1
|
Rajendar B, Reddy MVNJ, Adusumilli M, Matur RV. Quantification of residual DTT by high-performance anion-exchange chromatography coupled with pulsed amperometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124609. [PMID: 40286484 DOI: 10.1016/j.jchromb.2025.124609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
VLP (virus-like particle) have proven to be safer vaccine candidates compared to live-attenuated or inactivated viral vaccines. As part of the manufacturing process of VLP-based vaccines, dithiothreitol (DTT) and other reducing agents are commonly used in the disassembly of VLPs, followed by a subsequent reassembly process for the removal of the added reducing agents. This disassembly and reassembly processes improve VLP integrity, stability and immunoreactivity. In the manufacture of VLPs, it is essential that DTT removal is ensured since it is a highly toxic substance. Residual DTT content has to be monitored throughout the manufacturing process flow of the final pharmaceutical product. The available method for DTT estimation involves chemical derivatization which is complex and may require 100 % derivatization of low levels of DTT. In this study, we report a simple, novel and sensitive method for DTT quantification based on the combination of HPAEC-PAD and an electrochemical detector. The developed method has a linear range from 1 to 10 ng/mL with a limit of quantification of 100 pg. It is cost-effective and more sensitive than current available fluorescent and HPLC-MS-based methods for detecting residual DTT in viral and VLP-based vaccines. This method can be implemented to monitor residual DTT levels in any vaccine or product where DTT is used as a process reagent.
Collapse
Affiliation(s)
- Burki Rajendar
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India.
| | | | - Madhavi Adusumilli
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India
| | - Ramesh V Matur
- Research & Development, Biological E Limited, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
2
|
Kim KR, Lee AS, Heo HR, Park SY, Kim CS. Bioinspired synthesis of virus-like particle-templated thin silica-layered nanocages with enhanced biocompatibility and cellular uptake as drug delivery carriers. Colloids Surf B Biointerfaces 2025; 247:114418. [PMID: 39642678 DOI: 10.1016/j.colsurfb.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The bioinspired synthesis of virus-like silica nanoparticles in biomedical applications makes it possible to utilize the cellular delivery capabilities of viruses while minimizing the cytotoxicity of inorganic silica. In this study, we developed a diatom-inspired method for synthesizing silica-layered nanocages utilizing R5 peptide-functionalized virus-like particles (VLPs). R5 peptides were genetically inserted into the F-G loop of human papillomavirus 16 L1 proteins (HPV16 L1-R5). HPV16 L1-R5 was self-assembled into VLPs under an acidic pH similar to native ones and exhibited ∼65 % drug encapsulation efficiency. The HPV16 L1-R5 VLP@silica nanocages (SiNPs) were synthesized through diatom-inspired silicification of HPV16 L1-R5 VLPs via intermolecular interaction of the R5 peptide and polyol. HPV16L1-R5 VLP@SiNPs displayed uniform, monodisperse particles with approximately 10 nm silica layer compared to HPV16 L1-R5 VLPs. HPV16 L1-R5 VLP@SiNPs showed high biocompatibility at high concentrations, unlike commercial mesoporous SiNPs. Furthermore, the virus-like HPV16 L1-R5 VLP@SiNPs resulted in approximately 2.5-fold increased cellular uptake efficiency compared to commercial mesoporous SiNPs. These results suggest that the thin silica layer on HPV16 L1-R5 VLPs retains cellular delivery capacity while reducing cytotoxicity. Our strategy presents an innovative method for synthesizing virus-like nanoparticles in biomedical applications, enhancing cellular delivery capacity and biocompatibility.
Collapse
Affiliation(s)
- Kyeong Rok Kim
- Graduate School of Biochemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ae Sol Lee
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hye Ryoung Heo
- Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Republic of Korea.
| | - Chang Sup Kim
- Graduate School of Chemical Engineering, Dongguk University, Seoul 04620, Republic of Korea; Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Patterson A, Young K, Biever MP, Klein SM, Huang SY, DePhillips PA, Jacobson SC, Jarrold MF, Zlotnick A. Heterogeneity of HPV16 virus-like particles indicates a complex assembly energy surface. Virology 2024; 600:110211. [PMID: 39276669 PMCID: PMC11560593 DOI: 10.1016/j.virol.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.
Collapse
Affiliation(s)
- Angela Patterson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - Kim Young
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA
| | - MacRyan P Biever
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Shelby M Klein
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Sheng-Yuan Huang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Pete A DePhillips
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | | | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
4
|
Valentic A, Hubbuch J. Effective removal of host cell-derived nucleic acids bound to hepatitis B core antigen virus-like particles by heparin chromatography. Front Bioeng Biotechnol 2024; 12:1475918. [PMID: 39431243 PMCID: PMC11487522 DOI: 10.3389/fbioe.2024.1475918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Virus-like particles (VLPs) show considerable potential for a wide array of therapeutic applications, spanning from vaccines targeting infectious diseases to applications in cancer immunotherapy and drug delivery. In the context of hepatitis B core antigen (HBcAg) VLPs, a promising candidate for gene delivery approaches, the naturally occurring nucleic acid (NA) binding region is commonly utilized for effective binding of various types of therapeutic nucleic acids (NAther). During formation of the HBcAg VLPs, host cell-derived nucleic acids (NAhc) might be associated to the NA binding region, and are thus encapsulated into the VLPs. Following a VLP harvest, the NAhc need to be removed effectively before loading the VLP with NAther. Various techniques reported in literature for this NAhc removal, including enzymatic treatments, alkaline treatment, and lithium chloride precipitation, lack quantitative evidence of sufficient NAhc removal accompanied by a subsequent high VLP protein recovery. In this study, we present a novel heparin chromatography-based process for effective NAhc removal from HBcAg VLPs. Six HBcAg VLP constructs with varying lengths of the NA binding region and diverse NAhc loadings were subjected to evaluation. Process performance was thoroughly examined through NAhc removal and VLP protein recovery analyses. Hereby, reversed phase chromatography combined with UV/Vis spectroscopy, as well as silica spin column-based chromatography coupled with dye-based fluorescence assay were employed. Additionally, alternative process variants, comprising sulfate chromatography and additional nuclease treatments, were investigated. Comparative analyses were conducted with LiCl precipitation and alkaline treatment procedures to ascertain the efficacy of the newly developed chromatography-based methods. Results revealed the superior performance of the heparin chromatography procedure in achieving high NAhc removal and concurrent VLP protein recovery. Furthermore, nuanced relationships between NA binding region length and NAhc removal efficiency were elucidated. Hereby, the construct Cp157 surpassed the other constructs in the heparin process by demonstrating high NAhc removal and VLP protein recovery. Among the other process variants minimal performance variations were observed for the selected constructs Cp157 and Cp183. However, the heparin chromatography-based process consistently outperformed other methods, underscoring its superiority in NAhc removal and VLP protein recovery.
Collapse
Affiliation(s)
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences – Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Celitan E, Stanevičienė R, Servienė E, Serva S. Highly stable Saccharomyces cerevisiae L-BC capsids with versatile packing potential. Front Bioeng Biotechnol 2024; 12:1456453. [PMID: 39386045 PMCID: PMC11461329 DOI: 10.3389/fbioe.2024.1456453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Virus-like particles (VLPs) are promising nanoscaffolds in development of vaccines and nanodelivery systems. Along with efficient production in various expression systems, they also offer extensive functionalization options. Nevertheless, the ultimate integrity of VLPs is an important burden for the applicability in nanobiotechnology. In this study, we characterize the Saccharomyces cerevisiae L-BC VLPs synthesized and purified from Escherichia coli and Saccharomyces cerevisiae cells. The particles exhibited prominent size stability in buffers within a range of ionic strength conditions, pH environment and presence of magnesium ions during the long-term storage at temperatures up to 37°C. Bacteria-derived particles exhibited alleviated stability in acidic pH values, higher ionic strength and temperature compared to yeast-derived particles. Taking advantage of gene engineering, 120 copies of red fluorescent protein mCherry were successfully encapsulated into both preparations of L-BC VLPs, while passive diffusion enabled encapsulation of antimicrobial peptide nisin into the yeast-derived unmodified VLPs. Our findings indicate that L-BC VLPs generally exhibit high long-term stability under various conditions, while yeast-derived L-BC VLPs are more stable under the elevated temperatures than bacteria-derived particles. Stability studies and encapsulation of particles by different molecules involving alternative strategies delineate the L-BC VLP potential to be developed into versatile nanodelivery system.
Collapse
Affiliation(s)
- Enrika Celitan
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Elena Servienė
- Laboratory of Genetics, Nature Research Centre, Vilnius, Lithuania
| | - Saulius Serva
- Laboratory of Nucleic Acid Biochemistry, Department of Biochemistry and Molecular Biology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Barrientos RC, Singh AN, Ukaegbu O, Hemida M, Wang H, Haidar Ahmad I, Hu H, Dunn ZD, Appiah-Amponsah E, Regalado EL. Two-Dimensional SEC-SEC-UV-MALS-dRI Workflow for Streamlined Analysis and Characterization of Biopharmaceuticals. Anal Chem 2024; 96:4960-4968. [PMID: 38436624 DOI: 10.1021/acs.analchem.3c05969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The emergence of complex biological modalities in the biopharmaceutical industry entails a significant expansion of the current analytical toolbox to address the need to deploy meaningful and reliable assays at an unprecedented pace. Size exclusion chromatography (SEC) is an industry standard technique for protein separation and analysis. Some constraints of traditional SEC stem from its restricted ability to resolve complex mixtures and notoriously long run times while also requiring multiple offline separation conditions on different pore size columns to cover a wider molecular size distribution. Two-dimensional liquid chromatography (2D-LC) is becoming an important tool not only to increase peak capacity but also to tune selectivity in a single online method. Herein, an online 2D-LC framework in which both dimensions utilize SEC columns with different pore sizes is introduced with a goal to increase throughput for biomolecule separation and characterization. In addition to improving the separation of closely related species, this online 2D SEC-SEC approach also facilitated the rapid analysis of protein-based mixtures of a wide molecular size range in a single online experimental run bypassing time-consuming deployment of different offline SEC methods. By coupling the second dimension with multiangle light scattering (MALS) and differential refractive index (dRI) detectors, absolute molecular weights of the separated species were obtained without the use of calibration curves. As illustrated in this report for protein mixtures and vaccine processes, this workflow can be used in scenarios where rapid development and deployment of SEC assays are warranted, enabling bioprocess monitoring, purity assessment, and characterization.
Collapse
Affiliation(s)
- Rodell C Barrientos
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew N Singh
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ophelia Ukaegbu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mohamed Hemida
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Hang Hu
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary D Dunn
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Emmanuel Appiah-Amponsah
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
7
|
Nand KN, Jordan TB, Yuan X, Basore DA, Zagorevski D, Clarke C, Werner G, Hwang JY, Wang H, Chung JJ, McKenna A, Jarvis MD, Singh G, Bystroff C. Bacterial production of recombinant contraceptive vaccine antigen from CatSper displayed on a human papilloma virus-like particle. Vaccine 2023; 41:6791-6801. [PMID: 37833124 DOI: 10.1016/j.vaccine.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
CatSper is a voltage dependent calcium ion channel present in the principal piece of sperm tail. It plays a crucial role in sperm hyperactivated motility and so in fertilization. Extracellular loops of mouse sperm CatSper were used to develop a vaccine to achieve protection from pregnancy. These loops were inserted at one of the three hypervariable regions of Human Papilloma Virus (HPV) capsid protein (L1). Recombinant vaccines were expressed in E.coli as inclusion body (IB), purified, refolded and assembled into virus-like particles (VLP) in vitro, and adsorbed on alum. Four vaccine candidates were tested in Balb/C mice. All the constructs proved immunogenic, one showed contraceptive efficacy. This recombinant contraceptive vaccine is a non-hormonal intervention and is expected to give long-acting protection from undesired pregnancies.
Collapse
Affiliation(s)
- K N Nand
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - T B Jordan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - X Yuan
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - D A Basore
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States; Department of Health and Natural Science, Mercy University, Dobbs Ferry, NY, United States
| | - D Zagorevski
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - C Clarke
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - G Werner
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States
| | - J Y Hwang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - H Wang
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - J-J Chung
- Dept of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States; Department of Gynecology and Obstetrics, Yale University School of Medicine, New Haven, CT, United States
| | - A McKenna
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - M D Jarvis
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - G Singh
- Bioresearch Core, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - C Bystroff
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY, United States.
| |
Collapse
|
8
|
Chen CW, Saubi N, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting HIV-1 P18I10 Peptide: Expression, Purification, Bio-Physical Properties and Immunogenicity in BALB/c Mice. Int J Mol Sci 2023; 24:ijms24098060. [PMID: 37175776 PMCID: PMC10179162 DOI: 10.3390/ijms24098060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) vaccines based on HPV L1 virus-like particles (VLPs) are already licensed but not accessible worldwide. About 38.0 million people were living with HIV in 2020 and there is no HIV vaccine yet. Therefore, safe, effective, and affordable vaccines against both viruses are an urgent need. In this study, the HIV-1 P18I10 CTL peptide from the V3 loop of HIV-1 gp120 glycoprotein was inserted into the HPV16 L1 protein to construct chimeric HPV:HIV (L1:P18I10) VLPs. Instead of the traditional baculovirus expression vector/insect cell (BEVS/IC) system, we established an alternative mammalian 293F cell-based expression system using cost-effective polyethylenimine-mediated transfection for L1:P18I10 protein production. Compared with conventional ultracentrifugation, we optimized a novel chromatographic purification method which could significantly increase L1:P18I10 VLP recovery (~56%). Chimeric L1:P18I10 VLPs purified from both methods were capable of self-assembling to integral particles and shared similar biophysical and morphological properties. After BALB/c mice immunization with 293F cell-derived and chromatography-purified L1:P18I10 VLPs, almost the same titer of anti-L1 IgG (p = 0.6409) was observed as Gardasil anti-HPV vaccine-immunized mice. Significant titers of anti-P18I10 binding antibodies (p < 0.01%) and P18I10-specific IFN-γ secreting splenocytes (p = 0.0002) were detected in L1:P18I10 VLP-immunized mice in comparison with licensed Gardasil-9 HPV vaccine. Furthermore, we demonstrated that insertion of HIV-1 P18I10 peptide into HPV16 L1 capsid protein did not affect the induction in anti-L1 antibodies. All in all, we expected that the mammalian cell expression system and chromatographic purification methods could be time-saving, cost-effective, scalable platforms to engineer bivalent VLP-based vaccines against HPV and HIV-1.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Narcís Saubi
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Vall d'Hebron Research Institute (VHIR), 08035 Barcelona, Spain
- Department of Microbiology, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| |
Collapse
|
9
|
Fuertes MA, López Mateos D, Valiente L, Rodríguez Huete A, Valbuena A, Mateu MG. Electrostatic Screening, Acidic pH and Macromolecular Crowding Increase the Self-Assembly Efficiency of the Minute Virus of Mice Capsid In Vitro. Viruses 2023; 15:v15051054. [PMID: 37243141 DOI: 10.3390/v15051054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
The hollow protein capsids from a number of different viruses are being considered for multiple biomedical or nanotechnological applications. In order to improve the applied potential of a given viral capsid as a nanocarrier or nanocontainer, specific conditions must be found for achieving its faithful and efficient assembly in vitro. The small size, adequate physical properties and specialized biological functions of the capsids of parvoviruses such as the minute virus of mice (MVM) make them excellent choices as nanocarriers and nanocontainers. In this study we analyzed the effects of protein concentration, macromolecular crowding, temperature, pH, ionic strength, or a combination of some of those variables on the fidelity and efficiency of self-assembly of the MVM capsid in vitro. The results revealed that the in vitro reassembly of the MVM capsid is an efficient and faithful process. Under some conditions, up to ~40% of the starting virus capsids were reassembled in vitro as free, non aggregated, correctly assembled particles. These results open up the possibility of encapsidating different compounds in VP2-only capsids of MVM during its reassembly in vitro, and encourage the use of virus-like particles of MVM as nanocontainers.
Collapse
Affiliation(s)
- Miguel Angel Fuertes
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Diego López Mateos
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alicia Rodríguez Huete
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Muthamilselvan T, Khan MRI, Hwang I. Assembly of Human Papillomavirus 16 L1 Protein in Nicotiana benthamiana Chloroplasts into Highly Immunogenic Virus-Like Particles. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2023; 66:1-10. [PMID: 37360984 PMCID: PMC10078042 DOI: 10.1007/s12374-023-09393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 06/28/2023]
Abstract
Infection with human papillomavirus (HPV) can cause cervical cancers in women, and vaccination against the virus is one of most effective ways to prevent these cancers. Two vaccines made of virus-like particles (VLPs) of HPV L1 proteins are currently commercially available. However, these HPV vaccines are highly expensive, and thus not affordable for women living in developing countries. Therefore, great demand exists to produce a cost-effective vaccine. Here, we investigate the production of self-assembled HPV16 VLPs in plants. We generated a chimeric protein composed of N-terminal 79 amino acid residues of RbcS as a long-transit peptide to target chloroplasts, the SUMO domain, and HPV16 L1 proteins. The chimeric gene was expressed in plants with chloroplast-targeted bdSENP1, a protein that specifically recognizes the SUMO domain and cleaves its cleavage site. This co-expression of bdSENP1 led to the release of HPV16 L1 from the chimeric proteins without any extra amino acid residues. HPV16 L1 purified by heparin chromatography formed VLPs that mimicked native virions. Moreover, the plant-produced HPV16 L1 VLPs elicited strong immune responses in mice without adjuvants. Thus, we demonstrated the cost-effective production of HPV16 VLPs in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s12374-023-09393-6.
Collapse
Affiliation(s)
| | - Md Rezaul Islam Khan
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673 Korea
| |
Collapse
|
11
|
Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Vaccines (Basel) 2022; 11:vaccines11010015. [PMID: 36679860 PMCID: PMC9861546 DOI: 10.3390/vaccines11010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, the HIV-1 P18I10 CTL peptide derived from the V3 loop of HIV-1 gp120 and the T20 anti-fusion peptide of HIV-1 gp41 were inserted into the HPV16 L1 capsid protein to construct chimeric HPV:HIV (L1:P18I10 and L1:T20) VLPs by using the mammalian cell expression system. The HPV:HIV VLPs were purified by chromatography. We demonstrated that the insertion of P18I10 or T20 peptides into the DE loop of HPV16 L1 capsid proteins did not affect in vitro stability, self-assembly and morphology of chimeric HPV:HIV VLPs. Importantly, it did not interfere either with the HIV-1 antibody reactivity targeting sequential and conformational P18I10 and T20 peptides presented on chimeric HPV:HIV VLPs or with the induction of HPV16 L1-specific antibodies in vivo. We observed that chimeric L1:P18I10/L1:T20 VLPs vaccines could induce HPV16- but weak HIV-1-specific antibody responses and elicited HPV16- and HIV-1-specific T-cell responses in BALB/c mice. Moreover, could be a potential booster to increase HIV-specific cellular responses in the heterologous immunization after priming with rBCG.HIVA vaccine. This research work would contribute a step towards the development of the novel chimeric HPV:HIV VLP-based vaccine platform for controlling HPV16 and HIV-1 infection, which is urgently needed in developing and industrialized countries.
Collapse
Affiliation(s)
- Chun-Wei Chen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Athina Kilpeläinen
- Department of Biomedical Sciences, University of Barcelona, 08036 Barcelona, Spain
- Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Joan Joseph-Munné
- Department of Microbiology, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
12
|
Bekker S, Huismans H, van Staden V. Generation of a Soluble African Horse Sickness Virus VP7 Protein Capable of Forming Core-like Particles. Viruses 2022; 14:1624. [PMID: 35893692 PMCID: PMC9331310 DOI: 10.3390/v14081624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis. It was found that the substitution of seven amino acids resulted in the complete disruption of AHSV VP7 self-assembly, which abolished the formation of VP7 crystalline particles and converted VP7 to a fully soluble protein still capable of interacting with VP3 to form core-like particles. This work provides further insight into the formation of AHSV VP7 crystalline particles and the successful development of AHSV vaccines. It also paves the way for future research by drawing comparisons with similar viral phenomena observed in human virology.
Collapse
Affiliation(s)
| | | | - Vida van Staden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield 0083, South Africa; (S.B.); (H.H.)
| |
Collapse
|
13
|
Valentic A, Müller J, Hubbuch J. Effects of Different Lengths of a Nucleic Acid Binding Region and Bound Nucleic Acids on the Phase Behavior and Purification Process of HBcAg Virus-Like Particles. Front Bioeng Biotechnol 2022; 10:929243. [PMID: 35845397 PMCID: PMC9283707 DOI: 10.3389/fbioe.2022.929243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Virus-like particles (VLPs) are macromolecular structures with great potential as vehicles for the targeted administration of functional molecules. Loaded with nucleic acids, VLPs are a promising approach for nanocarriers needed for gene therapy. There is broad knowledge of the manufacturing of the truncated wild-type lacking a nucleic acid binding region, which is mainly being investigated for vaccine applications. Whereas for their potential application as a nanocarrier for gene therapy, hepatitis B core antigen (HBcAg) VLPs with a nucleic acid binding region for efficient cargo-loading are being investigated. VLP structure, loading, and phase behavior are of central importance to their therapeutic efficacy and thereby considerably affecting the production process. Therefore, HBcAg VLPs with different lengths of the nucleic acid binding region were produced in E. coli. VLP attributes such as size, zeta potential, and loading with host cell-derived nucleic acids were evaluated. Capsid’s size and zeta potential of the VLP constructs did not differ remarkably, whereas the analysis of the loading with host cell-derived nucleic acids revealed strong differences in the binding of host cell-derived nucleic acids dependent on the length of the binding region of the constructs, with a non-linear correlation but a two-zone behavior. Moreover, the phase behavior and purification process of the HBcAg VLPs as a function of the liquid phase conditions and the presence of host cell-derived nucleic acids were investigated. Selective VLP precipitation using ammonium sulfate was scarcely affected by the encapsulated nucleic acids. However, the disassembly reaction, which is crucial for structure homogeneity, separation of encapsulated impurities, and effective loading of the VLPs with therapeutic nucleic acids, was affected both by the studied liquid phase conditions, varying pH and concentration of reducing agents, and the different VLP constructs and amount of bound nucleic acids, respectively. Thereby, capsid-stabilizing effects of the bound nucleic acids and capsid-destabilizing effects of the nucleic acid binding region were observed, following the two-zone behavior of the construct’s loading, and a resulting correlation between the capsid stability and disassembly yields could be derived.
Collapse
|
14
|
Latif S, Gottschamel J, Syed T, Younus I, Gull K, Sameeullah M, Batool N, Lössl AG, Mariz F, Müller M, Mirza B, Waheed MT. Inducible expression of human papillomavirus-16 L1 capsomeres in the plastomes of Nicotiana tabacum: Transplastomic plants develop normal flowers and pollen. Biotechnol Appl Biochem 2022; 69:596-611. [PMID: 33650709 DOI: 10.1002/bab.2136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
Human papillomavirus type-16 (HPV-16) is the major HPV type involved in causing cervical cancer among women. The disease burden is high in developing and underdeveloped countries. Previously, the constitutive expression of HPV-16 L1 protein led to male sterility in transplastomic tobacco plants. Here, the HPV-16 L1 gene was expressed in chloroplasts of Nicotiana tabacum under the control of an ethanol-inducible promoter, trans-activated by nucleus-derived signal peptide. Plants containing nuclear component were transformed with transformation vector pEXP-T7-L1 by biolistic gun. The transformation and homoplasmic status of transformed plants was verified by polymerase chain reaction and Southern blotting, respectively. Protein was induced by spraying 5% ethanol for 7 consecutive days. The correct folding of L1 protein was confirmed by antigen-capture ELISA using a conformation-specific antibody. The L1 protein accumulated up to 3 μg/g of fresh plant material. The L1 protein was further purified using affinity chromatography. All transplastomic plants developed normal flowers and produced viable seeds upon self-pollination. Pollens also showed completely normal structure under light microscope and scanning electron microscopy. These data confirm the use of the inducible expression as plant-safe approach for expressing transgenes in plants, especially those genes that cause detrimental effects on plant growth and morphology.
Collapse
Affiliation(s)
- Sara Latif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Johanna Gottschamel
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Tahira Syed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Younus
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, , Oxford Road, Manchester, United Kingdom
| | - Kehkshan Gull
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Innovative Food Technologies Development Application and Research Centre, Faculty of Engineering, Bolu Abant Izzet Baysal University, Golkoye Campus, Bolu, Turkey
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Andreas Günter Lössl
- Department of Applied Plant Science and Plant Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Filipe Mariz
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Martin Müller
- Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Lahore College for Women University, Lahore, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
15
|
A Visual Discrimination of Existing States of Virus Capsid Protein by a Giant Molybdate Cluster. NANOMATERIALS 2022; 12:nano12050736. [PMID: 35269224 PMCID: PMC8911902 DOI: 10.3390/nano12050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022]
Abstract
We report a unique phenomenon, the opposite color response of a giant polyoxometalate, (NH4)42[Mo132O372(CHCOO)30] (H2O)72 ([Mo132]), to the existing states of human papillomavirus (HPV) major capsid protein, L1-pentamer (L1-p), and virus-like particles (VLPs). The color responses originate from the different assembly forms between [Mo132] and the capsid protein. The latter were inspected and separated by using CsCl gradient centrifugation, and validated in detail by sodium dodecyl sulfate-polyacrylamide gel-electrophoresis (SDS-PAGE), dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. Furthermore, the intrinsic mechanisms were investigated in-depth by using XPS-based semi-quantitative analysis and well-designed peptides, revealing the critical points of L1 that determine the charge–transfer ratio between Mo(V) to Mo(VI), and consequently, the levels of [Mo132] hypochromic in different assemblies. Such a unique phenomenon is significant as it supplies a colorimetry approach to distinguish the existing states of the HPV capsid protein and would be significant in the quality assay of the HPV vaccine and existing states of other viruses in the future.
Collapse
|
16
|
Hillebrandt N, Vormittag P, Dietrich A, Hubbuch J. Process Monitoring Framework for Cross‐flow Diafiltration‐based Virus‐like Particle Disassembly: Tracing Product Properties and Filtration Performance. Biotechnol Bioeng 2022; 119:1522-1538. [DOI: 10.1002/bit.28063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT) Fritz‐Haber‐Weg 2 76131 Karlsruhe Baden‐Württemberg Germany
| |
Collapse
|
17
|
Hillebrandt N, Vormittag P, Dietrich A, Wegner CH, Hubbuch J. Process development for cross-flow diafiltration-based VLP disassembly: A novel high-throughput screening approach. Biotechnol Bioeng 2021; 118:3926-3940. [PMID: 34170511 DOI: 10.1002/bit.27868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/27/2022]
Abstract
Virus-like particles (VLPs) are particulate structures, which are applied as vaccines or delivery vehicles. VLPs assemble from subunits, named capsomeres, composed of recombinantly expressed viral structural proteins. During downstream processing, in vivo-assembled VLPs are typically dis- and reassembled to remove encapsulated impurities and to improve particle morphology. Disassembly is achieved in a high-pH solution and by the addition of a denaturant or reducing agent. The optimal disassembly conditions depend on the VLP amino acid sequence and structure, thus requiring material-consuming disassembly experiments. To this end, we developed a low-volume and high-resolution disassembly screening that provides time-resolved insight into the VLP disassembly progress. In this study, two variants of C-terminally truncated hepatitis B core antigen were investigated showing different disassembly behaviors. For both VLPs, the best capsomere yield was achieved at moderately high urea concentration and pH. Nonetheless, their disassembly behaviors differed particularly with respect to disassembly rate and aggregation. Based on the high-throughput screening results, a diafiltration-based disassembly process step was developed. Compared with mixing-based disassembly, it resulted in higher yields of up to 0.84 and allowed for integrated purification. This process step was embedded in a filtration-based process sequence of disassembly, capsomere separation, and reassembly, considerably reducing high-molecular-weight species.
Collapse
Affiliation(s)
- Nils Hillebrandt
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Philipp Vormittag
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Annabelle Dietrich
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Christina H Wegner
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences - Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Baden-Württemberg, Germany
| |
Collapse
|
18
|
Pedroza-Saavedra A, Rodriguez-Ocampo AN, Salazar-Piña A, Perez-Morales AC, Chihu-Amparan L, Maldonado-Gama M, Cruz-Valdez A, Esquivel-Guadarrama F, Gutierrez-Xicotencatl L. Differential Antibody Response against Conformational and Linear Epitopes of the L1 Proteins from Human Papillomavirus Types 16/18 Is Observed in Vaccinated Women or with Uterine Cervical Lesions. Vaccines (Basel) 2021; 9:vaccines9050442. [PMID: 34063178 PMCID: PMC8147477 DOI: 10.3390/vaccines9050442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies against the Human Papillomavirus (HPV) L1 protein are associated with past infections and related to the evolution of the disease, whereas antibodies against L1 Virus-Like Particles (VLPs) are used to follow the neutralizing antibody response in vaccinated women. In this study, serum antibodies against conformational (VLPs) and linear epitopes of HPV16/18 L1 protein were assessed to distinguish HPV-vaccinated women from those naturally infected or those with uterine cervical lesions. The VLPs-16/18 were generated in baculovirus, and L1 proteins were obtained from denatured VLPs. Serum antibodies against VLPs and L1 proteins were evaluated by ELISA. The ELISA-VLPs and ELISA-L1 16/18 assays were validated with a vaccinated women group by ROC analysis and the regression analysis to distinguish the different populations of female patients. The anti-VLPs-16/18 and anti-L1-16/18 antibodies effectively detect vaccinated women (AUC = 1.0/0.79, and 0.94/0.84, respectively). The regression analysis showed that anti-VLPs-16/18 and anti-L1-16/18 antibodies were associated with the vaccinated group (OR = 2.11 × 108/16.50 and 536.0/49.2, respectively). However, only the anti-L1-16 antibodies were associated with the high-grade lesions and cervical cancer (CIN3/CC) group (OR = 12.18). In conclusion, our results suggest that anti-VLPs-16/18 antibodies are effective and type-specific to detect HPV-vaccinated women, but anti-L1-16 antibodies better differentiate the CIN3/CC group. However, a larger population study is needed to validate these results.
Collapse
Affiliation(s)
- Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | | | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, 62100 Cuernavaca, Mexico;
| | - Aislinn Citlali Perez-Morales
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, 62100 Cuernavaca, Mexico;
| | - Lilia Chihu-Amparan
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
| | - Aurelio Cruz-Valdez
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico;
| | | | - Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Mexico; (A.P.-S.); (A.C.P.-M.); (L.C.-A.); (M.M.-G.)
- Correspondence: ; Tel.: +52-77-7329-3086
| |
Collapse
|
19
|
Le DT, Müller KM. In Vitro Assembly of Virus-Like Particles and Their Applications. Life (Basel) 2021; 11:334. [PMID: 33920215 PMCID: PMC8069851 DOI: 10.3390/life11040334] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are increasingly used for vaccine development and drug delivery. Assembly of VLPs from purified monomers in a chemically defined reaction is advantageous compared to in vivo assembly, because it avoids encapsidation of host-derived components and enables loading with added cargoes. This review provides an overview of ex cella VLP production methods focusing on capsid protein production, factors that impact the in vitro assembly, and approaches to characterize in vitro VLPs. The uses of in vitro produced VLPs as vaccines and for therapeutic delivery are also reported.
Collapse
Affiliation(s)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| |
Collapse
|
20
|
Hwang BJ, Jang Y, Kwon SB, Yu JE, Lim J, Roh YH, Seong BL. RNA-assisted self-assembly of monomeric antigens into virus-like particles as a recombinant vaccine platform. Biomaterials 2021; 269:120650. [PMID: 33465537 DOI: 10.1016/j.biomaterials.2021.120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.
Collapse
Affiliation(s)
- Beom Jeung Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yohan Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ji Eun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Vaccine Innovative Technology Alliance-Korea, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Chabeda A, van Zyl AR, Rybicki EP, Hitzeroth II. Substitution of Human Papillomavirus Type 16 L2 Neutralizing Epitopes Into L1 Surface Loops: The Effect on Virus-Like Particle Assembly and Immunogenicity. FRONTIERS IN PLANT SCIENCE 2019; 10:779. [PMID: 31281327 PMCID: PMC6597877 DOI: 10.3389/fpls.2019.00779] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 05/19/2023]
Abstract
Cervical cancer caused by infection with human papillomaviruses (HPVs) is the fourth most common cancer in women globally, with the burden mainly in developing countries due to limited healthcare resources. Current vaccines based on virus-like particles (VLPs) assembled from recombinant expression of the immunodominant L1 protein are highly effective in the prevention of cervical infection; however, these vaccines are expensive and type-specific. Therefore, there is a need for more broadly protective and affordable vaccines. The HPV-16 L2 peptide sequences 108-120, 65-81, 56-81, and 17-36 are highly conserved across several HPV types and have been shown to elicit cross-neutralizing antibodies. To increase L2 immunogenicity, L1:L2 chimeric VLPs (cVLP) vaccine candidates were developed. The four L2 peptides mentioned above were substituted into the DE loop of HPV-16 L1 at position 131 (SAC) or in the C-terminal region at position 431 (SAE) to generate HPV-16-derived L1:L2 chimeras. All eight chimeras were transiently expressed in Nicotiana benthamiana via Agrobacterium tumefaciens-mediated DNA transfer. SAC chimeras predominantly assembled into higher order structures (T = 1 and T = 7 VLPs), whereas SAE chimeras assembled into capsomeres or formed aggregates. Four SAC and one SAE chimeras were used in vaccination studies in mice, and their ability to generate cross-neutralizing antibodies was analyzed in HPV pseudovirion-based neutralization assays. Of the seven heterologous HPVs tested, cross-neutralization with antisera specific to chimeras was observed for HPV-11 (SAE 65-18), HPV-18 (SAC 108-120, SAC 65-81, SAC 56-81, SAE 65-81), and HPV-58 (SAC 108-120). Interestingly, only anti-SAE 65-81 antiserum showed neutralization of homologous HPV-16, suggesting that the position of the L2 epitope display is critical for maintaining L1-specific neutralizing epitopes.
Collapse
Affiliation(s)
- Aleyo Chabeda
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
22
|
Charlton Hume HK, Vidigal J, Carrondo MJT, Middelberg APJ, Roldão A, Lua LHL. Synthetic biology for bioengineering virus-like particle vaccines. Biotechnol Bioeng 2019; 116:919-935. [PMID: 30597533 PMCID: PMC7161758 DOI: 10.1002/bit.26890] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Vaccination is the most effective method of disease prevention and control. Many viruses and bacteria that once caused catastrophic pandemics (e.g., smallpox, poliomyelitis, measles, and diphtheria) are either eradicated or effectively controlled through routine vaccination programs. Nonetheless, vaccine manufacturing remains incredibly challenging. Viruses exhibiting high antigenic diversity and high mutation rates cannot be fairly contested using traditional vaccine production methods and complexities surrounding the manufacturing processes, which impose significant limitations. Virus-like particles (VLPs) are recombinantly produced viral structures that exhibit immunoprotective traits of native viruses but are noninfectious. Several VLPs that compositionally match a given natural virus have been developed and licensed as vaccines. Expansively, a plethora of studies now confirms that VLPs can be designed to safely present heterologous antigens from a variety of pathogens unrelated to the chosen carrier VLPs. Owing to this design versatility, VLPs offer technological opportunities to modernize vaccine supply and disease response through rational bioengineering. These opportunities are greatly enhanced with the application of synthetic biology, the redesign and construction of novel biological entities. This review outlines how synthetic biology is currently applied to engineer VLP functions and manufacturing process. Current and developing technologies for the identification of novel target-specific antigens and their usefulness for rational engineering of VLP functions (e.g., presentation of structurally diverse antigens, enhanced antigen immunogenicity, and improved vaccine stability) are described. When applied to manufacturing processes, synthetic biology approaches can also overcome specific challenges in VLP vaccine production. Finally, we address several challenges and benefits associated with the translation of VLP vaccine development into the industry.
Collapse
Affiliation(s)
- Hayley K. Charlton Hume
- The University of Queensland, Australian Institute of Bioengineering and NanotechnologySt LuciaQueenslandAustralia
| | - João Vidigal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | - Manuel J. T. Carrondo
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer and Mathematical Sciences, The University of AdelaideAdelaideSouth AustraliaAustralia
| | - António Roldão
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Biologia Experimental e Tecnológica (iBET)OeirasPortugal
- Health & Pharma Division, Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da RepúblicaOeirasPortugal
| | | |
Collapse
|
23
|
Jia C, Yang T, Liu Y, Zhu A, Yin F, Wang Y, Xu L, Wang Y, Yan M, Cai Q, Liang X, Ju R, Chen J, Wang L. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35745-35759. [PMID: 30360122 DOI: 10.1021/acsami.8b11556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cervical cancer remains the second-most prevalent female malignancy around the world, leading to a great majority of cancer-related mortality that occurs mainly in developing countries. Developing an effective and low-cost vaccine against human papillomavirus (HPV) infection, especially in medically underfunded areas, is urgent. Compared with vaccines based on HPV L1 viruslike particles (VLPs) in the market, recombinant HPV L1 pentamer expressed in Escherichia coli represents a promising and potentially cost-effective vaccine for preventing HPV infection. Hybrid particles comprising a polymer core and lipid shell have shown great potential compared to conventional aluminum salts adjuvant and is urgently needed for HPV L1 pentamer vaccines. It is well-reported that particle sizes are crucial in regulating immune responses. Nevertheless, reports on the relationship between the particulate size and the resultant immune response have been in conflict, and there is no answer to how the size of particles regulates specific immune response for HPV L1 pentamer-based candidate vaccines. Here, we fabricated HPV 16 L1 pentamer-loaded poly(d,l-lactide- co-glycolide) (PLGA)/lecithin hybrid particles with uniform sizes (0.3, 1, and 3 μm) and investigated the particle size effects on antigen release, activation of lymphocytes, dendritic cells (DCs) activation and maturation, follicular helper CD4+ T (TFH) cells differentiation, and release of pro-inflammatory cytokines and chemokines. Compared with the other particle sizes, 1 μm particles induced more powerful antibody protection and yielded more persistent antibody responses, as well as more heightened anamnestic responses upon repeat vaccination. The superior immune responses might be attributed to sustainable antigen release and robust antigen uptake and transport and then further promoted a series of cascade reactions, including enhanced DCs maturation, increased lymphocytes activation, and augmented TFH cells differentiation in draining lymph nodes (DLNs). Here, a powerful and economical platform for HPV vaccine and a comprehensive understanding of particle size effect on immune responses for HPV L1 pentamer-based candidate vaccines are provided.
Collapse
Affiliation(s)
- Chengcheng Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yongjiang Liu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Ali Zhu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Fei Yin
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yajun Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lan Xu
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Yan Wang
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Mei Yan
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Qingman Cai
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Xiaoxu Liang
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Ruijun Ju
- Beijing Institute of Petrochemical Technology , Beijing 102617 , P.R. China
| | - Jianping Chen
- Beijing Health Guard Biotechnology Co., LTD , Beijing 100176 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
24
|
Jia XY, Xue YR, Li HW, Fu DY, Wang WX, Wu Y. The capsid assembly-induced luminescence enhancement (AILE) of DNA-protected silver nanoclusters and anin situapplication. NEW J CHEM 2018. [DOI: 10.1039/c8nj03179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The study presents an AILE phenomenon for silver nanoclusters and supplies a fluorescence method to evaluate the processes of VLP assembly/disassembly.
Collapse
Affiliation(s)
- Xiang-Yu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wei-Xian Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
25
|
Pan H, Li Z, Wang J, Song S, Wang D, Wei M, Gu Y, Zhang J, Li S, Xia N. Bacterially expressed human papillomavirus type 6 and 11 bivalent vaccine: Characterization, antigenicity and immunogenicity. Vaccine 2017; 35:3222-3231. [DOI: 10.1016/j.vaccine.2017.04.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
|
26
|
Jeong H, Seong BL. Exploiting virus-like particles as innovative vaccines against emerging viral infections. J Microbiol 2017; 55:220-230. [PMID: 28243941 PMCID: PMC7090582 DOI: 10.1007/s12275-017-7058-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/20/2023]
Abstract
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.
Collapse
Affiliation(s)
- Hotcherl Jeong
- Department of Pharmacy, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Baik Lin Seong
- Department of Biotechnology & Vaccine Translational Research Center, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
27
|
Gallagher JR, Torian U, McCraw DM, Harris AK. Characterization of the disassembly and reassembly of the HBV glycoprotein surface antigen, a pliable nanoparticle vaccine platform. Virology 2017; 502:176-187. [PMID: 28061386 DOI: 10.1016/j.virol.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/10/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023]
Abstract
While nanoparticle vaccine technology is gaining interest due to the success of vaccines like those for the human papillomavirus that is based on viral capsid nanoparticles, little information is available on the disassembly and reassembly of viral surface glycoprotein-based nanoparticles. One such particle is the hepatitis B virus surface antigen (sAg) that exists as nanoparticles. Here we show, using biochemical analysis coupled with electron microscopy, that sAg nanoparticle disassembly requires both reducing agent to disrupt intermolecular disulfide bonds, and detergent to disrupt hydrophobic interactions that stabilize the nanoparticle. Particles were otherwise resistant to salt and urea, suggesting the driving mechanism of particle formation involves hydrophobic interactions. We reassembled isolated sAg protein into nanoparticles by detergent removal and reassembly resulted in a wider distribution of particle diameters. Knowledge of these driving forces of nanoparticle assembly and stability should facilitate construction of epitope-displaying nanoparticles that can be used as immunogens in vaccines.
Collapse
Affiliation(s)
- John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Udana Torian
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Dustin M McCraw
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 50 South Drive, Room 6351, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Jin S, Zheng DD, Sun B, Yu X, Zha X, Liu Y, Wu S, Wu Y. Controlled Hybrid-Assembly of HPV16/18 L1 Bi VLPs in Vitro. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34244-34251. [PMID: 27998118 DOI: 10.1021/acsami.6b12456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Based on the helix4-exchanged HPV16 L1 and HPV18 L1, HPV16 L1 Bi and HPV18 L1 Bi, we have successfully realized the controlled hybrid-assembly of HPV16/18 L1 Bi VLPs (bihybrid-VLPs) in vitro. The bihybrid-VLPs were further confirmed by fluorescence resonance energy transfer (FRET) and complex-immunoprecipitation (Co-IP) assays. The ratio of 16 L1 Bi and 18 L1 Bi in bihybrid-VLPs was verified to be 3:5 based on a modified magnetic Co-IP procedure, when mixing 1 equiv pentamer in assembly buffer solution, but it changed with conditions. In addition, the bihybrid-VLPs showed identical thermal stability as that of normal VLPs, suggesting high potential in practical applications. The present study is significant because it modified one of the vital steps of virus life cycle at the stage of virus assembly, supplying a new approach not only to deepen structural insights but also a possibility to prepare stable, low-cost, bivalent antivirus vaccine. Furthermore, the controlled hybrid-assembly of bihybrid-VLPs in vitro provides suggestions for the design of effective multivalent hybrid-VLPs, being a potential to develop broad-spectrum vaccines for the prevention of infection with multiple types of HPV.
Collapse
Affiliation(s)
| | | | | | | | - Xiao Zha
- Sichuan Tumor Hospital & Institute , Chengdu 610041, China
| | | | - Shuming Wu
- Beijing Health Guard Inc., Beijing 100176, China
| | | |
Collapse
|
29
|
Kinetics of infected insect cell osmolysis and enhanced protein release using a modified disruption method. Bioprocess Biosyst Eng 2016; 39:1729-35. [PMID: 27435225 DOI: 10.1007/s00449-016-1648-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/07/2016] [Indexed: 12/29/2022]
Abstract
We have studied and characterized a cell disruption method to produce a protein extract from recombinant Baculovirus infected insect cells based on osmotic lysis. Cell lysis kinetics were measured during a 24-h incubation in lysis buffer and resulting data sets were curve fitted to a hyperbola, visually similar to the Michaelis-Menten curve, to determine the maximum concentration of released protein and the time required to reach equilibrium. Effect of parameters such as pH, ionic strength and infection phase were evaluated, and based on fittings optimal protein release conditions were obtained for total cell protein as well as the recombinant protein, HPV 16 L1. It was demonstrated that pH and the phase of infection can vastly influence the amount of release while ionic strength only effects the time required to achieve equilibrium in protein release. Osmolysis can be a mild, yet effective method to release recombinant protein with high recovery levels and hence can be used in capacities where stringent criteria regarding contamination with surfactant or non-cytoplasmic contents are observed.
Collapse
|
30
|
López-Toledo G, Schädlich L, Alonso-Castro ÁJ, Monroy-García A, García-Rocha R, Guido MC, Gissmann L, García-Carrancá A. Immunization with Human Papillomavirus 16 L1+E2 Chimeric Capsomers Elicits Cellular Immune Response and Antitumor Activity in a Mouse Model. Viral Immunol 2016; 29:276-87. [PMID: 27058179 DOI: 10.1089/vim.2015.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Development of cervical cancer is associated with persistent infections by high-risk human papillomavirus (HPV). Although current HPV L1-based prophylactic vaccines prevent infection, they do not help to eliminate prevalent infections or lesions. Our aims were (i) to generate a vaccine combining prophylactic and therapeutic properties by producing chimeric capsomers after fusion of the L1 protein to different fragments of E2 from HPV 16, and (ii) to evaluate their capacity to generate an antitumoral cellular response, while conserving L1 neutralizing epitopes. Chimeric proteins were produced in Escherichia coli and purified by glutathione S-transferase (GST)-affinity chromatography. Their structure was characterized using size exclusion chromatography, sucrose gradient centrifugation, electron microscopy, and anti-L1 enzyme-linked immunosorbent assay. All chimeric proteins form capsomers and heterogeneous aggregates. One, containing part of the carboxy-terminal domain of E2 and its hinge region (L1Δ+E2H/NC, aa 206-307), conserved the neutralizing epitope H16.V5. We then evaluated the capacity of this chimeric protein to induce a cytotoxic T-cell response against HPV 16 E2. In (51)Cr release cytotoxicity assays, splenocytes from C57BL/6 immunized mice recognized and lysed TC-1/E2 cells, which express and present endogenously processed E2 peptides. Moreover, this E2-specific cytotoxic response inhibited the growth of tumors of TC-1/E2 cells in mice. Finally, we identified an epitope (aa 292-301) of E2 involved in this cytotoxic response. We conclude that the L1Δ+E2H/NC chimeric protein produced in bacteria can be an effective and economically interesting candidate for a combined prophylactic and therapeutic vaccine that could help eliminating HPV16-positive low-grade cervical lesions and persistent viral infections, thus preventing the development of lesions and, at the same time, the establishment of new infections.
Collapse
Affiliation(s)
- Gabriela López-Toledo
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lysann Schädlich
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Ángel Josabad Alonso-Castro
- 2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Alberto Monroy-García
- 4 Laboratory of Immunobiology, Facultad de Estudios Superiores Zaragoza , Unidad de Investigación en Diferenciación Celular y Cáncer, UMIEZ, UNAM, Mexico City, Mexico .,5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico
| | - Rosario García-Rocha
- 5 Laboratory of Immunology and Cancer, Unidad de Investigación Médica en Enfermedades Oncológicas , CMN SXXI, IMSS, Mexico City, Mexico .,6 Department of Immunology, Escuela Nacional de Ciencias Biológicas , IPN, Mexico City, Mexico
| | - Miriam C Guido
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| | - Lutz Gissmann
- 3 Division of Genome Modifications and Carcinogenesis, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Alejandro García-Carrancá
- 1 Department of Molecular Biology and Biotechnology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Mexico City, Mexico .,2 Laboratory of Virus and Cancer, Division of Basic Research, Instituto Nacional de Cancerología-SS , Mexico City, Mexico
| |
Collapse
|
31
|
A Cell-Free Assembly System for Generating Infectious Human Papillomavirus 16 Capsids Implicates a Size Discrimination Mechanism for Preferential Viral Genome Packaging. J Virol 2015; 90:1096-107. [PMID: 26559838 DOI: 10.1128/jvi.02497-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have established a cell-free in vitro system to study human papillomavirus type 16 (HPV16) assembly, a poorly understood process. L1/L2 capsomers, obtained from the disassembly of virus-like particles (VLPs), were incubated with nuclear extracts to provide access to the range of cellular proteins that would be available during assembly within the host cell. Incorporation of a reporter plasmid "pseudogenome" was dependent on the presence of both nuclear extract and ATP. Unexpectedly, L1/L2 VLPs that were not disassembled prior to incubation with a reassembly mixture containing nuclear extract also encapsidated a reporter plasmid. As with HPV pseudoviruses (PsV) generated intracellularly, infection by cell-free particles assembled in vitro required the presence of L2 and was susceptible to the same biochemical inhibitors, implying the cell-free assembled particles use the infectious pathway previously described for HPV16 produced in cell culture. Using biochemical and electron microscopy analyses, we observed that, in the presence of nuclear extract, intact VLPs partially disassemble, providing a mechanistic explanation to how the exogenous plasmid was packaged by these particles. Further, we provide evidence that capsids containing an <8-kb pseudogenome are resistant to the disassembly/reassembly reaction. Our results suggest a novel size discrimination mechanism for papillomavirus genome packaging in which particles undergo iterative rounds of disassembly/reassembly, seemingly sampling DNA until a suitably sized DNA is encountered, resulting in the formation of a stable virion structure. IMPORTANCE Little is known about papillomavirus assembly biology due to the difficulties in propagating virus in vitro. The cell-free assembly method established in this paper reveals a new mechanism for viral genome packaging and will provide a tractable system for further dissecting papillomavirus assembly. The knowledge gained will increase our understanding of virus-host interactions, help to identify new targets for antiviral therapy, and allow for the development of new gene delivery systems based on in vitro-generated papillomavirus vectors.
Collapse
|
32
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|
33
|
Seth A, Ritchie FK, Wibowo N, Lua LHL, Middelberg APJ. Non-carrier nanoparticles adjuvant modular protein vaccine in a particle-dependent manner. PLoS One 2015; 10:e0117203. [PMID: 25756283 PMCID: PMC4355484 DOI: 10.1371/journal.pone.0117203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/20/2014] [Indexed: 11/18/2022] Open
Abstract
Nanoparticles are increasingly used to adjuvant vaccine formulations due to their biocompatibility, ease of manufacture and the opportunity to tailor their size, shape, and physicochemical properties. The efficacy of similarly-sized silica (Si-OH), poly (D,L-lactic-co-glycolic acid) (PLGA) and poly caprolactone (PCL) nanoparticles (nps) to adjuvant recombinant capsomere presenting antigenic M2e modular peptide from Influenza A virus (CapM2e) was investigated in vivo. Formulation of CapM2e with Si-OH or PLGA nps significantly boosted the immunogenicity of modular capsomeres, even though CapM2e was not actively attached to the nanoparticles prior to injection (i.e., formulation was by simple mixing). In contrast, PCL nps showed no significant adjuvant effect using this simple-mixing approach. The immune response induced by CapM2e alone or formulated with nps was antibody-biased with very high antigen-specific antibody titer and less than 20 cells per million splenocytes secreting interferon gamma. Modification of silica nanoparticle surface properties through amine functionalization and pegylation did not lead to significant changes in immune response. This study confirms that simple mixing-based formulation can lead to effective adjuvanting of antigenic protein, though with antibody titer dependent on nanoparticle physicochemical properties.
Collapse
Affiliation(s)
- Arjun Seth
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Fiona K Ritchie
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Nani Wibowo
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| | - Linda H L Lua
- The University of Queensland, Protein Expression Facility, St Lucia, QLD, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, St. Lucia, QLD, Australia
| |
Collapse
|
34
|
Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin(®). Vaccine 2014; 32:4039-50. [PMID: 24892250 DOI: 10.1016/j.vaccine.2014.05.064] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/02/2014] [Accepted: 05/20/2014] [Indexed: 12/28/2022]
Abstract
The hepatitis E virus (HEV) vaccine, Hecolin(®), was licensed in China for the prevention of HEV infection and HEV-related diseases with demonstrated safety and efficacy [1,2]. The vaccine is composed of a truncated HEV capsid protein, p239, as the sole antigen encoded by open reading frame 2 and produced using Escherichia coli platform. The production of this virus-like particle (VLP) form of the antigen was successfully scaled up 50-fold from a bench scale to a manufacturing scale. Product consistency was demonstrated using a combination of biophysical, biochemical and immunochemical methods, which revealed comparable antigen characteristics among different batches. Particle size of the nanometer scale particulate antigen and presence of key epitopes on the particle surface are two prerequisites for an efficacious VLP-based vaccine. The particle size was monitored by several different methods, which showed diameters between 20 and 30nm for the p239 particles. The thermal stability and aggregation propensity of the antigen were assessed using differential scanning calorimetry and cloud point assay under heat stress conditions. Key epitopes on the particulate antigen were analyzed using a panel of murine anti-HEV monoclonal antibodies (mAbs). The immuno reactivity to the mAbs among the different antigen lots was highly consistent when analyzed quantitatively using a surface plasmon resonance technique. Using a sandwich ELISA to probe the integrity of two different epitopes in the antigen, the specific antigenicity of multiple batches was assessed to demonstrate consistency in these critical product attributes. Overall, our findings showed that the antigen production process is robust and scalable during the manufacturing of Hecolin(®).
Collapse
|
35
|
Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibowo N, Middelberg APJ. Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 2013; 111:425-40. [PMID: 24347238 DOI: 10.1002/bit.25159] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/23/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Virus-like particle (VLP) technology seeks to harness the optimally tuned immunostimulatory properties of natural viruses while omitting the infectious trait. VLPs that assemble from a single protein have been shown to be safe and highly efficacious in humans, and highly profitable. VLPs emerging from basic research possess varying levels of complexity and comprise single or multiple proteins, with or without a lipid membrane. Complex VLP assembly is traditionally orchestrated within cells using black-box approaches, which are appropriate when knowledge and control over assembly are limited. Recovery challenges including those of adherent and intracellular contaminants must then be addressed. Recent commercial VLPs variously incorporate steps that include VLP in vitro assembly to address these problems robustly, but at the expense of process complexity. Increasing research activity and translation opportunity necessitate bioengineering advances and new bioprocessing modalities for efficient and cost-effective production of VLPs. Emerging approaches are necessarily multi-scale and multi-disciplinary, encompassing diverse fields from computational design of molecules to new macro-scale purification materials. In this review, we highlight historical and emerging VLP vaccine approaches. We overview approaches that seek to specifically engineer a desirable immune response through modular VLP design, and those that seek to improve bioprocess efficiency through inhibition of intracellular assembly to allow optimal use of existing purification technologies prior to cell-free VLP assembly. Greater understanding of VLP assembly and increased interdisciplinary activity will see enormous progress in VLP technology over the coming decade, driven by clear translational opportunity.
Collapse
Affiliation(s)
- Linda H L Lua
- Protein Expression Facility, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Zhao Q, Potter CS, Carragher B, Lander G, Sworen J, Towne V, Abraham D, Duncan P, Washabaugh MW, Sitrin RD. Characterization of virus-like particles in GARDASIL® by cryo transmission electron microscopy. Hum Vaccin Immunother 2013; 10:734-9. [PMID: 24299977 DOI: 10.4161/hv.27316] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cryo-transmission electron microscopy (cryoTEM) is a powerful characterization method for assessing the structural properties of biopharmaceutical nanoparticles, including Virus Like Particle-based vaccines. We demonstrate the method using the Human Papilloma Virus (HPV) VLPs in GARDASIL®. CryoTEM, coupled to automated data collection and analysis, was used to acquire images of the particles in their hydrated state, determine their morphological characteristics, and confirm the integrity of the particles when absorbed to aluminum adjuvant. In addition, we determined the three-dimensional structure of the VLPs, both alone and when interacting with neutralizing antibodies. Two modes of binding of two different neutralizing antibodies were apparent; for HPV type 11 saturated with H11.B2, 72 potential Fab binding sites were observed at the center of each capsomer, whereas for HPV 16 interacting with H16.V5, it appears that 60 pentamers (each neighboring 6 other pentamers) bind five Fabs per pentamer, for the total of 300 potential Fab binding sites per VLP.
Collapse
Affiliation(s)
- Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; School of Public Health; Xiamen University; Xiamen, Fujian, PR China; Bioprocess R&D; Merck Research Laboratories; West Point, PA USA
| | - Clinton S Potter
- NanoImaging Services, Inc.; San Diego, CA USA; Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Bridget Carragher
- NanoImaging Services, Inc.; San Diego, CA USA; Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Gabriel Lander
- Department of Integrative Structural and Computational Biology; The Scripps Research Institute; La Jolla, CA USA
| | - Jaime Sworen
- Bioprocess R&D; Merck Research Laboratories; West Point, PA USA
| | - Victoria Towne
- Vaccine Manufacturing Science and Commercialization; Merck Manufacturing Division; West Point, PA USA
| | - Dicky Abraham
- Vaccine Manufacturing Science and Commercialization; Merck Manufacturing Division; West Point, PA USA
| | - Paul Duncan
- Bioprocess R&D; Merck Research Laboratories; West Point, PA USA
| | | | - Robert D Sitrin
- Vaccine Manufacturing Science and Commercialization; Merck Manufacturing Division; West Point, PA USA
| |
Collapse
|
37
|
Wei L, Chu M, Zhang Q, Wang Y, Shang Q, Zhang Y, Zhang G. Interleukin-12 gene adjuvant increases the immunogenicity of virus-like particles of human papillomavirus type 16 regional variant strain. Braz J Infect Dis 2013; 18:65-70. [PMID: 24120826 PMCID: PMC9425263 DOI: 10.1016/j.bjid.2013.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 11/23/2022] Open
Abstract
Objectives To analyze the immunogenicity of virus-like particles (VLP) of human papillomavirus type 16 (HPV16) isolated in East China and the adjuvant potential of interleukin-12 (IL-12). Methods The variant HPV16 L1VLP expressed in sf9 insect cells were purified with cesium chloride gradient centrifugation. BALB/c mice were vaccinated with VLP (L1N), VLP with Freund's adjuvant (L1A) or VLP with IL-12 recombinant plasmid (L1P). HPV16 VLP specific IgG and IFN-γ level in the serum were detected by ELISA, and the percentage of CD4+ and CD8+ in spleen cells was detected with flow cytometry. Results The titers of serum IgG antibodies in vaccinated groups were higher than in negative control and the serum antibodies mainly recognized conformation-dependent HPV16 VLP epitopes. Splenic CD4+ and CD8+ T cell subsets increased after vaccination in every experimental group, and CD8+ increased obviously in L1P group. The ratio of CD4+/CD8+ decreased in L1P group and increased in the other two groups, compared to control group. Vaccination induced specific secretion of IFN-γ in the serum of vaccinated group (p < 0.05), especially in the L1P group. Conclusions VLP of HPV16 variant strain isolated in East China could induce humoral immunity and cellular immunity in mice, and IL-12 recombinant plasmid can enhance cellular immunity.
Collapse
Affiliation(s)
- Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, China; Immunity and Infection, Pathogenic Biology Key Laboratory of Heilongjiang Province, Harbin, China
| | - Ming Chu
- The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingmeng Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China; Immunity and Infection, Pathogenic Biology Key Laboratory of Heilongjiang Province, Harbin, China; The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China; Immunity and Infection, Pathogenic Biology Key Laboratory of Heilongjiang Province, Harbin, China
| | - Qinglong Shang
- Department of Microbiology, Harbin Medical University, Harbin, China; Immunity and Infection, Pathogenic Biology Key Laboratory of Heilongjiang Province, Harbin, China
| | - Yunyan Zhang
- Department of Gynecology, The Third Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Guangmei Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
38
|
Pineo CB, Hitzeroth II, Rybicki EP. Immunogenic assessment of plant-produced human papillomavirus type 16 L1/L2 chimaeras. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:964-75. [PMID: 23924054 DOI: 10.1111/pbi.12089] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
Cervical cancer is caused by infection with human papillomaviruses (HPV) and is a global concern, particularly in developing countries, which have ~80% of the burden. HPV L1 virus-like particle (VLP) type-restricted vaccines prevent new infections and associated disease. However, their high cost has limited their application, and cytological screening programmes are still required to detect malignant lesions associated with the nonvaccine types. Thus, there is an urgent need for cheap second-generation HPV vaccines that protect against multiple types. The objective of this study was to express novel HPV-16 L1-based chimaeras, containing cross-protective epitopes from the L2 minor capsid protein, in tobacco plants. These L1/L2 chimaeras contained epitope sequences derived from HPV-16 L2 amino acid 108-120, 56-81 or 17-36 substituted into the C-terminal helix 4 (h4) region of L1 from amino acid 414. All chimaeras were expressed in Nicotiana benthamiana via an Agrobacterium-mediated transient system and targeted to chloroplasts. The chimaeras were highly expressed with yields of ~1.2 g/kg plant tissue; however, they assembled differently, indicating that the length and nature of the L2 epitope affect VLP assembly. The chimaera containing L2 amino acids 108-120 was the most successful candidate vaccine. It assembled into small VLPs and elicited anti-L1 and anti-L2 responses in mice, and antisera neutralized homologous HPV-16 and heterologous HPV-52 pseudovirions. The other chimaeras predominantly assembled into capsomeres and other aggregates and elicited weaker humoral immune responses, demonstrating the importance of VLP assembly for the immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Catherine B Pineo
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | | | | |
Collapse
|
39
|
Rajendar B, Sivakumar V, Sriraman R, Raheem M, Lingala R, Matur RV. A simple and rapid method to monitor the disassembly and reassembly of virus-like particles. Anal Biochem 2013; 440:15-7. [PMID: 23711723 DOI: 10.1016/j.ab.2013.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Protein fluorescence spectra (~300-440 nm) could be used as a simple and sensitive method to monitor the disassembly and reassembly of virus-like particles (VLPs). Insect cell expressed and purified HPV-16 L1 VLPs show significantly high fluorescence intensity, whereas the fluorescence is almost quenched after disassembly by adding the reducing agent. By removing the reducing agent, the fluorescence was restored to its original intensity, indicating the reassembly of VLPs. The data are consistent with enzyme-linked immunosorbent assay (ELISA) reactivity using conformation-specific mouse monoclonal antibody. The same method could be extended to VLPs of other viruses.
Collapse
Affiliation(s)
- Burki Rajendar
- Research and Development Center, Indian Immunologicals, Rakshapuram, Gachibowli, Hyderabad 500032, India
| | | | | | | | | | | |
Collapse
|
40
|
Zhao Q, Allen MJ, Wang Y, Wang B, Wang N, Shi L, Sitrin RD. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:1182-9. [DOI: 10.1016/j.nano.2012.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/29/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
41
|
Szolajska E, Burmeister WP, Zochowska M, Nerlo B, Andreev I, Schoehn G, Andrieu JP, Fender P, Naskalska A, Zubieta C, Cusack S, Chroboczek J. The structural basis for the integrity of adenovirus Ad3 dodecahedron. PLoS One 2012; 7:e46075. [PMID: 23049939 PMCID: PMC3457955 DOI: 10.1371/journal.pone.0046075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/27/2012] [Indexed: 11/21/2022] Open
Abstract
During the viral life cycle adenoviruses produce excess capsid proteins. Human adenovirus serotype 3 (Ad3) synthesizes predominantly an excess of free pentons, the complexes of pentameric penton base and trimeric fiber proteins, which are responsible for virus penetration. In infected cells Ad3 pentons spontaneously assemble into dodecahedral virus-like nano-particles containing twelve pentons. They also form in insect cells during expression in the baculovirus system. Similarly, in the absence of fiber protein dodecahedric particles built of 12 penton base pentamers can be produced. Both kinds of dodecahedra show remarkable efficiency of intracellular penetration and can be engineered to deliver several millions of foreign cargo molecules to a single target cell. For this reason, they are of great interest as a delivery vector. In order to successfully manipulate this potential vector for drug and/or gene delivery, an understanding of the molecular basis of vector assembly and integrity is critical. Crystallographic data in conjunction with site-directed mutagenesis and biochemical analysis provide a model for the molecular determinants of dodecamer particle assembly and the requirements for stability. The 3.8 Å crystal structure of Ad3 penton base dodecamer (Dd) shows that the dodecahedric structure is stabilized by strand-swapping between neighboring penton base molecules. Such N-terminal strand-swapping does not occur for Dd of Ad2, a serotype which does not form Dd under physiological conditions. This unique stabilization of the Ad3 dodecamer is controlled by residues 59-61 located at the site of strand switching, the residues involved in putative salt bridges between pentamers and by the disordered N-terminus (residues 1-47), as confirmed by site directed mutagenesis and biochemical analysis of mutant and wild type protein. We also provide evidence that the distal N-terminal residues are externally exposed and available for attaching cargo.
Collapse
Affiliation(s)
- Ewa Szolajska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Wim P. Burmeister
- Unit for Virus Host-Cell Interactions, Université Joseph Fourier Grenoble 1/European Molecular Biology Laboratory/Centre National de Recherche Scientifique (UJF Grenoble 1/EMBL/CNRS UMI 3265), Grenoble, France
| | - Monika Zochowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Barbara Nerlo
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Igor Andreev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Guy Schoehn
- Unit for Virus Host-Cell Interactions, Université Joseph Fourier Grenoble 1/European Molecular Biology Laboratory/Centre National de Recherche Scientifique (UJF Grenoble 1/EMBL/CNRS UMI 3265), Grenoble, France
- Institut de Biologie Structurale Jean-Pierre Ebel (IBS), Commissariat d'Energie Atomique, Grenoble, France
- IBS, UJF Grenoble 1, Grenoble, France
- IBS UMR 5075, CNRS, Grenoble, France
| | - Jean-Pierre Andrieu
- Institut de Biologie Structurale Jean-Pierre Ebel (IBS), Commissariat d'Energie Atomique, Grenoble, France
- IBS, UJF Grenoble 1, Grenoble, France
- IBS UMR 5075, CNRS, Grenoble, France
| | - Pascal Fender
- Unit for Virus Host-Cell Interactions, Université Joseph Fourier Grenoble 1/European Molecular Biology Laboratory/Centre National de Recherche Scientifique (UJF Grenoble 1/EMBL/CNRS UMI 3265), Grenoble, France
| | - Antonina Naskalska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Chloe Zubieta
- European Synchrotron Radiation Facility, Grenoble, France
- Grenoble Outstation, EMBL, Grenoble, France
| | - Stephen Cusack
- Unit for Virus Host-Cell Interactions, Université Joseph Fourier Grenoble 1/European Molecular Biology Laboratory/Centre National de Recherche Scientifique (UJF Grenoble 1/EMBL/CNRS UMI 3265), Grenoble, France
- Grenoble Outstation, EMBL, Grenoble, France
| | - Jadwiga Chroboczek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble, UMR 5525 CNRS/UJF Grenoble 1, La Tronche, France
| |
Collapse
|
42
|
Recent progress in the application of nanotechnology for prevention and treatment of human papillomavirus infection. Ther Deliv 2012; 3:1005-17. [PMID: 22946433 DOI: 10.4155/tde.12.78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human papillomavirus (HPV) causes benign and malignant infections of the anogenital tract. Cervical cancer, caused by high-risk HPV types 16, 18, 31, 33, 35, 45, 56 and 58, is the second most common cancer in women and the fifth most common cancer overall. Prevention and treatment of HPV infection may be revolutionized using nanotechnology tools such as vaccines based on virus-like particles and nanoscale drug-delivery systems. Advances in both virus-like particle design and noninvasive delivery of antiviral protein drugs, such as IFNalpha, may provide new opportunities to take on the challenge of global elimination of HPV infections. Biphasic vesicle cream formulation, representing a new class of dermal delivery system for protein drugs, is an alternative to injectable dosage form to deliver IFNalpha for the treatment of HPV infections, showing efficacy in low-grade squamous epithelical lesions of the cervix.
Collapse
|
43
|
Cerqueira C, Schelhaas M. Principles of polyoma- and papillomavirus uncoating. Med Microbiol Immunol 2012; 201:427-36. [PMID: 23001401 DOI: 10.1007/s00430-012-0262-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 01/09/2023]
Abstract
Virus particles are vehicles for transmission of the viral genetic information between infected and uninfected cells and organisms. They have evolved to self-assemble, to serve as a protective shell for the viral genome during transfer, and to disassemble when entering a target cell. Disassembly during entry is a complex, multi-step process typically termed uncoating. Uncoating is triggered by multiple host-cell interactions. During cell entry, these interactions occur sequentially in different cellular compartments that the viruses pass through on their way to the site of replication. Here, we highlight the general principles of uncoating for two structurally related virus families, the polyoma- and papillomaviruses. Recent research indicates the use of different compartments and cellular interactions for uncoating despite their structural similarity.
Collapse
Affiliation(s)
- Carla Cerqueira
- Emmy-Noether Group Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, University of Münster, Münster, Germany
| | | |
Collapse
|
44
|
Sánchez-Rodríguez SP, Münch-Anguiano L, Echeverría O, Vázquez-Nin G, Mora-Pale M, Dordick JS, Bustos-Jaimes I. Human parvovirus B19 virus-like particles: In vitro assembly and stability. Biochimie 2012; 94:870-8. [DOI: 10.1016/j.biochi.2011.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/07/2011] [Indexed: 12/29/2022]
|
45
|
Zhao Q, Modis Y, High K, Towne V, Meng Y, Wang Y, Alexandroff J, Brown M, Carragher B, Potter CS, Abraham D, Wohlpart D, Kosinski M, Washabaugh MW, Sitrin RD. Disassembly and reassembly of human papillomavirus virus-like particles produces more virion-like antibody reactivity. Virol J 2012; 9:52. [PMID: 22356831 PMCID: PMC3308208 DOI: 10.1186/1743-422x-9-52] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background Human papillomavirus (HPV) vaccines based on major capsid protein L1 are licensed in over 100 countries to prevent HPV infections. The yeast-derived recombinant quadrivalent HPV L1 vaccine, GARDASIL(R), has played an important role in reducing cancer and genital warts since its introduction in 2006. The L1 proteins self-assemble into virus-like particles (VLPs). Results VLPs were subjected to post-purification disassembly and reassembly (D/R) treatment during bioprocessing to improve VLP immunoreactivity and stability. The post-D/R HPV16 VLPs and their complex with H16.V5 neutralizing antibody Fab fragments were visualized by cryo electron microscopy, showing VLPs densely decorated with antibody. Along with structural improvements, post-D/R VLPs showed markedly higher antigenicity to conformational and neutralizing monoclonal antibodies (mAbs) H16.V5, H16.E70 and H263.A2, whereas binding to mAbs recognizing linear epitopes (H16.J4, H16.O7, and H16.H5) was greatly reduced. Strikingly, post-D/R VLPs showed no detectable binding to H16.H5, indicating that the H16.H5 epitope is not accessible in fully assembled VLPs. An atomic homology model of the entire HPV16 VLP was generated based on previously determined high-resolution structures of bovine papillomavirus and HPV16 L1 pentameric capsomeres. Conclusions D/R treatment of HPV16 L1 VLPs produces more homogeneous VLPs with more virion-like antibody reactivity. These effects can be attributed to a combination of more complete and regular assembly of the VLPs, better folding of L1, reduced non-specific disulfide-mediated aggregation and increased stability of the VLPs. Markedly different antigenicity of HPV16 VLPs was observed upon D/R treatment with a panel of monoclonal antibodies targeting neutralization sensitive epitopes. Multiple epitope-specific assays with a panel of mAbs with different properties and epitopes are required to gain a better understanding of the immunochemical properties of VLPs and to correlate the observed changes at the molecular level. Mapping of known antibody epitopes to the homology model explains the changes in antibody reactivity upon D/R. In particular, the H16.H5 epitope is partially occluded by intercapsomeric interactions involving the L1 C-terminal arm. The homology model allows a more precise mapping of antibody epitopes. This work provides a better understanding of VLPs in current vaccines and could guide the design of improved vaccines or therapeutics.
Collapse
Affiliation(s)
- Qinjian Zhao
- Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The Papillomavirus Virion: A Machine Built to Hide Molecular Achilles’ Heels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:403-22. [DOI: 10.1007/978-1-4614-0980-9_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Jiang Z, Tong G, Cai B, Xu Y, Lou J. Purification and immunogenicity study of human papillomavirus 58 virus-like particles expressed in Pichia pastoris. Protein Expr Purif 2011; 80:203-10. [DOI: 10.1016/j.pep.2011.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 11/29/2022]
|
48
|
Wu WH, Gersch E, Kwak K, Jagu S, Karanam B, Huh WK, Garcea RL, Roden RBS. Capsomer vaccines protect mice from vaginal challenge with human papillomavirus. PLoS One 2011; 6:e27141. [PMID: 22069498 PMCID: PMC3206079 DOI: 10.1371/journal.pone.0027141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022] Open
Abstract
Capsomers were produced in bacteria as glutathione-S-transferase (GST) fusion proteins with human papillomavirus type 16 L1 lacking the first nine and final 29 residues (GST-HPV16L1Δ) alone or linked with residues 13-47 of HPV18, HPV31 and HPV45 L2 in tandem (GST-HPV16L1Δ-L2x3). Subcutaneous immunization of mice with GST-HPV16L1Δ or GST-HPV16L1Δ-L2x3 in alum and monophosphoryl lipid A induced similarly high titers of HPV16 neutralizing antibodies. GST-HPV16L1Δ-L2x3 also elicited moderate L2-specific antibody titers. Intravaginal challenge studies showed that immunization of mice with GST-HPV16 L1Δ or GST-HPV16L1Δ-L2x3 capsomers, like Cervarix®, provided complete protection against HPV16. Conversely, vaccination with GST-HPV16 L1Δ capsomers failed to protect against HPV18 challenge, whereas mice immunized with either GST-HPV16L1Δ-L2x3 capsomers or Cervarix® were each completely protected. Thus, while the L2-specific response was moderate, it did not interfere with immunity to L1 in the context of GST-HPV16L1Δ-L2x3 and is sufficient to mediate L2-dependent protection against an experimental vaginal challenge with HPV18.
Collapse
Affiliation(s)
- Wai-Hong Wu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Gersch
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Kihyuck Kwak
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Subhashini Jagu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Balasubramanyam Karanam
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Warner K. Huh
- Department of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Richard B. S. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
49
|
Waheed MT, Thönes N, Müller M, Hassan SW, Gottschamel J, Lössl E, Kaul HP, Lössl AG. Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:651-60. [PMID: 21447051 DOI: 10.1111/j.1467-7652.2011.00612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human papillomavirus (HPV) causes cervical cancer in women worldwide, which is currently prevented by vaccines based on virus-like particles (VLPs). However, these vaccines have certain limitations in their availability to developing countries, largely due to elevated costs. Concerning the highest burden of disease in resource-poor countries, development of an improved mucosal and cost-effective vaccine is a necessity. As an alternative to VLPs, capsomeres have been shown to be highly immunogenic and can be used as vaccine candidate. Furthermore, coupling of an adjuvant like Escherichia coli heat-labile enterotoxin subunit B (LTB) to an antigen can increase its immunogenicity and reduce the costs related to separate co-administration of adjuvants. Our study demonstrates the expression of two pentameric proteins: the modified HPV-16 L1 (L1_2xCysM) and LTB as a fusion protein in tobacco chloroplasts. Homoplasmy of the transplastomic plants was confirmed by Southern blotting. Western blot analysis showed that the LTB-L1 fusion protein was properly expressed in the plastids and the recombinant protein was estimated to accumulate up to 2% of total soluble protein. Proper folding and display of conformational epitopes for both LTB and L1 in the fusion protein was confirmed by GM1-ganglioside binding assay and antigen capture ELISA, respectively. However, all transplastomic lines showed chlorosis, male sterility and growth retardation, which persisted in the ensuing four generations studied. Nevertheless, plants reached maturity and produced seeds by pollination with wild-type plants. Taken together, these results pave the way for the possible development of a low-cost adjuvant-coupled vaccine with potentially improved immunogenicity against cervical cancer.
Collapse
Affiliation(s)
- Mohammad T Waheed
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Real time monitoring of antigenicity development of HBsAg virus-like particles (VLPs) during heat- and redox-treatment. Biochem Biophys Res Commun 2011; 408:447-53. [PMID: 21527246 DOI: 10.1016/j.bbrc.2011.04.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/11/2011] [Indexed: 11/22/2022]
Abstract
The Hepatitis B virus major surface antigen (HBsAg) is a cysteine-rich, membrane-bound protein which self-assembles into 22-nm spherical virus-like particles (VLPs). While this VLP based human vaccine has been demonstrated to be safe and efficacious since 1986, the structural and exact molecular basis for its antigenic determinants has not been elucidated. Maturation of the yeast-derived purified VLPs was characterized for the changes in 37 their biophysical properties. Using rapid and label-free surface plasmon resonance technique with a neutralizing monoclonal antibody - A1.2, the epitope evolution kinetics of purified VLPs was monitored in real time. Evidence supporting the mechanism that the correct disulfide bond pairing is the molecular basis for shaping up the native virion-like epitopes was obtained. At least 10-fold enhancement in antigenicity probed by A1.2 of the VLPs was achieved by heat-treatment (t(1/2) ∼ 6-10 h), and another 2- to 3-fold enhancement was obtained when they were treated with redox buffer. This antigenicity development, presumably via disulfide formation/isomerization, was shown to be inhibited by a free radical scavenger and facilitated in the presence of light. Relative antigenicity determination with surface plasmon resonance was shown to be a valuable tool for process characterization in the kinetic monitoring mode or for final VLP product assessment in the end point antigenicity testing mode.
Collapse
|