1
|
Pyatla MKG, Elango S, Deore PS, Das LJ, Venkatesan G, Chandra Mohan S, Priyanka M, Krishnaswamy N, Umapathi V, Dechamma HJ. Genetic trans-complementation of L-protease fails to rescue the infectious foot-and-mouth disease virus from the Lb pro defective genome. Microb Pathog 2024; 195:106908. [PMID: 39218377 DOI: 10.1016/j.micpath.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Outbreaks of the foot-and-mouth disease (FMD) have major economic impact on the global livestock industry by affecting the animal health and product safety. L-protease, a non-structural protein of FMDV, is a papain-like cysteine proteinase involved in viral protein processing as well as cleavage of host proteins for promoting the virus growth. FMDV synthesizes two forms of leader proteinase, Lpro (Labpro and Lbpro), where the deletion of Labpro is lethal and Lbpro deletion is reported to be attenuated. Defective replicons have been used by trans-complementing the deleted gene to produce one time replicating virus; thus, the bio-safety procedure can be compromised in the production units. Attempts are made to rescue of ΔLbproFMDV Asia1 virus by co-expressing the Lbpro protein carried in pcDNA plasmid. Mutant FMDV cDNA, pAsia-ΔLbpro, was constructed by PCR mediated mutagenesis using inverse primers. Transfection of BHK-21 cells with in-vitro transcribed RNA from the constructs failed to produce an infective mutant FMDV. Genetic trans-complementation of the Lbpro, which was done by co-transfecting the pcDNALbpro plasmid DNA along with the pAsia-ΔLbpro RNA in BHK-21 cells also failed to produce viable virus. Expression experiments of reporter genes and indirect immune-fluorescence confirmed the production of the viral proteins in wild type FMDV pAsiaWT; however, it was absent in the pAsia-ΔLbpro indicating that the leaderless virus was unable to produce infectious progeny and infect the cells. Failure to produce virus either by Lbpro deleted mutant clone or by genetic complementation suggests little chance of reversion of the disabled virus with large deletions of FMDV genome.
Collapse
Affiliation(s)
- Manoj Kumar Goud Pyatla
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Subhadra Elango
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Padmaja Shashikant Deore
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Lekshmi J Das
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Gnanavel Venkatesan
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - S Chandra Mohan
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - Mahadappa Priyanka
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India
| | - Narayanan Krishnaswamy
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - V Umapathi
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| | - H J Dechamma
- FMD Research Laboratory, ICAR-Indian Veterinary Research Institute (IVRI), Bengaluru, 560 024, India.
| |
Collapse
|
2
|
Attreed SE, Silva C, Rodriguez-Calzada M, Mogulothu A, Abbott S, Azzinaro P, Canning P, Skidmore L, Nelson J, Knudsen N, Medina GN, de los Santos T, Díaz-San Segundo F. Prophylactic treatment with PEGylated bovine IFNλ3 effectively bridges the gap in vaccine-induced immunity against FMD in cattle. Front Microbiol 2024; 15:1360397. [PMID: 38638908 PMCID: PMC11024232 DOI: 10.3389/fmicb.2024.1360397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a vesicular disease of cloven-hoofed animals with devastating economic implications. The current FMD vaccine, routinely used in enzootic countries, requires at least 7 days to induce protection. However, FMD vaccination is typically not recommended for use in non-enzootic areas, underscoring the need to develop new fast-acting therapies for FMD control during outbreaks. Interferons (IFNs) are among the immune system's first line of defense against viral infections. Bovine type III IFN delivered by a replication defective adenovirus (Ad) vector has effectively blocked FMD in cattle. However, the limited duration of protection-usually only 1-3 days post-treatment (dpt)-diminishes its utility as a field therapeutic. Here, we test whether polyethylene glycosylation (PEGylation) of recombinant bovine IFNλ3 (PEGboIFNλ3) can extend the duration of IFN-induced prevention of FMDV infection in both vaccinated and unvaccinated cattle. We treated groups of heifers with PEGboIFNλ3 alone or in combination with an adenovirus-based FMD O1Manisa vaccine (Adt-O1M) at either 3 or 5 days prior to challenge with homologous wild type FMDV. We found that pre-treatment with PEGboIFNλ3 was highly effective at preventing clinical FMD when administered at either time point, with or without co-administration of Adt-O1M vaccine. PEGboIFNλ3 protein was detectable systemically for >10 days and antiviral activity for 4 days following administration. Furthermore, in combination with Adt-O1M vaccine, we observed a strong induction of FMDV-specific IFNγ+ T cell response, demonstrating its adjuvanticity when co-administered with a vaccine. Our results demonstrate the promise of this modified IFN as a pre-exposure prophylactic therapy for use in emergency outbreak scenarios.
Collapse
Affiliation(s)
- Sarah E. Attreed
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Christina Silva
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Oak Ridge Institute for Science and Education Plum Island Animal Disease Center Research Participation Program, Oak Ridge, TN, United States
| | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Sophia Abbott
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Animal Biosciences and Biotechnology Laboratory, Northeast Area, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | | | | | - Jay Nelson
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Nick Knudsen
- Ambrx Biopharma, Inc., La Jolla, CA, United States
| | - Gisselle N. Medina
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- National Bio-and Agro-Defense Facility, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, Plains Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Office of Biodefense, Research Resources and Translational Research, National Institute of Allergy and Infectious Disease, Rockville, MD, United States
| |
Collapse
|
3
|
Azzinaro PA, Medina GN, Rai D, Ramirez-Medina E, Spinard E, Rodriguez-Calzada M, Zhu J, Rieder E, de los Santos T, Díaz-San Segundo F. Mutation of FMDV Lpro H138 residue drives viral attenuation in cell culture and in vivo in swine. Front Vet Sci 2022; 9:1028077. [PMID: 36387381 PMCID: PMC9661595 DOI: 10.3389/fvets.2022.1028077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022] Open
Abstract
The foot-and-mouth disease virus (FMDV) leader proteinase (Lpro) is a papain like protease that cleaves the viral polyprotein and several host factors affecting host cell translation and induction of innate immunity. Introduction of Lpro mutations ablating catalytic activity is not tolerated by the virus, however, complete coding sequence deletion or introduction of targeted amino acid substitutions can render viable progeny. In proof-of-concept studies, we have previously identified and characterized FMDV Lpro mutants that are attenuated in cell culture and in animals, while retaining their capacity for inducing a strong adaptive immunity. By using molecular modeling, we have now identified a His residue (H138), that resides outside the substrate binding and catalytic domain, and is highly conserved across serotypes. Mutation of H138 renders possible FMDV variants of reduced virulence in vitro and in vivo. Kinetics studies showed that FMDV A12-LH138L mutant replicates similarly to FMDV A12-wild type (WT) virus in cells that do not offer immune selective pressure, but attenuation is observed upon infection of primary or low passage porcine epithelial cells. Western blot analysis on protein extracts from these cells, revealed that while processing of translation initiation factor eIF-4G was slightly delayed, no degradation of innate sensors or effector molecules such as NF-κB or G3BP2 was observed, and higher levels of interferon (IFN) and IFN-stimulated genes (ISGs) were induced after infection with A12-LH138L as compared to WT FMDV. Consistent with the results in porcine cells, inoculation of swine with this mutant resulted in a mild, or in some cases, no clinical disease but induction of a strong serological adaptive immune response. These results further support previous evidence that Lpro is a reliable target to derive numerous viable FMDV strains that alone or in combination could be exploited for the development of novel FMD vaccine platforms.
Collapse
Affiliation(s)
- Paul A. Azzinaro
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Gisselle N. Medina
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service (ARS), U.S. Department of Agriculture (USDA), Manhattan, KS, United States
| | - Devendra Rai
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Pfizer Worldwide Research, Development and Medical, Pearl River, NY, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Edward Spinard
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Monica Rodriguez-Calzada
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, United States
| | - James Zhu
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- *Correspondence: Teresa de los Santos
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY, United States
- Fayna Díaz-San Segundo
| |
Collapse
|
4
|
Cárdenas M, Michelson S, Pérez DR, Montoya M, Toledo J, Vásquez-Martínez Y, Cortez-San Martin M. Infectious Salmon Anemia Virus Infectivity Is Determined by Multiple Segments with an Important Contribution from Segment 5. Viruses 2022; 14:v14030631. [PMID: 35337038 PMCID: PMC8954079 DOI: 10.3390/v14030631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is the etiological agent of infectious salmon anemia. It belongs to the genus isavirus, one of the genera of the Orthomyxoviridae family, as does Influenzavirus A. The ISAV genome comprises eight negative-sense single-stranded RNA segments that code for at least 10 proteins. Although some ISAV strains can reach 100% mortality rates, the factors that determine isavirus infectivity remain unknown. However, some studies suggest that segments 5 and 6 are responsible for the different degrees of virulence and infectivity among ISAV subtypes, unlike the influenza A virus, where most segments are involved in the virus infectivity. In this work, synthetic reassortant viruses for the eight segments of ISAV were generated by reverse genetics, combining a highly virulent virus, ISAV 752_09 (HPR7b), and an avirulent strain, SK779/06 (HPR0). We characterized the rescued viruses and their capacity to replicate and infect different cell lines, produce plaques in ASK cells, and their ability to induce and modulate the cellular immune response in vitro. Our results show that the majority of ISAV segments are involved in at least one of the analyzed characteristics, segment 5 being one of the most important, allowing HPR0 viruses, among other things, to produce plaques and replicate in CHSE-214 cells. We determined that segments 5 and 6 participate in different stages of the viral cycle, and their compatibility is critical for viral infection. Additionally, we demonstrated that segment 2 can modulate the cellular immune response. Our results indicate a high degree of genetic compatibility between the genomic segments of HPR7b and HPR0, representing a latent risk of reassortant that would give rise to a new virus with an unknown phenotype.
Collapse
Affiliation(s)
- Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Sofía Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
| | - Daniel R. Pérez
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GE 30602, USA;
| | - Margarita Montoya
- Cell Biochemistry Laboratory, Department of Biology, Faculty of Chemistry and Biology, University of Santiago, Santiago 9170022, Chile;
| | - Jorge Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4070386, Chile;
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Programa Centro de Investigaciones Biomédicas Aplicadas, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago, Santiago 9170022, Chile
| | - Marcelo Cortez-San Martin
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (M.C.); (S.M.); (Y.V.-M.)
- Correspondence:
| |
Collapse
|
5
|
Zhang H, Fischer DK, Shuda M, Moore PS, Gao SJ, Ambrose Z, Guo H. Construction and characterization of two SARS-CoV-2 minigenome replicon systems. J Med Virol 2022; 94:2438-2452. [PMID: 35137972 PMCID: PMC9088700 DOI: 10.1002/jmv.27650] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022]
Abstract
The ongoing COVID-19 pandemic severely impacts global public health and economies. In order to facilitate research on SARS-CoV-2 virology and antiviral discovery, a non-infectious viral replicon system operating under biosafety level 2 containment is warranted. We report herein the construction and characterization of two SARS-CoV-2 minigenome replicon systems. First, we constructed the IVT-CoV2-Rep cDNA template to generate a replicon mRNA with nanoluciferase (NLuc) reporter via in vitro transcription (IVT). The replicon mRNA transfection assay demonstrated a rapid and transient replication of IVT-CoV2-Rep in a variety of cell lines, which could be completely abolished by known SARS-CoV-2 replication inhibitors. Our data also suggests that the transient phenotype of IVT-CoV2-Rep is not due to host innate antiviral responses. In addition, we have developed a DNA-launched replicon BAC-CoV2-Rep, which supports the in-cell transcription of a replicon mRNA as initial replication template. The BAC-CoV2-Rep transient transfection system exhibited a much stronger and longer replicon signal compared to the IVT-CoV2-Rep version. We also found that a portion of the NLuc reporter signal was derived from the spliced BAC-CoV2-Rep mRNA and was resistant to antiviral treatment, especially during the early phase after transfection. In summary, the established SARS-CoV-2 transient replicon systems are suitable for basic and antiviral research, and hold promise for stable replicon cell line development with further optimization. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Douglas K Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Masahiro Shuda
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Patrick S Moore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Shou-Jiang Gao
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine.,Cancer Virology Program, Hillman Cancer Center, University of Pittsburgh Medical Center
| |
Collapse
|
6
|
Suryawanshi YR, Nace RA, Russell SJ, Schulze AJ. MicroRNA-detargeting proves more effective than leader gene deletion for improving safety of oncolytic Mengovirus in a nude mouse model. Mol Ther Oncolytics 2021; 23:1-13. [PMID: 34589580 PMCID: PMC8455367 DOI: 10.1016/j.omto.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
A dual microRNA-detargeted oncolytic Mengovirus, vMC24NC, proved highly effective against a murine plasmacytoma in an immunocompetent syngeneic mouse model; however, there remains the concern of escape mutant development and the potential for toxicity in severely immunocompromised cancer patients when it is used as an oncolytic virus. Therefore, we sought to compare the safety and efficacy profiles of an attenuated Mengovirus containing a virulence gene deletion versus vMC24NC in an immunodeficient xenograft mouse model of human glioblastoma. A Mengovirus construct, vMC24ΔL, wherein the gene coding for the leader protein, a virulence factor, was deleted, was used for comparison. The vMC24ΔL induced significant levels of toxicity following treatment of subcutaneous human glioblastoma (U87-MG) xenografts as well as when injected intracranially in athymic nude mice, reducing the overall survival. The in vivo toxicity of vMC24ΔL was associated with viral replication in nervous and cardiac tissue. In contrast, microRNA-detargeted vMC24NC demonstrated excellent efficacy against U87-MG subcutaneous xenografts and improved overall survival significantly compared to that of control mice without toxicity. These results reinforce microRNA-detargeting as an effective strategy for ameliorating unwanted toxicities of oncolytic picornaviruses and substantiate vMC24NC as an ideal candidate for clinical development against certain cancers in both immunocompetent and immunodeficient hosts.
Collapse
Affiliation(s)
- Yogesh R. Suryawanshi
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Autumn J. Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, 200 1 Street S.W., Rochester, MN 55905, USA
| |
Collapse
|
7
|
Ekanayaka P, Shin SH, Weeratunga P, Lee H, Kim TH, Chathuranga K, Subasinghe A, Park JH, Lee JS. Foot-and-Mouth Disease Virus 3C Protease Antagonizes Interferon Signaling and C142T Substitution Attenuates the FMD Virus. Front Microbiol 2021; 12:737031. [PMID: 34867853 PMCID: PMC8639872 DOI: 10.3389/fmicb.2021.737031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022] Open
Abstract
3C protease (3Cpro), a chymotrypsin-like cysteine protease encoded by the foot-and-mouth disease virus (FMDV), plays an essential role in processing the FMDV P1 polyprotein into individual viral capsid proteins in FMDV replication. Previously, it has been shown that 3Cpro is involved in the blockage of the host type-I interferon (IFN) responses by FMDV. However, the underlying mechanisms are poorly understood. Here, we demonstrated that the protease activity of 3Cpro contributed to the degradation of RIG-I and MDA5, key cytosolic sensors of the type-I IFN signaling cascade in proteasome, lysosome and caspase-independent manner. And also, we examined the degradation ability on RIG-I and MDA5 of wild-type FMDV 3Cpro and FMDV 3Cpro C142T mutant which is known to significantly alter the enzymatic activity of 3Cpro. The results showed that the FMDV 3Cpro C142T mutant dramatically reduce the degradation of RIG-I and MDA5 due to weakened protease activity. Thus, the protease activity of FMDV 3Cpro governs its RIG-I and MDA5 degradation ability and subsequent negative regulation of the type-I IFN signaling. Importantly, FMD viruses harboring 3Cpro C142T mutant showed the moderate attenuation of FMDV in a pig model. In conclusion, our results indicate that a novel mechanism evolved by FMDV 3Cpro to counteract host type-I IFN responses and a rational approach to virus attenuation that could be utilized for future vaccine development.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, South Korea
| | - Prasanna Weeratunga
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Ashan Subasinghe
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, South Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
8
|
Yu HY, Gao DM, Zhou W, Xia BB, He ZY, Wu B, Jiang MZ, Wang ML, Zhao J. Acute and Sub-chronic Toxicity Study of Recombinant Bovine Interferon Alpha in Rodents. J Vet Res 2021; 65:183-192. [PMID: 34250303 PMCID: PMC8256469 DOI: 10.2478/jvetres-2021-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/09/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Recombinant bovine interferon alpha (rBoIFN-α) has been demonstrated to have antiviral activity. However, no conduct of acute or chronic toxicity tests has been reported. MATERIAL AND METHODS Specific pathogen-free Sprague Dawley rats were administered doses at different concentrations through intraperitoneal or intravenous injection. After the administration (single for an acute toxicity test over 14 days or daily for a sub-chronic toxicity test over 30 days), the rats' behaviour and other indicators and the degree of toxic reaction were continuously monitored. Blood was collected for haematological and serum biochemical examinations. At the end of the experiments, the rats were sacrificed for necropsy and histopathological tissue analysis. RESULTS The external performance, behaviour characteristics, and changes in body temperature and body weight of the rats in each subgroup were comparable to the normal control subgroup. Except for a few cases, there were no lesions in the viscera's pathological structures, and the blood parameters and biochemical indicators were not noticeably different from those of the control subgroup. CONCLUSION This study suggests that rBoIFN-α seems to be safe for rats, and its use may foster the development of the cattle industry in China by protecting livestock health.
Collapse
Affiliation(s)
- Hai-Yang Yu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
| | - Dong-Mei Gao
- Department of Clinical Laboratory, Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
| | - Wei Zhou
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Bing-Bing Xia
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Zhi-Yuan He
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Bo Wu
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Min-Zhi Jiang
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, P.R. China
- Wuhu Interferon Bio-products Industry Research Institute Co., Ltd, Wuhu, Anhui Province, 241007, P.R. China
- Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province, 241000, P.R. China
| |
Collapse
|
9
|
Proulx J, Borgmann K, Park IW. Role of Virally-Encoded Deubiquitinating Enzymes in Regulation of the Virus Life Cycle. Int J Mol Sci 2021; 22:ijms22094438. [PMID: 33922750 PMCID: PMC8123002 DOI: 10.3390/ijms22094438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-(817)-735-5115; Fax: +1-(817)-735-2610
| |
Collapse
|
10
|
Diaz-San Segundo F, Medina GN, Spinard E, Kloc A, Ramirez-Medina E, Azzinaro P, Mueller S, Rieder E, de Los Santos T. Use of Synonymous Deoptimization to Derive Modified Live Attenuated Strains of Foot and Mouth Disease Virus. Front Microbiol 2021; 11:610286. [PMID: 33552021 PMCID: PMC7861043 DOI: 10.3389/fmicb.2020.610286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the most economically important viral diseases that can affect livestock. In the last 70 years, use of an inactivated whole antigen vaccine has contributed to the eradication of disease from many developed nations. However, recent outbreaks in Europe and Eastern Asia demonstrated that infection can spread as wildfire causing economic and social devastation. Therefore, it is essential to develop new control strategies that could confer early protection and rapidly stop disease spread. Live attenuated vaccines (LAV) are one of the best choices to obtain a strong early and long-lasting protection against viral diseases. In proof of concept studies, we previously demonstrated that “synonymous codon deoptimization” could be applied to the P1 capsid coding region of the viral genome to derive attenuated FMDV serotype A12 strains. Here, we demonstrate that a similar approach can be extended to the highly conserved non-structural P2 and P3 coding regions, providing a backbone for multiple serotype FMDV LAV development. Engineered codon deoptimized P2, P3 or P2, and P3 combined regions were included into the A24Cruzeiro infectious clone optimized for vaccine production, resulting in viable progeny that exhibited different degrees of attenuation in cell culture, in mice, and in the natural host (swine). Derived strains were thoroughly characterized in vitro and in vivo. Our work demonstrates that overall, the entire FMDV genome tolerates codon deoptimization, highlighting the potential of using this technology to derive novel improved LAV candidates.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Edward Spinard
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Anna Kloc
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States.,Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, United States
| | - Paul Azzinaro
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | | | - Elizabeth Rieder
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), Agricultural Research Service, United States Department of Agriculture, Greenport, NY, United States
| |
Collapse
|
11
|
Rodríguez-Habibe I, Celis-Giraldo C, Patarroyo ME, Avendaño C, Patarroyo MA. A Comprehensive Review of the Immunological Response against Foot-and-Mouth Disease Virus Infection and Its Evasion Mechanisms. Vaccines (Basel) 2020; 8:vaccines8040764. [PMID: 33327628 PMCID: PMC7765147 DOI: 10.3390/vaccines8040764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease, which has been reported for over 100 years, and against which the struggle has lasted for the same amount of time. It affects individuals from the order Artiodactyla, such as cattle, swine, sheep, wild animals from this order, and a few non-cloven hoofed species, such as mice and elephants. FMD causes large-scale economic losses for agricultural production systems; morbidity is almost 100% in an affected population, accompanied by a high mortality rate in young animals due to myocarditis or an inability to suckle if a mother is ill. The aetiological agent is an Aphthovirus from the family Picornaviridae, having seven serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia 1. Serotype variability means that an immune response is serospecific and vaccines are thus designed to protect against each serotype independently. A host’s adaptive immune response is key in defence against pathogens; however, this virus uses successful strategies (along with most microorganisms) enabling it to evade a host’s immune system to rapidly and efficiently establish itself within such host, and thus remain there. This review has been aimed at an in-depth analysis of the immune response in cattle and swine regarding FMD virus, the possible evasion mechanisms used by the virus and describing some immunological differences regarding these species. Such aspects can provide pertinent knowledge for developing new FMD control and prevention strategies.
Collapse
Affiliation(s)
- Ibett Rodríguez-Habibe
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Masters Programme in Veterinary Science, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
| | - Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (I.R.-H.); (C.C.-G.)
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: (C.A.); (M.A.P.); Tel.: +57-6684-700 (C.A.); +57-1324-4672 (M.A.P.)
| |
Collapse
|
12
|
Ekanayaka P, Lee SY, Herath TUB, Kim JH, Kim TH, Lee H, Chathuranga K, Chathuranga WAG, Park JH, Lee JS. Foot-and-mouth disease virus VP1 target the MAVS to inhibit type-I interferon signaling and VP1 E83K mutation results in virus attenuation. PLoS Pathog 2020; 16:e1009057. [PMID: 33232374 PMCID: PMC7723281 DOI: 10.1371/journal.ppat.1009057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/08/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
VP1, a pivotal capsid protein encoded by the foot-and-mouth disease virus (FMDV), plays an important role in receptor-mediated attachment and humoral immune responses. Previous studies show that amino acid changes in the VP1 protein of cell culture-adapted strains of FMDV alter the properties of the virus. In addition, FMDV VP1 modulates host IFN signal transduction. Here, we examined the ability of cell culture-adapted FMDV VP1(83K) and wild-type FMDV VP1(83E) to evade host immunity by blocking mitochondrial antiviral signaling protein (MAVS)/TNF Receptor Associated Factor 3 (TRAF3) mediated cellular innate responses. Wild-type FMDV VP1(83E) interacted specifically with C-terminal TRAF3-binding site within MAVS and this interaction inhibited binding of TRAF3 to MAVS, thereby suppressing interferon-mediated responses. This was not observed for cell culture-adapted FMDV VP1(83K). Finally, chimeric FMDV harboring VP1(83K) showed very low pathogenicity in pigs. Collectively, these data highlight a critical role of VP1 with respect to suppression of type-I IFN pathway and attenuation of FMDV by the E83K mutation in VP1. Foot-and-Mouth disease (FMD), a highly contagious viral disease of cloven-hoofed animals, causes huge economic losses. To generate a FMD vaccine, cell culture-adapted strains of FMDV that show improved growth properties and allow repeated passage are needed. Generally, adaptation of field-isolated FMDV is accompanied by changes in viral properties, including amino acid mutations. A VP1 E83K mutation in cell culture-adapted FMDV was identified previously; here, we examined the impact of VP1 E83K on virus pathogenicity and type-I IFN pathway. Cell culture-adapted FMDV O1 Manisa, and highly virulent strain of O/Andong/SKR/2010, acquired the E83K mutation in the VP1 protein, which attenuated the virus via disposing VP1 mediate negative regulation ability of host cellular IFN responses. The data suggest a rational approach to viral propagation in cell culture and virus attenuation, which could be utilized for future development of FMDV vaccines.
Collapse
Affiliation(s)
- Pathum Ekanayaka
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seo-Yong Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea.,FVC, Gyeongsangbuk-do, Republic of Korea
| | - Thilina U B Herath
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyuncheol Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.,California Institute for Quantitative Biosciences, University of California, Berkeley, California, United States of America
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - W A Gayan Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Gao DM, Yu HY, Zhou W, Xia BB, Li HZ, Wang ML, Zhao J. Inhibitory effects of recombinant porcine interferon-α on porcine transmissible gastroenteritis virus infections in TGEV-seronegative piglets. Vet Microbiol 2020; 252:108930. [PMID: 33290999 DOI: 10.1016/j.vetmic.2020.108930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
Our previous research obtained purified recombinant porcine interferon-α (rPoIFN-α) containing thioredoxin (Trx) fusion tag in E. coli Rosetta (DE3). Here, we evaluate the efficacy of this rPoIFN-α to prevent piglets from the infection of the transmissible gastroenteritis virus (TGEV) attack. In this experiment, twenty-five TGEV-seronegative piglets were randomly divided into five groups. Group 1 was positive control and only challenged with TGEV; Pigs in groups 2-4 were pretreated with 2 × 10(7)IU/pig, 2 × 10(6)IU/pig, and 2 × 10(5)IU/pig rPoIFN-α before TGEV challenge. The fifth group is a negative control group. The animals of this group are pretreated only with Trx protein-containing PBS solution without TGEV challenge. After 48 h of rPoIFN-α pretreatment, the pigs in groups 1-4 were challenged by TGEV, and the pigs in group 5 were administered with PBS. The surveillance results show that Pigs pre-treated with 2 × 10 (7) IU/pig rPoIFN-α are fully aligned with the violent TGEV attack. Pigs pretreated with 2 × 10 (6) IU/pig rPoIFN-α are partially aligned with the violent TGEV attack. Though piglets pretreated with 2 × 10(6) IU/pig or 2 × 10(5)IU/pig rPoIFN-α cannot be adapted to the challenge of TGEV. However, the use of this dose of rPoIFN-α could put off the clinical signs of pigs than the positive control group of the above. These results indicate that rPoIFN-α can protect pigs from the infection of potential TGEV or delay the appearance of clinical symptoms, and its effect is dose-dependent.
Collapse
Affiliation(s)
- Dong-Mei Gao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Department of Clinical Laboratory, Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Hai-Yang Yu
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China
| | - Wei Zhou
- Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China
| | - Bing-Bing Xia
- Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China
| | - Hong-Zhang Li
- Department of Gastroenterology, Sanmen People's Hospital, Zhejiang, PR China.
| | - Ming-Li Wang
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China.
| | - Jun Zhao
- Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, PR China; Anhui Jiuchuan Biotechnology Co., Ltd., Wuhu, Anhui, PR China; Wuhu Overseas Students Pioneer Park, Wuhu, Anhui, PR China.
| |
Collapse
|
14
|
Zhang X, Zhu Z, Wang C, Yang F, Cao W, Li P, Du X, Zhao F, Liu X, Zheng H. Foot-and-Mouth Disease Virus 3B Protein Interacts with Pattern Recognition Receptor RIG-I to Block RIG-I-Mediated Immune Signaling and Inhibit Host Antiviral Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2207-2221. [PMID: 32917788 PMCID: PMC7533709 DOI: 10.4049/jimmunol.1901333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
Abstract
Foot-and-mouth disease is a highly contagious disease of pigs, sheep, goats, bovine, and various wild cloven-hoofed animals caused by foot-and-mouth disease virus (FMDV) that has given rise to significant economic loss to global livestock industry. FMDV 3B protein is an important determinant of virulence of the virus. Modifications in 3B protein of FMDV considerably decrease virus yield. In the current study, we demonstrated the significant role of 3B protein in suppression of type I IFN production and host antiviral response in both human embryonic kidney HEK293T cells and porcine kidney PK-15 cells. We found that 3B protein interacted with the viral RNA sensor RIG-I to block RIG-I-mediated immune signaling. 3B protein did not affect the expression of RIG-I but interacted with RIG-I to block the interaction between RIG-I and the E3 ubiquitin ligase TRIM25, which prevented the TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. This inhibition of RIG-I-mediated immune signaling by 3B protein decreased IFN-β, IFN-stimulated genes, and proinflammatory cytokines expression, which in turn promoted FMDV replication. All of the three nonidentical copies of 3B could inhibit type I IFN production, and the aa 17A in each copy of 3B was involved in suppression of IFN-related antiviral response during FMDV infection in porcine cells. Together, our results indicate the role of 3B in suppression of host innate immune response and reveal a novel antagonistic mechanism of FMDV that is mediated by 3B protein.
Collapse
Affiliation(s)
- Xiangle Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Congcong Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Weijun Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Pengfei Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Xiaoli Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Furong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China; and
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
- National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| |
Collapse
|
15
|
Modification of the second translation initiation site restricts the replication of foot-and-mouth disease virus in PK-15 cells. Appl Microbiol Biotechnol 2020; 104:8455-8466. [PMID: 32820373 PMCID: PMC7471169 DOI: 10.1007/s00253-020-10810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 08/02/2020] [Indexed: 11/22/2022]
Abstract
Abstract The translation initiation of foot-and-mouth disease virus (FMDV) occurs at two alternative initiation sites (Lab AUG and Lb AUG). Usually, the Lb AUG is more favorably used to initiate protein synthesis than the Lab AUG. To explore the effect of Lb AUG on FMDV replication and obtain FMDV with restricted replication, this initiation codon was mutated to a variety of non-AUG codons (UGG, AUC, CUG, and AAA). Fortunately, the modifications did not prevent viral viability but influenced replication characteristics of some FMDV mutants in a cell-specific manner, as was shown by the similar replication in BHK-21 cells and delayed growth kinetics in PK-15 cells. This attenuated phenotype of FMDV mutants in PK-15 cells was found to be correlated with reduced abilities to cleave eIF4GI and suppress interference (IFN) expression. As leader (L) protein was reported to be responsible for eIF4GI cleavage and inhibition of IFN expression, the in vivo L protein synthesis was examined during the infection of FMDV mutants. Our results showed that not only the total yield of L proteins was severely influenced but also the individual yield of L protein was seen to be affected, which implied that both the relative usage of the two initiation sites and overall translation efficiency were changed by Lb AUG modifications. In addition, the in vitro translation activity was also negatively regulated by Lb AUG mutations. Collectively, these findings suggested that the restricted replications of Lb AUG-modified FMDVs were related to the delayed eIF4GI cleavage and decreased ability to block IFN expression but were mainly determined by the inefficient translation initiation. FMDVs precisely with modifications of Lb AUG initiation codon may represent safer seed viruses for vaccine production. Key points • The polyprotein translation of FMDV initiates at two alternative initiation sites (Lab AUG and Lb AUG). In order to explore the effect of Lb AUG on FMDV replication and obtain FMDV with restricted replication, the Lb initiation AUG was mutated to a variety of non-AUG codons (UGG, AUC, CUG, and AAA), and four FMDV mutants with Lb AUG modification were generated. • We found that partial FMDV mutants grew almost as well as WT virus in BHK-21 cells, a typical cell line used for FMD vaccine production, but displayed impaired replication in IFN-competent PK-15 cells. • The attenuation of mutant FMDVs in PK-15 cells was found to be correlated with delayed eIF4GI cleavage and decreased ability to block IFN expression. • We proved that the attenuated phenotype of Lb AUG-modified FMDVs was mainly determined by the inefficient translation initiation, as demonstrated by the decrease of total yield of L proteins and individual production of L protein. • We successfully generated genetically engineered FMDV with attenuated phenotype. The approach of precise engineering of FMDV with the modification of initiation codon provides a safe platform to produce inactivated antigen vaccines.
Collapse
|
16
|
Medina GN, de los Santos T, Diaz-San Segundo F. Use of IFN-Based Biotherapeutics to Harness the Host Against Foot-And-Mouth Disease. Front Vet Sci 2020; 7:465. [PMID: 32851039 PMCID: PMC7431487 DOI: 10.3389/fvets.2020.00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals that severely constrains international trade of livestock and animal products. Currently, disease control measures include broad surveillance, enforcement of sanitary policy, and use of an inactivated vaccine. While use of these measures has contributed to eliminating foot-and-mouth disease virus (FMDV) from a vast area of the world, the disease remains endemic in three continents, and outbreaks occasionally appear in previously declared FMD-free zones, causing economic and social devastation. Among others, a very fast rate of viral replication and the need for 7 days to achieve vaccine-induced protection are the main limitations in controlling the disease. New fast-acting antiviral strategies targeted to boost the innate immunity of the host to block viral replication are needed. Here we review the knowledge on the multiple strategies FMDV has evolved to block the host innate immunity, with particularly focus on the past and current research toward the development of interferon (IFN)-based biotherapeutics in relevant livestock species.
Collapse
Affiliation(s)
- Gisselle N. Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
| | | |
Collapse
|
17
|
Yu HY, Liu J, He ZY, Zhou W, Xia BB, Wang M, Chen J, Wang ML, Jiang GT, Zhao J. Soluble Expression, Rapid Purification and Antiviral Activity of Recimbinant Bovine Interferon-α in Escherichia coli. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Sebastian R, Sravanthi M, Umapathi V, Krishnaswamy N, Priyanka M, Dechamma HJ, Ganesh K, Basagoudanavar SH, Sanyal A, Reddy GR. Foot and mouth disease virus undergoes non-progressive replication in mice peritoneal macrophages and induces M1 polarization. Virus Res 2020; 281:197906. [PMID: 32109526 PMCID: PMC7114663 DOI: 10.1016/j.virusres.2020.197906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
Abstract
Non-progressive replication of foot and mouth disease virus was observed in mice peritoneal macrophages. Macrophages turns to M1 type polarization in response to FMDV infection. Upregulation of pro-inflammatory cytokines was peak by 8 h FMDV infection. Type I IFN and viperin showed marked upregulation following FMDV infection in the macrophages.
Despite the fact that macrophages link the innate and adaptive arms of immunity, it’s role in the early infection of foot and mouth disease virus (FMDV) is largely unknown. Recently, depletion of macrophages in vivo after vaccination has shown to drastically diminish the protection against FMDV challenge in mouse model. Even the ability of macrophages to reduce or resist FMDV infection is not known hitherto. Therefore, we examined the replication ability of FMDV in mice peritoneal macrophages and the responsiveness in terms of macrophage polarization and cytokine production. Negative strand specific RT-PCR indicated replication of FMDV RNA in macrophages. Absolute quantitation of FMDV transcripts, immunofluorescence studies and titre of the infectious progeny virus revealed that replication peaked at 12 hpi and significantly declined by 18 hpi indicating non-progressive replication in the infected macrophages. Further, significant up regulation of inducible nitric oxide synthase by 8 –12 hpi and increase of M1 specific CD11c + cells by 42.6 % after infection showed that FMDV induce M1 polarization. A significant up regulation of TNFα and IL12 transcripts at 8 hpi supported that M1 macrophages were functional. Further, we studied the expression of Type I to III interferons (IFN) and other antiviral molecules. The results indicate a marked up regulation of Type I IFNα and β by 9.2 and 11.2 fold, respectively at 8 hpi. Of the four IFN stimulated genes (ISG), viperin showed a significant up regulation by 286-fold at 12 hpi in the mice macrophages. In conclusion, the results suggest that replication of FMDV in mice peritoneal macrophages is non-progressive with up regulation of Type I IFN and ISGs. Further, FMDV induces M1 polarization in murine peritoneal macrophages.
Collapse
Affiliation(s)
- Renjith Sebastian
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Sravanthi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - V Umapathi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - N Krishnaswamy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Priyanka
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - H J Dechamma
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - K Ganesh
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | | | - A Sanyal
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - G R Reddy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India.
| |
Collapse
|
19
|
Evolutionary conserved compositional structures hidden in genomes of the foot-and-mouth disease virus and of the human rhinovirus. Sci Rep 2019; 9:16553. [PMID: 31719605 PMCID: PMC6851159 DOI: 10.1038/s41598-019-53013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022] Open
Abstract
Picornaviridae family includes several viruses of great economic and medical importance. Among all members of the family we focused our attention on the human rhinovirus, the most important etiologic agent of the common cold and on the foot-and-mouth disease virus that cause of an economically important disease in cattle. Despite the low sequence similarity of the polyprotein coding open reading frames of these highly divergent picornaviruses, they have in common structural and functional similarities including a similar genomic organization, a capsid structure composed of 60 copies of four different proteins, or 3D-structures showing similar general topology, among others. We hypothesized that such similarities could be reflected in emergent common compositional structures interspersed in their genomes which were not observed heretofore. Using a methodology categorizing nucleotide triplets by their gross-composition we have found two human rhinoviruses sharing compositional structures interspersed along their genomic RNA with three foot-and-mouth disease viruses. The shared compositional structures are in one case composed by nucleotide triplets containing all nearest-neighbours of A and G and in other case containing all nearest-neighbours of A, and C. The structures are under strong evolutionary constraints for variability, allowing the access to novel viral genomic motifs with likely biological relevance. The conserved fragments would be useful to predict critical mutation points sites important from the evolutionary point of view.
Collapse
|
20
|
Genetic Determinants of Virulence between Two Foot-and-Mouth Disease Virus Isolates Which Caused Outbreaks of Differing Severity. mSphere 2019; 4:4/4/e00294-19. [PMID: 31413173 PMCID: PMC6695517 DOI: 10.1128/msphere.00294-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual foot-and-mouth disease virus (FMDV) strains reveal different degrees of infectivity and pathogenicity in host animals. The differences in severity among outbreaks might be ascribable to these differences in infectivity among FMDV strains. To investigate the molecular mechanisms underlying these differences, we estimated the infectivity of O/JPN/2000 and O/JPN/2010, which caused outbreaks of markedly different scales, in cell lines, Holstein cattle, and suckling mice. Viral growth of the two strains in cells was not remarkably different; however, O/JPN/2000 showed apparently low transmissibility in cattle. Mortality rates of suckling mice inoculated intraperitoneally with a 50% tissue culture infective dose (TCID50) of 10 for O/JPN/2000 and O/JPN/2010 also differed, at 0% and 100%, respectively. To identify genes responsible for this difference in infectivity, genetic regions of the full-length cDNA of O/JPN/2010 were replaced with corresponding fragments of O/JPN/2000. A total of eight recombinant viruses were successfully recovered, and suckling mice were intraperitoneally inoculated. Strikingly, recombinants having either VP1 or 3D derived from O/JPN/2000 showed 0% mortality in suckling mice, whereas other recombinants showed 100% mortality. This finding indicates that VP1, the outermost component of the virus particle, and 3D, an RNA-dependent RNA polymerase, are individually involved in the virulence of O/JPN/2010. Three-dimensional structural analysis of VP1 confirmed that amino acid differences between the two strains were located mainly at the domain interacting with the cellular receptor. On the other hand, measurement of their mutation frequencies demonstrated that O/JPN/2000 had higher replication fidelity than O/JPN/2010.IMPORTANCE Efforts to understand the universal mechanism of foot-and-mouth disease virus (FMDV) infection may be aided by knowledge of the molecular mechanisms which underlie differences in virulence beyond multiple topotypes and serotypes of FMDV. Here, we demonstrated independent genetic determinants of two FMDV isolates which have different transmissibility in cattle, namely, VP1 and 3D protein. Findings suggested that the selectivity of VP1 for host cell receptors and replication fidelity during replication were important individual factors in the induction of differences in virulence in the host as well as in the severity of outbreaks in the field. These findings will aid the development of safe live vaccines and antivirals which obstruct viral infection in natural hosts.
Collapse
|
21
|
Alexandersen S, Knowles NJ, Belsham GJ, Dekker A, Nfon C, Zhang Z, Koenen F. Picornaviruses. DISEASES OF SWINE 2019:641-684. [DOI: 10.1002/9781119350927.ch40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Medina GN, Segundo FDS, Stenfeldt C, Arzt J, de Los Santos T. The Different Tactics of Foot-and-Mouth Disease Virus to Evade Innate Immunity. Front Microbiol 2018; 9:2644. [PMID: 30483224 PMCID: PMC6241212 DOI: 10.3389/fmicb.2018.02644] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Like all pathogens, foot-and-mouth disease virus (FMDV) is recognized by the immune system inducing a heightened immune response mainly mediated by type I and type III IFNs. To overcome the strong antiviral response induced by these cytokines, FMDV has evolved many strategies exploiting each region of its small RNA genome. These include: (a) inhibition of IFN induction at the transcriptional and translational level, (b) inhibition of protein trafficking; (c) blockage of specific post-translational modifications in proteins that regulate innate immune signaling; (d) modulation of autophagy; (e) inhibition of stress granule formation; and (f) in vivo modulation of immune cell function. Here, we summarize and discuss FMDV virulence factors and the host immune footprint that characterize infection in cell culture and in the natural hosts.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Codagenix Inc., Farmingdale, NY, United States
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Animal and Plant Health Inspection Service, Plum Island Animal Disease Center, United States Department of Agriculture, Orient, NY, United States
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jonathan Arzt
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Orient, NY, United States
| |
Collapse
|
23
|
Huang HN, Pan CY, Chen JY. Grouper (Epinephelus coioides) antimicrobial peptide epinecidin-1 exhibits antiviral activity against foot-and-mouth disease virus in vitro. Peptides 2018; 106:91-95. [PMID: 30012343 DOI: 10.1016/j.peptides.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/25/2023]
Abstract
Picornavirus is a highly contagious virus that usually infects cloven hoofed animals and causes foot-and-mouth disease. This disease is a major threat to livestock breeding worldwide and may lead to huge economic losses. Because effective vaccines or antiviral drugs remain unavailable, the search for new agents to combat FMDV infections is ongoing. Antimicrobial peptides are known to possess a broad range of biological activities, including antibacterial, antiviral, antitumor and immunomodulatory effects. In this work, we used a cell culture FMDV replication assay to evaluate several antimicrobial peptides for their ability to act as antiviral agents. We found that a synthesized form of the Epinephelus coioides antimicrobial peptide, epinecidin-1 (Epi-1), was effective at combatting FMDV. Epi-1 is known to have broad spectrum antimicrobial activity and low toxicity to normal eukaryotic cells, making it a good candidate for use as a therapeutic agent.The 50% cytotoxic concentration (CC50) for BHK-21 cells was 19.5 μg/ml for synthesized Epi-1, and the 50% effective concentration (EC50) for viral inhibition was 0.6 μg/ml. The selectivity index was 31.4, as calculated by the CC50/EC50 ratio. Furthermore, Epi-1 showed virucidal activity against FMDV at high concentrations. Interestingly, our data also showed that FMDV infection was most impaired when Epi-1 was treated at the time of viral adsorption. Taken together, our data show that Epi-1 may be a promising candidate for development as an anti-FMDV agent.
Collapse
Affiliation(s)
- Han-Ning Huang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | - Chieh-Yu Pan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan.
| |
Collapse
|
24
|
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and Function of Viral Deubiquitinating Enzymes. J Mol Biol 2017; 429:3441-3470. [PMID: 28625850 PMCID: PMC7094624 DOI: 10.1016/j.jmb.2017.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/12/2023]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including innate and adaptive immune responses. Ubiquitin-mediated control over these processes can be reversed by cellular deubiquitinating enzymes (DUBs), which remove ubiquitin from cellular targets and depolymerize polyubiquitin chains. The importance of protein ubiquitination to host immunity has been underscored by the discovery of viruses that encode proteases with deubiquitinating activity, many of which have been demonstrated to actively corrupt cellular ubiquitin-dependent processes to suppress innate antiviral responses and promote viral replication. DUBs have now been identified in diverse viral lineages, and their characterization is providing valuable insights into virus biology and the role of the ubiquitin system in host antiviral mechanisms. Here, we provide an overview of the structural biology of these fascinating viral enzymes and their role innate immune evasion and viral replication.
Collapse
Affiliation(s)
- Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | - Robert C M Knaap
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
25
|
Zhuge Z, Dong Y, Li L, Jin T. Effects of astragalus polysaccharide on the adhesion-related immune response of endothelial cells stimulated with CSFV in vitro. PeerJ 2017; 5:e3862. [PMID: 29018607 PMCID: PMC5633024 DOI: 10.7717/peerj.3862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
Background Astragalus polysaccharide (APS) has immunomodulatory activities on porcine peripheral blood mononuclear cells. The immunomodulatory effects of APS on porcine endothelial cells (ECs) expose to classical swine fever virus (CSFV) remain unknown. Methods The virus was titrated using an indirect immune biotin enzyme standard method to confirm that porcine ECs were susceptible to CSFV infection and to determine the TCID50 of CSFV (C-strain). Porcine ECs were cultured with CSFV in the presence of APS. Relative quantitative PCR was used to assess the mRNA expression of factors that influence EC adhesion and immunity. Results The expression of adhesion factors mRNA increased following stimulation with CSFV; this effect was inhibited by pre-exposing the cells to APS. In addition, the expression of growth factors and some immune factors increased after infection with CSFV; this increase in tissue factor (TF), transforming growth factor (TGF-β), and interleukin-8 (IL-8) could be inhibited by the addition of APS. The immune response mediated by Toll-like receptor 4 (TLR4) in ECs may be unregulated by CSFV as it was also inhibited by pre-treatment with APS. Discussion The addition of APS to the culture can obviously regulate the expression of molecules related to the adhesion, growth, and immune response of ECs, as well as the production of cytokines. Therefore, it may have the potential to be an effective component in vaccines against CSFV.
Collapse
Affiliation(s)
- Zengyu Zhuge
- Animal Science and Veterinary Medicine College, Tianjin Agricultural University, Tianjin, China
| | - Yanpeng Dong
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| | - Liuan Li
- Animal Science and Veterinary Medicine College, Tianjin Agricultural University, Tianjin, China
| | - Tianming Jin
- Animal Science and Veterinary Medicine College, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
26
|
Beissert T, Koste L, Perkovic M, Walzer KC, Erbar S, Selmi A, Diken M, Kreiter S, Türeci Ö, Sahin U. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins. Hum Gene Ther 2017; 28:1138-1146. [PMID: 28877647 PMCID: PMC5737720 DOI: 10.1089/hum.2017.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.
Collapse
Affiliation(s)
| | - Lars Koste
- 2 III Medical Clinic at the University Medical Center of the Johannes Gutenberg University Mainz , Mainz, Germany
| | | | | | | | | | | | | | - Özlem Türeci
- 5 CI3-Cluster for Individualized Immune Intervention , Mainz, Germany
| | - Ugur Sahin
- 1 TRON-Translational Oncology , Mainz, Germany .,2 III Medical Clinic at the University Medical Center of the Johannes Gutenberg University Mainz , Mainz, Germany .,3 BioNTech AG , Mainz, Germany
| |
Collapse
|
27
|
Guan SH, Belsham GJ. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage. J Gen Virol 2017; 98:671-680. [PMID: 28452293 DOI: 10.1099/jgv.0.000747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.
Collapse
Affiliation(s)
- Su Hua Guan
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| | - Graham J Belsham
- National Veterinary Institute, Technical University of Denmark, Lindholm, 4771 Kalvehave, Denmark
| |
Collapse
|
28
|
Medina GN, Knudsen GM, Greninger AL, Kloc A, Díaz-San Segundo F, Rieder E, Grubman MJ, DeRisi JL, de Los Santos T. Interaction between FMDV L pro and transcription factor ADNP is required for optimal viral replication. Virology 2017; 505:12-22. [PMID: 28219017 DOI: 10.1016/j.virol.2017.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
Abstract
The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an Lpro interacting protein by mass spectrometry. We show that Lpro can bind to ADNP in vitro and in cell culture. RNAi of ADNP negatively affected virus replication and higher levels of interferon (IFN) and IFN-stimulated gene expression were detected. Importantly, infection with FMDV wild type but not with a virus lacking Lpro (leaderless), induced recruitment of ADNP to IFN-α promoter sites early during infection. Furthermore, we found that Lpro and ADNP are in a protein complex with the ubiquitous chromatin remodeling factor Brg-1. Our results uncover a novel role of FMDV Lpro in targeting ADNP and modulation of its transcription repressive function to decrease the expression of IFN and ISGs.
Collapse
Affiliation(s)
- Gisselle N Medina
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Alexander L Greninger
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Anna Kloc
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA; Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN 37831, USA
| | - Fayna Díaz-San Segundo
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Elizabeth Rieder
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Marvin J Grubman
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA
| | - Joseph L DeRisi
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, CA 94158, USA
| | - Teresa de Los Santos
- Plum Island Animal Disease Center (PIADC), North Atlantic Area, Agricultural Research Service US Department of Agriculture, Greenport, NY 11944, USA.
| |
Collapse
|
29
|
Diaz-San Segundo F, Medina GN, Stenfeldt C, Arzt J, de Los Santos T. Foot-and-mouth disease vaccines. Vet Microbiol 2016; 206:102-112. [PMID: 28040311 DOI: 10.1016/j.vetmic.2016.12.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/04/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease affects many areas of the world, often causing extensive epizootics in livestock, mostly farmed cattle and swine, although sheep, goats and many wild species are also susceptible. In countries where food and farm animals are essential for subsistence agriculture, outbreaks of FMD seriously impact food security and development. In highly industrialized developed nations, FMD endemics cause economic and social devastation mainly due to observance of health measures adopted from the World Organization for Animal Health (OIE). High morbidity, complex host-range and broad genetic diversity make FMD prevention and control exceptionally challenging. In this article we review multiple vaccine approaches developed over the years ultimately aimed to successfully control and eradicate this feared disease.
Collapse
Affiliation(s)
- Fayna Diaz-San Segundo
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT 06269, USA.
| | - Gisselle N Medina
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Carolina Stenfeldt
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jonathan Arzt
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA
| | - Teresa de Los Santos
- Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Greenport, New York, USA.
| |
Collapse
|
30
|
Zhang L, Feng X, Jin Y, Ma J, Cai H, Zhang X. Immunoprotective mechanisms in swine within the “grey zone” in antibody response after immunization with foot-and-mouth disease vaccine. Virus Res 2016; 220:39-46. [DOI: 10.1016/j.virusres.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/27/2016] [Accepted: 04/07/2016] [Indexed: 11/27/2022]
|
31
|
Gao Y, Sun SQ, Guo HC. Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J 2016; 13:107. [PMID: 27334704 PMCID: PMC4917953 DOI: 10.1186/s12985-016-0561-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 02/08/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) represses host translation machinery, blocks protein secretion, and cleaves cellular proteins associated with signal transduction and the innate immune response to infection. Non-structural proteins (NSPs) and non-coding elements (NCEs) of FMDV play a critical role in these biological processes. The FMDV virion consists of capsid and nucleic acid. The virus genome is a positive single stranded RNA and encodes a single long open reading frame (ORF) flanked by a long structured 5ʹ-untranslated region (5ʹ-UTR) and a short 3ʹ-UTR. The ORF is translated into a polypeptide chain and processed into four structural proteins (VP1, VP2, VP3, and VP4), 10 NSPs (Lpro, 2A, 2B, 2C, 3A, 3B1–3, 3Cpro, and 3Dpol), and some cleavage intermediates. In the past decade, an increasing number of studies have begun to focus on the molecular pathogenesis of FMDV NSPs and NCEs. This review collected recent research progress on the biological functions of these NSPs and NCEs on the replication and host cellular regulation of FMDV to understand the molecular mechanism of host–FMDV interactions and provide perspectives for antiviral strategy and development of novel vaccines.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Shi-Qi Sun
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Hui-Chen Guo
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| |
Collapse
|
32
|
Stenfeldt C, Diaz-San Segundo F, de Los Santos T, Rodriguez LL, Arzt J. The Pathogenesis of Foot-and-Mouth Disease in Pigs. Front Vet Sci 2016; 3:41. [PMID: 27243028 PMCID: PMC4876306 DOI: 10.3389/fvets.2016.00041] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/05/2022] Open
Abstract
The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or to predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV) infection via exposure of the upper gastrointestinal tract (oropharynx) than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in contrast to ruminants, there is no subclinical persistence of FMDV in pigs. The aim of this review is to provide an overview of knowledge gained from experimental investigations of FMD pathogenesis, transmission, and host response in pigs. Details of the temporo-anatomic progression of infection are discussed in relation to specific pathogenesis events and the likelihood of transmission. Additionally, relevant aspects of the host immune response are discussed within contexts of conventional and novel intervention strategies of vaccination and immunomodulation.
Collapse
Affiliation(s)
- Carolina Stenfeldt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; PIADC Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fayna Diaz-San Segundo
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA), Greenport, NY, USA; Department of Pathobiology and Veterinary Science, CANR, University of Connecticut, Storrs, CT, USA
| | - Teresa de Los Santos
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Luis L Rodriguez
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| | - Jonathan Arzt
- Agricultural Research Service (ARS), Foreign Animal Disease Research Unit (FADRU), Plum Island Animal Disease Center (PIADC), United States Department of Agriculture (USDA) , Greenport, NY , USA
| |
Collapse
|
33
|
Mamber SW, Lins J, Gurel V, Hutcheson DP, Pinedo P, Bechtol D, Krakowka S, Fields-Henderson R, Cummins JM. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle. Vet Immunol Immunopathol 2016; 172:64-71. [PMID: 27032505 PMCID: PMC7173013 DOI: 10.1016/j.vetimm.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers.
Collapse
Affiliation(s)
- Stephen W Mamber
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - Jeremy Lins
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - Volkan Gurel
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - David P Hutcheson
- Animal Agricultural Consulting International, 63 Neches Court, Scroggins, TX 75480, United States
| | - Pablo Pinedo
- Texas A&M AgriLife Research Extension Center, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University System, Amarillo, TX 79106, United States
| | - David Bechtol
- Agri Research Center, 16851 Hope Road, Canyon, TX 79015, United States
| | - Steven Krakowka
- Department of Veterinary Sciences, Ohio State University, Columbus, OH 43210, United States
| | | | - Joseph M Cummins
- Bomunity Ltd., Co., 400 W. Walnut Street, Hereford, TX 79045, United States.
| |
Collapse
|
34
|
Li D, Lei C, Xu Z, Yang F, Liu H, Zhu Z, Li S, Liu X, Shu H, Zheng H. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway. Sci Rep 2016; 6:21888. [PMID: 26883855 PMCID: PMC4756384 DOI: 10.1038/srep21888] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/19/2016] [Indexed: 01/22/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the etiological agent of FMD, which affects cloven-hoofed animals. The pathophysiology of FMDV has not been fully understood and the evasion of host innate immune system is still unclear. Here, the FMDV non-structural protein 3A was identified as a negative regulator of virus-triggered IFN-β signaling pathway. Overexpression of the FMDV 3A inhibited Sendai virus-triggered activation of IRF3 and the expressions of RIG-I/MDA5. Transient transfection and co-immunoprecipitation experiments suggested that FMDV 3A interacts with RIG-I, MDA5 and VISA, which is dependent on the N-terminal 51 amino acids of 3A. Furthermore, 3A also inhibited the expressions of RIG-I, MDA5, and VISA by disrupting their mRNA levels. These results demonstrated that 3A inhibits the RLR-mediated IFN-β induction and uncovered a novel mechanism by which the FMDV 3A protein evades the host innate immune system.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Caoqi Lei
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Zhisheng Xu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Shu Li
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Hongbing Shu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| |
Collapse
|
35
|
Li D, Yang W, Yang F, Liu H, Zhu Z, Lian K, Lei C, Li S, Liu X, Zheng H, Shu H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway. FASEB J 2016; 30:1757-66. [PMID: 26813975 DOI: 10.1096/fj.15-281410] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/18/2015] [Indexed: 11/11/2022]
Abstract
Foot-and-mouth disease is a frequently occurring disease of cloven-hoofed animals that is caused by infection with the foot-and-mouth virus (FMDV). FMDV circumvents the type-I IFN response by expressing proteins that antagonize cellular innate immunity, such as leader protease and 3C protease. We identified the FMDV structural protein VP3 as a negative regulator of the virus-triggered IFN-β signaling pathway. Expression of FMDV VP3 inhibited the Sendai virus-triggered activation of IFN regulatory factor-3 and the expression of retinoic acid-inducible gene-I/melanoma differentiation-associated protein-5. Transient transfection and coimmunoprecipitation confirmed that the structural protein VP3 interacts with virus-induced signaling adapter (VISA), which is dependent on the C-terminal aa 111-220 of VP3. In addition, we found that FMDV VP3 inhibits the expression of VISA by disrupting its mRNA. Taken together, our findings reveal a novel strategy used by the structural VP3 protein of FMDV to evade host innate immunity.-Li, D., Yang, W., Yang, F., Liu, H., Zhu, Z., Lian, K., Lei, C., Li, S., Liu, X., Zheng, H., Shu, H. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Huanan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Kaiqi Lian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Caoqi Lei
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shu Li
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, National Foot and Mouth Diseases Reference Laboratory, Chinese Academy of Agricultural Sciences, Lanzhou, China; and
| | - Hongbing Shu
- Collaborative Innovation Center for Viral Immunology, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Generation of Recombinant Oropouche Viruses Lacking the Nonstructural Protein NSm or NSs. J Virol 2015; 90:2616-27. [PMID: 26699638 DOI: 10.1128/jvi.02849-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/15/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Oropouche virus (OROV) is a midge-borne human pathogen with a geographic distribution in South America. OROV was first isolated in 1955, and since then, it has been known to cause recurring outbreaks of a dengue-like illness in the Amazonian regions of Brazil. OROV, however, remains one of the most poorly understood emerging viral zoonoses. Here we describe the successful recovery of infectious OROV entirely from cDNA copies of its genome and generation of OROV mutant viruses lacking either the NSm or the NSs coding region. Characterization of the recombinant viruses carried out in vitro demonstrated that the NSs protein of OROV is an interferon (IFN) antagonist as in other NSs-encoding bunyaviruses. Additionally, we demonstrate the importance of the nine C-terminal amino acids of OROV NSs in IFN antagonistic activity. OROV was also found to be sensitive to IFN-α when cells were pretreated; however, the virus was still capable of replicating at doses as high as 10,000 U/ml of IFN-α, in contrast to the family prototype BUNV. We found that OROV lacking the NSm protein displayed characteristics similar to those of the wild-type virus, suggesting that the NSm protein is dispensable for virus replication in the mammalian and mosquito cell lines that were tested. IMPORTANCE Oropouche virus (OROV) is a public health threat in Central and South America, where it causes periodic outbreaks of dengue-like illness. In Brazil, OROV is the second most frequent cause of arboviral febrile illness after dengue virus, and with the current rates of urban expansion, more cases of this emerging viral zoonosis could occur. To better understand the molecular biology of OROV, we have successfully rescued the virus along with mutants. We have established that the C terminus of the NSs protein is important in interferon antagonism and that the NSm protein is dispensable for virus replication in cell culture. The tools described in this paper are important in terms of understanding this important yet neglected human pathogen.
Collapse
|
37
|
Steinberger J, Skern T. The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor. Biol Chem 2015; 395:1179-85. [PMID: 24670358 DOI: 10.1515/hsz-2014-0156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
Abstract
The leader proteinase (Lpro) of the foot-and-mouth disease virus inhibits the host innate immune response by at least three different mechanisms. The most well-characterised of these is the prevention of the synthesis of cytokines such as interferons immediately after infection, brought about by specific proteolytic cleavage of the eukaryotic initiation factor 4G. This prevents the recruitment of capped cellular mRNA; however, the viral RNA can be translated under these conditions. The two other mechanisms are the induction of NF-κB cleavage and the deubiquitination of immune signalling molecules. This review focuses on the structure-function relationships in Lpro responsible for these widely divergent activities.
Collapse
|
38
|
Synonymous Deoptimization of Foot-and-Mouth Disease Virus Causes Attenuation In Vivo while Inducing a Strong Neutralizing Antibody Response. J Virol 2015; 90:1298-310. [PMID: 26581977 DOI: 10.1128/jvi.02167-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Codon bias deoptimization has been previously used to successfully attenuate human pathogens, including poliovirus, respiratory syncytial virus, and influenza virus. We have applied a similar technology to deoptimize the capsid-coding region (P1) of foot-and-mouth disease virus (FMDV). Despite the introduction of 489 nucleotide changes (19%), synonymous deoptimization of the P1 region rendered a viable FMDV progeny. The resulting strain was stable and reached cell culture titers similar to those obtained for wild-type (WT) virus, but at reduced specific infectivity. Studies in mice showed that 100% of animals inoculated with the FMDV A12 P1 deoptimized mutant (A12-P1 deopt) survived, even when the animals were infected at doses 100 times higher than the dose required to cause death by WT virus. All mice inoculated with the A12-P1 deopt mutant developed a strong antibody response and were protected against subsequent lethal challenge with WT virus at 21 days postinoculation. Remarkably, the vaccine safety margin was at least 1,000-fold higher for A12-P1 deopt than for WT virus. Similar patterns of attenuation were observed in swine, in which animals inoculated with A12-P1 deopt virus did not develop clinical disease until doses reached 1,000 to 10,000 times the dose required to cause severe disease in 2 days with WT A12. Consistently, high levels of antibody titers were induced, even at the lowest dose tested. These results highlight the potential use of synonymous codon pair deoptimization as a strategy to safely attenuate FMDV and further develop live attenuated vaccine candidates to control such a feared livestock disease. IMPORTANCE Foot-and-mouth disease (FMD) is one of the most feared viral diseases that can affect livestock. Although this disease appeared to be contained in developed nations by the end of the last century, recent outbreaks in Europe, Japan, Taiwan, South Korea, etc., have demonstrated that infection can spread rapidly, causing devastating economic and social consequences. The Global Foot-and-Mouth Disease Research Alliance (GFRA), an international organization launched in 2003, has set as part of their five main goals the development of next-generation control measures and strategies, including improved vaccines and biotherapeutics. Our work demonstrates that newly developed codon pair bias deoptimization technologies can be applied to FMD virus to obtain attenuated strains with potential for further development as novel live attenuated vaccine candidates that may rapidly control disease without reverting to virulence.
Collapse
|
39
|
Liu Y, Zhu Z, Zhang M, Zheng H. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses. Vet Res 2015; 46:127. [PMID: 26511922 PMCID: PMC4625562 DOI: 10.1186/s13567-015-0273-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) leader protein (Lpro) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. Lpro exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. Lpro self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, Lpro also has the ability to antagonize host antiviral effects. To promote FMDV replication, Lpro can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) Lpro can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding Lpro, this review introduces the basic properties of Lpro and the mechanisms by which it antagonizes host antiviral responses.
Collapse
Affiliation(s)
- Yingqi Liu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zixiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Miaotao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| |
Collapse
|
40
|
Pacheco JM, Smoliga GR, O’Donnell V, Brito BP, Stenfeldt C, Rodriguez LL, Arzt J. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression. PLoS One 2015; 10:e0125698. [PMID: 25996935 PMCID: PMC4440813 DOI: 10.1371/journal.pone.0125698] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/21/2015] [Indexed: 01/28/2023] Open
Abstract
Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95%) and dorsal soft palate (71.43%). FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT). Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE) was identified for IP-10 (RE = 0.198), IFN-β (RE = 0.269), IL-12 (RE = 0.275), and IL-2 (RE = 0.312). Increased relative expression was detected for IL-6 (RE = 2.065). Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.
Collapse
Affiliation(s)
- Juan M. Pacheco
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
| | - George R. Smoliga
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
| | - Vivian O’Donnell
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
- Department of Pathobiology and Veterinary Science, University of Connecticut at Storrs, Storrs, CT, United States of America
| | - Barbara P. Brito
- Center for Animal Diseases Modeling and Surveillance, University of California Davis, Davis, CA, United States of America
| | - Carolina Stenfeldt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
| | - Luis L. Rodriguez
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
| | - Jonathan Arzt
- Plum Island Animal Disease Center, Foreign Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Plum Island, NY, United States of America
- * E-mail:
| |
Collapse
|
41
|
Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses 2015; 7:1613-26. [PMID: 25835532 PMCID: PMC4411668 DOI: 10.3390/v7041613] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/04/2015] [Accepted: 03/26/2015] [Indexed: 12/24/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of domestic and wild ruminants that is caused by FMD virus (FMDV). FMD outbreaks have occurred in livestock-containing regions worldwide. Apigenin, which is a flavonoid naturally existing in plant, possesses various pharmacological effects, including anti-inflammatory, anticancer, antioxidant and antiviral activities. Results show that apigenin can inhibit FMDV-mediated cytopathogenic effect and FMDV replication in vitro. Further studies demonstrate the following: (i) apigenin inhibits FMDV infection at the viral post-entry stage; (ii) apigenin does not exhibit direct extracellular virucidal activity; and (iii) apigenin interferes with the translational activity of FMDV driven by internal ribosome entry site. Studies on applying apigein in vivo are required for drug development and further identification of potential drug targets against FDMV infection.
Collapse
|
42
|
Ramanathan P, Zhu JJ, Bishop EA, Puckette MC, Hartwig E, Grubman MJ, Rodriguez LL. A colorimetric bioassay for high-throughput and cost-effectively assessing anti-foot-and-mouth disease virus activity. Vet Immunol Immunopathol 2015; 164:74-8. [DOI: 10.1016/j.vetimm.2015.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/12/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022]
|
43
|
Zheng W, Li X, Wang J, Li X, Cao H, Wang Y, Zeng Q, Zheng SJ. A critical role of interferon-induced protein IFP35 in the type I interferon response in cells induced by foot-and-mouth disease virus (FMDV) protein 2C. Arch Virol 2014; 159:2925-35. [DOI: 10.1007/s00705-014-2147-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
|
44
|
Perez-Martin E, Diaz-San Segundo F, Weiss M, Sturza DF, Dias CC, Ramirez-Medina E, Grubman MJ, de los Santos T. Type III interferon protects swine against foot-and-mouth disease. J Interferon Cytokine Res 2014; 34:810-21. [PMID: 24786495 DOI: 10.1089/jir.2013.0112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent years, we have developed novel strategies to control foot-and-mouth disease (FMD), including the use of biotherapeutics such as interferons (IFN) delivered by a replication-defective human adenovirus type 5 (Ad5). Swine can be sterilely protected after vaccination with an Ad5 that encodes porcine type I IFN (poIFN-α), and cattle can be similarly protected or develop significantly reduced disease when treated with an Ad5 delivering bovine type III IFN (boIFN-λ3). Here, we have evaluated the efficacy of porcine IFN-λ3 (poIFN-λ3) against FMD virus in vivo. Swine inoculated with different doses of Ad5-poIFN-λ3 were protected against disease in a dose-dependent manner. Despite the absence of systemic antiviral activity, 7 out of 10 Ad5-poIFN-λ3 inoculated animals did not develop disease or viremia, and the other 3 inoculated animals displayed delayed and milder disease by 7 days postchallenge as compared with control animals inoculated with an Ad5 control vector. While analysis of gene expression showed significant induction of IFN and IFN-stimulated genes in Ad5-poIFN-λ3-treated cultured porcine epithelial kidney cells, there was limited gene induction in peripheral blood monocytes isolated from treated swine. These results suggest that treatment with Ad5-poIFN-λ3 is an effective biotherapeutic strategy against FMD in swine.
Collapse
Affiliation(s)
- Eva Perez-Martin
- 1 Plum Island Animal Disease Center , North Atlantic Area, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim SM, Kim SK, Park JH, Lee KN, Ko YJ, Lee HS, Seo MG, Shin YK, Kim B. A recombinant adenovirus bicistronically expressing porcine interferon-α and interferon-γ enhances antiviral effects against foot-and-mouth disease virus. Antiviral Res 2014; 104:52-8. [DOI: 10.1016/j.antiviral.2014.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/20/2022]
|
46
|
Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, Lin SW, Lee CN, Yang PC, Yu SL. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun 2014; 5:3344. [DOI: 10.1038/ncomms4344] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/29/2014] [Indexed: 02/07/2023] Open
|
47
|
Foot-and-mouth disease virus virulence in cattle is co-determined by viral replication dynamics and route of infection. Virology 2014; 452-453:12-22. [PMID: 24606678 DOI: 10.1016/j.virol.2014.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/27/2013] [Accepted: 01/02/2014] [Indexed: 01/13/2023]
Abstract
Early events in the pathogenesis of foot-and-mouth disease virus (FMDV) infection in cattle were investigated through aerosol and intraepithelial lingual (IEL) inoculations of a cDNA-derived FMDV-A24 wild type virus (FMDV-WT) or a mutant derived from the same clone (FMDV-Mut). After aerosolization of FMDV-WT, primary infection sites had significantly greater quantities of FMDV, viral RNA, and type I/III interferon (IFN) activity compared to corresponding tissues from cattle infected with FMDV-Mut. Additionally, FMDV-WT-infected cattle had marked induction of systemic IFN activity in serum. In contrast, FMDV-Mut aerosol-infected cattle did not manifest systemic IFN response nor had viremia. Interestingly, IEL inoculation of FMDV-Mut in cattle restored the virulent phenotype and systemic IFN response. These data indicate that the attenuated phenotype in cattle is associated with decreased replicative efficiency, reflected by decreased innate response. However, attenuation is abrogated by bypassing the common primary infection sites, inducing accelerated viral replication at the inoculation site.
Collapse
|
48
|
Abstract
Economically, foot-and-mouth disease is the most important viral-induced livestock disease worldwide. The disease is highly contagious and foot-and-mouth disease virus replicates and spreads extremely rapidly. Recent outbreaks in previously foot-and-mouth disease-free countries and the potential use of foot-and-mouth disease virus by terrorist groups have demonstrated the vulnerability of countries and the need to develop control strategies that can rapidly inhibit or limit spread of the disease. The current vaccine, an inactivated whole-virus preparation, has a number of limitations for use in outbreaks in disease-free countries. This review discusses the potential of the antiviral agent, Type I interferon, to produce rapid protection and proposes a combination strategy of an antiviral agent and a foot-and-mouth disease vaccine to induce both immediate and long-lasting protective responses.
Collapse
Affiliation(s)
- Marvin J Grubman
- FMD Unit Plum Island Animal Disease Center, USDA, ARS, NAA, Greenport, NY 11944, USA.
| |
Collapse
|
49
|
Characterization of a chimeric foot-and-mouth disease virus bearing a bovine rhinitis B virus leader proteinase. Virology 2013; 447:172-80. [PMID: 24210112 DOI: 10.1016/j.virol.2013.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/10/2013] [Accepted: 08/29/2013] [Indexed: 11/23/2022]
Abstract
Bovine rhinitis B virus (BRBV) shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). This study examined if the BRBV leader proteinase (L(pro) ) could functionally replace that of FMDV. A mutant A24LBRV3DYR FMDV engineered with the BRBV L(pro) and an antigenic marker in the 3D polymerase exhibited growth properties and eIF4G cleavage similar to parental A24WT virus. The A24LBRV3DYR type I interferon activity in infected bovine cells resembled that of A24LL virus that lacks L(pro), but this effect was less pronounced for A24LBRV3DYR infected porcine cells. In vivo studies showed that the A24LBRV3DYR virus was attenuated in cattle, and exhibited low virulence in pigs exposed by direct contact. The mutant virus induced protective immunity in cattle against challenge with parental A24WT. These results provide evidence that L(pro) of different Aphthoviruses are not fully functionally interchangeable and have roles that may depend on the nature of the infected host.
Collapse
|
50
|
Li X, Wang J, Liu J, Li Z, Wang Y, Xue Y, Li X, Cao H, Zheng SJ. Engagement of soluble resistance-related calcium binding protein (sorcin) with foot-and-mouth disease virus (FMDV) VP1 inhibits type I interferon response in cells. Vet Microbiol 2013; 166:35-46. [PMID: 23764275 DOI: 10.1016/j.vetmic.2013.04.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/13/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Foot-and-mouth disease (FMD) is an acute, highly contagious animal disease caused by FMD virus (FMDV). Although FMDV-induced immunosuppression in host has been well established, the exact molecular mechanism for such induction is not very clear. We report here the identification of FMDV VP1 as an interferon-suppressor by interacting with soluble resistance-related calcium binding protein (sorcin). We found that VP1 suppressed tumor necrosis factor (TNF)-α or Sendai virus (SeV)-induced type I interferon response in HEK293T cells, and that this suppression could be completely abolished by knockdown of sorcin by shRNA. Furthermore, overexpression of sorcin inhibited type I interferon response. Conversely, TNF- or SeV-induced type I interferon response increased when sorcin knocked down, leading to inhibition of vesicular stomatitis virus (VSV) replication. Thus, VP1-induced suppression of type I interferon is mediated by interacting with sorcin, a protein that appears to regulate cell response to viral infections.
Collapse
Affiliation(s)
- Xiaying Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|