomegalovirus glycoprotein O (gO) in cell fusion and a new hypervariable locus. Virology 2002; 293:281-94. [PMID: 11886248 DOI: 10.1006/viro.2001.1274] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cell fusion assay using fusion-from-without (FFWO) recombinant adenoviruses (RAds) and specific antibody showed a role in fusion modulation for glycoprotein gO, the recently identified third component of the gH/gL gCIII complex of human cytomegalovirus (HCMV). As in HCMV, RAd gO expressed multiple glycosylated species with a mature product of 125 kDa. Coexpression with gH/gL RAds showed gCIII reconstitution in the absence of other HCMV products and stabilisation by intermolecular disulfide bonds. Properties of HCMV clinical isolate, Pt, also implicated gO in cell spread. Compared to laboratory strain AD169, Pt was resistant to gH antibody plaque inhibition, but mature gH was identical. However, the gO sequences were highly divergent (20%), with further variation in laboratory strain Towne gO (34%). Thus, gO forms gCIII with gH/gL, performs in cell fusion, and is a newly identified HCMV hypervariable locus which may influence gCIII's function in mediating infection.
Collapse
Affiliation(s)
- David A Paterson
- Pathogen Molecular Biology and Biochemistry Unit, Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, University of London, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Prichard MN, Penfold ME, Duke GM, Spaete RR, Kemble GW. A review of genetic differences between limited and extensively passaged human cytomegalovirus strains. Rev Med Virol 2001; 11:191-200. [PMID: 11376481 DOI: 10.1002/rmv.315] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The complete genetic content of human cytomegalovirus (HCMV) has been difficult to determine, since most strains studied in the laboratory have been extensively passaged in human fibroblast cultures which can change the genetic content as well as the biological properties of the virus. Approximately 13 kb of novel DNA sequences located near the right edge of the unique long (UL) component of the genome has been discovered in Toledo, clinical isolates and certain stocks of Towne. This region of novel sequence, designated the UL/b' region, encodes several interesting proteins including vCXC-1, a potent IL-8 homologue, and UL144, a member of the TNF receptor family. This region is missing from the prototypic laboratory variants of Towne and AD169. In contrast to Toledo and other low passage isolates which have relatively small repeats bracketing the UL component, the Towne and AD169 laboratory variants contain large (>10 kb) b/b' repeats. The large size of these repeats in AD169 and Towne appear to have arisen as compensation for the loss of sequences from the UL/b' region that existed in less passaged variants of these strains. Consequently, many of the haploid genes at the left edge of the prototypic wild-type (wt) UL component are diploid in AD169 and Towne. We hypothesise that this plasticity of the genome at the right edge of the UL component results from extensive passage and adaptation to replication in fibroblasts in vitro. Further work will be required to understand the complete genetic content of wt HCMV.
Collapse
Affiliation(s)
- M N Prichard
- Aviron, 297 N. Bernardo Avenue, Mountain View, CA 94043, USA
| | | | | | | | | |
Collapse
|
27
|
Xiao J, Tong T, Zhan X, Haghjoo E, Liu F. In vitro and in vivo characterization of a murine cytomegalovirus with a transposon insertional mutation at open reading frame M43. J Virol 2000; 74:9488-97. [PMID: 11000218 PMCID: PMC112378 DOI: 10.1128/jvi.74.20.9488-9497.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the MCMV mutants, RvM43, which contained the transposon inserted in open reading frame M43, was characterized. Our results provide the first direct evidence to suggest that M43 is not essential for viral replication in vitro in NIH 3T3 cells. Moreover, RvM43 exhibited a titer similar to that of the wild-type virus in the lungs, livers, spleens, and kidneys of both BALB/c and SCID mice and was as virulent as the wild-type virus in killing SCID mice that had been intraperitoneally infected with the viruses. In contrast, titers of the mutant virus in the salivary glands of the infected animals at 21 days postinfection were significantly (100 to 1,000-fold) lower than those of the wild-type virus and a rescued virus that restored the M43 region and its expression. Thus, M43 appears to be not essential for viral growth in vivo in the lungs, livers, spleens, and kidneys of infected animals and is also dispensable for virulence in killing SCID mice. Moreover, our results suggest that M43 is an MCMV determinant for growth in the salivary glands. Studies of viral genes required for replication in the salivary glands are important in understanding the mechanism of viral tropism for the salivary glands and shedding in saliva, which is believed to be one of the major routes of CMV transmission among healthy human populations.
Collapse
Affiliation(s)
- J Xiao
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
28
|
Hobom U, Brune W, Messerle M, Hahn G, Koszinowski UH. Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 2000; 74:7720-9. [PMID: 10933677 PMCID: PMC112300 DOI: 10.1128/jvi.74.17.7720-7729.2000] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome (BAC) in Escherichia coli. Here, we have subjected the HCMV BAC to random transposon (Tn) mutagenesis using a Tn1721-derived insertion sequence and have provided the conditions for excision of the BAC cassette. We report on a fast and efficient screening procedure for a Tn insertion library. Bacterial clones containing randomly mutated full-length HCMV genomes were transferred into 96-well microtiter plates. A PCR screening method based on two Tn primers and one primer specific for the desired genomic position of the Tn insertion was established. Within three consecutive rounds of PCR a Tn insertion of interest can be assigned to a specific bacterial clone. We applied this method to retrieve mutants of HCMV envelope glycoprotein genes. To determine the infectivities of the mutant HCMV genomes, the DNA of the identified BACs was transfected into permissive fibroblasts. In contrast to BACs with mutations in the genes coding for gB, gH, gL, and gM, which did not yield infectious virus, BACs with disruptions of open reading frame UL4 (gp48) or UL74 (gO) were viable, although gO-deficient viruses showed a severe growth deficit. Thus, gO (UL74), a component of the glycoprotein complex III, is dispensable for viral growth. We conclude that our approach of PCR screening for Tn insertions will greatly facilitate the functional analysis of herpesvirus genomes.
Collapse
Affiliation(s)
- U Hobom
- Lehrstuhl für Virologie, Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
29
|
Bhella D, Rixon FJ, Dargan DJ. Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J Mol Biol 2000; 295:155-61. [PMID: 10623515 DOI: 10.1006/jmbi.1999.3344] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
All members of the herpesvirus family have a characteristic virion structure, comprising a DNA containing, icosahedral capsid, embedded in a proteinaceous layer (tegument) and surrounded by a lipid envelope. Human cytomegalovirus (HCMV, the prototypic beta-herpesvirus) has a genome that is significantly larger (>50 %) than that of the alpha-herpesvirus HSV-1. Although the internal volume of the HCMV capsid is approximately 17 % larger than that of HSV-1, this slight increase in volume does not provide adequate space to encapsidate the full length HCMV genome at the same packing density as HSV-1. We have investigated the nature of DNA packing in HCMV and HSV-1 virions by electron-cryomicroscopy and image processing. Radial density profiles calculated from projection images of HCMV and HSV-1 capsids suggest that there is no increase in the volume of the HCMV capsid upon DNA packaging. Packing density of the viral DNA was assessed for both HCMV and HSV-1 by image analysis of both full and empty particles. Our results for packing density in HSV-1 are in good agreement with previously published measurements, showing an average inter-layer spacing of approximately 26 A. Measurements taken from our HCMV images, however, suggest that the viral genomic DNA is more densely packed, with an average inter-layer spacing of approximately 23 A. We propose therefore, that the combination of greater volume in HCMV capsids and increased packing density of viral DNA accounts for its ability to encapsidate a large genome.
Collapse
Affiliation(s)
- D Bhella
- Medical Research Council Virology Unit, Church Street, Glasgow, G11 5JR, United Kingdom.
| | | | | |
Collapse
|
30
|
Borst EM, Hahn G, Koszinowski UH, Messerle M. Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J Virol 1999; 73:8320-9. [PMID: 10482582 PMCID: PMC112849 DOI: 10.1128/jvi.73.10.8320-8329.1999] [Citation(s) in RCA: 314] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently introduced a novel procedure for the construction of herpesvirus mutants that is based on the cloning and mutagenesis of herpesvirus genomes as infectious bacterial artificial chromosomes (BACs) in Escherichia coli (M. Messerle, I. Crnkovic, W. Hammerschmidt, H. Ziegler, and U. H. Koszinowski, Proc. Natl. Acad. Sci. USA 94:14759-14763, 1997). Here we describe the application of this technique to the human cytomegalovirus (HCMV) strain AD169. Since it was not clear whether the terminal and internal repeat sequences of the HCMV genome would give rise to recombination, the stability of the cloned HCMV genome was examined during propagation in E. coli, during mutagenesis, and after transfection in permissive fibroblasts. Interestingly, the HCMV BACs were frozen in defined conformations in E. coli. The transfection of the HCMV BACs into human fibroblasts resulted in the reconstitution of infectious virus and isomerization of the reconstituted genomes. The power of the BAC mutagenesis procedure was exemplarily demonstrated by the disruption of the gpUL37 open reading frame. The transfection of the mutated BAC led to plaque formation, indicating that the gpUL37 gene product is dispensable for growth of HCMV in fibroblasts. The new procedure will considerably speed up the construction of HCMV mutants and facilitate genetic analysis of HCMV functions.
Collapse
Affiliation(s)
- E M Borst
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
31
|
Abstract
Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen that latently infects sensory ganglia and encodes over 80 genes in a 152 kbp DNA genome. This well characterised virus provides a model for analysing genetic recombination in herpesviruses, a fundamental biological process by which new combinations of genetic materials are generated. The frequency of homologous recombination was estimated to be 0.0048-0.007 (0.48%-0.7%)/kb of the HSV-1 genome, determined using physical markers. The double-strand break repair model, the current model of homologous recombination, adequately explains L-S inversion of herpesvirus genomes and the recombinogenicity of the a sequence. Several herpesvirus genomes, including HSV-1 consist of a unique sequence bracketed by a pair of inverted repeat sequences. This arrangement is attributed to illegitimate recombination between molecules arranged in an inverse orientation. Junctions of unique and repeated sequences that correspond to the crossover site of illegitimate recombination are recombinogenic. Recombination is important for virus evolution, construction of mutated virus, gene therapy and vaccination in which the potential for recombination between engineered input virus and wild type virus has to be considered.
Collapse
Affiliation(s)
- K Umene
- Department of Virology, Faculty of Medicine, Kyushu University 60, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Butcher SJ, Aitken J, Mitchell J, Gowen B, Dargan DJ. Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and image reconstruction. J Struct Biol 1998; 124:70-6. [PMID: 9931275 DOI: 10.1006/jsbi.1998.4055] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The three-dimensional structure of B capsids of the beta-herpesvirus human cytomegalovirus (HCMV) was investigated at a resolution of 3.5 nm from electron cryomicrographs by image processing and compared with the structure obtained for the alpha-herpesvirus herpes simplex virus type 1 (HSV-1). The main architectural features of the HSV-1 and HCMV capsids are similar: the T = 16 icosahedral lattice consists of 162 capsomers, composed of two distinct morphological units, 12 pentamers and 150 hexamers, with triplex structures linking adjacent capsomers at positions of local threefold symmetry. The main differences in the HSV-1 and HCMV capsids are found in the diameter of the capsids (125 and 130 nm, respectively); the hexamer spacing and relative tilt (center-to-center hexon spacing at outer, edge, 17.9 and 15.8 nm, respectively); the morphology of the tips of the hexons (similar in length but 33% thinner in HCMV); and the average diameter of the scaffold (44 and 76 nm, respectively). By analogy with HSV-1, the mass on the HCMV hexon tip is attributed to the smallest capsid protein (HCMV gene UL48/49). The differences in capsid structure are discussed in relation to the ability of the HCMV structure to package a genome some 60% larger than that of HSV-1.
Collapse
Affiliation(s)
- S J Butcher
- Division of Virology, University of Glasgow, Church Street, Glasgow, G11 5JR, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Subak-Sharpe JH, Dargan DJ. HSV molecular biology: general aspects of herpes simplex virus molecular biology. Virus Genes 1998; 16:239-51. [PMID: 9654678 DOI: 10.1023/a:1008068902673] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Comparison of the herpes simplex virus type 1 (HSV-1) DNA sequence with that of other alpha, beta and gamma-herpesviruses, allied with molecular genetic studies have greatly increased understanding of the HSV genome and the functions encoded by individual virus genes and has facilitated the development of rational antiviral strategies. Here we review the coding content of the HSV-1 genome and identify: genes encoding structural components of the capsid, tegument or envelope; genes whose products are essential for growth in tissue culture; and genes that are conserved between members of the alpha, beta and gamma-herpesvirinae. The HSV lifecycle and the main regulation cascade is discussed and genes that present targets for antiviral intervention identified. The protein content of the infectious virion particle is reviewed and compared with that of two additional non-infectious HSV-related particles species (L-particles and pre-DNA replication particles (PREPs)). The potential of HSV-1 L particles and PREP particles as DNA-free HSV-1 vaccine candidates and the desirability of deleting specific gene products from live HSV vaccines is discussed.
Collapse
|
34
|
Mocarski ES, Prichard MN, Tan CS, Brown JM. Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology 1997; 239:169-75. [PMID: 9426456 PMCID: PMC4283199 DOI: 10.1006/viro.1997.8875] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A polymorphism in the UL42-UL43 region of the human cytomegalovirus genome has been characterized by nucleotide sequence analysis, revealing a 929-bp insertion following nt 54,612 relative to the published strain AD169-UK genome sequence (M.S. Chee et al., 1990, Curr. Top. Microbiol Immunol. 154, 125-170). Although AD169-UK exhibited polymorphism in this genomic region, other CMV strains (Towne, Toledo, and AD169-ATCC) carried only the newly characterized longer form. The additional sequence altered the assignment of UL42 and UL43 open reading frames. UL42 decreased in size from 157 to 125 codons, retaining 76 of the previously reported carboxyl terminal codons, and UL43 increased in size from 187 to 423 codons, retaining 185 of the previously reported amino terminal codons. This additional sequence makes UL43 a more conserved betaherpesvirus US22 family member. Only AD169-UK exhibited restriction fragment length polymorphism in this region, suggesting that a deletion occurred during the propagation of this strain in cell culture. The additional sequence should be considered a bona fide part of the cytomegalovirus genome and the AD169 genome size should be corrected to 230,283 bp.
Collapse
Affiliation(s)
- E S Mocarski
- Department of Microbiology and Immunology, Stanford University, California 94305-5124, USA.
| | | | | | | |
Collapse
|