1
|
Li S, Pan M, Zhao H, Li Y. Role of CCL2/CCR2 axis in pulmonary fibrosis induced by respiratory viruses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00036-2. [PMID: 39955168 DOI: 10.1016/j.jmii.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Respiratory virus infection is an important cause of both community acquired pneumonia and hospital-acquired pneumonia. Various respiratory viruses, including influenza virus, avian influenza virus, respiratory syncytial virus (RSV), SARS-CoV, MERS-CoV, and SARS-CoV-2, result in severe fibrosis sequelae after the acute phase. Since the COVID-19 pandemic, respiratory virus infection, as an important cause of pulmonary fibrosis, has attracted increasing attention around the world. Respiratory virus infection usually triggers robust inflammation responses, leading to large amounts of proinflammatory mediator production, such as chemokine (C-C motif) ligand 2 (CCL2), a critical chemokine involved in the recruitment of various inflammatory cells. Moreover, CCL2 plays a pivotal role in the pathogenesis of fibrosis progression, through regulating recruitment of bone marrow-derived monocytes and increasing the expression of extracellular matrix proteins. This review provided a concise overview of the common fibrosis sequelae after virus infection. Then we discussed the elevated levels of CCL2 in various respiratory virus infection, underscoring its potent profibrotic role. Targeting the CCL2/CCR2 axis holds promise for alleviating fibrosis sequelae post-acute virus infection and warrants further investigation.
Collapse
Affiliation(s)
- Shuangyan Li
- Beijing Hospital, National Centre of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| | - Mingming Pan
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 100071, Beijing, China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
2
|
Miller JL, Niewiesk S. Review of impaired immune parameters in RSV infections in the elderly. Virology 2025; 603:110395. [PMID: 39827596 DOI: 10.1016/j.virol.2025.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Respiratory syncytial virus (RSV) infections in elderly individuals are associated with increased rates of severe clinical disease and mortality compared to younger adults. Age-associated declines in numerous innate and adaptive immune parameters during RSV infection contribute to infection susceptibility, impaired viral clearance, and distorted cytokine profiles in the elderly. Impaired immune responses in this age group also adversely affect longevity of RSV immunity following vaccination in experimental settings. This review summarizes the effects of aging on cellular immune responses to RSV in humans and animal models, molecular mechanisms for these impaired responses where they have been elucidated, and the clinical consequences of impaired immunity in the elderly.
Collapse
Affiliation(s)
- Jonathan L Miller
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Brasier AR. Interactions between epithelial mesenchymal plasticity, barrier dysfunction and innate immune pathways shape the genesis of allergic airway disease. Expert Rev Respir Med 2025; 19:29-41. [PMID: 39745473 PMCID: PMC11757041 DOI: 10.1080/17476348.2024.2449079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization. AREAS COVERED 1. Characteristics of sentinel epithelial cells of the bronchoalveolar junction, 2. The effect of aeroallergens on epithelial PRRs, 3. Role of tight junctions (TJs) in barrier function and how aeroallergens disrupt their function, 4. Induction of mucosal TGF autocrine loops activating type-2 innate lymphoid cells (ICL2s) leading to Th2 polarization, 5. How respiratory syncytial virus (RSV) directs goblet cell hyperplasia, and 6. Coupling of endoplasmic reticulum (ER) stress to metabolic adaptations and effects on basal lamina remodeling. EXPERT OPINION When aeroallergens or viral infections activate innate immunity in sentinel cells of the bronchoalveolar junction, normal barrier function is disrupted, promoting chronic inflammation and Th2 responses. An improved mechanistic understanding of how activated PRRs induce EMP couples with TJ disruption, metabolic reprogramming and ECM deposition provides new biologically validated targets to restore barrier function, reduce sensitization, and remodeling in AA.
Collapse
Affiliation(s)
- Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
- The Institute for Clinical and Translational Research, Madison, Wisconsin, United States
| |
Collapse
|
4
|
Carvalho ES, Penha JG, Maeda NY, Abud KCO, Souza MFS, Castro CRP, Dos Santos JX, Pereira J, Lopes AA. Down syndrome and postoperative hemodynamics in patients undergoing surgery for congenital cardiac communications. Sci Rep 2024; 14:16612. [PMID: 39025999 PMCID: PMC11258288 DOI: 10.1038/s41598-024-67097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024] Open
Abstract
Although Down syndrome (DS) is considered a risk factor for hemodynamic instabilities (mainly pulmonary hypertension-PH) following surgery for congenital cardiac communications, many DS patients do surprising well postoperatively. We prospectively analyzed perioperative factors for a possible correlation with post-cardiopulmonary bypass (CPB) inflammatory reaction and postoperative PH in pediatric subjects. Sixty patients were enrolled (age 3 to 35 months), 39 of them with DS. Clinical and echocardiographic parameters (anatomical and hemodynamic) were computed preoperatively. Pulmonary and systemic mean arterial pressures (PAP and SAP) were assessed invasively intra and postoperatively. Immediate postoperative PAP/SAP ratio (PAP/SAPIPO) and the behavior of pressure curves were selected as primary outcome. Serum levels of 36 inflammatory proteins were measured by chemiluminescence preoperatively and 4 h post CPB. Of all factors analyzed, peripheral oxygen saturation (O2Sat, bedside assessment) was the only preoperative predictor of PAP/SAPIPO at multivariate analysis (p = 0.007). Respective values in non-DS, DS/O2Sat ≥ 95% and DS/O2Sat < 95% subgroups were 0.34 (0.017), 0.40 (0.027) and 0.45 (0.026), mean (SE), p = 0.004. The difference between non-DS and DS groups regarding postoperative PAP curves (upward shift in DS patients, p = 0.015) became nonsignificant (p = 0.114) after adjustment for preoperative O2Sat. Post-CPB levels of at least 5 cytokines were higher in patients with O2Sat < 95% versus those at or above this level, even within the DS group (p < 0.05). Thus, a baseline O2Sat < 95% representing pathophysiological phenomena in the airways and the distal lung, rather than DS in a broad sense, seems to be associated with post-CPB inflammation and postoperative PH in these patients.
Collapse
Affiliation(s)
- Eloisa Sassá Carvalho
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliano Gomes Penha
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Kelly Cristina O Abud
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Claudia R P Castro
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Johnny X Dos Santos
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil
| | - Juliana Pereira
- Laboratory of Medical Investigation On Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), University of São Paulo, São Paulo, Brazil
| | - Antonio Augusto Lopes
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
- Department of Pediatric Cardiology and Adult Congenital Heart Disease, Heart Institute (InCor) - HCFMUSP, Av. Dr. Eneas de Carvalho Aguiar, 44, São Paulo, 05403-000, Brazil.
| |
Collapse
|
5
|
Santos J, Wang P, Shemesh A, Liu F, Tsao T, Aguilar OA, Cleary SJ, Singer JP, Gao Y, Hays SR, Golden JA, Leard L, Kleinhenz ME, Kolaitis NA, Shah R, Venado A, Kukreja J, Weigt SS, Belperio JA, Lanier LL, Looney MR, Greenland JR, Calabrese DR. CCR5 drives NK cell-associated airway damage in pulmonary ischemia-reperfusion injury. JCI Insight 2023; 8:e173716. [PMID: 37788115 PMCID: PMC10721259 DOI: 10.1172/jci.insight.173716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Primary graft dysfunction (PGD) limits clinical benefit after lung transplantation, a life-prolonging therapy for patients with end-stage disease. PGD is the clinical syndrome resulting from pulmonary ischemia-reperfusion injury (IRI), driven by innate immune inflammation. We recently demonstrated a key role for NK cells in the airways of mouse models and human tissue samples of IRI. Here, we used 2 mouse models paired with human lung transplant samples to investigate the mechanisms whereby NK cells migrate to the airways to mediate lung injury. We demonstrate that chemokine receptor ligand transcripts and proteins are increased in mouse and human disease. CCR5 ligand transcripts were correlated with NK cell gene signatures independently of NK cell CCR5 ligand secretion. NK cells expressing CCR5 were increased in the lung and airways during IRI and had increased markers of tissue residency and maturation. Allosteric CCR5 drug blockade reduced the migration of NK cells to the site of injury. CCR5 blockade also blunted quantitative measures of experimental IRI. Additionally, in human lung transplant bronchoalveolar lavage samples, we found that CCR5 ligand was associated with increased patient morbidity and that the CCR5 receptor was increased in expression on human NK cells following PGD. These data support a potential mechanism for NK cell migration during lung injury and identify a plausible preventative treatment for PGD.
Collapse
Affiliation(s)
- Jesse Santos
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Surgery, UCSF - East Bay, Oakland, California, USA
| | - Ping Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Avishai Shemesh
- Department of Medicine, UCSF, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Fengchun Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Tasha Tsao
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Simon J. Cleary
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Ying Gao
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven R. Hays
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Lorriana Leard
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Rupal Shah
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Aida Venado
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - S. Sam Weigt
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Lewis L. Lanier
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Department of Microbiology and Immunology, and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
| | - John R. Greenland
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Daniel R. Calabrese
- Department of Medicine, UCSF, San Francisco, California, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
6
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
7
|
Ivanciuc T, Patrikeev I, Qu Y, Motamedi M, Jones-Hall Y, Casola A, Garofalo RP. Micro-CT Features of Lung Consolidation, Collagen Deposition and Inflammation in Experimental RSV Infection Are Aggravated in the Absence of Nrf2. Viruses 2023; 15:1191. [PMID: 37243277 PMCID: PMC10223011 DOI: 10.3390/v15051191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Severe respiratory syncytial virus (RSV) infections in early life have been linked to the development of chronic airway disease. RSV triggers the production of reactive oxygen species (ROS), which contributes to inflammation and enhanced clinical disease. NF-E2-related factor 2 (Nrf2) is an important redox-responsive protein that helps to protect cells and whole organisms from oxidative stress and injury. The role of Nrf2 in the context of viral-mediated chronic lung injury is not known. Herein, we show that RSV experimental infection of adult Nrf2-deficient BALB/c mice (Nrf2-/-; Nrf2 KO) is characterized by enhanced disease, increased inflammatory cell recruitment to the bronchoalveolar compartment and a more robust upregulation of innate and inflammatory genes and proteins, compared to wild-type Nrf2+/+ competent mice (WT). These events that occur at very early time points lead to increased peak RSV replication in Nrf2 KO compared to WT mice (day 5). To evaluate longitudinal changes in the lung architecture, mice were scanned weekly via high-resolution micro-computed tomography (micro-CT) imaging up to 28 days after initial viral inoculation. Based on micro-CT qualitative 2D imaging and quantitative reconstructed histogram-based analysis of lung volume and density, we found that RSV-infected Nrf2 KO mice developed significantly greater and prolonged fibrosis compared to WT mice. The results of this study underscore the critical role of Nrf2-mediated protection from oxidative injury, not only in the acute pathogenesis of RSV infection but also in the long-term consequences of chronic airway injury.
Collapse
Affiliation(s)
- Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
| | - Igor Patrikeev
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.P.); (M.M.)
| | - Yue Qu
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; (I.P.); (M.M.)
- Biomedical Engineering Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA;
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.I.); (Y.Q.); (A.C.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Bergeron HC, Murray J, Arora A, Nuñez Castrejon AM, DuBois RM, Anderson LJ, Kauvar LM, Tripp RA. Immune Prophylaxis Targeting the Respiratory Syncytial Virus (RSV) G Protein. Viruses 2023; 15:1067. [PMID: 37243153 PMCID: PMC10221658 DOI: 10.3390/v15051067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The respiratory syncytial virus (RSV) causes significant respiratory disease in young infants and the elderly. Immune prophylaxis in infants is currently limited to palivizumab, an anti-RSV fusion (F) protein monoclonal antibody (mAb). While anti-F protein mAbs neutralize RSV, they are unable to prevent aberrant pathogenic responses provoked by the RSV attachment (G) protein. Recently, the co-crystal structures of two high-affinity anti-G protein mAbs that bind the central conserved domain (CCD) at distinct non-overlapping epitopes were solved. mAbs 3D3 and 2D10 are broadly neutralizing and block G protein CX3C-mediated chemotaxis by binding antigenic sites γ1 and γ2, respectively, which is known to reduce RSV disease. Previous studies have established 3D3 as a potential immunoprophylactic and therapeutic; however, there has been no similar evaluation of 2D10 available. Here, we sought to determine the differences in neutralization and immunity to RSV Line19F infection which recapitulates human RSV infection in mouse models making it useful for therapeutic antibody studies. Prophylactic (24 h prior to infection) or therapeutic (72 h post-infection) treatment of mice with 3D3, 2D10, or palivizumab were compared to isotype control antibody treatment. The results show that 2D10 can neutralize RSV Line19F both prophylactically and therapeutically, and can reduce disease-causing immune responses in a prophylactic but not therapeutic context. In contrast, 3D3 was able to significantly (p < 0.05) reduce lung virus titers and IL-13 in a prophylactic and therapeutic regimen suggesting subtle but important differences in immune responses to RSV infection with mAbs that bind distinct epitopes.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Aakash Arora
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ana M. Nuñez Castrejon
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Larry J. Anderson
- Division of Pediatric Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Nabeya D, Setoguchi M, Ueno S, Kinjo T. Respiratory virus infections of the lower respiratory tract elevate bronchoalveolar lavage eosinophil fraction: a clinical retrospective study and case review. BMC Pulm Med 2023; 23:111. [PMID: 37024839 PMCID: PMC10078074 DOI: 10.1186/s12890-023-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Eosinophilic airway inflammation caused by respiratory virus infection has been demonstrated in basic research; however, clinical investigations are lacking. To clarify the extent to which respiratory virus infection induces airway eosinophilic inflammation, we reviewed the results of bronchoalveolar lavage (BAL) and respiratory virus testing performed at our hospital. METHODS Among the BAL procedures performed at the University of the Ryukyu Hospital from August 2012 to September 2016, we collected cases of acute respiratory disease in which multiplex polymerase chain reaction (PCR) was used to search for respiratory viruses. The effect of respiratory virus detection on BAL eosinophil fraction was analyzed using statistical analysis. A case study was conducted on respiratory virus detection, which showed an elevated BAL eosinophil fraction. RESULTS A total of 95 cases were included in this study, of which 17 were PCR-positive. The most common respiratory virus detected was parainfluenza virus (eight cases). The PCR-positive group showed a higher BAL eosinophil fraction than the PCR-negative group (p = 0.030), and more cases had a BAL eosinophil fraction > 3% (p = 0.017). Multivariate analysis revealed that being PCR-positive was significantly associated with BAL eosinophil fraction > 1% and > 3%. There were nine PCR-positive cases with a BAL eosinophil fraction > 1%, of which two cases with parainfluenza virus infection had a marked elevation of BAL eosinophil fraction and were diagnosed with eosinophilic pneumonia. CONCLUSIONS Cases of viral infection of the lower respiratory tract showed an elevated BAL eosinophil fraction. The increase in eosinophil fraction due to respiratory virus infection was generally mild, whereas some cases showed marked elevation and were diagnosed with eosinophilic pneumonia. Respiratory virus infection is not a rare cause of elevated BAL eosinophil fraction and should be listed as a differential disease in the practice of eosinophilic pneumonia.
Collapse
Affiliation(s)
- Daijiro Nabeya
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| | - Michika Setoguchi
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Shiho Ueno
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Takeshi Kinjo
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| |
Collapse
|
10
|
van der Geest R, Fan H, Peñaloza HF, Bain WG, Xiong Z, Kohli N, Larson E, Sullivan MLG, Franks JM, Stolz DB, Ito R, Chen K, Doi Y, Harriff MJ, Lee JS. Phagocytosis is a primary determinant of pulmonary clearance of clinical Klebsiella pneumoniae isolates. Front Cell Infect Microbiol 2023; 13:1150658. [PMID: 37056705 PMCID: PMC10086180 DOI: 10.3389/fcimb.2023.1150658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Klebsiella pneumoniae (Kp) is a common cause of hospital-acquired pneumonia. Although previous studies have suggested that evasion of phagocytic uptake is a virulence determinant of Kp, few studies have examined phagocytosis sensitivity in clinical Kp isolates. Methods We screened 19 clinical respiratory Kp isolates that were previously assessed for mucoviscosity for their sensitivity to macrophage phagocytic uptake, and evaluated phagocytosis as a functional correlate of in vivo Kp pathogenicity. Results The respiratory Kp isolates displayed heterogeneity in the susceptibility to macrophage phagocytic uptake, with 14 out of 19 Kp isolates displaying relative phagocytosis-sensitivity compared to the reference Kp strain ATCC 43816, and 5 out of 19 Kp isolates displaying relative phagocytosis-resistance. Intratracheal infection with the non-mucoviscous phagocytosis-sensitive isolate S17 resulted in a significantly lower bacterial burden compared to infection with the mucoviscous phagocytosis-resistant isolate W42. In addition, infection with S17 was associated with a reduced inflammatory response, including reduced bronchoalveolar lavage fluid (BAL) polymorphonuclear (PMN) cell count, and reduced BAL TNF, IL-1β, and IL-12p40 levels. Importantly, host control of infection with the phagocytosis-sensitive S17 isolate was impaired in alveolar macrophage (AM)-depleted mice, whereas AM-depletion had no significant impact on host defense against infection with the phagocytosis-resistant W42 isolate. Conclusion Altogether, these findings show that phagocytosis is a primary determinant of pulmonary clearance of clinical Kp isolates.
Collapse
Affiliation(s)
- Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hongye Fan
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hernán F. Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - William G. Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Veterans Affairs (VA) Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Naina Kohli
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Larson
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
| | - Mara L. G. Sullivan
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jonathan M. Franks
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Donna B. Stolz
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ryota Ito
- Department of Respiratory Medicine, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Japan
| | - Kong Chen
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Japan
| | - Melanie J. Harriff
- Veterans Affairs (VA) Portland Health Care System, Portland, OR, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health State University, Portland, OR, United States
| | - Janet S. Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends. CHEMOSPHERE 2023; 310:136873. [PMID: 36252896 DOI: 10.1016/j.chemosphere.2022.136873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| |
Collapse
|
12
|
Brasier AR. Innate Immunity, Epithelial Plasticity, and Remodeling in Asthma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:265-285. [PMID: 37464126 DOI: 10.1007/978-3-031-32259-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Innate immune responses (IIR) of the epithelium play a critical role in the initiation and progression of asthma. The core of the IIR is an intracellular signaling pathway activated by pattern recognition receptors (PRRs) to limit the spread of infectious organisms. This chapter will focus on the epithelium as the major innate sentinel cell and its role in acute exacerbations (AEs). Although the pathways of how the IIR activates the NFκB transcription factor, triggering cytokine secretion, dendritic cell activation, and Th2 polarization are well-described, recent exciting work has developed mechanistic insights into how chronic activation of the IIR is linked to mucosal adaptive responses. These adaptations include changes in cell state, now called epithelial-mesenchymal plasticity (EMP). EMP is a coordinated, genomic response to airway injury disrupting epithelial barrier function, expanding the basal lamina, and producing airway remodeling. EMP is driven by activation of the unfolded protein response (UPR), a transcriptional response producing metabolic shunting of glucose through the hexosamine biosynthetic pathway (HBP) to protein N-glycosylation. NFκB signaling and UPR activation pathways potentiate each other in remodeling the basement membrane. Understanding of injury-repair process of epithelium provides new therapeutic targets for precision approaches to the treatment of asthma exacerbations and their sequelae.
Collapse
Affiliation(s)
- Allan R Brasier
- Department of Medicine and Institute for Clinical and Translational Research (ICTR), School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
14
|
Wrotek A, Jackowska T. Molecular Mechanisms of RSV and Air Pollution Interaction: A Scoping Review. Int J Mol Sci 2022; 23:12704. [PMID: 36293561 PMCID: PMC9604398 DOI: 10.3390/ijms232012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RSV is one of the major infectious agents in paediatrics, and its relationship with air pollution is frequently observed. However, the molecular basis of this interaction is sparsely reported. We sought to systematically review the existing body of literature and identify the knowledge gaps to answer the question: which molecular mechanisms are implied in the air pollutants-RSV interaction? Online databases were searched for original studies published before August 2022 focusing on molecular mechanisms of the interaction. The studies were charted and a narrative synthesis was based upon three expected directions of influence: a facilitated viral entry, an altered viral replication, and an inappropriate host reaction. We identified 25 studies published between 1993 and 2020 (without a noticeable increase in the number of studies) that were performed in human (n = 12), animal (n = 10) or mixed (n = 3) models, and analysed mainly cigarette smoke (n = 11), particulate matter (n = 4), nanoparticles (n = 3), and carbon black (n = 2). The data on a damage to the epithelial barrier supports the hypothesis of facilitated viral entry; one study also reported accelerated viral entry upon an RSV conjugation to particulate matter. Air pollution may result in the predominance of necrosis over apoptosis, and, as an effect, an increased viral load was reported. Similarly, air pollution mitigates epithelium function with decreased IFN-γ and Clara cell secretory protein levels and decreased immune response. Immune response might also be diminished due to a decreased viral uptake by alveolar macrophages and a suppressed function of dendritic cells. On the other hand, an exuberant inflammatory response might be triggered by air pollution and provoke airway hyperresponsiveness (AHR), prolonged lung infiltration, and tissue remodeling, including a formation of emphysema. AHR is mediated mostly by increased IFN-γ and RANTES concentrations, while the risk of emphysema was related to the activation of the IL-17 → MCP-1 → MMP-9 → MMP-12 axis. There is a significant lack of evidence on the molecular basics of the RSV-air pollution interaction, which may present a serious problem with regards to future actions against air pollution effects. The major knowledge gaps concern air pollutants (mostly the influence of cigarette smoke was investigated), the mechanisms facilitating an acute infection or a worse disease course (since it might help plan short-term, especially non-pharmacological, interventions), and the mechanisms of an inadequate response to the infection (which may lead to a prolonged course of an acute infection and long-term sequelae). Thus far, the evidence is insufficient regarding the broadness and complexity of the interaction, and future studies should focus on common mechanisms stimulated by various air pollutants and a comparison of influence of the different contaminants at various concentrations.
Collapse
Affiliation(s)
- August Wrotek
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
- Department of Pediatrics, Bielanski Hospital, Cegłowska 80, 01-809 Warsaw, Poland
| |
Collapse
|
15
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Brasier AR, Qiao D, Zhao Y. The Hexosamine Biosynthetic Pathway Links Innate Inflammation With Epithelial-Mesenchymal Plasticity in Airway Remodeling. Front Pharmacol 2021; 12:808735. [PMID: 35002741 PMCID: PMC8727908 DOI: 10.3389/fphar.2021.808735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX, United States
| |
Collapse
|
17
|
Li N, Mirzakhani H, Kiefer A, Koelle J, Vuorinen T, Rauh M, Yang Z, Krammer S, Xepapadaki P, Lewandowska-Polak A, Lukkarinen H, Zhang N, Stanic B, Zimmermann T, Kowalski ML, Jartti T, Bachert C, Akdis M, Papadopoulos NG, Raby BA, Weiss ST, Finotto S. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience 2021; 24:103163. [PMID: 34693221 PMCID: PMC8511896 DOI: 10.1016/j.isci.2021.103163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/25/2021] [Accepted: 09/21/2021] [Indexed: 11/04/2022] Open
Abstract
RANTES is implicated in allergic asthma and in T cell-dependent clearance of infection. RANTES receptor family comprises CCR1, CCR3, and CCR5, which are G-protein-coupled receptors consisting of seven transmembrane helices. Infections with respiratory viruses like Rhinovirus cause induction of RANTES production by epithelial cells. Here, we studied the role of RANTES in the peripheral blood mononuclear cells in cohorts of children with and without asthma and validated and extended this study to the airways of adults with and without asthma. We further translated these studies to a murine model of asthma induced by house dust mite allergen in wild-type RANTES and CCR5-deficient mice. Here we show an unpredicted therapeutic role of RANTES in the resolution of allergen-induced asthma by orchestrating the transition of effector GATA-3+CD4+ T cells into immune-regulatory-type T cells and inflammatory eosinophils into resident eosinophils as well as increased IL-10 production in the lung.
Collapse
Affiliation(s)
- Nina Li
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hoomann Mirzakhani
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Kiefer
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Koelle
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Manfred Rauh
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Heikki Lukkarinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Nan Zhang
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Barbara Stanic
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Theodor Zimmermann
- Department of Allergy and Pneumology, Children’s Hospital, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Marek L. Kowalski
- Department of Immunology and Allergy, Medical University of Lodz, Poland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
- PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
| | - Claus Bachert
- Upper Airways Research Laboratory, Otorhinolaryngology, University of Gent, Gent, Belgium
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Herman-Burchard-Strasse 9, Davos, Switzerland
| | - Nikolaos G. Papadopoulos
- Department of Allergy, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Centre for Respiratory Medicine & Allergy, University of Manchester, Manchester, UK
| | - Benjamin A. Raby
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
18
|
Landwehr KR, Hillas J, Mead-Hunter R, Brooks P, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126637. [PMID: 34329109 DOI: 10.1016/j.jhazmat.2021.126637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biodiesel is promoted as a sustainable replacement for commercial diesel. Biodiesel fuel and exhaust properties change depending on the base feedstock oil/fat used during creation. The aims of this study were, for the first time, to compare the exhaust exposure health impacts of a wide range of biodiesels made from different feedstocks and relate these effects with the corresponding exhaust characteristics. METHOD Primary airway epithelial cells were exposed to diluted exhaust from an engine running on conventional diesel and biodiesel made from Soy, Canola, Waste Cooking Oil, Tallow, Palm and Cottonseed. Exhaust properties and cellular viability and mediator release were analysed post exposure. RESULTS The exhaust physico-chemistry of Tallow biodiesel was the most different to diesel as well as the most toxic, with exposure resulting in significantly decreased cellular viability (95.8 ± 6.5%) and increased release of several immune mediators including IL-6 (+223.11 ± 368.83 pg/mL) and IL-8 (+1516.17 ± 2908.79 pg/mL) above Air controls. In contrast Canola biodiesel was the least toxic with exposure only increasing TNF-α (4.91 ± 8.61). CONCLUSION This study, which investigated the toxic effects for the largest range of biodiesels, shows that exposure to different exhausts results in a spectrum of toxic effects in vitro when combusted under identical conditions.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6000, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
19
|
CCL3L3-null status is associated with susceptibility to systemic lupus erythematosus. Sci Rep 2021; 11:19172. [PMID: 34580371 PMCID: PMC8476559 DOI: 10.1038/s41598-021-98531-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
The correlation between copy number variation (CNV) and the susceptibility to systemic lupus erythematosus (SLE) has been reported for various immunity-related genes. However, the contribution of CNVs to SLE susceptibility awaits more investigation. To evaluate the copy numbers in immunity-related genes such as TNFAIP3, TNIP1, IL12B, TBX21 (T-bet), TLR7, C4A, C4B, CCL3L1, and CCL3L3, the modified real competitive polymerase chain reaction (mrcPCR) assay was employed, and the association between the copy numbers and SLE susceptibility was analyzed in 334 SLE patients and 338 controls. CCL3L3-null status was significantly associated with SLE susceptibility (OR > 18, P < 0.0001), which remained significant by Bonferroni's correction (corrected P = 0.0007). However, the significant association between C4B low-copy status and SLE susceptibility (OR = 1.6051, P = 0.0331) became non-significant by Bonferroni's correction (corrected P = 0.3938). Except for these results, no other significant association between SLE susceptibility and copy number status in other genes was observed. The CCL3L3-null status may be a significant factor for SLE susceptibility.
Collapse
|
20
|
Bhat TA, Kalathil SG, Leigh N, Muthumalage T, Rahman I, Goniewicz ML, Thanavala YM. Acute Effects of Heated Tobacco Product (IQOS) Aerosol Inhalation on Lung Tissue Damage and Inflammatory Changes in the Lungs. Nicotine Tob Res 2021; 23:1160-1167. [PMID: 33346355 PMCID: PMC8186425 DOI: 10.1093/ntr/ntaa267] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Emerging heated tobacco products (HTPs) were designed to reduce exposure to toxicants from cigarette smoke (CS) by avoiding burning tobacco and instead heating tobacco. We studied the effects of short-term inhalation of aerosols emitted from HTP called IQOS, on lung damage and immune-cell recruitment to the lungs in mice. METHODS Numerous markers of lung damage and inflammation including albumin and lung immune-cell infiltrates, proinflammatory cytokines, and chemokines were quantified in lungs and bronchoalveolar (BAL) fluid from IQOS, CS, or air-exposed (negative control) mice. RESULTS Importantly, as a surrogate marker of lung epithelial-cell damage, we detected significantly increased levels of albumin in the BAL fluid of both HTP- and CS-exposed mice compared with negative controls. Total numbers of leukocytes infiltrating the lungs were equivalent following both IQOS aerosols and CS inhalation and significantly increased compared with air-exposed controls. We also observed significantly increased numbers of CD4+IL-17A+ T cells, a marker of a T-cell immune response, in both groups compared with air controls; however, numbers were the highest following CS exposure. Finally, the numbers of CD4+RORγt+ T cells, an inflammatory T-cell subtype expressing the transcription factor that is essential for promoting differentiation into proinflammatory Th17 cells, were significantly augmented in both groups compared with air-exposed controls. Levels of several cytokines in BAL were significantly elevated, reflecting a proinflammatory milieu. CONCLUSIONS Our study demonstrates that short-term inhalation of aerosols from IQOS generates damage and proinflammatory changes in the lung that are substantially similar to that elicited by CS exposure. IMPLICATIONS Exposure of mice to IQOS, one of the candidate modified-risk tobacco products, induces inflammatory immune-cell accumulation in the lungs and augments the levels of proinflammatory cytokines and chemokines in the BAL fluid. Such an exacerbated pulmonary proinflammatory microenvironment is associated with lung epithelial-cell damage in IQOS-exposed mice, suggesting a potential association with the impairment of lung function.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Suresh G Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Noel Leigh
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Yasmin M Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
21
|
Mann M, Brasier AR. Evolution of proteomics technologies for understanding respiratory syncytial virus pathogenesis. Expert Rev Proteomics 2021; 18:379-394. [PMID: 34018899 PMCID: PMC8277732 DOI: 10.1080/14789450.2021.1931130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) is a major human pathogen associated with long term morbidity. RSV replication occurs primarily in the epithelium, producing a complex cellular response associated with acute inflammation and long-lived changes in pulmonary function and allergic disease. Proteomics approaches provide important insights into post-transcriptional regulatory processes including alterations in cellular complexes regulating the coordinated innate response and epigenome.Areas covered: Peer-reviewed proteomics studies of host responses to RSV infections and proteomics techniques were analyzed. Methodologies identified include 1)." bottom-up" discovery proteomics, 2). Organellar proteomics by LC-gel fractionation; 3). Dynamic changes in protein interaction networks by LC-MS; and 4). selective reaction monitoring MS. We introduce recent developments in single-cell proteomics, top-down mass spectrometry, and photo-cleavable surfactant chemistries that will have impact on understanding how RSV induces extracellular matrix (ECM) composition and airway remodeling.Expert opinion: RSV replication induces global changes in the cellular proteome, dynamic shifts in nuclear proteins, and remodeling of epigenetic regulatory complexes linked to the innate response. Pathways discovered by proteomics technologies have led to deeper mechanistic understanding of the roles of heat shock proteins, redox response, transcriptional elongation complex remodeling and ECM secretion remodeling in host responses to RSV infections and pathological sequelae.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, USA
| | - Allan R Brasier
- Department of Internal Medicine and Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
22
|
Respiratory Syncytial Virus Infection Induces Chromatin Remodeling to Activate Growth Factor and Extracellular Matrix Secretion Pathways. Viruses 2020; 12:v12080804. [PMID: 32722537 PMCID: PMC7472097 DOI: 10.3390/v12080804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Lower respiratory tract infection (LRTI) with respiratory syncytial virus (RSV) is associated with reduced lung function through unclear mechanisms. In this study, we test the hypothesis that RSV infection induces genomic reprogramming of extracellular matrix remodeling pathways. For this purpose, we sought to identify transcriptionally active open chromatin domains using assay for transposase-accessible-next generation sequencing (ATAC-Seq) in highly differentiated lower airway epithelial cells. High confidence nucleosome-free regions were those predicted independently using two peak-calling algorithms. In uninfected cells, ~12,650 high-confidence open chromatin regions were identified. These mapped to ~8700 gene bodies, whose genes functionally controlled organelle synthesis and Th2 pathways (IL6, TSLP). These latter cytokines are preferentially secreted by RSV-infected bronchiolar cells and linked to mucous production, obstruction, and atopy. By contrast, in RSV infection, we identify ~1700 high confidence open chromatin domains formed in 1120 genes, primarily in introns. These induced chromatin modifications are associated with complex gene expression profiles controlling tyrosine kinase growth factor signaling and extracellular matrix (ECM) secretory pathways. Of these, RSV induces formation of nucleosome-free regions on TGFB1/JUNB//FN1/MMP9 genes and the rate limiting enzyme in the hexosamine biosynthetic pathway (HBP), Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2). RSV-induced open chromatin domains are highly enriched in AP1 binding motifs and overlap experimentally determined JUN peaks in GEO ChIP-Seq data sets. Our results provide a topographical map of chromatin accessibility and suggest a growth factor and AP1-dependent mechanism for upregulation of the HBP and ECM remodeling in lower epithelial cells that may be linked to long-term airway remodeling.
Collapse
|
23
|
Mert T, Metin TO, Sahin M, Yaman S. Antiinflammatory properties of antiLy6G antibody disappear during magnetic field exposure in rats with carrageenan induced acute paw inflammation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2107-2115. [PMID: 32592030 DOI: 10.1007/s00210-020-01925-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2020] [Indexed: 12/01/2022]
Abstract
Antiinflammatory properties of pulsed magnetic field (PMF) treatments or administration of antiLy6G antibody have been previously reported. In this study, we hypothesized that, the combination of PMF treatments and antiLy6G administration may synergistically potentiate their antiinflammatory actions. The effects of the combination of PMF treatments and antiLy6G administration were investigated by examining the inflammatory signs, histopathological properties of the inflamed site, and measuring the macrophage inflammatory protein-1 alpha (MIP-1α/CCL3) and myeloperoxidase (MPO) levels of inflamed paw tissues in rats with carrageenan-induced acute paw inflammation. In this present study, PMF treatments alone or administration of antiLy6G alone ameliorated the acute inflammation. However, their combination exacerbated the inflammatory signs, hyperalgesia, allodynia, edema and fever, and aggravated the inflammatory conditions by excessive infiltration of inflammatory cells to the inflamed site. These opposing effects of the combined treatments may correlate with enhanced levels of MIP-1α and MPO in inflamed paws. Present results indicated that the combination of the PMF treatments and antiLy6G administration may not provide additional benefits and may actually cause an aggravation of the acute inflammatory process. Findings may also suggest that during neutrophil or immune cell-targeted treatments for inflammatory states, magnetic field exposure may cause unexpected negative consequences.
Collapse
Affiliation(s)
- Tufan Mert
- Department of Biophysics, Faculty of Medicine, Bolu Abant Izzet Baysal University, 14030, Bolu, Turkey.
| | - Tuba Ozcan Metin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Sahin
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Selma Yaman
- Department of Biophysics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
24
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
25
|
Brasier AR, Boldogh I. Targeting inducible epigenetic reprogramming pathways in chronic airway remodeling. Drugs Context 2019; 8:dic-2019-8-3. [PMID: 31692901 PMCID: PMC6821469 DOI: 10.7573/dic.2019-8-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
Allergic asthma is a chronic inflammatory airway disease whose clinical course is punctuated by acute exacerbations from aeroallergen exposure or respiratory virus infections. Aeroallergens and respiratory viruses stimulate toll-like receptor (TLR) signaling, producing oxidative injury and inflammation. Repetitive exacerbations produce complex mucosal adaptations, cell-state changes, and structural remodeling. These structural changes produce substantial morbidity, decrease lung capacity, and impair quality of life. We will review recent systems-level studies that provide fundamental new insights into how repetitive activation of innate signaling pathways produce epigenetic ‘training’ to induce adaptive epithelial responses. Oxidative stress produced downstream of TLR signaling induces transient oxidation of guanine bases in the regulatory regions of inflammatory genes. The epigenetic mark 8-oxoG is bound by a pleiotropic DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), which induces conformational changes in adjacent DNA to recruit the NFκB·bromodomain-containing protein 4 (BRD4) complex. The NFκB·BRD4 complex not only plays a central role in inflammation, but also triggers mesenchymal transition and extracellular matrix remodeling. Small molecule inhibitors of OGG1-8-oxoG binding and BRD4–acetylated histone interaction have been developed. We present studies demonstrating efficacy of these in reducing airway inflammation in preclinical models. Targeting inducible epigenetic reprogramming pathway shows promise for therapeutics in reversing airway remodeling in a variety of chronic airway diseases.
Collapse
Affiliation(s)
- Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health, 4246 Health Sciences Learning Center, 750 Highland Ave, Madison, WI 53705, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Chau-Etchepare F, Hoerger JL, Kuhn BT, Zeki AA, Haczku A, Louie S, Kenyon NJ, Davis CE, Schivo M. Viruses and non-allergen environmental triggers in asthma. J Investig Med 2019; 67:1029-1041. [PMID: 31352362 PMCID: PMC7428149 DOI: 10.1136/jim-2019-001000] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2019] [Indexed: 12/23/2022]
Abstract
Asthma is a complex inflammatory disease with many triggers. The best understood asthma inflammatory pathways involve signals characterized by peripheral eosinophilia and elevated immunoglobulin E levels (called T2-high or allergic asthma), though other asthma phenotypes exist (eg, T2-low or non-allergic asthma, eosinophilic or neutrophilic-predominant). Common triggers that lead to poor asthma control and exacerbations include respiratory viruses, aeroallergens, house dust, molds, and other organic and inorganic substances. Increasingly recognized non-allergen triggers include tobacco smoke, small particulate matter (eg, PM2.5), and volatile organic compounds. The interaction between respiratory viruses and non-allergen asthma triggers is not well understood, though it is likely a connection exists which may lead to asthma development and/or exacerbations. In this paper we describe common respiratory viruses and non-allergen triggers associated with asthma. In addition, we aim to show the possible interactions, and potential synergy, between viruses and non-allergen triggers. Finally, we introduce a new clinical approach that collects exhaled breath condensates to identify metabolomics associated with viruses and non-allergen triggers that may promote the early management of asthma symptoms.
Collapse
Affiliation(s)
- Florence Chau-Etchepare
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Joshua L Hoerger
- Internal Medicine, University of California Davis, Sacramento, California, USA
| | - Brooks T Kuhn
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Amir A Zeki
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Angela Haczku
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Samuel Louie
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
| | - Nicholas J Kenyon
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| | - Cristina E Davis
- Mechanical and Aerospace Engineering, University of California Davis, Davis, California, USA
| | - Michael Schivo
- Pulmonary, Critical Care, and Sleep Medicine, University of California Davis, Sacramento, California, USA
- Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
27
|
Morris D, Ansar M, Speshock J, Ivanciuc T, Qu Y, Casola A, Garofalo R. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019; 11:v11080732. [PMID: 31398832 PMCID: PMC6723559 DOI: 10.3390/v11080732] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infection in children for which no specific treatment option is available. The RSV virion contains two surface glycoproteins (F and G) that are vital for the initial phases of infection, making them critical targets for RSV therapeutics. Recent studies have identified the broad-spectrum antiviral properties of silver nanoparticles (AgNPs) against respiratory pathogens, such as adenovirus, parainfluenza, and influenza. AgNPs achieve this by attaching to viral glycoproteins, blocking entry into the host cell. The objective of this study was to evaluate the antiviral and immunomodulatory effects of AgNPs in RSV infection. Herein we demonstrate AgNP-mediated reduction in RSV replication, both in epithelial cell lines and in experimentally infected BALB/c mice. Marked reduction in pro-inflammatory cytokines (i.e., IL-1α, IL-6, TNF-α) and pro-inflammatory chemokines (i.e., CCL2, CCL3, CCL5) was also observed. Conversely, CXCL1, G-CSF, and GM-CSF were increased in RSV-infected mice treated with AgNPs, consistent with an increase of neutrophil recruitment and activation in the lung tissue. Following experimental antibody-dependent depletion of neutrophils, the antiviral effect of AgNPs in mice treated was ablated. To our knowledge, this is the first in vivo report demonstrating antiviral activity of AgNPs during RSV infection.
Collapse
Affiliation(s)
- Dorothea Morris
- Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
| | - Maria Ansar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice Speshock
- Department of Biological Sciences, Tarleton State University, Stephenville, TX 76401, USA
| | - Teodora Ivanciuc
- Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yue Qu
- Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonella Casola
- Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Roberto Garofalo
- Division of Clinical and Experimental Immunology and Infectious Disease (CEIID), Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
28
|
Glaser L, Coulter PJ, Shields M, Touzelet O, Power UF, Broadbent L. Airway Epithelial Derived Cytokines and Chemokines and Their Role in the Immune Response to Respiratory Syncytial Virus Infection. Pathogens 2019; 8:E106. [PMID: 31331089 PMCID: PMC6789711 DOI: 10.3390/pathogens8030106] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
The airway epithelium is the primary target of respiratory syncytial virus infection. It is an important component of the antiviral immune response. It contributes to the recruitment and activation of innate immune cells from the periphery through the secretion of cytokines and chemokines. This paper provides a broad review of the cytokines and chemokines secreted from human airway epithelial cell models during respiratory syncytial virus (RSV) infection based on a comprehensive literature review. Epithelium-derived chemokines constitute most inflammatory mediators secreted from the epithelium during RSV infection. This suggests chemo-attraction of peripheral immune cells, such as monocytes, neutrophils, eosinophils, and natural killer cells as a key function of the epithelium. The reports of epithelium-derived cytokines are limited. Recent research has started to identify novel cytokines, the functions of which remain largely unknown in the wider context of the RSV immune response. It is argued that the correct choice of in vitro models used for investigations of epithelial immune functions during RSV infection could facilitate greater progress in this field.
Collapse
Affiliation(s)
- Lena Glaser
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Patricia J Coulter
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- Department of Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast BT12 6BE, Northern Ireland, UK
| | - Michael Shields
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
- Department of Paediatric Respiratory Medicine, Royal Belfast Hospital for Sick Children, Belfast BT12 6BE, Northern Ireland, UK
| | - Olivier Touzelet
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| | - Ultan F Power
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | - Lindsay Broadbent
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
29
|
Cystathionine γ-lyase deficiency enhances airway reactivity and viral-induced disease in mice exposed to side-stream tobacco smoke. Pediatr Res 2019; 86:39-46. [PMID: 30986815 PMCID: PMC6594876 DOI: 10.1038/s41390-019-0396-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Environmental tobacco smoke (ETS) is a known risk factor for severe respiratory syncytial virus (RSV) infections, yet the mechanisms of ETS/RSV comorbidity are largely unknown. Cystathionine γ-lyase regulates important physiological functions of the respiratory tract. METHODS We used mice genetically deficient in the cystathionine γ-lyase enzyme (CSE), the major H2S-generating enzyme in the lung to determine the contribution of H2S to airway disease in response to side-stream tobacco smoke (TS), and to TS/RSV co-exposure. RESULTS Following a 2-week period of exposure to TS, CSE-deficient mice (KO) showed a dramatic increase in airway hyperresponsiveness (AHR) to methacholine challenge, and greater airway cellular inflammation, compared with wild-type (WT) mice. TS-exposed CSE KO mice that were subsequently infected with RSV exhibited a more severe clinical disease, airway obstruction and AHR, enhanced viral replication, and lung inflammation, compared with TS-exposed RSV-infected WT mice. TS-exposed RSV-infected CSE KO mice had also a significant increase in the number of neutrophils in bronchoalveolar lavage fluid and increased levels of inflammatory cytokines and chemokines. CONCLUSION This study demonstrates the critical contribution of the H2S-generating pathway to airway reactivity and disease following exposure to ETS alone or in combination with RSV infection.
Collapse
|
30
|
Host-Pathogen Interactions of Mycoplasma mycoides in Caprine and Bovine Precision-Cut Lung Slices (PCLS) Models. Pathogens 2019; 8:pathogens8020082. [PMID: 31226867 PMCID: PMC6631151 DOI: 10.3390/pathogens8020082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Respiratory infections caused by mycoplasma species in ruminants lead to considerable economic losses. Two important ruminant pathogens are Mycoplasma mycoides subsp. Mycoides (Mmm), the aetiological agent of contagious bovine pleuropneumonia and Mycoplasma mycoides subsp. capri (Mmc), which causes pneumonia, mastitis, arthritis, keratitis, and septicemia in goats. We established precision cut lung slices (PCLS) infection model for Mmm and Mmc to study host-pathogen interactions. We monitored infection over time using immunohistological analysis and electron microscopy. Moreover, infection burden was monitored by plating and quantitative real-time PCR. Results were compared with lungs from experimentally infected goats and cattle. Lungs from healthy goats and cattle were also included as controls. PCLS remained viable for up to two weeks. Both subspecies adhered to ciliated cells. However, the titer of Mmm in caprine PCLS decreased over time, indicating species specificity of Mmm. Mmc showed higher tropism to sub-bronchiolar tissue in caprine PCLS, which increased in a time-dependent manner. Moreover, Mmc was abundantly observed on pulmonary endothelial cells, indicating partially, how it causes systemic disease. Tissue destruction upon prolonged infection of slices was comparable to the in vivo samples. Therefore, PCLS represents a novel ex vivo model to study host-pathogen interaction in livestock mycoplasma.
Collapse
|
31
|
de Souza GF, Muraro SP, Santos LD, Monteiro APT, da Silva AG, de Souza APD, Stein RT, Bozza PT, Porto BN. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res 2019; 68:481-491. [PMID: 30944975 DOI: 10.1007/s00011-019-01233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Collapse
Affiliation(s)
- Gabriela F de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo D Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula T Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Amanda G da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
32
|
Bohmwald K, Gálvez NMS, Canedo-Marroquín G, Pizarro-Ortega MS, Andrade-Parra C, Gómez-Santander F, Kalergis AM. Contribution of Cytokines to Tissue Damage During Human Respiratory Syncytial Virus Infection. Front Immunol 2019; 10:452. [PMID: 30936869 PMCID: PMC6431622 DOI: 10.3389/fimmu.2019.00452] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) remains one of the leading pathogens causing acute respiratory tract infections (ARTIs) in children younger than 2 years old, worldwide. Hospitalizations during the winter season due to hRSV-induced bronchiolitis and pneumonia increase every year. Despite this, there are no available vaccines to mitigate the health and economic burden caused by hRSV infection. The pathology caused by hRSV induces significant damage to the pulmonary epithelium, due to an excessive inflammatory response at the airways. Cytokines are considered essential players for the establishment and modulation of the immune and inflammatory responses, which can either be beneficial or harmful for the host. The deleterious effect observed upon hRSV infection is mainly due to tissue damage caused by immune cells recruited to the site of infection. This cellular recruitment takes place due to an altered profile of cytokines secreted by epithelial cells. As a result of inflammatory cell recruitment, the amounts of cytokines, such as IL-1, IL-6, IL-10, and CCL5 are further increased, while IL-10 and IFN-γ are decreased. However, additional studies are required to elicit the mediators directly associated with hRSV damage entirely. In addition to the detrimental induction of inflammatory mediators in the respiratory tract caused by hRSV, reports indicating alterations in the central nervous system (CNS) have been published. Indeed, elevated levels of IL-6, IL-8 (CXCL8), CCL2, and CCL4 have been reported in cerebrospinal fluid from patients with severe bronchiolitis and hRSV-associated encephalopathy. In this review article, we provide an in-depth analysis of the role of cytokines secreted upon hRSV infection and their potentially harmful contribution to tissue damage of the respiratory tract and the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M. S. Gálvez
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gisela Canedo-Marroquín
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena S. Pizarro-Ortega
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Andrade-Parra
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Gómez-Santander
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millenium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
33
|
Brasier AR. Mechanisms how mucosal innate immunity affects progression of allergic airway disease. Expert Rev Respir Med 2019; 13:349-356. [PMID: 30712413 DOI: 10.1080/17476348.2019.1578211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Activation of antigen-independent inflammation (a.k.a. the 'innate' immune response (IIR)) plays a complex role in allergic asthma (AA). Although activation of the pulmonary IIR by aerosolized bacterial lipopolysaccharide early in life may be protective of AA, respiratory viral infections promote AA. The mechanisms how the mucosal IIR promotes allergic sensitization, remodeling, and altered epithelial signaling are not understood. Areas covered: This manuscript overviews: 1. Mechanistic studies identifying how allergens and viral patterns activate the mucosal IIR; 2. Research that reveals a major role played by specialized epithelial cells in the bronchiolar-alveolar junction in triggering inflammation and remodeling; 3. Reports linking the mucosal IIR with epithelial cell-state change and barrier disruption; and, 4. Observations relating mesenchymal transition with the expansion of the myofibroblast population. Expert commentary: Luminal allergens and viruses activate TLR signaling in key sentinel cells producing epithelial cell state transition, disrupting epithelial barrier function, and expanding the pulmonary myofibroblast population. These signals are transduced through a common NFκB/RelA -bromodomain containing four (BRD4) pathway, an epigenetic remodeling complex reprogramming the genome. Through this pathway, the mucosal IIR is a major modifier of adaptive immunity, AA and acute exacerbation-induced remodeling.
Collapse
Affiliation(s)
- Allan R Brasier
- a Institute for Clinical and Translational Research , University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
34
|
Brasier AR. Therapeutic targets for inflammation-mediated airway remodeling in chronic lung disease. Expert Rev Respir Med 2018; 12:931-939. [PMID: 30241450 PMCID: PMC6485244 DOI: 10.1080/17476348.2018.1526677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Acute exacerbations of chronic lung disease account for substantial morbidity and health costs. Repeated inflammatory episodes and attendant bronchoconstriction cause structural remodeling of the airway. Remodeling is a multicellular response to mucosal injury that results in epithelial cell-state changes, enhanced extracellular deposition, and expansion of pro-fibrotic myofibroblast populations. Areas covered: This manuscript overviews mechanistic studies identifying key sentinel cell populations in the airway and how pattern recognition signaling induces maladaptive mucosal changes and airway remodeling. Studies elucidating how NFκB couples with an atypical histone acetyltransferase, bromodomain-containing protein 4 (BRD4) that reprograms mucosal fibrogenic responses, are described. The approaches to development and characterization of selective inhibitors of epigenetic reprogramming on innate inflammation and structural remodeling in preclinical models are detailed. Expert commentary: Bronchiolar cells derived from Scgb1a1-expressing progenitors function as major sentinel cells of the airway, responsible for initiating antiviral and aeroallergen responses. In these sentinel cells, activation of innate inflammation is coupled to neutrophilic recruitment, mesenchymal transition and myofibroblast expansion. Therapeutics targeting the NFkB-BRD4 may be efficacious in reducing pathological effects of acute exacerbations in chronic lung disease.
Collapse
Affiliation(s)
- Allan R Brasier
- a Department of Internal Medicine , Institute for Clinical and Translational Research, University of Wisconsin-Madison School of Medicine and Public Health , Madison , WI , USA
| |
Collapse
|
35
|
Rayavara K, Kurosky A, Stafford SJ, Garg NJ, Brasier AR, Garofalo RP, Hosakote YM. Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2753-2766. [PMID: 30275049 PMCID: PMC6200588 DOI: 10.4049/jimmunol.1800558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 01/21/2023]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional nuclear protein that translocates to the cytoplasm and is subsequently released to the extracellular space during infection and injury. Once released, it acts as a damage-associated molecular pattern and regulates immune and inflammatory responses. Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants and elderly, for which no effective treatment or vaccine is currently available. This study investigated the effects of HMGB1 on cytokine secretion, as well as the involvement of NF-κB and TLR4 pathways in RSV-induced HMGB1 release in human airway epithelial cells (AECs) and its proinflammatory effects on several human primary immune cells. Purified HMGB1 was incubated with AECs (A549 and small alveolar epithelial cells) and various immune cells and measured the release of proinflammatory mediators and the activation of NF-κB and P38 MAPK. HMGB1 treatment significantly increased the phosphorylation of NF-κB and P38 MAPK but did not induce the release of cytokines/chemokines from AECs. However, addition of HMGB1 to immune cells did significantly induce the release of cytokines/chemokines and activated the NF-κB and P38 MAPK pathways. We found that activation of NF-κB accounted for RSV-induced HMGB1 secretion in AECs in a TLR4-dependent manner. These results indicated that HMGB1 secreted from AECs can facilitate the secretion of proinflammatory mediators from immune cells in a paracrine mechanism, thus promoting the inflammatory response that contributes to RSV pathogenesis. Therefore, blocking the proinflammatory function of HMGB1 may be an effective approach for developing novel therapeutics.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan J Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555; and
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555
| | - Yashoda M Hosakote
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555;
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
36
|
Central Role of the NF-κB Pathway in the Scgb1a1-Expressing Epithelium in Mediating Respiratory Syncytial Virus-Induced Airway Inflammation. J Virol 2018; 92:JVI.00441-18. [PMID: 29593031 DOI: 10.1128/jvi.00441-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/24/2022] Open
Abstract
Lower respiratory tract infection with respiratory syncytial virus (RSV) produces profound inflammation. Despite an understanding of the role of adaptive immunity in RSV infection, the identity of the major sentinel cells initially triggering inflammation is controversial. Here we evaluate the role of nonciliated secretoglobin (Scgb1a1)-expressing bronchiolar epithelial cells in RSV infection. Mice expressing a tamoxifen (TMX)-inducible Cre recombinase-estrogen receptor fusion protein (CreERTM) knocked into the Scgb1a1 locus were crossed with mice that harbor a RelA conditional allele (RelAfl ), with loxP sites flanking exons 5 to 8 of the Rel homology domain. The Scgb1a1CreERTM/+ × RelAfl/fl mouse is a RelA conditional knockout (RelACKO) of a nonciliated epithelial cell population enriched in the small bronchioles. TMX-treated RelACKO mice have reduced pulmonary neutrophilic infiltration and impaired expression and secretion of NF-κB-dependent cytokines in response to RSV. In addition, RelACKO mice had reduced expression levels of interferon (IFN) regulatory factor 1/7 (IRF1/7) and retinoic acid-inducible gene I (RIG-I), components of the mucosal IFN positive-feedback loop. We demonstrate that RSV replication induces RelA to complex with bromodomain-containing protein 4 (BRD4), a cofactor required for RNA polymerase II (Pol II) phosphorylation, activating the atypical histone acetyltransferase (HAT) activity of BRD4 required for phospho-Ser2 Pol II formation, histone H3K122 acetylation, and cytokine secretion in vitro and in vivo TMX-treated RelACKO mice have less weight loss and reduced airway obstruction/hyperreactivity yet similar levels of IFN-γ production despite higher levels of virus production. These data indicate that the nonciliated Scgb1a1-expressing epithelium is a major innate sensor for restricting RSV infection by mediating neutrophilic inflammation and chemokine and mucosal IFN production via the RelA-BRD4 pathway.IMPORTANCE RSV infection is the most common cause of infant hospitalizations in the United States, resulting in 2.1 million children annually requiring medical attention. RSV primarily infects nasal epithelial cells, spreading distally to produce severe lower respiratory tract infections. Our study examines the role of a nonciliated respiratory epithelial cell population in RSV infection. We genetically engineered a mouse that can be selectively depleted of the NF-κB/RelA transcription factor in this subset of epithelial cells. These mice show an impaired activation of the bromodomain-containing protein 4 (BRD4) coactivator, resulting in reduced cytokine expression and neutrophilic inflammation. During the course of RSV infection, epithelial RelA-depleted mice have reduced disease scores and airway hyperreactivity yet increased levels of virus replication. We conclude that RelA-BRD4 signaling in nonciliated bronchiolar epithelial cells mediates neutrophilic airway inflammation and disease severity. This complex is an attractive target to reduce the severity of infection.
Collapse
|
37
|
Bazhanov N, Ivanciuc T, Wu H, Garofalo M, Kang J, Xian M, Casola A. Thiol-Activated Hydrogen Sulfide Donors Antiviral and Anti-Inflammatory Activity in Respiratory Syncytial Virus Infection. Viruses 2018; 10:E249. [PMID: 29747463 PMCID: PMC5977242 DOI: 10.3390/v10050249] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
We have recently shown that endogenous hydrogen sulfide (H₂S), an important cellular gaseous mediator, exerts an antiviral and anti-inflammatory activity in vitro and in vivo, and that exogenous H₂S delivered via the synthetic H₂S-releasing compound GYY4137 also has similar properties. In this study, we sought to extend our findings to a novel class of H₂S donors, thiol-activated gem-dithiol-based (TAGDDs). In an in vitro model of human respiratory syncytial virus (RSV) infection, TAGDD-1 treatment significantly reduced viral replication, even when added up to six hours after infection. Using a mouse model of RSV infection, intranasal delivery of TAGDD-1 to infected mice significantly reduced viral replication and lung inflammation, markedly improving clinical disease parameters and pulmonary dysfunction, compared to vehicle treated controls. Overall our results indicate that this novel synthetic class of H₂S-releasing compounds exerts antiviral and anti-inflammatory activity in the context of RSV infection and represents a potential novel pharmacological approach to ameliorate viral-induced lung disease.
Collapse
Affiliation(s)
- Nikolay Bazhanov
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Haotian Wu
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Matteo Garofalo
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | - Jianming Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| |
Collapse
|
38
|
Mosquera RA, De Jesus-Rojas W, Stark JM, Yadav A, Jon CK, Atkins CL, Samuels CL, Gonzales TR, McBeth KE, Hashmi SS, Garolalo R, Colasurdo GN. Role of prophylactic azithromycin to reduce airway inflammation and mortality in a RSV mouse infection model. Pediatr Pulmonol 2018; 53:567-574. [PMID: 29405608 DOI: 10.1002/ppul.23956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) infection is an important cause of morbidity and mortality in vulnerable populations. Macrolides have received considerable attention for their anti-inflammatory actions beyond their antibacterial effect. We hypothesize that prophylactic azithromycin will be effective in reducing the severity of RSV infection in a mouse model. METHODS Four groups of BALB/c mice were studied for 8 days: Control (C), RSV-infected (R), early prophylaxis with daily azithromycin from days 1 to 8, (E), and late prophylaxis with daily azithromycin from days 4 to 8 (L). Mice were infected with RSV on day 4, except for the control group. All groups were followed for a total of 8 days when bronchoalveolar lavage cell count and cytokines levels were measured. Mouse weight, histopathology, and mortality data were obtained. RESULTS Prophylactic azithromycin significantly attenuated post-viral weight loss between group R and both groups E and L (P = 0.0236, 0.0179, respectively). IL-6, IL-5, and Interferon-Gamma were significantly lower in group L (P = 0.0294, 0.0131, and 0.0056, respectively) compared with group R. The total cell count was significantly lower for group L as compared with group R (P < 0.05). Mortality was only observed in group R (8%). Lung histology in the prophylactic groups showed diminished inflammatory infiltrates and cellularity when compared with group R. CONCLUSION Prophylactic azithromycin effectively reduced weight loss, airway inflammation, cytokine levels and mortality in RSV-infected mice. These results support the rationale for future clinical trials to evaluate the effects of prophylactic azithromycin for RSV infection.
Collapse
Affiliation(s)
- Ricardo A Mosquera
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Wilfredo De Jesus-Rojas
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - James M Stark
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Aravind Yadav
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Cindy K Jon
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Constance L Atkins
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Cheryl L Samuels
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Traci R Gonzales
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Katrina E McBeth
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Syed S Hashmi
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| | - Roberto Garolalo
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Giuseppe N Colasurdo
- Department of Pediatrics, University of Texas Health Science Center, McGovern Medical School, Houston, Texas
| |
Collapse
|
39
|
Ivanciuc T, Sbrana E, Casola A, Garofalo RP. Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 Against Respiratory Syncytial Virus and Human Metapneumovirus Infections. Front Immunol 2018; 9:854. [PMID: 29740449 PMCID: PMC5925606 DOI: 10.3389/fimmu.2018.00854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The pathogenesis of respiratory syncytial virus (RSV) infections is characterized by lower airway obstruction driven at great extent by the exuberant production of inflammatory cytokines. We have previously shown that RSV infection in vitro and in vivo results in production of reactive oxygen species along with reduction in the expression of antioxidant enzymes (AOEs), which are involved in maintaining the cellular oxidant-antioxidant balance. These events were associated with the concomitant reduction in nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor that controls AOE expression. The objective of the current study was to establish the role of Nrf2 in shaping innate immune responses, clinical disease, airway inflammation, and viral replication in established experimental models of intranasal RSV and human metapneumovirus (hMPV) infections, by employing mice genetically deficient for the Nrf2 gene. Compared to control wild type (WT), mice genetically deficient in Nrf2 (Nrf2 KO) developed enhanced clinical disease, airway inflammation and pathology, and significantly greater lung viral titers following experimental infection with either RSV or hMPV. In particular, compared to control mice, RSV-infected Nrf2 KO mice lost more body weight and had increased airway obstruction at time points characterized by a remarkable increase in inflammatory cytokines and airway neutrophilia. Airway levels of AOEs and enzymes that regulate synthesis of the endogenous hydrogen sulfide (H2S) pathway, which we showed to play an important antiviral function, were also decreased in RSV-infected Nrf2 KO compared to WT. In conclusion, these results suggest that Nrf2 is a critical regulator of innate, inflammatory, and disease-associated responses in the airways of mice infected with viruses that are members of the Pneumoviridae family. Importantly, the results of this study suggest that Nrf2-dependent genes, including those controlling the cellular antioxidant and H2S-generating enzymes and cytokines can affect several aspects of the antiviral response, such as airway neutrophilia, clinical disease, airway obstruction, and viral replication.
Collapse
Affiliation(s)
- Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
40
|
Respiratory syncytial virus infection up-regulates TLR7 expression by inducing oxidative stress via the Nrf2/ARE pathway in A549 cells. Arch Virol 2018; 163:1209-1217. [DOI: 10.1007/s00705-018-3739-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022]
|
41
|
Salimi V, Ramezani A, Mirzaei H, Tahamtan A, Faghihloo E, Rezaei F, Naseri M, Bont L, Mokhtari-Azad T, Tavakoli-Yaraki M. Evaluation of the expression level of 12/15 lipoxygenase and the related inflammatory factors (CCL5, CCL3) in respiratory syncytial virus infection in mice model. Microb Pathog 2017; 109:209-213. [DOI: 10.1016/j.micpath.2017.05.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
|
42
|
Ivanciuc T, Sbrana E, Ansar M, Bazhanov N, Szabo C, Casola A, Garofalo RP. Hydrogen Sulfide Is an Antiviral and Antiinflammatory Endogenous Gasotransmitter in the Airways. Role in Respiratory Syncytial Virus Infection. Am J Respir Cell Mol Biol 2017; 55:684-696. [PMID: 27314446 DOI: 10.1165/rcmb.2015-0385oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous transmitter whose role in the pathophysiology of several lung diseases has been increasingly appreciated. Our recent studies in vitro have shown, we believe for the first time, that H2S has an important antiviral and antiinflammatory activity in respiratory syncytial virus (RSV) infection, the leading cause of bronchiolitis and viral pneumonia in children. Our objective was to evaluate the therapeutic potential of GYY4137, a novel slow-releasing H2S donor, for the prevention and treatment of RSV-induced lung disease, as well as to investigate the role of endogenous H2S in a mouse model of RSV infection. Ten- to 12-week-old BALB/c mice treated with GYY4137, or C57BL/6J mice genetically deficient in the cystathionine γ-lyase enzyme, the major H2S-generating enzyme in the lung, were infected with RSV and assessed for viral replication, clinical disease, airway hyperresponsiveness, and inflammatory responses. Our results show that intranasal delivery of GYY4137 to RSV-infected mice significantly reduced viral replication and markedly improved clinical disease parameters and pulmonary dysfunction compared with the results in vehicle-treated control mice. The protective effect of the H2S donor was associated with a significant reduction of viral-induced proinflammatory mediators and lung cellular infiltrates. Furthermore, cystathionine γ-lyase-deficient mice showed significantly enhanced RSV-induced lung disease and viral replication compared with wild-type animals. Overall, our results indicate that H2S exerts a novel antiviral and antiinflammatory activity in the context of RSV infection and represent a potential novel pharmacological approach for ameliorating virus-induced lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonella Casola
- 1 Departments of Pediatrics.,2 Microbiology, and.,4 Sealy Center for Vaccine Development, and.,5 Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Roberto P Garofalo
- 1 Departments of Pediatrics.,2 Microbiology, and.,4 Sealy Center for Vaccine Development, and.,5 Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
43
|
Zhao Y, Jamaluddin M, Zhang Y, Sun H, Ivanciuc T, Garofalo RP, Brasier AR. Systematic Analysis of Cell-Type Differences in the Epithelial Secretome Reveals Insights into the Pathogenesis of Respiratory Syncytial Virus-Induced Lower Respiratory Tract Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:3345-3364. [PMID: 28258195 DOI: 10.4049/jimmunol.1601291] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Lower respiratory tract infections from respiratory syncytial virus (RSV) are due, in part, to secreted signals from lower airway cells that modify the immune response and trigger airway remodeling. To understand this process, we applied an unbiased quantitative proteomics analysis of the RSV-induced epithelial secretory response in cells representative of the trachea versus small airway bronchiolar cells. A workflow was established using telomerase-immortalized human epithelial cells that revealed highly reproducible cell type-specific differences in secreted proteins and nanoparticles (exosomes). Approximately one third of secretome proteins are exosomal; the remainder are from lysosomal and vacuolar compartments. We applied this workflow to three independently derived primary human cultures from trachea versus bronchioles. A total of 577 differentially expressed proteins from control supernatants and 966 differentially expressed proteins from RSV-infected cell supernatants were identified at a 1% false discovery rate. Fifteen proteins unique to RSV-infected primary human cultures from trachea were regulated by epithelial-specific ets homologous factor. A total of 106 proteins unique to RSV-infected human small airway epithelial cells was regulated by the transcription factor NF-κB. In this latter group, we validated the differential expression of CCL20/macrophage-inducible protein 3α, thymic stromal lymphopoietin, and CCL3-like 1 because of their roles in Th2 polarization. CCL20/macrophage-inducible protein 3α was the most active mucin-inducing factor in the RSV-infected human small airway epithelial cell secretome and was differentially expressed in smaller airways in a mouse model of RSV infection. These studies provide insights into the complexity of innate responses and regional differences in the epithelial secretome participating in RSV lower respiratory tract infection-induced airway remodeling.
Collapse
Affiliation(s)
- Yingxin Zhao
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Mohammad Jamaluddin
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Hong Sun
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and.,Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555.,Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| |
Collapse
|
44
|
Hosakote YM, Brasier AR, Casola A, Garofalo RP, Kurosky A. Respiratory Syncytial Virus Infection Triggers Epithelial HMGB1 Release as a Damage-Associated Molecular Pattern Promoting a Monocytic Inflammatory Response. J Virol 2016; 90:9618-9631. [PMID: 27535058 PMCID: PMC5068515 DOI: 10.1128/jvi.01279-16] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infant and elderly populations worldwide. Currently, there is no efficacious vaccine or therapy available for RSV infection. The molecular mechanisms underlying RSV-induced acute airway disease and associated long-term consequences remain largely unknown; however, experimental evidence suggests that the lung inflammatory response plays a fundamental role in the outcome of RSV infection. High-mobility group box 1 (HMGB1) is a nuclear protein that triggers inflammation when released from activated immune or necrotic cells and drives the pathogenesis of various infectious agents. Although HMGB1 has been implicated in many inflammatory diseases, its role in RSV-induced airway inflammation has not been investigated. This study investigates the molecular mechanism of action of extracellularly released HMGB1 in airway epithelial cells (A549 and small airway epithelial cells) to establish its role in RSV infection. Immunofluorescence microscopy and Western blotting results showed that RSV infection of human airway epithelial cells induced a significant release of HMGB1 as a result of translocation of HMGB1 from the cell nuclei to the cytoplasm and subsequent release into the extracellular space. Treating RSV-infected A549 cells with antioxidants significantly inhibited RSV-induced HMGB1 extracellular release. Studies using recombinant HMGB1 triggered immune responses by activating primary human monocytes. Finally, HMGB1 released by airway epithelial cells due to RSV infection appears to function as a paracrine factor priming epithelial cells and monocytes to inflammatory stimuli in the airways. IMPORTANCE RSV is a major cause of serious lower respiratory tract infections in young children and causes severe respiratory morbidity and mortality in the elderly. In addition, to date there is no effective treatment or vaccine available for RSV infection. The mechanisms responsible for RSV-induced acute airway disease and associated long-term consequences remain largely unknown. The oxidative stress response in the airways plays a major role in the pathogenesis of RSV. HMGB1 is a ubiquitous redox-sensitive multifunctional protein that serves as both a DNA regulatory protein and an extracellular cytokine signaling molecule that promotes airway inflammation as a damage-associated molecular pattern. This study investigated the mechanism of action of HMGB1 in RSV infection with the aim of identifying new inflammatory pathways at the molecular level that may be amenable to therapeutic interventions.
Collapse
Affiliation(s)
- Yashoda M Hosakote
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R Brasier
- Department of Internal Medicine, Division of Endocrinology, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Antonella Casola
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, Texas, USA Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Roberto P Garofalo
- Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, Texas, USA Department of Pediatrics, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Molecular Medicine, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
45
|
Choudhary S, Boldogh I, Brasier AR. Inside-Out Signaling Pathways from Nuclear Reactive Oxygen Species Control Pulmonary Innate Immunity. J Innate Immun 2016; 8:143-55. [PMID: 26756522 PMCID: PMC4801701 DOI: 10.1159/000442254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
The airway mucosa is responsible for mounting a robust innate immune response (IIR) upon encountering pathogen-associated molecular patterns. The IIR produces protective gene networks that stimulate neighboring epithelia and components of the immune system to trigger adaptive immunity. Little is currently known about how cellular reactive oxygen species (ROS) signaling is produced and cooperates in the IIR. We discuss recent discoveries about 2 nuclear ROS signaling pathways controlling innate immunity. Nuclear ROS oxidize guanine bases to produce mutagenic 8-oxoguanine, a lesion excised by 8-oxoguanine DNA glycosylase1/AP-lyase (OGG1). OGG1 forms a complex with the excised base, inducing its nuclear export. The cytoplasmic OGG1:8-oxoG complex functions as a guanine nucleotide exchange factor, triggering small GTPase signaling and activating phosphorylation of the nuclear factor (NF)x03BA;B/RelA transcription factor to induce immediate early gene expression. In parallel, nuclear ROS are detected by ataxia telangiectasia mutated (ATM), a PI3 kinase activated by ROS, triggering its nuclear export. ATM forms a scaffold with ribosomal S6 kinases, inducing RelA phosphorylation and resulting in transcription-coupled synthesis of type I and type III interferons and CC and CXC chemokines. We propose that ATM and OGG1 are endogenous nuclear ROS sensors that transmit nuclear signals that coordinate with outside-in pattern recognition receptor signaling, regulating the IIR.
Collapse
Affiliation(s)
- Sanjeev Choudhary
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| | - Allan R. Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| |
Collapse
|
46
|
Farrag MA, Almajhdi FN. Human Respiratory Syncytial Virus: Role of Innate Immunity in Clearance and Disease Progression. Viral Immunol 2015; 29:11-26. [PMID: 26679242 DOI: 10.1089/vim.2015.0098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) infections have worldwide records. The virus is responsible for bronchiolitis, pneumonia, and asthma in humans of different age groups. Premature infants, young children, and immunocompromised individuals are prone to severe HRSV infection that may lead to death. Based on worldwide estimations, millions of cases were reported in both developed and developing countries. In fact, HRSV symptoms develop mainly as a result of host immune response. Due to inability to establish long lasting adaptive immunity, HRSV infection is recurrent and hence impairs vaccine development. Once HRSV attached to the airway epithelia, interaction with the host innate immune components starts. HRSV interaction with pulmonary innate defenses is crucial in determining the disease outcome. Infection of alveolar epithelial cells triggers a cascade of events that lead to recruitment and activation of leukocyte populations. HRSV clearance is mediated by a number of innate leukocytes, including macrophages, natural killer cells, eosinophils, dendritic cells, and neutrophils. Regulation of these cells is mediated by cytokines, chemokines, and other immune mediators. Although the innate immune system helps to clear HRSV infection, it participates in disease progression such as bronchiolitis and asthma. Resolving the mechanisms by which HRSV induces pathogenesis, different possible interactions between the virus and immune components, and immune cells interplay are essential for developing new effective vaccines. Therefore, the current review focuses on how the pulmonary innate defenses mediate HRSV clearance and to what extent they participate in disease progression. In addition, immune responses associated with HRSV vaccines will be discussed.
Collapse
Affiliation(s)
- Mohamed A Farrag
- Department of Botany and Microbiology, King Saud University , Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, King Saud University , Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Chirkova T, Lin S, Oomens AGP, Gaston KA, Boyoglu-Barnum S, Meng J, Stobart CC, Cotton CU, Hartert TV, Moore ML, Ziady AG, Anderson LJ. CX3CR1 is an important surface molecule for respiratory syncytial virus infection in human airway epithelial cells. J Gen Virol 2015; 96:2543-2556. [PMID: 26297201 DOI: 10.1099/vir.0.000218] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection.
Collapse
Affiliation(s)
- Tatiana Chirkova
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Songbai Lin
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Antonius G P Oomens
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kelsey A Gaston
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Seyhan Boyoglu-Barnum
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Jia Meng
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Christopher C Stobart
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Calvin U Cotton
- Division of Pediatric Pulmonology, Case Western University, Cleveland, Ohio, USA
| | - Tina V Hartert
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine and Vanderbilt Center for Asthma and Environmental Health Sciences Research, Vanderbilt University, Nashville, Tennessee, USA
| | - Martin L Moore
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Assem G Ziady
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| | - Larry J Anderson
- Department of Pediatrics and Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
48
|
Akgün J, Schabussova I, Schwarzer M, Kozakova H, Kundi M, Wiedermann U. The Role of Alveolar Epithelial Type II-Like Cells in Uptake of Structurally Different Antigens and in Polarisation of Local Immune Responses. PLoS One 2015; 10:e0124777. [PMID: 25894334 PMCID: PMC4404363 DOI: 10.1371/journal.pone.0124777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/05/2015] [Indexed: 01/17/2023] Open
Abstract
Background Our previous studies on intranasal tolerance induction demonstrated reduction of allergic responses with different allergen constructs. The underlying mechanisms varied depending on their conformation or size. Objective The aim of the present study was to compare the uptake of two structurally different allergen molecules within the respiratory tract following intranasal application. Methods The three-dimensional Bet v 1 (Bv1-Protein) and the T cell epitope peptide of Bet v 1 (Bv1-Peptide) were labelled with 5,6-Carboxyfluorescein (FAM) and their uptake was investigated in lung cells and cells of the nasal associated lymphoid tissue from naive and sensitised BALB/c mice. Phenotypic characterisation of FAM+ lung cells after antigen incubation in vitro and after intranasal application was performed by flow cytometry. Impact of Bv1-Protein and Bv1-Peptide on cytokine profiles and gene expression in vivo or in an alveolar epithelial type II (ATII) cell line were assessed in mono- and co-cultures with monocytes using ELISA and quantitative real-time PCR. Results Both antigens were taken up preferably by ATII-like cells (ATII-LCs) in naive mice, and by macrophages in sensitised mice. After intranasal application, Bv1-Peptide was taken up faster and more efficiently than Bv1-Protein. In vivo and in vitro experiments revealed that Bv1-Protein induced the transcription of thymic stromal lymphopoietin mRNA while Bv1-Peptide induced the transcription of IL-10 and MCP1 mRNA in ATII-LCs. Conclusion and Clinical Relevance Both tested antigens were taken up by ATII-LCs under steady state conditions and induced different polarisation of the immune responses. These data may have an important impact for the generation of novel and more effective prophylactic or therapeutic tools targeting the respiratory mucosa.
Collapse
Affiliation(s)
- Johnnie Akgün
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | - Michael Kundi
- Institute of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Göteborg, Göteborg, Sweden
| |
Collapse
|
49
|
Role of hydrogen sulfide in paramyxovirus infections. J Virol 2015; 89:5557-68. [PMID: 25740991 DOI: 10.1128/jvi.00264-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. IMPORTANCE RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of immunoprophylaxis, is available for this infection as well as for other important respiratory mucosal viruses. This study identifies hydrogen sulfide as a novel cellular mediator that can modulate viral replication and proinflammatory gene expression, both important determinants of lung injury in respiratory viral infections, with potential for rapid translation of such findings into novel therapeutic approaches for viral bronchiolitis and pneumonia.
Collapse
|
50
|
Abstract
Acute respiratory tract infection (RTI) is a leading cause of morbidity and mortality worldwide and the majority of RTIs are caused by viruses, among which respiratory syncytial virus (RSV) and the closely related human metapneumovirus (hMPV) figure prominently. Host innate immune response has been implicated in recognition, protection and immune pathological mechanisms. Host-viral interactions are generally initiated via host recognition of pathogen-associated molecular patterns (PAMPs) of the virus. This recognition occurs through host pattern recognition receptors (PRRs) which are expressed on innate immune cells such as epithelial cells, dendritic cells, macrophages and neutrophils. Multiple PRR families, including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), contribute significantly to viral detection, leading to induction of cytokines, chemokines and type I interferons (IFNs), which subsequently facilitate the eradication of the virus. This review focuses on the current literature on RSV and hMPV infection and the role of PRRs in establishing/mediating the infection in both in vitro and in vivo models. A better understanding of the complex interplay between these two viruses and host PRRs might lead to efficient prophylactic and therapeutic treatments, as well as the development of adequate vaccines.
Collapse
|