1
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Pastore G, Polvere J, Fiorino F, Lucchesi S, Montesi G, Rancan I, Zirpoli S, Lippi A, Durante M, Fabbiani M, Tumbarello M, Montagnani F, Medaglini D, Ciabattini A. Homologous or heterologous administration of mRNA or adenovirus-vectored vaccines show comparable immunogenicity and effectiveness against the SARS-CoV-2 Omicron variant. Expert Rev Vaccines 2024; 23:432-444. [PMID: 38517153 DOI: 10.1080/14760584.2024.2333952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Heterologous prime-boost schedules have been employed in SARS-CoV-2 vaccination, yet additional data on immunogenicity and effectiveness are still needed. RESEARCH DESIGN AND METHODS Here, we measured the immunogenicity and effectiveness in the real-world setting of the mRNA booster dose in 181 subjects who had completed primary vaccination with ChAdOx1, BNT162b2, or mRNA1273 vaccines (IMMUNO_COV study; protocol code 18,869). The spike-specific antibody and B cell responses were analyzed up to 6 months after boosting. RESULTS After an initial slower antibody response, the heterologous ChAdOx1/mRNA prime-boost formulation elicited spike-specific IgG titers comparable to homologous approaches, while spike-specific B cells showed a higher percentage of CD21-CD27- atypical cells compared to homologous mRNA vaccination. Mixed combinations of BNT162b2 and mRNA-1273 elicited an immune response comparable with homologous strategies. Non-significant differences in the Relative Risk of infection, calculated over a period of 18 months after boosting, were reported among homologous or heterologous vaccination groups, indicating a comparable relative vaccine effectiveness. CONCLUSIONS Our data endorse the heterologous booster vaccination with mRNA as a valuable alternative to homologous schedules. This approach can serve as a solution in instances of formulation shortages and contribute to enhancing vaccine strategies for potential epidemics or pandemics.
Collapse
Affiliation(s)
- Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jacopo Polvere
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medicine and Surgery, LUM University "Giuseppe Degennaro"; Casamassima, Bari, Italy
| | - Simone Lucchesi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giorgio Montesi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Sara Zirpoli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Arianna Lippi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Miriam Durante
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Mario Tumbarello
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, University Hospital of Siena, Siena, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Marcus H, Thompson E, Zhou Y, Bailey M, Donaldson MM, Stanley DA, Asiedu C, Foulds KE, Roederer M, Moliva JI, Sullivan NJ. Ebola-GP DNA Prime rAd5-GP Boost: Influence of Prime Frequency and Prime/Boost Time Interval on the Immune Response in Non-human Primates. Front Immunol 2021; 12:627688. [PMID: 33790899 PMCID: PMC8006325 DOI: 10.3389/fimmu.2021.627688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heterologous prime-boost immunization regimens are a common strategy for many vaccines. DNA prime rAd5-GP boost immunization has been demonstrated to protect non-human primates against a lethal challenge of Ebola virus, a pathogen that causes fatal hemorrhagic disease in humans. This protection correlates with antibody responses and is also associated with IFNγ+ TNFα+ double positive CD8+ T-cells. In this study, we compared single DNA vs. multiple DNA prime immunizations, and short vs. long time intervals between the DNA prime and the rAd5 boost to evaluate the impact of these different prime-boost strategies on vaccine-induced humoral and cellular responses in non-human primates. We demonstrated that DNA/rAd5 prime-boost strategies can be tailored to induce either CD4+ T-cell or CD8+ T-cell dominant responses while maintaining a high magnitude antibody response. Additionally, a single DNA prime immunization generated a stable memory response that could be boosted by rAd5 3 years later. These results suggest DNA/rAd5 prime-boost provides a flexible platform that can be fine-tuned to generate desirable T-cell memory responses.
Collapse
Affiliation(s)
- Hadar Marcus
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Emily Thompson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Bailey
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mitzi M Donaldson
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Clement Asiedu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Li Z, Khanna M, Grimley SL, Ellenberg P, Gonelli CA, Lee WS, Amarasena TH, Kelleher AD, Purcell DFJ, Kent SJ, Ranasinghe C. Mucosal IL-4R antagonist HIV vaccination with SOSIP-gp140 booster can induce high-quality cytotoxic CD4 +/CD8 + T cells and humoral responses in macaques. Sci Rep 2020; 10:22077. [PMID: 33328567 PMCID: PMC7744512 DOI: 10.1038/s41598-020-79172-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022] Open
Abstract
Inducing humoral, cellular and mucosal immunity is likely to improve the effectiveness of HIV-1 vaccine strategies. Here, we tested a vaccine regimen in pigtail macaques using an intranasal (i.n.) recombinant Fowl Pox Virus (FPV)-gag pol env-IL-4R antagonist prime, intramuscular (i.m.) recombinant Modified Vaccinia Ankara Virus (MVA)-gag pol-IL-4R antagonist boost followed by an i.m SOSIP-gp140 boost. The viral vector-expressed IL-4R antagonist transiently inhibited IL-4/IL-13 signalling at the vaccination site. The SOSIP booster not only induced gp140-specific IgG, ADCC (antibody-dependent cellular cytotoxicity) and some neutralisation activity, but also bolstered the HIV-specific cellular and humoral responses. Specifically, superior sustained systemic and mucosal HIV Gag-specific poly-functional/cytotoxic CD4+ and CD8+ T cells were detected with the IL-4R antagonist adjuvanted strategy compared to the unadjuvanted control. In the systemic compartment elevated Granzyme K expression was linked to CD4+ T cells, whilst Granzyme B/TIA-1 to CD8+ T cells. In contrast, the cytotoxic marker expression by mucosal CD4+ and CD8+ T cells differed according to the mucosal compartment. This vector-based mucosal IL-4R antagonist/SOSIP booster strategy, which promotes cytotoxic mucosal CD4+ T cells at the first line of defence, and cytotoxic CD4+ and CD8+ T cells plus functional antibodies in the blood, may prove valuable in combating mucosal infection with HIV-1 and warrants further investigation.
Collapse
Affiliation(s)
- Z Li
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - M Khanna
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - S L Grimley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - P Ellenberg
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - C A Gonelli
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - T H Amarasena
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - A D Kelleher
- Immunovirology and Pathogenesis Program, Kirby Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - D F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - S J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - C Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
Pattinson DJ, Apte SH, Wibowo N, Rivera-Hernandez T, Groves PL, Middelberg APJ, Doolan DL. Chimeric Virus-Like Particles and Capsomeres Induce Similar CD8 + T Cell Responses but Differ in Capacity to Induce CD4 + T Cell Responses and Antibody Responses. Front Immunol 2020; 11:564627. [PMID: 33133076 PMCID: PMC7550421 DOI: 10.3389/fimmu.2020.564627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/01/2022] Open
Abstract
Despite extensive research, the development of an effective malaria vaccine remains elusive. The induction of robust and sustained T cell and antibody response by vaccination is an urgent unmet need. Chimeric virus-like particles (VLPs) are a promising vaccine platform. VLPs are composed of multiple subunit capsomeres which can be rapidly produced in a cost-effective manner, but the ability of capsomeres to induce antigen-specific cellular immune responses has not been thoroughly investigated. Accordingly, we have compared chimeric VLPs and their sub-unit capsomeres for capacity to induce CD8+ and CD4+ T cell and antibody responses. We produced chimeric murine polyomavirus VLPs and capsomeres each incorporating defined CD8+ T cell, CD4+ T cell or B cell repeat epitopes derived from Plasmodium yoelii CSP. VLPs and capsomeres were evaluated using both homologous or heterologous DNA prime/boost immunization regimens for T cell and antibody immunogenicity. Chimeric VLP and capsomere vaccine platforms induced robust CD8+ T cell responses at similar levels which was enhanced by a heterologous DNA prime. The capsomere platform was, however, more efficient at inducing CD4+ T cell responses and less efficient at inducing antigen-specific antibody responses. Our data suggest that capsomeres, which have significant manufacturing advantages over VLPs, should be considered for diseases where a T cell response is the desired outcome.
Collapse
Affiliation(s)
- David J Pattinson
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| | - Simon H Apte
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nani Wibowo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Penny L Groves
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Anton P J Middelberg
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.,School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Denise L Doolan
- Infectious Diseases Programme, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
6
|
Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute HIV-1 Viremia. J Virol 2019; 93:JVI.00814-19. [PMID: 31375576 DOI: 10.1128/jvi.00814-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
BLT (bone marrow-liver-thymus) humanized mice, which reconstitute a functional human immune system, develop prototypic human virus-specific CD8+ T cell responses following infection with human immunodeficiency virus type 1 (HIV-1). We explored the utility of the BLT model for HIV-1 vaccine development by immunizing BLT mice against the conserved viral Gag protein, utilizing a rapid prime-boost protocol of poly(lactic-co-glycolic) acid microparticles and a replication-defective herpes simplex virus (HSV) recombinant vector. After HIV-1 challenge, the mice developed broad, proteome-wide gamma interferon-positive (IFN-γ+) T cell responses against HIV-1 that reached magnitudes equivalent to what is observed in HIV-1-infected individuals. The functionality of these responses was underscored by the consistent emergence of escape mutations in multiple CD8+ T cell epitopes during the course of infection. Although prechallenge vaccine-induced responses were largely undetectable, the Gag immunization increased both the magnitude and the kinetics of anamnestic Gag-specific T cell responses following HIV-1 infection, and the magnitude of these postchallenge Gag-specific responses was inversely correlated with acute HIV-1 viremia. Indeed, Gag immunization was associated with a modest but significant 0.5-log reduction in HIV-1 viral load when analyzed across four experimental groups of BLT mice. Notably, the HSV vector induced elevated plasma concentrations of polarizing cytokines and chemotactic factors, including interleukin-12p70 (IL-12p70) and MIP-1α, which were positively correlated with the magnitude of Gag-specific responses. Overall, these results support the ability of BLT mice to recapitulate human pathogen-specific T cell responses and to respond to immunization; however, additional improvements to the model are required to develop a robust system for testing HIV-1 vaccine efficacy.IMPORTANCE Advances in the development of humanized mice have raised the possibility of a small-animal model for preclinical testing of an HIV-1 vaccine. Here, we describe the capacity of BLT humanized mice to mount broadly directed HIV-1-specific human T cell responses that are functionally active, as indicated by the rapid emergence of viral escape mutations. Although immunization of BLT mice with the conserved viral Gag protein did not result in detectable prechallenge responses, it did increase the magnitude and kinetics of postchallenge Gag-specific T cell responses, which was associated with a modest but significant reduction in acute HIV-1 viremia. Additionally, the BLT model revealed immunization-associated increases in the plasma concentrations of immunomodulatory cytokines and chemokines that correlated with more robust T cell responses. These data support the potential utility of the BLT humanized mouse for HIV-1 vaccine development but suggest that additional improvements to the model are warranted.
Collapse
|
7
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
8
|
Abstract
Maedi-visna virus (MVV) is an ovine retrovirus of the Lentivirus genus, responsible for a chronic and progressive disease of sheep with a high prevalence all over the world. Therefore, measures aiming at the control of MVV infection are necessary, and the development of DNA vaccines may be the ideal approach. A DNA vaccine is an antigen-encoding bacterial plasmid designed to mimic infections safely, with ability to generate both humoral and cellular long-lasting immune responses once it is delivered to the host.Here, we describe the development and evaluation of DNA vaccines against ovine maedi-visna virus. The first step is the design of the vaccines, including the choice of the backbone vector and the nucleotide sequences to use as antigen-encoding sequences. Once constructed, the vaccines may be produced with high quality for use in in vitro and in vivo tests. In vitro assays are performed through transfection of animal cells to confirm the expression of the protein, while in vivo tests are carried out by mouse and/or sheep immunization in order to check humoral and cellular responses to the vaccines and conclude about their efficiency. Several approaches may be later performed in order to enhance the effectiveness of the vaccines, such as the introduction of targeting sequences, the use of a prime-boost strategy, the administration of a combined vaccine, and the use of liposomes as delivery vehicle.
Collapse
Affiliation(s)
- Ana M Henriques
- Laboratory of Virology, Instituto Nacional de Investigação Agrária e Veterinária, Lisbon, Portugal
| | - Miguel Fevereiro
- Laboratory of Virology, Instituto Nacional de Investigação Agrária e Veterinária, Lisbon, Portugal
| | - Gabriel A Monteiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon, Portugal. .,Department of Bioengineering, Instituto Superior Técnico, South Tower, Floor 0, Av Rovisco Parents, N1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
9
|
Seki S, Matano T. Development of a Sendai virus vector-based AIDS vaccine inducing T cell responses. Expert Rev Vaccines 2015; 15:119-27. [PMID: 26512881 DOI: 10.1586/14760584.2016.1105747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Virus-specific CD8(+) T-cell responses play a major role in the control of HIV replication, and induction of HIV-specific T-cell responses is an important strategy for AIDS vaccine development. Optimization of the delivery system and immunogen would be the key for the development of an effective T cell-based AIDS vaccine. Heterologous prime-boost vaccine regimens using multiple viral vectors are a promising protocol for efficient induction of HIV-specific T-cell responses, and the development of a variety of potent viral vectors have been attempted. This review describes the current progress of the development of T cell-based AIDS vaccines using viral vectors, focusing on Sendai virus vectors, whose phase I clinical trials have been performed.
Collapse
Affiliation(s)
- Sayuri Seki
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan
| | - Tetsuro Matano
- a AIDS Research Center , National Institute of Infectious Diseases , Tokyo , Japan.,b The Institute of Medical Science , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
10
|
Billingsley JM, Rajakumar PA, Connole MA, Salisch NC, Adnan S, Kuzmichev YV, Hong HS, Reeves RK, Kang HJ, Li W, Li Q, Haase AT, Johnson RP. Characterization of CD8+ T cell differentiation following SIVΔnef vaccination by transcription factor expression profiling. PLoS Pathog 2015; 11:e1004740. [PMID: 25768938 PMCID: PMC4358830 DOI: 10.1371/journal.ppat.1004740] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/10/2015] [Indexed: 01/03/2023] Open
Abstract
The onset of protective immunity against pathogenic SIV challenge in SIVΔnef-vaccinated macaques is delayed for 15-20 weeks, a process that is related to qualitative changes in CD8+ T cell responses induced by SIVΔnef. As a novel approach to characterize cell differentiation following vaccination, we used multi-target qPCR to measure transcription factor expression in naïve and memory subsets of CD8++ T cells, and in SIV-specific CD8+ T cells obtained from SIVΔnef-vaccinated or wild type SIVmac239-infected macaques. Unsupervised clustering of expression profiles organized naïve and memory CD8+ T cells into groups concordant with cell surface phenotype. Transcription factor expression patterns in SIV-specific CD8+ T cells in SIVΔnef-vaccinated animals were distinct from those observed in purified CD8+ T cell subsets obtained from naïve animals, and were intermediate to expression profiles of purified central memory and effector memory T cells. Expression of transcription factors elicited by SIVΔnef vaccination also varied over time: cells obtained at later time points, temporally associated with greater protection, appeared more central-memory like than cells obtained at earlier time points, which appeared more effector memory-like. Expression of transcription factors associated with effector differentiation, such as ID2 and RUNX3, were decreased over time, while expression of transcription factors associated with quiescence or memory differentiation, such as TCF7, BCOR and EOMES, increased. CD8+ T cells specific for a more conserved epitope expressed higher levels of TBX21 and BATF, and appeared more effector-like than cells specific for an escaped epitope, consistent with continued activation by replicating vaccine virus. These data suggest transcription factor expression profiling is a novel method that can provide additional data complementary to the analysis of memory cell differentiation based on classical phenotypic markers. Additionally, these data support the hypothesis that ongoing stimulation by SIVΔnef promotes a distinct protective balance of CD8+ T cell differentiation and activation states. The live attenuated vaccine SIVΔnef can induce robust CD8+ T cell- mediated protection against infection with pathogenic SIV in macaques. Thus, there is substantial interest in characterizing these immune responses to inform HIV vaccine design. Animals challenged at 15–20 weeks post vaccination exhibit robust protection, whereas animals challenged at 5 weeks post-vaccination manifest little protection. Since the frequency of SIV-specific T cells decreases from week 5 to week 20, it is likely that the quality of the response to challenge changes as virus-specific cells differentiate. We applied a novel approach of transcription factor expression profiling to characterize the differences in SIV-specific cell function and phenotype at more protected and less protected time points. Using unsupervised clustering methods informed by expression profiles assessed in purified CD8+ T cell subsets, we show that SIV-specific cells display expression profiles different than any purified CD8+ T cell subset, and intermediate to sorted effector memory and central memory subsets. SIV-specific cells overall appear more effector memory-like at week 5 post-vaccination, and more central memory-like at week 20 post-vaccination. Distinct profiles of CD8+ T cells specific for different SIV epitopes having different immune escape kinetics suggests maturation is regulated by ongoing low-level replication of vaccine virus.
Collapse
Affiliation(s)
- James M. Billingsley
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Premeela A. Rajakumar
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michelle A. Connole
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Nadine C. Salisch
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Crucell Holland BV, Leiden, The Netherlands
| | - Sama Adnan
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Yury V. Kuzmichev
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Henoch S. Hong
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - R. Keith Reeves
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Hyung-joo Kang
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Wenjun Li
- Division of Preventive and Behavioral Medicine, University of Massachusetts Medical Center, Worcester, Massachusetts, United States of America
| | - Qingsheng Li
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ashley T. Haase
- University of Minnesota, Microbiology Department, Minneapolis, Minnesota, United States of America
| | - R. Paul Johnson
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Knudsen ML, Ljungberg K, Tatoud R, Weber J, Esteban M, Liljeström P. Alphavirus replicon DNA expressing HIV antigens is an excellent prime for boosting with recombinant modified vaccinia Ankara (MVA) or with HIV gp140 protein antigen. PLoS One 2015; 10:e0117042. [PMID: 25643354 PMCID: PMC4314072 DOI: 10.1371/journal.pone.0117042] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022] Open
Abstract
Vaccination with DNA is an attractive strategy for induction of pathogen-specific T cells and antibodies. Studies in humans have shown that DNA vaccines are safe, but their immunogenicity needs further improvement. As a step towards this goal, we have previously demonstrated that immunogenicity is increased with the use of an alphavirus DNA-launched replicon (DREP) vector compared to conventional DNA vaccines. In this study, we investigated the effect of varying the dose and number of administrations of DREP when given as a prime prior to a heterologous boost with poxvirus vector (MVA) and/or HIV gp140 protein formulated in glucopyranosyl lipid A (GLA-AF) adjuvant. The DREP and MVA vaccine constructs encoded Env and a Gag-Pol-Nef fusion protein from HIV clade C. One to three administrations of 0.2 μg DREP induced lower HIV-specific T cell and IgG responses than the equivalent number of immunizations with 10 μg DREP. However, the two doses were equally efficient as a priming component in a heterologous prime-boost regimen. The magnitude of immune responses depended on the number of priming immunizations rather than the dose. A single low dose of DREP prior to a heterologous boost resulted in greatly increased immune responses compared to MVA or protein antigen alone, demonstrating that a mere 0.2 μg DREP was sufficient for priming immune responses. Following a DREP prime, T cell responses were expanded greatly by an MVA boost, and IgG responses were also expanded when boosted with protein antigen. When MVA and protein were administered simultaneously following multiple DREP primes, responses were slightly compromised compared to administering them sequentially. In conclusion, we have demonstrated efficient priming of HIV-specific T cell and IgG responses with a low dose of DREP, and shown that the priming effect depends on number of primes administered rather than dose.
Collapse
MESH Headings
- Alphavirus/genetics
- Animals
- Antibodies, Viral/immunology
- Chemistry, Pharmaceutical
- DNA, Recombinant/genetics
- DNA, Viral/genetics
- Female
- Gene Expression
- Genetic Vectors/genetics
- HIV Antigens/genetics
- HIV Antigens/immunology
- HIV-1/immunology
- Immunization, Secondary
- Immunoglobulin G/immunology
- Lipid A/chemistry
- Mice
- Mice, Inbred BALB C
- Replicon/genetics
- T-Lymphocytes/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus/genetics
- env Gene Products, Human Immunodeficiency Virus/chemistry
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Maria L. Knudsen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Roger Tatoud
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Jonathan Weber
- Imperial College London, Department of Infectious Diseases, Division of Medicine, Norfolk Place, London, United Kingdom
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MLK); (PL)
| |
Collapse
|
12
|
|
13
|
Neurovirulence and immunogenicity of attenuated recombinant vesicular stomatitis viruses in nonhuman primates. J Virol 2014; 88:6690-701. [PMID: 24696472 DOI: 10.1128/jvi.03441-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.
Collapse
|
14
|
Glucopyranosyl lipid A adjuvant significantly enhances HIV specific T and B cell responses elicited by a DNA-MVA-protein vaccine regimen. PLoS One 2014; 9:e84707. [PMID: 24465426 PMCID: PMC3900398 DOI: 10.1371/journal.pone.0084707] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022] Open
Abstract
Using a unique vaccine antigen matched and single HIV Clade C approach we have assessed the immunogenicity of a DNA-poxvirus-protein strategy in mice and rabbits, administering MVA and protein immunizations either sequentially or simultaneously and in the presence of a novel TLR4 adjuvant, GLA-AF. Mice were vaccinated with combinations of HIV env/gag-pol-nef plasmid DNA followed by MVA-C (HIV env/gag-pol-nef) with HIV CN54gp140 protein (+/−GLA-AF adjuvant) and either co-administered in different muscles of the same animal with MVA-C or given sequentially at 3-week intervals. The DNA prime established a population of B cells that were able to mount a statistically significant anamnestic response to the boost vaccines. The greatest antigen-specific antibody response was observed in animals that received all vaccine components. Moreover, a high proportion of the total mucosal IgG (20 – 50%) present in the vaginal vault of these vaccinated animals was vaccine antigen-specific. The potent elicitation of antigen-specific immune responses to this vaccine modality was also confirmed in rabbits. Importantly, co-administration of MVA-C with the GLA-AF adjuvanted HIV CN54gp140 protein significantly augmented the antigen-specific T cell responses to the Gag antigen, a transgene product expressed by the MVA-C vector in a separate quadriceps muscle. We have demonstrated that co-administration of MVA and GLA-AF adjuvanted HIV CN54gp140 protein was equally effective in the generation of humoral responses as a sequential vaccination modality thus shortening and simplifying the immunization schedule. In addition, a significant further benefit of the condensed vaccination regime was that T cell responses to proteins expressed by the MVA-C were potently enhanced, an effect that was likely due to enhanced immunostimulation in the presence of systemic GLA-AF.
Collapse
|
15
|
Madhavi V, Kent SJ, Stratov I. HIV-specific antibody-dependent cellular cytotoxicity: a novel vaccine modality. Expert Rev Clin Immunol 2014; 8:767-74. [DOI: 10.1586/eci.12.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2014; 8:1171-81. [DOI: 10.1586/erv.09.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Jackson RJ, Boyle DB, Ranasinghe C. Progresses in DNA-based heterologous prime-boost immunization strategies. Methods Mol Biol 2014; 1143:61-90. [PMID: 24715282 DOI: 10.1007/978-1-4939-0410-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although recombinant DNA and recombinant viral vectors expressing HIV antigens have yielded positive outcomes in animal models, these vaccines have not been effectively translated to humans. Despite this, there is still a high level of optimism that poxviral-based vaccine strategies could offer the best hope for developing an effective vaccine against not only HIV-1 but also other chronic diseases where good-quality T and B cell immunity is needed for protection. In this chapter we discuss step by step (1) how recombinant poxviral vectors co-expressing HIV antigens and promising mucosal/systemic adjuvants (e.g., IL-13Rα2) are constructed, (2) how these vectors can be used in alternative heterologous prime-boost immunization strategies, (3) how systemic and mucosal samples are prepared for analysis, followed by (4) two immunological assays: multicolor intracellular cytokine staining and tetramer/homing maker analysis that are used to evaluate effective systemic and mucosal T cell immunity.
Collapse
Affiliation(s)
- Ronald J Jackson
- Molecular Mucosal Vaccine Immunology group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | | | | |
Collapse
|
18
|
Villarreal DO, Talbott KT, Choo DK, Shedlock DJ, Weiner DB. Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 2013; 12:537-54. [PMID: 23659301 DOI: 10.1586/erv.13.33] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The human body has developed an elaborate defense system against microbial pathogens and foreign antigens. However, particular microbes have evolved sophisticated mechanisms to evade immune surveillance, allowing persistence within the human host. In an effort to combat such infections, intensive research has focused on the development of effective prophylactic and therapeutic countermeasures to suppress or clear persistent viral infections. To date, popular therapeutic strategies have included the use of live-attenuated microbes, viral vectors and dendritic-cell vaccines aiming to help suppress or clear infection. In recent years, improved DNA vaccines have now re-emerged as a promising candidate for therapeutic intervention due to the development of advanced optimization and delivery technologies. For instance, genetic optimization of synthetic plasmid constructs and their encoded antigens, in vivo electroporation-mediated vaccine delivery, as well as codelivery with molecular adjuvants have collectively enhanced both transgene expression and the elicitation of vaccine-induced immunity. In addition, the development of potent heterologous prime-boost regimens has also provided significant contributions to DNA vaccine immunogenicity. Herein, the authors will focus on these recent improvements to this synthetic platform in relation to their application in combating persistent virus infection.
Collapse
Affiliation(s)
- Daniel O Villarreal
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
O'Connell RJ, Kim JH, Corey L, Michael NL. Human immunodeficiency virus vaccine trials. Cold Spring Harb Perspect Med 2012; 2:a007351. [PMID: 23209178 PMCID: PMC3543076 DOI: 10.1101/cshperspect.a007351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 2 million AIDS-related deaths occurred globally in 2008, and more than 33 million people are living with HIV/AIDS. Despite promising advances in prevention, an estimated 2.7 million new HIV infections occurred in that year, so that for every two patients placed on combination antiretroviral treatment, five people became infected. The pandemic poses a formidable challenge to the development, progress, and stability of global society 30 years after it was recognized. Experimental preventive HIV-1 vaccines have been administered to more than 44,000 human volunteers in more than 187 separate trials since 1987. Only five candidate vaccine strategies have been advanced to efficacy testing. The recombinant glycoprotein (rgp)120 subunit vaccines, AIDSVAX B/B and AIDSVAX B/E, and the Merck Adenovirus serotype (Ad)5 viral-vector expressing HIV-1 Gag, Pol, and Nef failed to show a reduction in infection rate or lowering of postinfection viral set point. Most recently, a phase III trial that tested a heterologous prime-boost vaccine combination of ALVAC-HIV vCP1521 and bivalent rgp120 (AIDSVAX B/E) showed 31% efficacy in protection from infection among community-risk Thai participants. A fifth efficacy trial testing a DNA/recombinant(r) Ad5 prime-boost combination is currently under way. We review the clinical trials of HIV vaccines that have provided insight into human immunogenicity or efficacy in preventing HIV-1 infection.
Collapse
Affiliation(s)
- Robert J O'Connell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | |
Collapse
|
20
|
DNA and modified vaccinia virus Ankara vaccines encoding multiple cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) are safe but weakly immunogenic in HIV-1-uninfected, vaccinia virus-naive adults. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:649-58. [PMID: 22398243 DOI: 10.1128/cvi.00038-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.
Collapse
|
21
|
Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine. J Virol 2012; 86:4082-90. [PMID: 22318135 DOI: 10.1128/jvi.06535-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.
Collapse
|
22
|
A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus. PLoS One 2011; 6:e25938. [PMID: 21998725 PMCID: PMC3187825 DOI: 10.1371/journal.pone.0025938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022] Open
Abstract
There is a need to develop a universal vaccine against influenza virus infection to avoid developing new formulations of a seasonal vaccine each year. Many of the vaccine strategies for a universal vaccine target strain-conserved influenza virus proteins, such as the matrix, polymerase, and nucleoproteins, rather than the surface hemagglutinin and neuraminidase proteins. In addition, non-disease-causing viral vectors are a popular choice as a delivery system for the influenza virus antigens. As a proof-of-concept, we have designed a novel influenza virus immunogen based on the NP backbone containing human T cell epitopes for M1, NS1, NP, PB1 and PA proteins (referred as NPmix) as well as a construct containing the conserved regions of influenza virus neuraminidase (N-terminal) and hemagglutinin (C-terminal) (referred as NA-HA). DNA vectors and vaccinia virus recombinants expressing NPmix (WR-NP) or both NPmix plus NA-HA (WR-flu) in the cytosol were tested in a heterologous DNA-prime/vaccinia virus-boost vaccine regimen in mice. We observed an increase in the number of influenza virus-specific IFNγ-secreting splenocytes, composed of populations marked by CD4(+) and CD8(+) T cells producing IFNγ or TNFα. Upon challenge with influenza virus, the vaccinated mice exhibited decreased viral load in the lungs and a delay in mortality. These findings suggest that DNA prime/poxvirus boost with human multi-epitope recombinant influenza virus proteins is a valid approach for a general T-cell vaccine to protect against influenza virus infection.
Collapse
|
23
|
Kulkarni V, Jalah R, Ganneru B, Bergamaschi C, Alicea C, von Gegerfelt A, Patel V, Zhang GM, Chowdhury B, Broderick KE, Sardesai NY, Valentin A, Rosati M, Felber BK, Pavlakis GN. Comparison of immune responses generated by optimized DNA vaccination against SIV antigens in mice and macaques. Vaccine 2011; 29:6742-54. [PMID: 21195080 PMCID: PMC3115438 DOI: 10.1016/j.vaccine.2010.12.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Optimized DNA vectors were constructed comprising the proteome of SIV including the structural, enzymatic, regulatory, and accessory proteins. In addition to native antigens as produced by the virus, fusion proteins and modified antigens with altered secretion, cellular localization and stability characteristics were generated. The DNA vectors were tested for expression upon transfection in human cells. In addition, the vectors were tested either alone or in combinations in mice and macaques, which provided an opportunity to compare immune responses in two animal models. DNA only immunization using intramuscular injection in the absence or presence of in vivo electroporation did not alter the phenotype of the induced T cell responses in mice. Although several fusion proteins induced immune responses to all the components of a polyprotein, we noted fusion proteins that abrogated immune response to some of the components. Since the expression levels of such fusion proteins were not affected, these data suggest that the immune recognition of certain components was altered by the fusion. Testing different DNA vectors in mice and macaques revealed that a combination of DNAs producing different forms of the same antigen generated more balanced immune responses, a desirable feature for an optimal AIDS vaccine.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Animals
- Antigens, Viral/immunology
- Cloning, Molecular
- Electroporation
- Enzyme-Linked Immunospot Assay
- Female
- Flow Cytometry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, env/metabolism
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HEK293 Cells
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunity, Cellular
- Immunity, Humoral
- Interferon-gamma/immunology
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Plasmids/genetics
- Plasmids/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Transfection
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Viraj Kulkarni
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Rashmi Jalah
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Brunda Ganneru
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Candido Alicea
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Agneta von Gegerfelt
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Vainav Patel
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Gen-Mu Zhang
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Bhabadeb Chowdhury
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | | | | | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702-1201, United States
| |
Collapse
|
24
|
Bridge SH, Sharpe SA, Dennis MJ, Dowall SD, Getty B, Anson DS, Skinner MA, Stewart JP, Blanchard TJ. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles. Virol J 2011; 8:429. [PMID: 21899739 PMCID: PMC3177910 DOI: 10.1186/1743-422x-8-429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023] Open
Abstract
Background There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. Methods Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. Results This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody response. However, the antibodies did not neutralise primary isolates of HIV-1 or the V3-sensitive isolate SF162 using the TZM-bl β-galactosidase assay. Conclusions MVA and FP9 are ideal replication-deficient viral vectors for HIV-1 vaccines due to their excellent safety profile for use in humans. This study shows this novel prime-boost-boost regimen was poorly immunogenic in Chinese cynomolgus macaques.
Collapse
Affiliation(s)
- Simon H Bridge
- Clinical Research Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nicholson O, DiCandilo F, Kublin J, Sun X, Quirk E, Miller M, Gray G, Pape J, Robertson MN, Mehrotra DV, Self S, Turner K, Sanchez J, Pitisuttithum P, Duerr A, Dubey S, Kierstead L, Casimiro D, Hammer For The Merck V/Hiv Vaccine Trials Network Study Team SM. Safety and Immunogenicity of the MRKAd5 gag HIV Type 1 Vaccine in a Worldwide Phase 1 Study of Healthy Adults. AIDS Res Hum Retroviruses 2011; 27:557-567. [PMID: 20854108 PMCID: PMC3422055 DOI: 10.1089/aid.2010.0151] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The safety and immunogenicity of the MRK adenovirus type 5 (Ad5) HIV-1 clade B gag vaccine was assessed in an international Phase I trial. Three-hundred and sixty healthy HIV-uninfected adults were enrolled on five continents. Subjects received placebo or 1 × 109 or 1 × 1010 viral particles (vp) per dose of the MRKAd5 HIV-1 gag vaccine at day 1, week 4, and week 26. Immunogenicity was evaluated using an IFN-γ ELISPOT gag 15-mer assay with positive responses defined as ≥55 SFC/106 PBMCs and ≥4-fold over mock control. The vaccine was well tolerated. The most common adverse events were injection site reactions, headache, pyrexia, diarrhea, fatigue, and myalgia. At week 30, geometric mean ELISPOT responses were 24, 114, and 226 SFC/106 PBMCs in the placebo, 1 × 109 vp/dose, and 1 × 1010 vp/dose groups, respectively. Overall, responses to 1 × 1010 vp were 85% and 68% in subjects with low (≤200) and high (>200) baseline Ad5 titers, respectively. The MRKAd5 HIV-1 gag vaccine was immunogenic in diverse geographic regions. Gag ELISPOT responses were greater in the 1 × 1010 vp/dose groups than in the 1 × 109 vp/dose groups. Data from this first international study indicate that adenovirus-vectored vaccines are well tolerated and may be immunogenic in subjects from regions with high prevalence of preexisting Ad5 immunity.
Collapse
Affiliation(s)
- Ouzama Nicholson
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Fay DiCandilo
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - James Kublin
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Xiao Sun
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Erin Quirk
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Michelle Miller
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Glenda Gray
- University of Witwatersrand, Johannesburg, South Africa
| | - Jean Pape
- Weill Cornell Medical College, New York, New York
| | - Michael N Robertson
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Devan V Mehrotra
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Steven Self
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Jorge Sanchez
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru and Investigaciones Medicas en Salu, Immensa, Lima, Peru
| | | | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- University of Washington, Seattle, Washington
| | - Sheri Dubey
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Lisa Kierstead
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | - Danilo Casimiro
- Merck & Co., Inc., North Wales, Pennsylvania; current affiliation: GSK Biologicals, King of Prussia, Pennsylvania
| | | |
Collapse
|
26
|
Immunization with HIV Gag targeted to dendritic cells followed by recombinant New York vaccinia virus induces robust T-cell immunity in nonhuman primates. Proc Natl Acad Sci U S A 2011; 108:7131-6. [PMID: 21467219 DOI: 10.1073/pnas.1103869108] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 ("DEC-HIV Gag p24"), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4(+) T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8(+) T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4(+) and CD8(+) T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity.
Collapse
|
27
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
28
|
Liu J, Zhang S, Tan S, Zheng B, Gao GF. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Exp Biol Med (Maywood) 2011; 236:253-67. [PMID: 21330360 DOI: 10.1258/ebm.2010.010278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immunogenic T-cell epitopes have a central role in the cellular immunity against pathogens and tumors. However, in the early stage of cellular immunity studies, it was complicated and time-consuming to identify and characterize T-cell epitopes. Currently, the epitope screening is experiencing renewed enthusiasm due to advances in novel techniques and theories. Moreover, the application of T-cell epitope-based diagnoses for tuberculosis and new data on epitope-based vaccine development have also revived the field. There is a growing knowledge on the emphasis of epitope-stimulated T-cell immune responses in the elimination of pathogens and tumors. In this review, we outline the significance of the identification and characterization of T-cell epitopes. We also summarize the methods and strategies for epitope definition and, more importantly, address the relevance of cytotoxic T-lymphocyte epitopes to clinical diagnoses, therapy and vaccine development.
Collapse
Affiliation(s)
- Jun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Cavenaugh JS, Awi D, Mendy M, Hill AVS, Whittle H, McConkey SJ. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS One 2011; 6:e14626. [PMID: 21347224 PMCID: PMC3039644 DOI: 10.1371/journal.pone.0014626] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 11/25/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic HBV infects 350 million people causing cancer and liver failure. We aimed to assess the safety and efficacy of plasmid DNA (pSG2.HBs) vaccine, followed by recombinant modified vaccinia virus Ankara (MVA.HBs), encoding the surface antigen of HBV as therapy for chronic HBV. A secondary goal was to characterize the immune responses. METHODS Firstly 32 HBV e antigen negative (eAg(-)) participants were randomly assigned to one of four groups: to receive vaccines alone, lamivudine (3TC) alone, both, or neither. Later 16 eAg(+) volunteers in two groups received either 3TC alone or both 3TC and vaccines. Finally, 12 eAg(-) and 12 eAg(+) subjects were enrolled into higher-dose treatment groups. Healthy but chronically HBV-infected males between the ages of 15-25 who lived in the western part of The Gambia were eligible. Participants in some groups received 1 mg or 2 mg of pSG2.HBs intramuscularly twice followed by 5×10(7) pfu or 1.5×10(8) pfu of MVA.HBs intradermally at 3-weekly intervals with or without concomitant 3TC for 11-14 weeks. Intradermal rabies vaccine was administered to a negative control group. Safety was assessed clinically and biochemically. The primary measure of efficacy was a quantitative PCR assay of plasma HBV. Immunity was assessed by IFN-γ ELISpot and intracellular cytokine staining. RESULTS Mild local and systemic adverse events were observed following the vaccines. A small shiny scar was observed in some cases after MVA.HBs. There were no significant changes in AST or ALT. HBeAg was lost in one participant in the higher-dose group. As expected, the 3TC therapy reduced viraemia levels during therapy, but the prime-boost vaccine regimen did not reduce the viraemia. The immune responses were variable. The majority of IFN-γ was made by antigen non-specific CD16(+) cells (both CD3(+) and CD3(-)). CONCLUSIONS The vaccines were well tolerated but did not control HBV infection. TRIAL REGISTRATION ISRCTN ISRCTN67270384.
Collapse
Affiliation(s)
- James S. Cavenaugh
- Medical Research Council Laboratories, Banjul,
The Gambia
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- David H. Smith Center for Vaccine Biology and
Immunology, School of Medicine and Dentistry, University of Rochester,
Rochester, New York, United States of America
| | - Dorka Awi
- Medical Research Council Laboratories, Banjul,
The Gambia
- Institute of Maternal and Child Health,
University of Port Harcourt, Post Harcourt, Nigeria
| | - Maimuna Mendy
- Medical Research Council Laboratories, Banjul,
The Gambia
- International Agency for Research on Cancer,
Lyon, France
| | - Adrian V. S. Hill
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- The Wellcome Trust Centre for Human Genetics,
Oxford, United Kingdom
| | - Hilton Whittle
- Medical Research Council Laboratories, Banjul,
The Gambia
| | - Samuel J. McConkey
- Medical Research Council Laboratories, Banjul,
The Gambia
- Centre for Clinical Vaccinology and Tropical
Medicine, University of Oxford, Oxford, United Kingdom
- Department of International Health and
Tropical Medicine, Royal College of Surgeons in Ireland, Dublin,
Ireland
| |
Collapse
|
30
|
Li B, Berry N, Ham C, Ferguson D, Smith D, Hall J, Page M, Quartey-Papafio R, Elsley W, Robinson M, Almond N, Stebbings R. Vaccination with live attenuated simian immunodeficiency virus causes dynamic changes in intestinal CD4+CCR5+ T cells. Retrovirology 2011; 8:8. [PMID: 21291552 PMCID: PMC3038908 DOI: 10.1186/1742-4690-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/03/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Vaccination with live attenuated SIV can protect against detectable infection with wild-type virus. We have investigated whether target cell depletion contributes to the protection observed. Following vaccination with live attenuated SIV the frequency of intestinal CD4+CCR5+ T cells, an early target of wild-type SIV infection and destruction, was determined at days 3, 7, 10, 21 and 125 post inoculation. RESULTS In naive controls, modest frequencies of intestinal CD4+CCR5+ T cells were predominantly found within the LPL TTrM-1 and IEL TTrM-2 subsets. At day 3, LPL and IEL CD4+CCR5+ TEM cells were dramatically increased whilst less differentiated subsets were greatly reduced, consistent with activation-induced maturation. CCR5 expression remained high at day 7, although there was a shift in subset balance from CD4+CCR5+ TEM to less differentiated TTrM-2 cells. This increase in intestinal CD4+CCR5+ T cells preceded the peak of SIV RNA plasma loads measured at day 10. Greater than 65.9% depletion of intestinal CD4+CCR5+ T cells followed at day 10, but overall CD4+ T cell homeostasis was maintained by increased CD4+CCR5- T cells. At days 21 and 125, high numbers of intestinal CD4+CCR5- naive TN cells were detected concurrent with greatly increased CD4+CCR5+ LPL TTrM-2 and IEL TEM cells at day 125, yet SIV RNA plasma loads remained low. CONCLUSIONS This increase in intestinal CD4+CCR5+ T cells, following vaccination with live attenuated SIV, does not correlate with target cell depletion as a mechanism of protection. Instead, increased intestinal CD4+CCR5+ T cells may correlate with or contribute to the protection conferred by vaccination with live attenuated SIV.
Collapse
Affiliation(s)
- Bo Li
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Neil Berry
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Claire Ham
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Deborah Ferguson
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Deborah Smith
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Joanna Hall
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Mark Page
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Ruby Quartey-Papafio
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - William Elsley
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Mark Robinson
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Neil Almond
- Division of Retrovirology, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| | - Richard Stebbings
- Biotherapeutics Group, National Institute of Biological Standards and Control/Health Protection Agency, Potters Bar, Hertfordshire, UK
| |
Collapse
|
31
|
Paris RM, Kim JH, Robb ML, Michael NL. Prime-boost immunization with poxvirus or adenovirus vectors as a strategy to develop a protective vaccine for HIV-1. Expert Rev Vaccines 2010; 9:1055-69. [PMID: 20822348 DOI: 10.1586/erv.10.106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Challenges in the development of an effective HIV-1 vaccine are myriad with significant hurdles posed by viral diversity, the lack of a human correlate of protection and difficulty in creating immunogens capable of eliciting broadly neutralizing antibodies. The implicit requirement for novel approaches to these problems has resulted in vaccine candidates designed to elicit cellular and/or humoral immune responses, to include recombinant DNA, viral and bacterial vectors, and subunit proteins. Here, we review data from clinical studies primarily of poxvirus and adenovirus vector vaccines, used in a heterologous prime-boost combination strategy. Currently, this strategy appears to hold the most promise for an effective vaccine based on results from immunogenicity testing and nonhuman primate challenge models, as well as the modest efficacy recently observed in the Thai prime-boost trial.
Collapse
Affiliation(s)
- Robert M Paris
- US Military HIV Research Program (MHRP), Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, 10400, Thailand.
| | | | | | | |
Collapse
|
32
|
Kannanganat S, Nigam P, Velu V, Earl PL, Lai L, Chennareddi L, Lawson B, Wilson RL, Montefiori DC, Kozlowski PA, Moss B, Robinson HL, Amara RR. Preexisting vaccinia virus immunity decreases SIV-specific cellular immunity but does not diminish humoral immunity and efficacy of a DNA/MVA vaccine. THE JOURNAL OF IMMUNOLOGY 2010; 185:7262-73. [PMID: 21076059 DOI: 10.4049/jimmunol.1000751] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.
Collapse
Affiliation(s)
- Sunil Kannanganat
- Department of Microbiology and Immunology, Vaccine Research Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bett AJ, Dubey SA, Mehrotra DV, Guan L, Long R, Anderson K, Collins K, Gaunt C, Fernandez R, Cole S, Meschino S, Tang A, Sun X, Gurunathan S, Tartaglia J, Robertson MN, Shiver JW, Casimiro DR. Comparison of T cell immune responses induced by vectored HIV vaccines in non-human primates and humans. Vaccine 2010; 28:7881-9. [PMID: 20937317 DOI: 10.1016/j.vaccine.2010.09.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 09/20/2010] [Accepted: 09/24/2010] [Indexed: 11/26/2022]
Abstract
Following the disappointing outcome of the phase IIb test-of-concept step study in which Merck's adenovirus type 5 (Ad5) HIV-1 clade B gag/pol/nef vaccine failed to demonstrate efficacy in HIV high-risk individuals, an extensive review of the trial and preclinical studies which supported the trial is ongoing. One point of interest is how well preclinical nonhuman primate immunogenicity studies predicted what was observed in humans. Here we compare the HIV-1-specific cellular immune responses elicited in nonhuman primates and human clinical trial subjects to several HIV-1 vaccine candidates. We find that although rhesus macaques are immunologically more responsive to vaccination than humans, the hierarchy in potency of single-modality prime-boost regimens using several vector approaches (adenovirus, DNA, and pox vectors) was well predicted. Vaccine approaches using complex formulations such as novel adjuvants (DNA+CRL1005) or mixed-modality prime-boost (DNA/Ad5; Ad5/ALVAC) did not correlate as well between rhesus macaques and humans. Although the immunogenicity of the vaccines and vaccine regimens evaluated were not all accurately predicted, testing in rhesus macaques generally offers an indispensable tool for ranking the immunological potential of HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Andrew J Bett
- Department of Vaccine Basic Research, Merck Research Laboratories, West Point, PA 19486-0004, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cafaro A, Macchia I, Maggiorella MT, Titti F, Ensoli B. Innovative approaches to develop prophylactic and therapeutic vaccines against HIV/AIDS. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:189-242. [PMID: 20047043 DOI: 10.1007/978-1-4419-1132-2_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The acquired immunodeficiency syndrome (AIDS) emerged in the human population in the summer of 1981. According to the latest United Nations estimates, worldwide over 33 million people are infected with human immunodeficiency virus (HIV) and the prevalence rates continue to rise globally. To control the alarming spread of HIV, an urgent need exists for developing a safe and effective vaccine that prevents individuals from becoming infected or progressing to disease. To be effective, an HIV/AIDS vaccine should induce broad and long-lasting humoral and cellular immune responses, at both mucosal and systemic level. However, the nature of protective immune responses remains largely elusive and this represents one of the major roadblocks preventing the development of an effective vaccine. Here we summarize our present understanding of the factors responsible for resistance to infection or control of progression to disease in human and monkey that may be relevant to vaccine development and briefly review recent approaches which are currently being tested in clinical trials. Finally, the rationale and the current status of novel strategies based on nonstructural HIV-1 proteins, such as Tat, Nef and Rev, used alone or in combination with modified structural HIV-1 Env proteins are discussed.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, V.le Regina Elena 299, 00161, Rome, Italy
| | | | | | | | | |
Collapse
|
35
|
Rosario M, Bridgeman A, Quakkelaar ED, Quigley MF, Hill BJ, Knudsen ML, Ammendola V, Ljungberg K, Borthwick N, Im EJ, McMichael AJ, Drijfhout JW, Greenaway HY, Venturi V, Douek DC, Colloca S, Liljeström P, Nicosia A, Price DA, Melief CJM, Hanke T. Long peptides induce polyfunctional T cells against conserved regions of HIV-1 with superior breadth to single-gene vaccines in macaques. Eur J Immunol 2010; 40:1973-84. [PMID: 20468055 DOI: 10.1002/eji.201040344] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel T-cell vaccine strategy designed to deal with the enormity of HIV-1 variation is described and tested for the first time in macaques to inform and complement approaching clinical trials. T-cell immunogen HIVconsv, which directs vaccine-induced responses to the most conserved regions of the HIV-1, proteome and thus both targets diverse clades in the population and reduces the chance of escape in infected individuals, was delivered using six different vaccine modalities: plasmid DNA (D), attenuated human (A) and chimpanzee (C) adenoviruses, modified vaccinia virus Ankara (M), synthetic long peptides, and Semliki Forest virus replicons. We confirmed that the initial DDDAM regimen, which mimics one of the clinical schedules (DDDCM), is highly immunogenic in macaques. Furthermore, adjuvanted synthetic long peptides divided into sub-pools and delivered into anatomically separate sites induced T-cell responses that were markedly broader than those elicited by traditional single-open-reading-frame genetic vaccines and increased by 30% the overall response magnitude compared with DDDAM. Thus, by improving both the HIV-1-derived immunogen and vector regimen/delivery, this approach could induce stronger, broader, and theoretically more protective T-cell responses than vaccines previously used in humans.
Collapse
Affiliation(s)
- Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rosario M, Hopkins R, Fulkerson J, Borthwick N, Quigley MF, Joseph J, Douek DC, Greenaway HY, Venturi V, Gostick E, Price DA, Both GW, Sadoff JC, Hanke T. Novel recombinant Mycobacterium bovis BCG, ovine atadenovirus, and modified vaccinia virus Ankara vaccines combine to induce robust human immunodeficiency virus-specific CD4 and CD8 T-cell responses in rhesus macaques. J Virol 2010; 84:5898-908. [PMID: 20375158 PMCID: PMC2876636 DOI: 10.1128/jvi.02607-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 03/30/2010] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA(401) as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA(401) was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA(401) and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.
Collapse
Affiliation(s)
- Maximillian Rosario
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Richard Hopkins
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - John Fulkerson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Nicola Borthwick
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Máire F. Quigley
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Joan Joseph
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Daniel C. Douek
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Hui Yee Greenaway
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Vanessa Venturi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Emma Gostick
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - David A. Price
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Gerald W. Both
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Jerald C. Sadoff
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| | - Tomáš Hanke
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom, Aeras Global TB Vaccine Foundation, 1405 Research Blvd., Rockville, Maryland 20850, Vaccine Research Centre, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, Catalan HIV Vaccine Research and Development Center, AIDS Research Unit, Infectious Diseases Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute, School of Medicine, University of Barcelona, 170 08036 Barcelona, Spain, Computational Biology Unit, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia, Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, United Kingdom, Biotech Equity Partners Pty., Ltd., Riverside Life Sciences Building, 11 Julius Ave., North Ryde, New South Wales 2113, Australia
| |
Collapse
|
37
|
Priming immunization with DNA augments immunogenicity of recombinant adenoviral vectors for both HIV-1 specific antibody and T-cell responses. PLoS One 2010; 5:e9015. [PMID: 20126394 PMCID: PMC2814848 DOI: 10.1371/journal.pone.0009015] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background Induction of HIV-1-specific T-cell responses relevant to diverse subtypes is a major goal of HIV vaccine development. Prime-boost regimens using heterologous gene-based vaccine vectors have induced potent, polyfunctional T cell responses in preclinical studies. Methods The first opportunity to evaluate the immunogenicity of DNA priming followed by recombinant adenovirus serotype 5 (rAd5) boosting was as open-label rollover trials in subjects who had been enrolled in prior studies of HIV-1 specific DNA vaccines. All subjects underwent apheresis before and after rAd5 boosting to characterize in depth the T cell and antibody response induced by the heterologous DNA/rAd5 prime-boost combination. Results rAd5 boosting was well-tolerated with no serious adverse events. Compared to DNA or rAd5 vaccine alone, sequential DNA/rAd5 administration induced 7-fold higher magnitude Env-biased HIV-1-specific CD8+ T-cell responses and 100-fold greater antibody titers measured by ELISA. There was no significant neutralizing antibody activity against primary isolates. Vaccine-elicited CD4+ and CD8+ T-cells expressed multiple functions and were predominantly long-term (CD127+) central or effector memory T cells and that persisted in blood for >6 months. Epitopes mapped in Gag and Env demonstrated partial cross-clade recognition. Conclusion Heterologous prime-boost using vector-based gene delivery of vaccine antigens is a potent immunization strategy for inducing both antibody and T-cell responses. Trial Registration ClinicalTrails.gov NCT00102089, NCT00108654
Collapse
|
38
|
|
39
|
Recombinant yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 gag induces SIV-specific CD8+ T-cell responses in rhesus macaques. J Virol 2010; 84:3699-706. [PMID: 20089645 DOI: 10.1128/jvi.02255-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we describe a novel vaccine vector for expressing human immunodeficiency virus (HIV) antigens. We show that recombinant attenuated yellow fever vaccine virus 17D expressing simian immunodeficiency virus SIVmac239 Gag sequences can be used as a vector to generate SIV-specific CD8(+) T-cell responses in the rhesus macaque. Priming with recombinant BCG expressing SIV antigens increased the frequency of these SIV-specific CD8(+) T-cell responses after recombinant YF17D boosting. These recombinant YF17D-induced SIV-specific CD8(+) T cells secreted several cytokines, were largely effector memory T cells, and suppressed viral replication in CD4(+) T cells.
Collapse
|
40
|
Wild J, Bieler K, Köstler J, Frachette MJ, Jeffs S, Vieira S, Esteban M, Liljeström P, Pantaleo G, Wolf H, Wagner R. Preclinical evaluation of the immunogenicity of C-type HIV-1-based DNA and NYVAC vaccines in the Balb/C mouse model. Viral Immunol 2009; 22:309-19. [PMID: 19811088 DOI: 10.1089/vim.2009.0038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Collapse
Affiliation(s)
- Jens Wild
- Institute of Medical Microbiology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vaccination of ponies with the IE gene of EHV-1 in a recombinant modified live vaccinia vector protects against clinical and virological disease. Vet Immunol Immunopathol 2009; 135:108-117. [PMID: 20018383 DOI: 10.1016/j.vetimm.2009.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/10/2009] [Accepted: 11/14/2009] [Indexed: 12/28/2022]
Abstract
The control of EHV-1 infection by cytotoxic T-cell responses (CTL) via a reduction in cell associated viremia remains an important goal in horses. Unfortunately, current vaccines are inefficient at inducing these responses. We have identified the immediate early (IE) gene of EHV-1 as a potent stimulator of virus-specific CTL responses in ponies expressing a specific MHC class I serological haplotype (A3/B2). This study was designed to determine if vaccination of A3/B2 MHC I positive ponies with the IE gene could induce protection and immune responses associated with cell mediated immunity. Ponies expressing the MHC-I A3/B2 haplotype (A3/B2 vaccinates) and ponies with a different MHC I haplotype (either non-A3 vaccinates or A3-non-B2 vaccinates) were vaccinated with a recombinant modified vaccinia Ankara (rMVA) vector expressing the IE gene on 3 occasions and vaccinates and unvaccinated controls were challenge infected 8 weeks after the last vaccination. Interferon gamma (IFN-gamma) mRNA and antibody titers were determined throughout the study and clinical signs, nasal virus shedding and viremia were determined following challenge infection. Vaccination of A3/B2 vaccinates conferred significant clinical protection and a significant reduction in EHV-1 viremia. IFN-gamma mRNA increased significantly following vaccination in the A3/B2 vaccinates. Antibody titers remained low until after challenge infection, indicating that no accidental field acquired or recrudescent EHV-1 infection had occurred. In summary, this is an important study showing that vaccination of ponies with the EHV-1 IE protein provides not only reduction in clinical disease but also reduction of cell associated viremia, which is a prerequisite for the prevention of abortion and neurological disease.
Collapse
|
42
|
Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 Gag-specific cellular immune response in rhesus macaques. J Virol 2009; 83:9813-23. [PMID: 19625392 DOI: 10.1128/jvi.00550-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intramuscular inoculation of rhesus macaques with one or more doses of recombinant vesicular stomatitis virus (rVSV) expressing human immunodeficiency virus type 1 (HIV-1) Gag (rVSVgag) typically elicits peak cellular immune responses of 500 to 1,000 gamma interferon (IFN-gamma) enzyme-linked immunospots (ELISPOTS)/10(6) peripheral blood lymphocytes (PBL). Here, we describe the generation of a novel recombinant mumps virus (rMuV) expressing HIV-1 Gag (rMuVgag) and measure the Gag-specific cellular immune responses detected in rhesus macaques following vaccination with a highly attenuated form of rVSV expressing HIV-1 Gag (rVSVN4CT1gag1) and rMuVgag in various prime-boost combinations. Notably, peak Gag-specific cellular immune responses of 3,000 to 3,500 ELISPOTS/10(6) PBL were detected in macaques that were primed with rMuVgag and boosted with rVSVN4CT1gag1. Lower peak cellular immune responses were detected in macaques that were primed with rVSVN4CT1gag1 and boosted with rMuVgag, although longer-term gag-specific responses appeared to remain higher in this group of macaques. These findings indicate that rMuVgag may significantly enhance Gag-specific cellular immune responses when administered with rVSVN4CT1gag1 in heterologous prime-boost regimens.
Collapse
|
43
|
Roshorm Y, Hong JP, Kobayashi N, McMichael AJ, Volsky DJ, Potash MJ, Takiguchi M, Hanke T. Novel HIV-1 clade B candidate vaccines designed for HLA-B*5101(+) patients protected mice against chimaeric ecotropic HIV-1 challenge. Eur J Immunol 2009; 39:1831-40. [PMID: 19585509 DOI: 10.1002/eji.200939309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel candidate HIV-1 vaccines have been constructed, which are tailor-designed for HLA-B*5101(+) patients infected with HIV-1 clade B. These vaccines employ novel immunogen HIVB-B*5101 derived from consensus HIV-1 clade B Gag p17 and p24 regions coupled to two Pol-derived B*5101-restricted epitopes, which are together with a third B*5101 epitope in Gag dominant in HIV-1-infected long-term non-progressing patients. Both plasmid DNA and modified vaccinia virus Ankara (MVA) vectors supported high expression levels of the HIVB-B*5101 immunogen in cultured cells. Heterologous DNA prime-recombinant MVA boost regimen induced efficiently HIV-1-specific CD8(+) T-cell responses in BALB/c mice. These vaccine-elicited T cells were multifunctional, killed efficiently target cells in vivo, and protected mice against challenge with ecotropic HIV-1/NL4-3 and ecotropic HIV-1/NDK chimaeric viruses with HIV-1 clade B or D backbones, respectively, and ecotropic murine leukemia virus gp80 envelope, and therefore did so in the absence of anti-HIV-1 gp120 antibodies. These results support further development of HIVB-B*5101 vaccines in combined heterologous-modality regimens. The use of allele-specific vaccines in humans is discussed in the context of other developments in the HIV-1 field.
Collapse
Affiliation(s)
- Yaowaluck Roshorm
- Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol 2009; 21:346-51. [PMID: 19500964 DOI: 10.1016/j.coi.2009.05.016] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
An effective vaccine usually requires more than one time immunization in the form of prime-boost. Traditionally the same vaccines are given multiple times as homologous boosts. New findings suggested that prime-boost can be done with different types of vaccines containing the same antigens. In many cases such heterologous prime-boost can be more immunogenic than homologous prime-boost. Heterologous prime-boost represents a new way of immunization and will stimulate better understanding on the immunological basis of vaccines.
Collapse
Affiliation(s)
- Shan Lu
- China-US Vaccine Research Center and Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Japanese encephalitis virus-based replicon RNAs/particles as an expression system for HIV-1 Pr55 Gag that is capable of producing virus-like particles. Virus Res 2009; 144:298-305. [PMID: 19406175 DOI: 10.1016/j.virusres.2009.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Ectopic expression of the structural protein Pr55(Gag) of HIV-1 has been limited by the presence of inhibitory sequences in the gag coding region that must normally be counteracted by HIV-1 Rev and RRE. Here, we describe a cytoplasmic RNA replicon based on the RNA genome of Japanese encephalitis virus (JEV) that is capable of expressing HIV-1 gag without requiring Rev/RRE. This replicon system was constructed by deleting all three JEV structural protein-coding regions (C, prM, and E) from the 5'-proximal region of the genome and simultaneously inserting an HIV-1 gag expression cassette driven by the internal ribosome entry site of encephalomyocarditis virus into the 3'-proximal noncoding region of the genome. Transfection of this JEV replicon RNA led to expression of Pr55(Gag) in the absence of Rev/RRE in the cytoplasm of hamster BHK-21, human HeLa, and mouse NIH/3T3 cells. Production of the Pr55(Gag) derived from this JEV replicon RNA appeared to be increased by approximately 3-fold when compared to that based on an alphavirus replicon RNA. Biochemical and morphological analyses demonstrated that the Pr55(Gag) proteins were released into the culture medium in the form of virus-like particles. We also observed that the JEV replicon RNAs expressing the Pr55(Gag) could be encapsidated into single-round infectious JEV replicon particles when transfected into a stable packaging cell line that provided the three JEV structural proteins in trans. This ectopic expression of the HIV-1 Pr55(Gag) by JEV-based replicon RNAs/particles in diverse cell types may represent a useful molecular platform for various biological applications in medicine and industry.
Collapse
|
46
|
|
47
|
Smith KA, Tam VL, Wong RM, Pagarigan RR, Meisenburg BL, Joea DK, Liu X, Sanders C, Diamond D, Kündig TM, Qiu Z, Bot A. Enhancing DNA vaccination by sequential injection of lymph nodes with plasmid vectors and peptides. Vaccine 2009; 27:2603-15. [PMID: 19428867 DOI: 10.1016/j.vaccine.2009.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/07/2009] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
Abstract
DNA vaccines or peptides are capable of inducing specific immunity; however, their translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein, we demonstrate that a novel immunization strategy, encompassing sequential exposure of the lymph node milieu to plasmid and peptide in a heterologous prime-boost fashion, results in considerable MHC class I-restricted immunity in mice. Plasmid-primed antigen expression was essential for the generation of a population of central memory T cells, expressing CD62L and low in PD-1, with substantial capability to expand and differentiate to peripheral memory and effector cells, following subsequent exposure to peptide. These vaccine-induced T cells dominated the T cell repertoire, were able to produce large amounts of chemokines and pro-inflammatory cytokines, and recognized tumor cells effectively. In addition to outlining a feasible and effective method to transform plasmid DNA vaccination into a potentially viable immunotherapeutic approach for cancer, this study sheds light on the mechanism of heterologous prime-boost and the considerable heterogeneity of MHC class I-restricted T cell responses.
Collapse
Affiliation(s)
- Kent A Smith
- Division of Translational Medicine, MannKind Corporation, 28903 North Avenue Paine, Valencia, CA 91355, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schulte R, Suh YS, Sauermann U, Ochieng W, Sopper S, Kim KS, Ahn SS, Park KS, Stolte-Leeb N, Hunsmann G, Sung YC, Stahl-Hennig C. Mucosal prior to systemic application of recombinant adenovirus boosting is more immunogenic than systemic application twice but confers similar protection against SIV-challenge in DNA vaccine-primed macaques. Virology 2009; 383:300-9. [DOI: 10.1016/j.virol.2008.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 08/21/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
|
49
|
Chege GK, Shephard EG, Meyers A, van Harmelen J, Williamson C, Lynch A, Gray CM, Rybicki EP, Williamson AL. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J Gen Virol 2008; 89:2214-2227. [PMID: 18753231 DOI: 10.1099/vir.0.83501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 10(6) peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 10(6) PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 10(6) PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-gamma responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-gamma response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials.
Collapse
Affiliation(s)
- Gerald K Chege
- Institute of Primate Research, PO Box 24481, Karen 00502, Nairobi, Kenya.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Enid G Shephard
- MRC/UCT Liver Research Centre, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Joanne van Harmelen
- Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Alisson Lynch
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Clive M Gray
- National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
50
|
Brookes RH, Hill PC, Owiafe PK, Ibanga HB, Jeffries DJ, Donkor SA, Fletcher HA, Hammond AS, Lienhardt C, Adegbola RA, McShane H, Hill AVS. Safety and immunogenicity of the candidate tuberculosis vaccine MVA85A in West Africa. PLoS One 2008; 3:e2921. [PMID: 18698342 PMCID: PMC2488375 DOI: 10.1371/journal.pone.0002921] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/17/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vaccination with a recombinant modified vaccinia Ankara expressing antigen 85A from Mycobacterium tuberculosis, MVA85A, induces high levels of cellular immune responses in UK volunteers. We assessed the safety and immunogenicity of this new vaccine in West African volunteers. METHODS AND FINDINGS We vaccinated 21 healthy adult male subjects (11 BCG scar negative and 10 BCG scar positive) with MVA85A after screening for evidence of prior exposure to mycobacteria. We monitored them over six months, observing for clinical, haematological and biochemical adverse events, together with assessment of the vaccine induced cellular immune response using ELISPOT and flow cytometry. MVA85A was well tolerated with no significant adverse events. Mild local and systemic adverse events were consistent with previous UK trials. Marked immunogenicity was found whether individuals had a previous BCG scar or not. There was not enhanced immunogenicity in those with a BCG scar, and induced T cell responses were better maintained in apparently BCG-naïve Gambians than previously studied BCG-naïve UK vaccinees. Although responses were predominantly attributable to CD4+ T cells, we also identified antigen specific CD8+ T cell responses, in subjects who were HLA B-35 and in whom enough blood was available for more detailed immunological analysis. CONCLUSIONS These data on the safety and immunogenicity of MVA85A in West Africa support its accelerated development as a promising booster vaccine for tuberculosis. TRIAL REGISTRATION ClinicalTrials.gov NCT00423839.
Collapse
Affiliation(s)
- Roger H. Brookes
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Philip C. Hill
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Patrick K. Owiafe
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Hannah B. Ibanga
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - David J. Jeffries
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Simon A. Donkor
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Helen A. Fletcher
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Abdulrahman S. Hammond
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | | | - Richard A. Adegbola
- Bacterial Diseases Programme, Tuberculosis Division, Medical Research Council Laboratories, Fajara, Banjul, The Gambia
| | - Helen McShane
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Adrian V. S. Hill
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|