1
|
Acar G, Bi Lge-Dagalp S. Investigation of the epidemiology of calicivirus infection of cats using molecular and virus isolation techniques. Comp Immunol Microbiol Infect Dis 2025; 119:102335. [PMID: 40081119 DOI: 10.1016/j.cimid.2025.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Feline calicivirus (FCV) an important and widely detected upper respiratory system agent in cats. Being genetically diverse, FCV can cause different symptoms, such as pneumonia, oral lesions, conjunctivitis, arthritis, and, recently, virulent systemic disease. The present study first determined the presence/prevalence of FCV infection in sampled vaccinated/unvaccinated cats with suspected FCV and/or clinically healthy. Second, it compared PCR and virus isolation (VI) in detecting FCV in these cats. It also aimed to diagnose FCV, and evaluate the advantages/disadvantages of the region and primers used for PCR. Third, it genetically characterized the FCV strains, targeting the VP1 (A-B and E) gene region. A total of 331 diagnostic materials (conjunctival, nasal, oropharyngeal swab samples, and EDTA-containing blood samples) were obtained from 107 cats and checked using PCR and VI. Including both tests, the overall FCV positivity rate was 43.93 % (47/107). The FCV positivity rate was 35.99 % (21/59)/53.33 % (24/45) in vaccinated/unvaccinated and 58.06 % (18/31)/38.16 % (29/76) in clinically infected/clinically healthy cats, respectively. As a result of direct nested RT-PCR, FCV positivity was detected in 23.08 % of oropharyngeal swabs, 15.24 % of nasal swabs and 14.02 % of conjunctival swabs based on diagnostic material. FCV was also detected in 19.63 % (21/107) of the cats after virus isolation. Those samples that were FCV positive for VP1 A-B and VP1 E were subjected to sequence and phylogenetic analysis. Regarding many of the detected viruses were similar to the viruses in Genogroup I, while two viruses (ANK111OSW and ANK113OSW) were phylogenetically similar to both Genogroup I and Genogroup II at the same rate (74.30 %). The findings indicate a, higher overall FCV detection rate than in previous studies in Türkiye. Molecular diagnostic methods are not always sufficient for diagnosing infection due to FCV's genetic diversity from mutation and, recombination. Hence, including VI techniques in FCV evaluation will help prevent false negative results. Furthermore, testing oropharyngeal, nasal and conjunctival swabs together for FCV is believed to provide more accurate results.
Collapse
Affiliation(s)
- Gulizar Acar
- Atatürk University, Faculty of Veterinary Medicine, Department of Virology, Erzurum, Turkiye.
| | - Seval Bi Lge-Dagalp
- Ankara University, Faculty of Veterinary Medicine, Department of Virology, Ankara, Turkiye.
| |
Collapse
|
2
|
Wang D, Zhu J, Yang H, Lyu Y. Epidemiology and Molecular Characterization of Feline Calicivirus in Beijing, China. Animals (Basel) 2025; 15:494. [PMID: 40002976 PMCID: PMC11852138 DOI: 10.3390/ani15040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Feline calicivirus (FCV) is an infectious pathogen in cats that mainly causes upper respiratory tract disease. Enhancing our understanding of the epidemiological characteristics of FCV can contribute to better strategies against FCV infection. To investigate the prevalence of FCV in Beijing, explore the risk factors associated with FCV infection and elucidate its genetic evolutionary characteristics. Cats (n = 402) from the China Agricultural University Veterinary Teaching Hospital (CAUVTH) were investigated from June to December in 2023. The rate of FCV-positive cats in the sample examined was 31.3%. Risk factors significantly associated with FCV infection were age, vaccination status and residential density by Logistic regression analysis. Phylogenetic analysis of completed genomes revealed a radial phylogeny, with no obvious geographical clustering. Amino acid analysis at different sites of E region of the major capsid protein revealed variable neutralizing antibody epitopes, while feline junctional adhesion molecule-A (fJAM-A) binding sites remained conserved. Additionally, the first FCV recombinant isolate was detected in Beijing, originating from two 2019 isolates collected in the city. This study elucidates the molecular epidemiology and genetic diversity of FCV in Beijing, which provides valuable insights for the development of effective measures for FCV prevention and control.
Collapse
Affiliation(s)
- Daoqi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (D.W.); (J.Z.); (H.Y.)
| | - Jingru Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (D.W.); (J.Z.); (H.Y.)
| | - Hanyu Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (D.W.); (J.Z.); (H.Y.)
| | - Yanli Lyu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (D.W.); (J.Z.); (H.Y.)
- China Agricultural University Veterinary Teaching Hospital, Beijing 100193, China
| |
Collapse
|
3
|
Yang Y, Qi R, Chen M, Feng K, Liu Z, Kang H, Jiang Q, Qu L, Liu J. Screening and Immune Efficacy Evaluation of Antigens with Protection Against Feline Calicivirus. Vaccines (Basel) 2024; 12:1205. [PMID: 39591108 PMCID: PMC11598032 DOI: 10.3390/vaccines12111205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV), a pathogen that causes upper respiratory tract diseases in felids, primarily leads to oral ulcers and various respiratory symptoms, which can be fatal in severe cases. Currently, FCV prevention and control rely primarily on vaccination; however, the existing vaccine types in China are mainly inactivated vaccines, leading to a single prevention and control method with suboptimal outcomes. METHODS AND RESULTS This study commences with a genetic evolution analysis of Chinese FCV isolates, confirming the presence of two major genotypes, GI and GII with GI emerging as the dominant form. We subsequently selected the broadly neutralizing vaccine candidate strain DL39 as the template for the truncation and expression of multiple recombinant proteins. Through serological assays, we successfully confirmed the optimal protective antigen region, which is designated CE39 (CDE). Further investigation revealed the location of the optimal protective antigen region within the CE region for both the GI and GII genotype strains. Capitalizing on this discovery, a bivalent recombinant protein, designated CE39-CEFB, was generated. Cat antisera generated against CE39 and CE39-CEFB proteins were used in cross-neutralization against various strains of different genotypes, yielding high neutralization titers ranging from 1:45 to 1:15 and from 1:48 to 1:29, respectively, which surpassed those induced by antisera from cats vaccinated with Mi-aosanduo (commercial vaccine, strain 255). Ultimately, in vivo challenge experiments were per-formed after immunizing cats with the CE39 and CE39-CEFB proteins, utilizing Miaosanduo as a control for comparison. The results demonstrated that immunization with both proteins effectively made cats less susceptible to FCV GI, GII, and VSD strains infection, resulting in superior immune efficacy compared with that in the Miaosanduo group. CONCLUSION These results indicate that this study successfully identified the antigen CE39, which has broad-spectrum antigenicity, through in vivo and in vitro experiments. These findings pre-liminarily demonstrate that the optimal protective antigen region of FCV strains is the CE region, laying a theoretical foundation for the development of novel broad-spectrum vaccines against FCV disease.
Collapse
Affiliation(s)
- Yupeng Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ruibin Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Mengru Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Kexin Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhe Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongtao Kang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qian Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liandong Qu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiasen Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
4
|
Khamsingnok P, Rapichai W, Rattanasrisomporn A, Rungsuriyawiboon O, Choowongkomon K, Rattanasrisomporn J. Comparison of PCR, Nested PCR, and RT-LAMP for Rapid Detection of Feline Calicivirus Infection in Clinical Samples. Animals (Basel) 2024; 14:2432. [PMID: 39199965 PMCID: PMC11350671 DOI: 10.3390/ani14162432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Feline calicivirus (FCV) is a highly contagious virus that causes upper respiratory tract disease, commonly known as cat flu. It is widely distributed worldwide and poses a major threat to feline health. Therefore, it is essential to find an efficient and rapid method for detecting FCV. In this study, the colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay, using neutral red as an indicator, was developed and validated to target the ORF2 gene of FCV for the first time. Additionally, the study compared the diagnostic abilities of polymerase chain reaction (PCR), nested PCR, and RT-LAMP assays for detecting FCV in clinical samples. The optimized RT-LAMP amplification was carried out at 56.3 °C. The technique visually detected FCV within 70 min, with a limit of detection of 14.3 × 101 copies/µL, and showed no cross-reactivity with other feline pathogens. Out of 54 oropharyngeal swab samples, 17 tested positive for FCV using both nested PCR and RT-LAMP, while only one tested positive using conventional PCR. The positivity rate was higher with nested PCR and RT-LAMP (31.48%) compared to conventional PCR (1.85%). Consequently, these results demonstrated the effectiveness of the colorimetric RT-LAMP assay developed in this study as an alternative for diagnosing FCV in cats.
Collapse
Affiliation(s)
- Piyamat Khamsingnok
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| |
Collapse
|
5
|
Phongroop K, Rattanasrisomporn J, Piewbang C, Tangtrongsup S, Rungsipipat A, Techangamsuwan S. Molecular epidemiology and strain diversity of circulating feline Calicivirus in Thai cats. Front Vet Sci 2024; 11:1377327. [PMID: 38887538 PMCID: PMC11180889 DOI: 10.3389/fvets.2024.1377327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Feline calicivirus (FCV) is a significant viral pathogen causing upper respiratory tract and oral diseases in cats. The emergence of the virulent systemic FCV variant (VS-FCV) has raised global concern in the past decade. This study aims to explore the epidemiology, genetic characterization, and diversity of FCV strains circulating among Thai cats. Various sample types, including nasal, oral, and oropharyngeal swabs and fresh tissues, were collected from 184 cats across different regions of Thailand from 2016 to 2021. Using reverse transcription real-time polymerase chain reaction (RT-qPCR), FCV infection was investigated, with additional screening for feline herpesvirus-1 (FHV-1) by qPCR. The detection rates for FCV, FHV-1, and co-infection were 46.7, 65.8, and 31.5%, respectively. Significantly, the odds ratio (OR) revealed a strong association between the detection of a single FCV and the presence of gingivostomatitis lesions (OR: 7.15, 95% CI: 1.89-26.99, p = 0.004). In addition, FCV detection is notably less likely in vaccinated cats (OR: 0.22, 95% CI: 0.07-0.75, p = 0.015). Amino acid sequence analysis based on the VP1 major capsid protein gene of the 14 FCV-Thai (FCV-TH) strains revealed genetic diversity compared to the other 43 global strains (0 to 86.6%). Intriguingly, a vaccine-like FCV variant was detected in one cat. In summary, this study provides insights into the epidemiology and molecular characteristics of FCV diversity within the Thai cat population for the first time. The identification of unique physicochemical characteristics in the capsid hypervariable region of some FCV-TH strains challenges previous hypotheses. Therefore, further exploration of vaccine-like FCV variants is crucial for a comprehensive understanding and to improve viral prevention and control strategies.
Collapse
Affiliation(s)
- Kannika Phongroop
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jatuporn Rattanasrisomporn
- Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Li L, Liu Z, Shi J, Yang M, Yan Y, Fu Y, Shen Z, Peng G. The CDE region of feline Calicivirus VP1 protein is a potential candidate subunit vaccine. BMC Vet Res 2024; 20:80. [PMID: 38443948 PMCID: PMC10916247 DOI: 10.1186/s12917-024-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Feline calicivirus (FCV) infection causes severe upper respiratory disease in cats, but there are no effective vaccines available for preventing FCV infection. Subunit vaccines have the advantages of safety, low cost and excellent immunogenicity, but no FCV subunit vaccine is currently available. The CDE protein is the dominant neutralizing epitope region of the main antigenic structural protein of FCV, VP1. Therefore, this study evaluated the effectiveness of the CDE region as a truncated FCV VP1 protein in preventing FCV infection to provide a strategy for developing potential FCV subunit vaccines. RESULTS Through the prediction of FCV VP1 epitopes, we found that the E region is the dominant neutralizing epitope region. By analysing the spatial structure of VP1 protein, 13 amino acid sites in the CD and E regions were found to form hydrogen bonding interactions. The results show the presence of these interaction forces supports the E region, helping improve the stability and expression level of the soluble E protein. Therefore, we selected the CDE protein as the immunogen for the immunization of felines. After immunization with the CDE protein, we found significant stimulation of IgG, IgA and neutralizing antibody production in serum and swab samples, and the cytokine TNF-α levels and the numbers of CD4+ T lymphocytes were increased. Moreover, a viral challenge trial indicated that the protection generated by the CDE subunit vaccine significantly reduced the incidence of disease in animals. CONCLUSIONS For the first time, we studied the efficacy of the CDE protein, which is the dominant neutralizing epitope region of the FCV VP1 protein, in preventing FCV infection. We revealed that the CDE protein can significantly activate humoral, mucosal and cellular immunity, and the resulting protective effect can significantly reduce the incidence of animal disease. The CDE region of the FCV capsid is easy to produce and has high stability and excellent immunogenicity, which makes it a candidate for low-cost vaccines.
Collapse
Affiliation(s)
- Lisha Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zirui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Jiale Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Mengfang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yuanyuan Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Yanan Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
7
|
Fontes AC, Vieira MC, Oliveira M, Lourenço L, Viegas C, Faísca P, Seixas F, Requicha JF, Pires MA. Feline calicivirus and natural killer cells: A study of its relationship in chronic gingivostomatitis. Vet World 2023; 16:1708-1713. [PMID: 37766702 PMCID: PMC10521170 DOI: 10.14202/vetworld.2023.1708-1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aims Feline chronic gingivostomatitis (FCGS) is a frequent chronic inflammatory condition in the oral cavity with an etiopathogenesis not completely identified. This study aimed to contribute to the knowledge of FCGS by identifying the presence of feline calicivirus (FCV) antigens and natural killer (NK) cells and comparing them. Materials and Methods Forty biopsies from the oral mucosa of cats diagnosed with chronic gingivostomatitis were subjected to immunohistochemical techniques to evaluate cells with FCV antigens and NK cells positive for CD56. Results NK cells were identified in all samples, with an average of 725.3 ± 409.1 cells. Regarding FCV, it was identified in 18 out of 30 samples (60%), with a different number of cells with virus in between the analyzed cases. In all cases, the number of cells infected with FCV was lower than the number of NK cells present in the same samples, but there was no statistical association between them. Conclusion This preliminary study shows that NK cells are present in gingivostomatitis lesions not exclusively caused by FCV-stimulus, as only 60% of all cases were positive for this virus, but other antigens should be considered in the etiology of FCGS.
Collapse
Affiliation(s)
- Ana C. Fontes
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Maria C. Vieira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Marcela Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia Lourenço
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carlos Viegas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV) and AL4AnimalS, UTAD, Vila Real, Portugal
| | - Pedro Faísca
- Faculty of Veterinary Medicine and Research Centre for Biosciences and Health Technologies, Lusófona University, Lisboa, Portugal
- DNAtech, Lisboa, Portugal
| | - Fernanda Seixas
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV) and AL4AnimalS, UTAD, Vila Real, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV) and AL4AnimalS, UTAD, Vila Real, Portugal
| | - Maria A. Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV) and AL4AnimalS, UTAD, Vila Real, Portugal
| |
Collapse
|
8
|
Palombieri A, Sarchese V, Giordano MV, Fruci P, Crisi PE, Aste G, Bongiovanni L, Rinaldi V, Sposato A, Camero M, Lanave G, Martella V, Marsilio F, Di Martino B, Di Profio F. Detection and Characterization of Feline Calicivirus Associated with Paw and Mouth Disease. Animals (Basel) 2022; 13:ani13010065. [PMID: 36611675 PMCID: PMC9818015 DOI: 10.3390/ani13010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Feline calicivirus (FCV) infection in cats can led to several diverse clinical presentations, ranging from mild upper respiratory signs to virulent systemic disease. Herein, we report a paw and mouth disease case in a 7-year-old household cat due to an FCV infection. An asymptomatic cat living in the same household was also infected with FCV. Clinical and pathological investigations were combined with the molecular and phenotypical characterization of the FCV strains. The RNA of the FCV was detected using qualitative and quantitative reverse transcription (RT)-PCR assays, and FCV antigen was confirmed by immunohistochemistry. After the whole genome analysis, the strains detected in the two cats appeared to be genetically diverse from FCVs previously detected in association with paw and mouth disease and with virulent systemic disease. Interestingly, the isolates obtained in this study were resistant to low pH conditions and slightly susceptible to bile salts, but they were susceptible to a trypsin treatment, revealing a phenotype pattern that is different from that which has been observed for respiratory FCVs.
Collapse
Affiliation(s)
- Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | | | - Paola Fruci
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Giovanni Aste
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, The Netherlands
| | - Valentina Rinaldi
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Alessio Sposato
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70121 Bari, Italy
| | - Fulvio Marsilio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
- Correspondence: ; Tel.: +39-0861-266845
| |
Collapse
|
9
|
Cao L, Li Q, Shi K, Wei L, Ouyang H, Ye Z, Du W, Ye J, Hui X, Li J, Cao S, Zhou D. Isolation and phylogenetic analysis of feline calicivirus strains from various region of China. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractFeline calicivirus (FCV) is an important feline pathogen mainly causing upper respiratory tract disease, conjunctivitis, and stomatitis, and it is classified into genotype I and genotype II. To investigate the prevalence and molecular characteristics of FCV, this study collected 337 cat swab samples from animal hospitals in different regions of China from 2019 to 2021. The positive detection rate of FCV was 29.9% (101/337) by RT-PCR. Statistical analysis showed that FCV prevalence was significantly associated with living environment (p = 0.0004), age (p = 0.031) and clinical symptoms (p = 0.00), but not with sex (p = 0.092) and breed (p = 0.171). The 26 strains of FCV were isolated using F81 cells. Phylogenetic analysis showed that 10 isolates belonged to genotype I, and 16 isolates belonged to genotype II. These 26 isolates were highly genetically diverse, of which HB7 isolate had three same virulence-related amino acid loci with VSD strains. Potential loci distinguishing different genotypes were identified from 26 isolates, suggesting the genetic relationship between different genotypes. In addition, selection pressure analysis based on capsid protein of 26 isolates revealed that the protein is under diversifying selection. This study reveals the genetic diversity of FCV and provides a reference for the screening of vaccine candidate strains and the development of vaccines with better cross-protection effects.
Collapse
|
10
|
Liang J, Zang M, Zhou Z. Genetic and phylogenetic analysis of capsid gene of feline calicivirus in Nanjing, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105323. [PMID: 35777531 DOI: 10.1016/j.meegid.2022.105323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Feline calicivirus (FCV) is a common and important pathogen in cats, typically resulting in upper respiratory tract disease or ulcerative oral lesions. Although there are large number of researches on FCV and vaccines against FCV have been widely used for years, the explanation for vaccination failure and further studies on the prevalence of FCV are still necessary in China. In this study, 86 nasopharyngeal swabs from pet cats with upper respiratory symptoms from several Nanjing animal hospitals were collected in 2020. Among them, 36 (41.86%) were positive for FCV. In addition, 13 FCV capsid genes were sequenced. The comparative analysis of linear B-cell epitopes of VP1 gene indicated that there were many amino acid variations existed among FCV vaccine strains and these strains currently circulating in Nanjing, which may relate to the failure of vaccination and maybe aid for future vaccine design. Besides, phylogenetic analysis of capsid gene revealed two genotypes. Except for the F86 strain, most of the strains were clustered with FCV I genotype, which indicated that FCV I genotype was the most prevalent genotype currently circulating in Nanjing. In conclusion, this study provided useful information as to the evolution and genetic variants of FCV in Nanjing, which is urgent for the future instructions of effective disease prevention and control strategies.
Collapse
Affiliation(s)
- Jiawei Liang
- College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Minghui Zang
- College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhenlei Zhou
- College of veterinary medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
11
|
Guo J, Ding Y, Sun F, Zhou H, He P, Chen J, Guo J, Zeng H, Long J, Wei Z, Ouyang K, Huang W, Chen Y. Co-circulation and evolution of genogroups I and II of respiratory and enteric feline calicivirus isolates in cats. Transbound Emerg Dis 2022; 69:2924-2937. [PMID: 34982847 PMCID: PMC9787975 DOI: 10.1111/tbed.14447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022]
Abstract
Feline calicivirus (FCV) is a highly infectious pathogen that causes upper respiratory tract disease (URTD), but the enteric FCVs raise concerns regarding their role of an enteric pathogen. In this study, between 2019 and 2020, 101 clinical samples from domestic cats with symptoms of URTD, with or without enteritis, were collected for FCV-specific detection. The FCV-positive rate reached to 42.4% (28/66) in cats with respiratory symptoms. The rates were 11.1% (3/27) and 12.5% (1/8) when faeces and serum samples were measured using reverse transcription polymerase chain reaction (RT-PCR), respectively. Ten FCV strains were successfully isolated from respiratory and enteric sources in domestic cats from Guangxi. Phylogenetic analysis based on the genome sequences of 11 isolates (including GX01-13 isolated in 2013) indicated that the newly characterized FCV strains had two recombinant events in comparison with other FCVs and were of respiratory and enteric origins. These strains displayed high genetic diversity, and they were divided into two genogroups (I and II). Of these, the GXNN02-19 isolate was grouped with previously published Chinese isolates that were identified as genogroup II, which contained three specific amino acid residues (377K, 539V and 557S) in the VP1 protein. In addition, the three enteric viruses appeared genetically heterogeneous to each other. All isolates were found to be more sensitive when exposed to low pH conditions, but they were resistant to treatment with trypsin and bile salts. Furthermore, there were no significant differences between the respiratory and enteric FCVs. Our results showed that the genetically distinct FCV strains with genogroups I and II from respiratory and enteric origins were co-circulating in this geographical area. Also, it was revealed that the potential recombinant events between the enteric and respiratory FCVs suggested an important role of enteric FCV during the evolution.
Collapse
Affiliation(s)
- Jinfan Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Yangbao Ding
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Fanyuan Sun
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | | | - Ping He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Jiancai Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Jianing Guo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Hao Zeng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Jianming Long
- Shenjiu Biological Products Co. Ltd.NanningP. R. China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and TechnologyGuangxi UniversityNanningP. R. China
| |
Collapse
|
12
|
Fujita S, Koba R, Tohya Y. Identification of amino acid substitutions escaping from a broadly neutralizing monoclonal antibody of feline calicivirus. Virus Res 2022; 318:198848. [PMID: 35691421 DOI: 10.1016/j.virusres.2022.198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
Feline calicivirus (FCV) causes upper respiratory tract diseases in cats and has highly variable antigenicity for neutralization of each strain. Neutralizing epitopes of FCV are currently found in the hypervariable region (HVR) in the P2 domain of the major capsid protein VP1. Due to its unique ability to neutralize various FCV strains, 1D7 is a monoclonal antibody that may recognize a novel neutralizing epitope. While other neutralizing epitopes were characterized by producing neutralization-resistant variants, only 1D7-resistant variants could not be obtained, and its epitope has not been identified in the previous studies. In this study, we successfully generated these variants by multiple passaging of the FCV F4 strain in the presence of 1D7 and discovered that several amino acid substitutions (K638N, R662G, and T666I in the P1 domain of VP1) are involved in the decreased binding of 1D7. These substitution sites are also highly conserved among FCV strains compared with the substitution sites of other neutralization-resistant variants found in the HVR. Our results indicate that amino acid substitutions in the P1 domain, which are not responsible for direct interaction with the FCV receptor, are associated with neutralization escape. Since FCV can be conveniently cultured in vitro and the receptor required for infection is known, a detailed analysis of the 1D7 epitope could shed more light on the neutralization mechanism of the epitopes of viruses belonging to the Caliciviridae.
Collapse
Affiliation(s)
- Shigeru Fujita
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Ryota Koba
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Yukinobu Tohya
- Laboratory of Veterinary Microbiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
13
|
Hofmann-Lehmann R, Hosie MJ, Hartmann K, Egberink H, Truyen U, Tasker S, Belák S, Boucraut-Baralon C, Frymus T, Lloret A, Marsilio F, Pennisi MG, Addie DD, Lutz H, Thiry E, Radford AD, Möstl K. Calicivirus Infection in Cats. Viruses 2022; 14:937. [PMID: 35632680 PMCID: PMC9145992 DOI: 10.3390/v14050937] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Feline calicivirus (FCV) is a common pathogen in domestic cats that is highly contagious, resistant to many disinfectants and demonstrates a high genetic variability. FCV infection can lead to serious or even fatal diseases. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from 11 European countries, presents the current knowledge of FCV infection and fills gaps with expert opinions. FCV infections are particularly problematic in multicat environments. FCV-infected cats often show painful erosions in the mouth and mild upper respiratory disease and, particularly in kittens, even fatal pneumonia. However, infection can be associated with chronic gingivostomatitis. Rarely, highly virulent FCV variants can induce severe systemic disease with epizootic spread and high mortality. FCV can best be detected by reverse-transcriptase PCR. However, a negative result does not rule out FCV infection and healthy cats can test positive. All cats should be vaccinated against FCV (core vaccine); however, vaccination protects cats from disease but not from infection. Considering the high variability of FCV, changing to different vaccine strain(s) may be of benefit if disease occurs in fully vaccinated cats. Infection-induced immunity is not life-long and does not protect against all strains; therefore, vaccination of cats that have recovered from caliciviral disease is recommended.
Collapse
Affiliation(s)
- Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, 80539 Munich, Germany;
| | - Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Linnaeus Veterinary Limited, Shirley, Solihull B90 4BN, UK
| | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Albert Lloret
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Maria Grazia Pennisi
- Dipartimento di Scienze Veterinarie, Università di Messina, 98168 Messina, Italy;
| | - Diane D. Addie
- Veterinary Diagnostic Services, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Hans Lutz
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK;
| | - Karin Möstl
- Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
14
|
Kim SJ, Kim C, Chung HC, Park YH, Park KT. Full-length ORF2 sequence-based genetic and phylogenetic characterization of Korean feline caliciviruses. J Vet Sci 2021; 22:e32. [PMID: 33908206 PMCID: PMC8170210 DOI: 10.4142/jvs.2021.22.e32] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 11/20/2022] Open
Abstract
Feline calicivirus (FCV) is a highly infectious pathogen in cats and widely distributed worldwide with high genetic variation. Full-length open reading frame 2 of 5 from recently isolated Korean FCV isolates were sequenced and compared with those of global isolates. The results of phylogenetic analysis supported dividing global FCV isolates into two genogroups (type I and II) and demonstrated the presence of genogroup II in Korea, indicating their geographic spread in East Asia. High sequence variations in region E of the FCV isolates emphasizes that a novel vaccine needs to be developed to induce protective immunity against various FCV strains.
Collapse
Affiliation(s)
- Sung Jae Kim
- Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Cheongung Kim
- Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Hee Chun Chung
- Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kun Taek Park
- Department of Biotechnology, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
15
|
Smith SL, Afonso MM, Pinchbeck GL, Gaskell RM, Dawson S, Radford AD. Temporally separated feline calicivirus isolates do not cluster phylogenetically and are similarly neutralised by high-titre vaccine strain FCV-F9 antisera in vitro. J Feline Med Surg 2020; 22:602-607. [PMID: 31411533 PMCID: PMC7252219 DOI: 10.1177/1098612x19866521] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Feline calicivirus (FCV) is a highly variable and globally important feline pathogen for which vaccination has been the mainstay of control. Here, we test whether the continued use of FCV-F9, one of the most frequently used vaccine strains globally, is driving the emergence of vaccine-resistant viruses in the field. METHODS This study made use of two representative panels of field isolates previously collected from cats visiting randomly selected veterinary practices across the UK as part of separate cross-sectional studies from 2001 and 2013/2014. Phylogenetic analysis and in vitro virus neutralisation tests were used to compare the genetic and antigenic relationships between these populations and FCV-F9. RESULTS Phylogenetic analysis showed a typically radial distribution dominated by 52 distinct strains, with strains from both 2001 and 2013/2014 intermingled. The sequence for FCV-F9 appeared to be integral to this phylogeny and there were no significant differences in the genetic distances within each studied population (intra-population distances), or between them (inter-population distances), or between each population and FCV-F9. A 1 in 8 dilution neutralised 97% and 100% of the 2001 and 2013/14 isolates, respectively, and a 1 in 16 dilution neutralised 87% and 75% of isolates, respectively. There was no significant difference either in variance between the FCV-F9 neutralising titres for the two populations, or in the distribution of neutralisation titres across the two populations. CONCLUSIONS AND RELEVANCE Although FCV is a highly variable virus, we found no evidence for a progressive divergence of field virus from vaccine strain FCV-F9, either phylogenetically or antigenically, with FCV-F9 antisera remaining broadly and equally cross-reactive to two geographically representative and temporally separated FCV populations. We suggest this may be because the immunodominant region of the FCV capsid responsible for neutralisation may have structural constraints preventing its longer term progressive antigenic evolution.
Collapse
Affiliation(s)
- Shirley L Smith
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, UK
| | - Maria M Afonso
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, UK
| | - Gina L Pinchbeck
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, UK
| | - Rosalind M Gaskell
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - Susan Dawson
- Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - Alan D Radford
- Institute of Infection and Global Health, University of Liverpool, Neston, Wirral, UK
| |
Collapse
|
16
|
Di Martino B, Lanave G, Di Profio F, Melegari I, Marsilio F, Camero M, Catella C, Capozza P, Bányai K, Barrs VR, Buonavoglia C, Martella V. Identification of feline calicivirus in cats with enteritis. Transbound Emerg Dis 2020; 67:2579-2588. [PMID: 32359195 DOI: 10.1111/tbed.13605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 01/23/2023]
Abstract
Feline calicivirus (FCV) is a major pathogen of cats associated with either respiratory disease or systemic disease, but its possible role as an enteric pathogen is neglected. Using RT-PCR, the RNA of FCV was identified in 25.9% (62/239) of stools of cats with enteritis and in 0/58 (0%) of cats without diarrhoea or other clinical signs. Isolates of enteric origin were obtained and a large 3.2-kb portion of the genome was sequenced, encompassing the 3' end of the RNA polymerase, the capsid protein precursor and the minor capsid protein. Also, the complete genome sequence of one such strain, the 160/2015/ITA, was determined. Upon sequence analysis, the enteric viruses were found to be genetically heterogeneous and to differ from each other and from isolates of respiratory origin. The enteric isolates were found to be more resistant to low pH conditions, to trypsin and to bile treatment than respiratory isolates. Overall, these findings are consistent with the hypothesis that some FCVs may acquire enteric tropism and eventually act as enteric pathogens. Whether this enteric tropism is maintained stably and whether it may affect, to some extent, the ability of the virus to trigger the classical and/or hypervirulent forms of disease should be assessed. Also, FCV should be included in the diagnostic algorithms of enteric diseases of cats to gain further information about FCV strains displaying enteric pathotype.
Collapse
Affiliation(s)
- Barbara Di Martino
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Gianvito Lanave
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Irene Melegari
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Fulvio Marsilio
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Michele Camero
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Cristiana Catella
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Paolo Capozza
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Vanessa R Barrs
- Department of Public Health & Infectious Diseases, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Canio Buonavoglia
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vito Martella
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| |
Collapse
|
17
|
Cubillos-Zapata C, Angulo I, Almanza H, Borrego B, Zamora-Ceballos M, Castón JR, Mena I, Blanco E, Bárcena J. Precise location of linear epitopes on the capsid surface of feline calicivirus recognized by neutralizing and non-neutralizing monoclonal antibodies. Vet Res 2020; 51:59. [PMID: 32357948 PMCID: PMC7195702 DOI: 10.1186/s13567-020-00785-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
We report the generation, characterization and epitope mapping of a panel of 26 monoclonal antibodies (MAbs) against the VP1 capsid protein of feline calicivirus (FCV). Two close but distinct linear epitopes were identified at the capsid outermost surface (P2 subdomain) of VP1, within the E5′HVR antigenic hypervariable region: one spanning amino acids 431-435 (PAGDY), highly conserved and recognized by non-neutralizing MAbs; and a second epitope spanning amino acids 445-451 (ITTANQY), highly variable and recognized by neutralizing MAbs. These antibodies might be valuable for diagnostic applications, as well as for further research in different aspects of the biology of FCV.
Collapse
Affiliation(s)
- Carolina Cubillos-Zapata
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain
| | - Iván Angulo
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | - Horacio Almanza
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Facultad de Medicina y Psicología de la Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | | | - José R Castón
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología/CSIC, Cantoblanco, Madrid, Spain
| | - Ignacio Mena
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal, INIA-CISA, Valdeolmos, Madrid, Spain.
| |
Collapse
|
18
|
Multiple Correspondence Analysis on Amino Acid Properties within the Variable Region of the Capsid Protein Shows Differences between Classical and Virulent Systemic Feline Calicivirus Strains. Viruses 2019; 11:v11121090. [PMID: 31771183 PMCID: PMC6950066 DOI: 10.3390/v11121090] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/20/2023] Open
Abstract
Feline calicivirus (FCV) is a widespread and highly prevalent pathogen of domestic cats, responsible for mild upper respiratory tract disease. Outbreaks of severe virulent systemic disease (VSD) associated with FCV infection have been reported worldwide. VSD FCV strains have a broader tropism and cause a systemic vascular compromise. Despite clear differences in the pathogenesis of VSD and oral respiratory infections, attempts to identify specific molecular markers of VSD strains on the major capsid protein VP1 have failed. Region E of VP1 is responsible for the interaction with the cell receptor Junctional Adhesion Molecule JAM-1 (FeJAM-1) and with VP2 minor capsid protein during the entry of the virus. We carried out an original analysis on the sequences from region E of VSD and classical strains. A Multiple Correspondence Analysis was performed on a Boolean matrix built by coding sequences on the basis of their amino acid properties. For the first time, this approach was able to differentiate VSD and classical FCV. Seven remarkable residue positions were shown to be statistically significant for pathotype differentiation, mainly located in the N-terminal hypervariable part of region E. As structural analysis suggested an interaction of these residues with FeJAM-1 or VP2, post-binding events, and specific conformational changes may explain the difference of pathogenesis between pathotypes.
Collapse
|
19
|
Pereira JDJ, Baumworcel N, Fioretti JM, Domingues CF, Moraes LFD, Marinho RDSS, Vieira MCR, Pinto AMV, de Castro TX. Molecular characterization of feline calicivirus variants from multicat household and public animal shelter in Rio de Janeiro, Brazil. Braz J Microbiol 2018; 49:777-784. [PMID: 29548718 PMCID: PMC6175694 DOI: 10.1016/j.bjm.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/21/2017] [Accepted: 01/14/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to perform the molecular characterization of conserved and variable regions of feline calicivirus capsid genome in order to investigate the molecular diversity of variants in Brazilian cat population. Twenty-six conjunctival samples from cats living in five public short-term animal shelters and three multicat life-long households were analyzed. Fifteen cats had conjunctivitis, three had oral ulceration, eight had respiratory signs (cough, sneeze and nasal discharge) and nine were asymptomatic. Feline calicivirus were isolated in CRFK cells and characterized by reverse transcription PCR target to both conserved and variable regions of open reading frame 2. The amplicons obtained were sequenced. A phylogenetic analysis along with most of the prototypes available in GenBank database and an amino acid analysis were performed. Phylogenetic analysis based on both conserved and variable region revealed two clusters with an aLTR value of 1.00 and 0.98 respectively and the variants from this study belong to feline calicivirus genogroup I. No association between geographical distribution and/or clinical signs and clustering in phylogenetic tree was observed. The variants circulating in public short-term animal shelter demonstrated a high variability because of the relatively rapid turnover of carrier cats constantly introduced of multiple viruses into this location over time.
Collapse
Affiliation(s)
- Joylson de Jesus Pereira
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brazil.
| | - Natasha Baumworcel
- Universidade Federal Fluminense, Faculdade de Veterinária, Niterói, RJ, Brazil
| | - Júlia Monassa Fioretti
- Instituto Oswaldo Cruz - Fiocruz, Laboratório de Virologia Comparada e Ambiental, Rio de Janeiro, RJ, Brazil
| | - Cinthya Fonseca Domingues
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brazil
| | | | | | - Maria Clara Rodrigues Vieira
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brazil; Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Programa de Pós-graduação em Ciências e Biotecnologia, Niterói, RJ, Brazil
| | - Ana Maria Viana Pinto
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brazil
| | - Tatiana Xavier de Castro
- Universidade Federal Fluminense, Instituto Biomédico, Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brazil
| |
Collapse
|
20
|
Sato H, Sehata G, Okada N, Iwamoto K, Masubuchi K, Kainuma R, Noda T, Igarashi T, Sawada T, Noro T, Oishi E. Intranasal immunization with inactivated feline calicivirus particles confers robust protection against homologous virus and suppression against heterologous virus in cats. J Gen Virol 2017; 98:1730-1738. [PMID: 28691897 DOI: 10.1099/jgv.0.000827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protective efficacy of intranasal (IN) administration of inactivated feline calicivirus (FCV) vaccine against homologous or heterologous FCV infection was investigated. Groups of cats immunized with the experimental inactivated, non-adjuvanted FCV vaccine via either the IN or subcutaneous (SC) route were exposed to homologous or highly heterologous FCV. Both the IN and SC immunization protocols established robust protection against homologous FCV infection. Although neither immunization regimen conferred protection against the heterologous strain, clinical scores and virus titres of oral swabs were lower in cats in the IN group compared to those in the SC group, accompanying a faster neutralizing antibody response against the heterologous virus in cats in the IN group. The IN group secreted more IgA specific to FCV proteins in oral washes (lavage fluids from the oral cavity) than the SC group. IN immunization with an inactivated whole FCV particle, which protects cats from homologous virus exposure and shortens the period of heterologous virus shedding, may serve as a better platform for anti-FCV vaccine.
Collapse
Affiliation(s)
- Hiroaki Sato
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Go Sehata
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Nobutaka Okada
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Kayo Iwamoto
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Katsuo Masubuchi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Risa Kainuma
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Tatsuki Noda
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Tatsuhiko Igarashi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Takuo Sawada
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Taichi Noro
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| | - Eiji Oishi
- Kyoto Biken Laboratories, Inc., 24-16 Makishima-cho, Uji-shi, Kyoto 611-0041, Japan
| |
Collapse
|
21
|
Zhao Y, Chen X, Ying Y, Wang K, Dong H, Gao C, Yang S, Hu G. Isolation and phylogenetic analysis of three feline calicivirus strains from domestic cats in Jilin Province, China. Arch Virol 2017; 162:2579-2589. [PMID: 28478577 DOI: 10.1007/s00705-017-3392-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/23/2017] [Indexed: 01/16/2023]
Abstract
Feline calicivirus (FCV) is a highly prevalent pathogen that can cause infectious felid upper respiratory tract disease. The majority of complete genome sequences of FCV strains reported to date are from the USA. In this study, three FCV strains, CH-JL1, CH-JL2 and CH-JL3, were isolated from domestic cats in Jilin Province, China. Sequence analysis revealed that except for strains HRB-SS, WZ-1, XH, 12Q087-1 and 12Q087-5, the 3' untranslated regions (UTRs) of CH-JL2 and CH-JL3 are more than 20 nucleotides longer than those of all other reference isolates. The complete sequences of the three CH-JLs were compared with other reference strains, with nucleotide sequence identity values in the range of 76.2%-82.2%, 76.8%-96.4 and 76.8%-96.4%. Phylogenetic analysis showed that CH-JL1 forms a branch with FB-NJ-13, GD, 12Q087-1 and 12Q087-5. CH-JL2 was found to be most closely related to CH-JL3, forming another branch together with the other isolates. CH-JL1 shares a long nucleotide span with CH-JL2 and CH-JL3. It can be inferred that many FCV strains are co-circulating in Jilin Province. The availability of complete genome sequences will serve as a reference for future epidemiological studies of FCV.
Collapse
Affiliation(s)
- Yanli Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
- Library, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoqing Chen
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Ying Ying
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongwei Dong
- Jilin Agricultural Radio and Television School, Changchun, 130021, China
| | - Chao Gao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
22
|
Genetic and phylogenetic analysis of feline calicivirus isolates in China. Vet J 2017; 220:24-27. [DOI: 10.1016/j.tvjl.2016.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 11/23/2022]
|
23
|
Conley M, Emmott E, Orton R, Taylor D, Carneiro DG, Murata K, Goodfellow IG, Hansman GS, Bhella D. Vesivirus 2117 capsids more closely resemble sapovirus and lagovirus particles than other known vesivirus structures. J Gen Virol 2017; 98:68-76. [PMID: 27902397 PMCID: PMC5370393 DOI: 10.1099/jgv.0.000658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
Vesivirus 2117 is an adventitious agent that, in 2009, was identified as a contaminant of Chinese hamster ovary cells propagated in bioreactors at a pharmaceutical manufacturing plant belonging to Genzyme. The consequent interruption in supply of Fabrazyme and Cerezyme (drugs used to treat Fabry and Gaucher diseases, respectively) caused significant economic losses. Vesivirus 2117 is a member of the Caliciviridae, a family of small icosahedral viruses encoding a positive-sense RNA genome. We have used cryo-electron microscopy and three-dimensional image reconstruction to calculate a structure of vesivirus 2117 virus-like particles as well as feline calicivirus and a chimeric sapovirus. We present a structural comparison of several members of the Caliciviridae, showing that the distal P domain of vesivirus 2117 is morphologically distinct from that seen in other known vesivirus structures. Furthermore, at intermediate resolutions, we found a high level of structural similarity between vesivirus 2117 and Caliciviridae from other genera: sapovirus and rabbit hemorrhagic disease virus. Phylogenetic analysis confirms vesivirus 2117 as a vesivirus closely related to canine vesiviruses. We postulate that morphological differences in virion structure seen between vesivirus clades may reflect differences in receptor usage.
Collapse
Affiliation(s)
- Michaela Conley
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - Edward Emmott
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard Orton
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| | - David Taylor
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Howard Hughes Medical Institute, 742 Stanley Hall, MS 3220 University of California, Berkeley, CA 94720-3220, USA
| | - Daniel G Carneiro
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
- Present address: School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ian G Goodfellow
- Department of Pathology, Division of Virology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Grant S Hansman
- National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Present address: Centre for Infectious Diseases, Department of Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - David Bhella
- Medical Research Council – University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
24
|
Spiri AM, Thézé J, Meli ML, Cattori V, Berger A, Steinrigl A, Pybus OG, Hofmann-Lehmann R, Willi B. Genetic diversity and phenotypic associations of feline caliciviruses from cats in Switzerland. J Gen Virol 2016; 97:3253-3266. [PMID: 27902382 DOI: 10.1099/jgv.0.000622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline calicivirus (FCV) is a common viral pathogen in domestic cats worldwide. The variable regions of the capsid (VP1) gene of FCV have one of the highest recorded rates of molecular evolution. Understanding the genetic diversity and phylogeny of FCV is a prerequisite to exploring the epidemiology and pathogenesis of this virus and to the development of efficacious vaccine strategies. In this study, we undertook a nationwide molecular characterization of FCV using for the first time nearly complete capsid (VP1) gene sequences. Sequences from 66 FCV samples were used to investigate the correlation between viral phylogeny and several traits, including geographic origin, signalment, husbandry, FCV vaccination and co-infections. Codon-based nucleotide alignment showed that individual nucleotides and their corresponding amino acid sites were either invariant or highly variable. Using a threshold of 20 % genetic distance in variable region E, FCV samples were grouped into 52 strains, 10 of which comprised two to three samples. Significant associations between FCV phylogeny and host characteristics were found, specifically the pedigree status of the cats, and two well-supported lineages were identified in which the current FCV strain definition was confounded. No correlation between viral genetic distances and geographic distances was evident. The greater resolution of the FCV phylogeny in this study compared to previous studies can be attributed to our use of more conserved regions of the capsid (VP1) gene; nonetheless, our results were still hampered by sequence saturation. The study highlights the need for whole-genome sequences for FCV phylogeny studies.
Collapse
Affiliation(s)
- Andrea M Spiri
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julien Thézé
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Marina L Meli
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Valentino Cattori
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Alice Berger
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Adolf Steinrigl
- Institute for Veterinary Disease Control Mödling, AGES - Austrian Agency for Health and Food Safety, Mödling, Austria
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Rabbit hemorrhagic disease virus capsid, a versatile platform for foreign B-cell epitope display inducing protective humoral immune responses. Sci Rep 2016; 6:31844. [PMID: 27549017 PMCID: PMC4994115 DOI: 10.1038/srep31844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Virus-like particles (VLPs), comprised of viral structural proteins devoid of genetic material, are tunable nanoparticles that can be chemically or genetically engineered, to be used as platforms for multimeric display of foreign antigens. Here, we report the engineering of chimeric VLPs, derived from rabbit hemorrhagic disease virus (RHDV) for presentation of foreign B-cell antigens to the immune system. The RHDV capsid comprises 180 copies of a single capsid subunit (VP60). To evaluate the ability of chimeric RHDV VLPs to elicit protective humoral responses against foreign antigens, we tested two B-cell epitopes: a novel neutralizing B-cell epitope, derived from feline calicivirus capsid protein, and a well characterized B-cell epitope from the extracellular domain of influenza A virus M2 protein (M2e). We generated sets of chimeric RHDV VLPs by insertion of the foreign B-cell epitopes at three different locations within VP60 protein (which involved different levels of surface accessibility) and in different copy numbers per site. The immunogenic potential of the chimeric VLPs was analyzed in the mouse model. The results presented here indicated that chimeric RHDV VLPs elicit potent protective humoral responses against displayed foreign B-cell epitopes, demonstrated by both, in vitro neutralization and in vivo protection against a lethal challenge.
Collapse
|
26
|
Hou J, Sánchez-Vizcaíno F, McGahie D, Lesbros C, Almeras T, Howarth D, O'Hara V, Dawson S, Radford AD. European molecular epidemiology and strain diversity of feline calicivirus. Vet Rec 2016; 178:114-5. [PMID: 26811440 PMCID: PMC4752659 DOI: 10.1136/vr.103446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 11/05/2022]
Abstract
Feline calicivirus (FCV) causes a variable syndrome of upper respiratory tract disease, mouth ulcers and lameness. A convenience-based prospective sample of oropharyngeal swabs (n=426) was obtained from five countries (France, Germany, Greece, Portugal and the UK). The prevalence of FCV by virus isolation was 22.2 per cent. Multivariable analysis found that animals presenting with lymphoplasmacytic gingivitis stomatitis complex were more likely to test positive for FCV infection. Furthermore, vaccinated cats up to 48 months of age were significantly less likely to be infected with FCV than unvaccinated animals of similar ages. Phylogenetic analysis based on consensus sequences for the immunodominant region of the capsid gene from 72 FCV isolates identified 46 strains. Thirteen of the 14 strains with more than one sequence were restricted to individual regions or sites in individual countries; the exception was a strain present in two sites close to each other in France. Four strains were present in more than one household. Five colonies, four of which were rescue shelters, had multiple strains within them. Polymerase sequence suggested possible rare recombination events. These locally, nationally and internationally diverse FCV populations maintain a continuous challenge to the control of FCV infection and disease.
Collapse
Affiliation(s)
- J Hou
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - F Sánchez-Vizcaíno
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - D McGahie
- Virbac, 13e rue - LID, Carros 06511, France
| | - C Lesbros
- Virbac, 13e rue - LID, Carros 06511, France
| | - T Almeras
- Virbac, 13e rue - LID, Carros 06511, France
| | - D Howarth
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - V O'Hara
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - S Dawson
- University of Liverpool, School of Veterinary Science, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - A D Radford
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Chester High Road, Neston, Wirral, CH64 7TE, UK
| |
Collapse
|
27
|
Willi B, Spiri AM, Meli ML, Samman A, Hoffmann K, Sydler T, Cattori V, Graf F, Diserens KA, Padrutt I, Nesina S, Berger A, Ruetten M, Riond B, Hosie MJ, Hofmann-Lehmann R. Molecular characterization and virus neutralization patterns of severe, non-epizootic forms of feline calicivirus infections resembling virulent systemic disease in cats in Switzerland and in Liechtenstein. Vet Microbiol 2016; 182:202-12. [DOI: 10.1016/j.vetmic.2015.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
|
28
|
Screening and Characterization of Linear B-Cell Epitopes by Biotinylated Peptide Libraries. Methods Mol Biol 2015; 1348:241-50. [PMID: 26424277 DOI: 10.1007/978-1-4939-2999-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identification of B-cell epitopes is important for the use of antibodies as therapeutic agents, the design of epitope-based vaccines against infectious diseases, and immunological assays based on peptide antibodies. A large number of methods are available for epitope mapping, but many of them require specialized laboratories and are expensive. In this chapter, we describe a high-throughput approach for epitope mapping of peptide antibodies by use of a library of soluble, overlapping, biotinylated peptides. As example, we present characterization of monoclonal and polyclonal antibodies specific for peptides of Mycobacterium tuberculosis acyl carrier protein AcpM and the Chlamydia trachomatis chaperone Ct043 by ELISA.
Collapse
|
29
|
Monné Rodriguez J, Soare T, Malbon A, Blundell R, Papoula-Pereira R, Leeming G, Köhler K, Kipar A. Alveolar macrophages are the main target cells in feline calicivirus-associated pneumonia. Vet J 2014; 201:156-65. [DOI: 10.1016/j.tvjl.2014.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 02/01/2014] [Accepted: 04/27/2014] [Indexed: 11/16/2022]
|
30
|
Genetic characterization of feline calicivirus strains associated with varying disease manifestations during an outbreak season in Missouri (1995–1996). Virus Genes 2013; 48:96-110. [DOI: 10.1007/s11262-013-1005-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/24/2013] [Indexed: 11/26/2022]
|
31
|
Virulent feline calicivirus disease in a shelter in Italy: a case description. Res Vet Sci 2013; 95:283-90. [PMID: 23433681 PMCID: PMC7111799 DOI: 10.1016/j.rvsc.2013.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 01/07/2013] [Accepted: 01/25/2013] [Indexed: 12/22/2022]
Abstract
Feline calicivirus (FCV) is a common pathogen of cats that is particularly widespread in multi-cat environments such as shelters and catteries. FCV infections are usually associated with acute, mild and self-limiting upper respiratory tract disease characterized by oral vesicles/ulcers. Recently, virulent systemic disease (VSD) associated with FCV infection has been reported in the USA and Europe. This paper describes a case of VSD affecting one adult, FIV infected cat ("Oscar") living in a shelter located in Northern Italy; the clinical, post-mortem and laboratory findings indicate that this is the first case of suspected FCV-VSD in this country. Similar to a previous report (Meyer et al., 2011), the disease affected only one cat, while others remained asymptomatic, despite their direct contact with "Oscar". Phylogenetic analysis identified unique features in the "Oscar" FCV isolate. The FIV infection of the patient might have favoured the generation of the virulent FCV strains in this cat.
Collapse
|
32
|
Abstract
Feline calicivirus (FCV) is an important pathogen of domestic cats and a frequently used model of human caliciviruses. Here we use an epidemiologically rigorous sampling framework to describe for the first time the phylodynamics of a calicivirus at regional and national scales. A large number of FCV strains cocirculated in the United Kingdom at the national and community levels, with no strain comprising more than 5% and 14% of these populations, respectively. The majority of strains exhibited a relatively restricted geographical range, with only two strains (one field virus and one vaccine virus) spreading further than 100 km. None of the field strains were identified outside the United Kingdom. Temporally, while some strains persisted locally for the majority of the study, others may have become locally extinct. Evolutionary analysis revealed a radial phylogeny with little bootstrap support for nodes above the strain level. In most cases, spatially and temporally diverse strains intermingled in the phylogeny. Together, these data suggest that current FCV evolution is not associated with selective competition among strains. Rather, the genetic and antigenic landscape in each geographical location is highly complex, with many strains cocirculating. These variants likely exist at the community level by a combination of de novo evolution and occasional gene flow from the wider national population. This complexity provides a benchmark, for the first time, against which vaccine cross-protection at both local and national levels can be judged.
Collapse
|
33
|
Henzel A, Sá e Silva M, Luo S, Lovato L, Weiblen R. Genetic and phylogenetic analyses of capsid protein gene in feline calicivirus isolates from Rio Grande do Sul in southern Brazil. Virus Res 2012; 163:667-71. [DOI: 10.1016/j.virusres.2011.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 11/26/2022]
|
34
|
Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor. J Virol 2010; 84:5550-64. [PMID: 20357100 DOI: 10.1128/jvi.02371-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonenveloped viral capsids are metastable structures that undergo conformational changes during virus entry that lead to interactions of the capsid or capsid fragments with the cell membrane. For members of the Caliciviridae, neither the nature of these structural changes in the capsid nor the factor(s) responsible for inducing these changes is known. Feline junctional adhesion molecule A (fJAM-A) mediates the attachment and infectious viral entry of feline calicivirus (FCV). Here, we show that the infectivity of some FCV isolates is neutralized following incubation with the soluble receptor at 37 degrees C. We used this property to select mutants resistant to preincubation with the soluble receptor. We isolated and sequenced 24 soluble receptor-resistant (srr) mutants and characterized the growth properties and receptor-binding activities of eight mutants. The location of the mutations within the capsid structure of FCV was mapped using a new 3.6-A structure of native FCV. The srr mutations mapped to the surface of the P2 domain were buried at the protruding domain dimer interface or were present in inaccessible regions of the capsid protein. Coupled with data showing that both the parental FCV and the srr mutants underwent increases in hydrophobicity upon incubation with the soluble receptor at 37 degrees C, these findings indicate that FCV likely undergoes conformational change upon interaction with its receptor. Changes in FCV capsid conformation following its interaction with fJAM-A may be important for subsequent interactions of the capsid with cellular membranes, membrane penetration, and genome delivery.
Collapse
|
35
|
Reynolds BS, Poulet H, Pingret JL, Jas D, Brunet S, Lemeter C, Etievant M, Boucraut-Baralon C. A nosocomial outbreak of feline calicivirus associated virulent systemic disease in France. J Feline Med Surg 2009; 11:633-44. [PMID: 19201637 PMCID: PMC11132575 DOI: 10.1016/j.jfms.2008.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2008] [Indexed: 11/15/2022]
Abstract
This report describes a nosocomial outbreak of feline calicivirus (FCV) associated virulent systemic disease (VSD) in a French veterinary teaching hospital in 2005. The outbreak started in March and resolved within 1 month. Signs, clinical course, clinicopathological findings and lesions were typical of FCV-induced VSD. FCV infection was confirmed by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). Among the eight infected cats, two had to be euthanased, three died, and three recovered after medical treatment. Virus could not be confined inside the animal hospital and on two occasions, students' own cats became infected. Subsequent genetic sequencing studies confirmed that the eight cats were infected with the same strain of virus, and that it was distinct from those involved in the US and UK outbreaks of VSD. Virulence and viral excretion patterns of the isolated strain were further characterised by experimental infection.
Collapse
Affiliation(s)
- Brice S Reynolds
- Department of Clinical Sciences, National Veterinary School of Toulouse, 23 chemin des Capelles, BP 87614, 31076 Toulouse cedex 03, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Radford AD, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H, Marsilio F, Pennisi MG, Thiry E, Truyen U, Horzinek MC. Feline calicivirus infection. ABCD guidelines on prevention and management. J Feline Med Surg 2009; 11:556-64. [PMID: 19481035 PMCID: PMC11132273 DOI: 10.1016/j.jfms.2009.05.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OVERVIEW Feline calicivirus (FCV) is a highly variable virus. More severe, systemic forms of FCV infection have been observed recently. INFECTION Sick, acutely infected or carrier cats shed FCV in oronasal and conjunctival secretions. Infection occurs mainly through direct contact. DISEASE SIGNS The main clinical signs are oral ulcers, upper respiratory signs and a high fever. Feline calicivirus may be isolated from nearly all cats with chronic stomatitis or gingivitis. Cats with 'virulent systemic FCV disease' variably show pyrexia, cutaneous oedema, ulcerative lesions on the head and limbs, and jaundice. Mortality is high and the disease is more severe in adult cats. DIAGNOSIS Diagnosis of FCV can be achieved by virus isolation or reverse-transcriptase PCR. Viral RNA can be detected in conjunctival and oral swabs, blood, skin scrapings or lung tissue using PCR. Positive PCR results should be interpreted with caution, as these may be a consequence of low-level shedding by persistently infected carriers. The diagnosis of virulent systemic FCV disease relies on clinical signs and isolation of the same strain from the blood of several diseased cats. DISEASE MANAGEMENT Supportive therapy (including fluid therapy) and good nursing care are essential. Anorexic cats should be fed highly palatable, blended or warmed food. Mucolytic drugs (eg, bromhexine) or nebulisation with saline may offer relief. Broad-spectrum antibiotics may be administered to prevent secondary bacterial infections. Feline calicivirus can persist in the environment for about 1 month and is resistant to many common disinfectants. VACCINATION RECOMMENDATIONS Two injections, at 9 and 12 weeks of age, are recommended, followed by a first booster 1 year later. In high-risk situations, a third vaccination at 16 weeks is recommended. Boosters should be given every 3 years. However, cats in high-risk situations should be revaccinated annually. Cats that have recovered from caliciviral disease are probably not protected for life, particularly if infected with different strains. Vaccination of these cats is still recommended.
Collapse
|
37
|
D'Mello F, Jervis SM, Edwards PM, Oliver SL, Bridger JC. Heterogeneity in the capsid protein of bovine enteric caliciviruses belonging to a new genus. Virology 2009; 387:109-16. [DOI: 10.1016/j.virol.2009.01.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/24/2008] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
|
38
|
Efficacy of a bivalent inactivated non-adjuvanted feline calicivirus vaccine: Relation between in vitro cross-neutralization and heterologous protection in vivo. Vaccine 2008; 26:3647-54. [DOI: 10.1016/j.vaccine.2008.04.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/10/2008] [Accepted: 04/28/2008] [Indexed: 11/19/2022]
|
39
|
McVey DS, Kennedy M. Vaccines for Emerging and Re-Emerging Viral Diseases of Companion Animals. Vet Clin North Am Small Anim Pract 2008; 38:903-17, ix-x. [DOI: 10.1016/j.cvsm.2008.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Porter CJ, Radford AD, Gaskell RM, Ryvar R, Coyne KP, Pinchbeck GL, Dawson S. Comparison of the ability of feline calicivirus (FCV) vaccines to neutralise a panel of current UK FCV isolates. J Feline Med Surg 2008; 10:32-40. [PMID: 17720588 PMCID: PMC10911152 DOI: 10.1016/j.jfms.2007.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2007] [Indexed: 11/21/2022]
Abstract
Feline calicivirus (FCV) comprises a large number of strains which are related antigenically to varying degrees. The antigenic variability creates problems for choosing antigens to include in vaccines. Historically, these have been selected for use based on their cross-reactivity with a high proportion of field strains. However, it is important to determine the current level of cross-reactivity of vaccines and whether or not this may be decreasing owing to widespread vaccine use. In this in vitro study, we have compared the ability of antisera to two vaccine viruses (FCV strain F9 and FCV strain 255) to neutralise a panel of 40 recent UK field isolates. These 40 isolates were obtained by randomised, cross-sectional sampling of veterinary practices in different geographical regions of the UK so as to ensure they were representative of viruses circulating in the veterinary-visiting population of cats in the UK. Virus neutralisation assays showed that both vaccine strains are still broadly cross-reactive, with F9 antiserum neutralising 87.5% and 255 antiserum 75% of isolates tested with antiserum dilutions of 1 in 2 or greater. However, when antibody units were used, in order to take account of differences in homologous titres between antisera, fewer isolates were neutralised, with F9 antiserum showing a slightly higher proportion of isolates neutralised than 255. Multivariable analysis of the sample population of 1206 cats from which the 40 isolates were derived found that vaccinated cats were at a decreased risk of being positive for FCV, whereas cats from households with more than one cat, and cats with mouth ulcers were at increased risk. In addition as cats became older their risk of shedding FCV decreased.
Collapse
Affiliation(s)
- Carol J Porter
- Small Animal Infectious Diseases group, Department of Veterinary Pathology, University of Liverpool Veterinary Teaching Hospital, Leahurst, Chester High Road, Neston CH64 7TE, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
41
|
Coyne KP, Edwards D, Radford AD, Cripps P, Jones D, Wood JLN, Gaskell RM, Dawson S. Longitudinal molecular epidemiological analysis of feline calicivirus infection in an animal shelter: a model for investigating calicivirus transmission within high-density, high-turnover populations. J Clin Microbiol 2007; 45:3239-44. [PMID: 17687017 PMCID: PMC2045375 DOI: 10.1128/jcm.01226-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of outbreaks of calicivirus infection in high-density, high-throughput populations is a challenge to both human and veterinary medicine. In such populations, the prevalence of infection is, in part, dependent on the levels of biosecurity and how this affects virus transmission. Here we show how longitudinal analysis of feline calicivirus (FCV) infection in an animal rescue shelter can be used as a model to examine the dynamics of calicivirus transmission and evolution in such environments. FCV was isolated from 33 of 116 cats sampled over a 15-month period (overall prevalence, 28%). Sequence analysis of the immunodominant variable regions of the viral capsid gene identified 16 strains circulating in the shelter, with no single strain appearing to predominate. The majority of these strains were introduced into the shelter from the community and did not appear to be transmitted within the population. However, for three of these strains, putative transmission events within the shelter were identified. The rates of evolution within hypervariable regions of the FCV capsid gene in individual cats ranged from 0.05 to 1.4% per week, with the highest rates generally being found in animals that either acquired the virus while in the shelter or were undergoing acute infection. These data suggest that despite the high prevalence and presence of multiple strains of FCV within the shelter, the spread of such pathogens may be restricted by various control measures, including good hygiene and biosecurity.
Collapse
Affiliation(s)
- Karen P Coyne
- Department of Veterinary Pathology, University of Liverpool, Leahurst, Chester High Road, South Wirral CH64 7TE, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Siebenga JJ, Vennema H, Renckens B, de Bruin E, van der Veer B, Siezen RJ, Koopmans M. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. J Virol 2007; 81:9932-41. [PMID: 17609280 PMCID: PMC2045401 DOI: 10.1128/jvi.00674-07] [Citation(s) in RCA: 310] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Noroviruses are the causative agents of the majority of viral gastroenteritis outbreaks in humans. During the past 15 years, noroviruses of genotype GGII.4 have caused four epidemic seasons of viral gastroenteritis, during which four novel variants (termed epidemic variants) emerged and displaced the resident viruses. In order to understand the mechanisms and biological advantages of these epidemic variants, we studied the genetic changes in the capsid proteins of GGII.4 strains over this period. A representative sample was drawn from 574 GGII.4 outbreak strains collected over 15 years of systematic surveillance in The Netherlands, and capsid genes were sequenced for a total of 26 strains. The three-dimensional structure was predicted by homology modeling, using the Norwalk virus (Hu/NoV/GGI.1/Norwalk/1968/US) capsid as a reference. The highly significant preferential accumulation and fixation of mutations (nucleotide and amino acid) in the protruding part of the capsid protein provided strong evidence for the occurrence of genetic drift and selection. Although subsequent new epidemic variants differed by up to 25 amino acid mutations, consistent changes were observed in only five positions. Phylogenetic analyses showed that each variant descended from its chronologic predecessor, with the exception of the 2006b variant, which is more closely related to the 2002 variant than to the 2004 variant. The consistent association between the observed genetic findings and changes in epidemiology leads to the conclusion that population immunity plays a role in the epochal evolution of GGII.4 norovirus strains.
Collapse
Affiliation(s)
- J Joukje Siebenga
- National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
43
|
Radford AD, Coyne KP, Dawson S, Porter CJ, Gaskell RM. Feline calicivirus. Vet Res 2007; 38:319-35. [PMID: 17296159 DOI: 10.1051/vetres:2006056] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/25/2006] [Indexed: 11/14/2022] Open
Abstract
Feline calicivirus (FCV) is an important and highly prevalent pathogen of cats. It belongs to the family Caliciviridae which includes other significant pathogens of man and animals. As an RNA virus, high polymerase error rates convey upon FCV a high genome plasticity, and allow the virus to respond rapidly to environmental selection pressures. This makes the virus very adaptable and has important implications for clinical disease and its control. Being genetically diverse, FCV is associated with a range of clinical syndromes from inapparent infections to relatively mild oral and upper respiratory tract disease with or without acute lameness. More recently, highly virulent forms of the virus have emerged associated with a systemic infection that is frequently fatal. A proportion of FCV infected cats that recover from acute disease, remain persistently infected. In such cats, virus evolution is believed to help the virus to evade the host immune response. Such long-term carriers may only represent a minority of the feline population but are likely to be crucial to the epidemiology of the virus. Vaccination against FCV has been available for many years and has effectively reduced the incidence of clinical disease. However, the vaccines do not prevent infection and vaccinated cats can still become persistently infected. In addition, FCV strain variability means that not all strains are protected against equally. Much progress has been made in understanding the biology and pathogenesis of this important feline virus. Challenges for the future will necessarily focus on how to control the variability of this virus particularly in relation to emerging virulent strains and vaccination.
Collapse
Affiliation(s)
- Alan D Radford
- University of Liverpool Veterinary Teaching Hospital, Leahurst, Chester High Road, Neston, S. Wirral, CH64 7TE, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Coyne KP, Gaskell RM, Dawson S, Porter CJ, Radford AD. Evolutionary mechanisms of persistence and diversification of a calicivirus within endemically infected natural host populations. J Virol 2006; 81:1961-71. [PMID: 17151126 PMCID: PMC1797550 DOI: 10.1128/jvi.01981-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In order to understand the evolutionary mechanisms of persistence and diversification within the Caliciviridae, we have been exploiting endemic infection of feline calicivirus within five geographically distinct household groups of cats. By sequencing immunodominant and variable regions of the capsid gene, we identified the relative contribution of the different evolutionary processes employed by the virus to ensure its long-term survival in the host population. Such strategies included progressive evolution of a given variant of a strain through mutation accumulation within an individual, sequential reinfection with either a variant of the same strain or with a different strain, and mixed infection. Recombination between different strains in this study has been reported in detail elsewhere (K. P. Coyne et al., J. Gen. Virol. 87:921-926, 2006). Here, we provide evidence to suggest that true long-term persistent infection in individuals is relatively rare, with the majority of apparent viral carriers undergoing a combination of progressive evolution and cyclical reinfection. Progressive evolution at the individual level and variant reinfection at both the individual and population levels were associated with positive selection. Two measures of evolution rate were determined; for a virus progressively evolving within an individual (1.32 x 10(-2) to 2.64 x 10(-2) substitutions per nucleotide per year, i.e., no transmission) and for a strain circulating within a population (3.84 x 10(-2) to 4.56 x 10(-2) substitutions per nucleotide per year, i.e., including transmission). Reiteration of both progressive evolution and variant reinfection appeared to lead to a gradual increase in the diversity of a given strain of virus, both in the individual and in the population, until eventually new strains emerged.
Collapse
Affiliation(s)
- Karen P Coyne
- Department of Veterinary Clinical Sciences, University of Liverpool, Leahurst, Chester High Road, South Wirral CH64 7TE, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Chen R, Neill JD, Estes MK, Prasad BVV. X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. Proc Natl Acad Sci U S A 2006; 103:8048-53. [PMID: 16702551 PMCID: PMC1472427 DOI: 10.1073/pnas.0600421103] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Indexed: 11/18/2022] Open
Abstract
Caliciviruses, grouped into four genera, are important human and veterinary pathogens with a potential for zoonosis. In these viruses, capsid-related functions such as assembly, antigenicity, and receptor interactions are predominantly encoded in a single protein that forms an icosahedral capsid. Understanding of the immunologic functions and pathogenesis of human caliciviruses in the Norovirus and Sapovirus genera is hampered by the lack of a cell culture system or animal models. Much of our understanding of these viruses, including the structure, has depended on recombinant capsids. Here we report the atomic structure of a native calicivirus from the Vesivirus genus that exhibits a broad host range possibly including humans and map immunological function onto a calicivirus structure. The vesivirus structure, despite a similar architectural design as seen in the recombinant norovirus capsid, exhibits novel features and indicates how the unique modular organization of the capsid protein with interdomain flexibility, similar to an antibody structure with a hinge and an elbow, integrates capsid-related functions and facilitates strain diversity in caliciviruses. The internally located N-terminal arm participates in a novel network of interactions through domain swapping to assist the assembly of the shell domain into an icosahedral scaffold, from which the protruding domain emanates. Neutralization epitopes localize to three hypervariable loops in the distal portion of the protruding domain surrounding a region that exhibits host-specific conservation. These observations suggest a mechanism for antigenic diversity and host specificity in caliciviruses and provide a structural framework for vaccine development.
Collapse
Affiliation(s)
- Rong Chen
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
| | - John D. Neill
- National Animal Disease Center, Agriculture Research Service, U.S. Department of Agriculture, Ames, IA 50010
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030; and
| | - B. V. Venkataram Prasad
- *Verna and Marrs McLean Department of Biochemistry and Molecular Biology and
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030; and
| |
Collapse
|
46
|
Ohe K, Sakai S, Sunaga F, Murakami M, Kiuchi A, Fukuyama M, Furuhata K, Hara M, Soma T, Ishikawa Y, Taneno A. Detection of Feline calicivirus (FCV) from Vaccinated Cats and Phylogenetic Analysis of its Capsid Genes. Vet Res Commun 2006; 30:293-305. [PMID: 16437305 DOI: 10.1007/s11259-006-3232-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2004] [Indexed: 11/30/2022]
Abstract
We analysed genogroups of four feline calcivirus (FCV) isolates (FCV-S, H10, Ao198-1 and ML89) obtained from cats that experienced FCV infection after having been vaccinated against FCV. New PCR primer sets (8F/8R, Ao-S/Ao-A, cp-S/cp-A) were also designed, since the conventional Seal primer failed to amplify the target sequences in two samples. The genogroups of the four isolates as well as eight global and 17 domestic strains were determined by phylogenetic analysis of their amino acid sequences. One out of the four strains (25%) isolated in this study, H10, was grouped into genogroup I, along with the vaccine strains F9 and FCV-255. The other three isolates (75%) belonged to genogroup II. Thus, there were more isolates in genogroup II than in genogroup I. However, the antibody values of the four isolates against cat anti-F9 antisera were significantly decreased. There may be no relationship between the neutralizing antibody titre and genogroup. Amino acid sequence alignment of the four isolates showed that only a single amino acid in region C, which is involved in neutralization epitopes, was different in ML89 strain from that of F9. The other three strains, H10, Ao198-1 and FCV-B, shared the same amino acid sequence with F9. Alignment of amino acids for linear epitopes in the F9 strain, which are located at regions D and E, showed variations in 5' hypervariable region (HVR) of E, whereas D and conE had only synonymous substitutions i.e. no change in the amino acid sequence. This mutation in 5' HVR of region E suggested a vaccine breakdown, as the region is known to be essential for antigenicity. The genogroup II FCV is likely to be the cause of the FCV infection in this study, while the vaccine strains belong to genogroup I. Thus, the existing vaccine may need reevaluation for its effectiveness.
Collapse
Affiliation(s)
- K Ohe
- Department of Microbiology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara-shi, Kanagawa, 229-8501.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McCabe VJ, Spibey N. Potential for broad-spectrum protection against feline calicivirus using an attenuated myxoma virus expressing a chimeric FCV capsid protein. Vaccine 2005; 23:5380-8. [PMID: 16176851 DOI: 10.1016/j.vaccine.2005.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Accepted: 05/22/2005] [Indexed: 10/25/2022]
Abstract
It has previously been demonstrated that recombinant myxoma viruses expressing FCV capsid protein are capable of eliciting protective responses against virulent FCV challenge, following vaccination, in cats. An attempt was made to produce a bivalent myxoma recombinant expressing the capsid protein genes of both FCV strains F9 and LS015. The FCV capsid protein genes were inserted into the myxoma growth factor gene (MGF) locus, and the serine protease inhibitor (SERP 2) gene locus. Subsequent recombination between myxoma-FCV viruses resulted in a recombinant expressing a chimeric form of the capsid protein. Nonetheless, cats immunised with this myxoma-FCV recombinant demonstrate high levels of serum neutralising antibodies against both F9 and LS015 strains. Such a chimeric vaccine may provide effective protection against a wide range of FCV strains.
Collapse
Affiliation(s)
- Victoria J McCabe
- Department of Molecular Studies, Intervet UK Ltd., Walton Manor, Walton, Milton Keynes, BUCKS, MK7 7AJ, UK.
| | | |
Collapse
|
48
|
Parker TD, Kitamoto N, Tanaka T, Hutson AM, Estes MK. Identification of Genogroup I and Genogroup II broadly reactive epitopes on the norovirus capsid. J Virol 2005; 79:7402-9. [PMID: 15919896 PMCID: PMC1143648 DOI: 10.1128/jvi.79.12.7402-7409.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Accepted: 02/14/2005] [Indexed: 11/20/2022] Open
Abstract
Norwalk virus, a member of the family Caliciviridae, is an important cause of acute epidemic nonbacterial gastroenteritis. Norwalk and related viruses are classified in a separate genus of Caliciviridae called Norovirus, which is comprised of at least three genogroups based on sequence differences. Many of the currently available immunologic reagents used to study these viruses are type specific, which limits the identification of antigenically distinct viruses in detection assays. Identification of type-specific and cross-reactive epitopes is essential for designing broadly cross-reactive diagnostic assays and dissecting the immune response to calicivirus infection. To address this, we have mapped the epitopes on the norovirus capsid protein for both a genogroup I-cross-reactive monoclonal antibody and a genogroup II-cross-reactive monoclonal antibody by use of norovirus deletion and point mutants. The epitopes for both monoclonal antibodies mapped to the C-terminal P1 subdomain of the capsid protein. Although the genogroup I-cross-reactive monoclonal antibody was previously believed to recognize a linear epitope, our results indicate that a conformational component of the epitope explains the monoclonal antibody's genogroup specificity. Identification of the epitopes for these monoclonal antibodies is of significance, as they are components in a commercially available norovirus-diagnostic enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Tracy Dewese Parker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM-385, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
49
|
Poulet H, Brunet S, Leroy V, Chappuis G. Immunisation with a combination of two complementary feline calicivirus strains induces a broad cross-protection against heterologous challenges. Vet Microbiol 2005; 106:17-31. [PMID: 15737470 DOI: 10.1016/j.vetmic.2004.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 11/18/2004] [Accepted: 12/01/2004] [Indexed: 11/24/2022]
Abstract
Feline calicivirus (FCV) is characterised by a high degree of antigenic variation potentially compromising vaccine efficacy. Inclusion of several FCV strains or antigens in current vaccines could be a means to improve protection against antigenically distinct isolates. This study evaluated the synergy between two FCV strains (FCVG1 and FCV431) by comparing immunity induced by either strain with that provided by a combination of the two strains against an heterologous challenge with antigenically distant FCV strains (FCV393 and FCV220). Thirty-two SPF kittens were randomly allocated to four groups of eight cats in each group. Groups B, C and D cats were vaccinated once subcutaneously with strains FCVG1, FCV431, and FCVG1 + FCV431, respectively. Each kitten received a total dose of 10(3.4) CCID50 of FCV. Control group A was not immunised. On day 31, four cats from each group were challenged oronasally with FCV220 and four cats with FCV393. Following challenge, the cats were monitored for clinical signs, viral shedding and antibody responses. FCV220 and FCV393 induced severe clinical signs in control cats typical of FCV infection. Immunisation with both strains mixed together induced higher neutralizing antibody titres against FCV220 and FCV393 strains on average. Protection was observed in all groups, however combination of the two strains resulted in a better clinical protection and reduction of virus shedding after heterologous challenge. A moderate correlation was observed between neutralizing antibody titres at the time of challenge and protection against clinical signs. These results indicated that vaccines combining antigens from different FCV strains may induce a broader heterologous protection.
Collapse
Affiliation(s)
- Hervé Poulet
- Merial SAS, Lyon Laboratories, Research and Development Department, 254, rue Marcel Mérieux, 69007 Lyon, France.
| | | | | | | |
Collapse
|
50
|
Marsilio F, Di Martino B, Decaro N, Buonavoglia C. A novel nested PCR for the diagnosis of calicivirus infections in the cat. Vet Microbiol 2004; 105:1-7. [PMID: 15607078 DOI: 10.1016/j.vetmic.2004.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 08/12/2004] [Accepted: 09/28/2004] [Indexed: 11/29/2022]
Abstract
A novel nested PCR (nPCR) assay is reported on the diagnosis of the feline calicivirus (FCV) infection. The test was performed on 47 ocular and 40 pharyngeal swabs collected from 47 cats with respiratory syndrome; among the 87 samples examined, 18 ocular and 23 pharyngeal swabs were positive in nPCR. The nPCR sensitivity was compared to other diagnostic techniques such as virus isolation on cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR). The nPCR was more sensitive than the virus isolation and RT-PCR; therefore, it can be used for calicivirosis diagnosis in cats.
Collapse
Affiliation(s)
- Fulvio Marsilio
- Department of Scienze Biomediche Comparate, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy.
| | | | | | | |
Collapse
|