1
|
Urano E, Miyauchi K, Kojima Y, Hamatake M, Ablan SD, Fudo S, Freed EO, Hoshino T, Komano J. A Triazinone Derivative Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity. ChemMedChem 2016; 11:2320-2326. [PMID: 27634404 DOI: 10.1002/cmdc.201600375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Indexed: 11/10/2022]
Abstract
A novel HIV-1 inhibitor, 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (compound 1), was identified from a compound library screened for the ability to inhibit HIV-1 replication. EC50 values of compound 1 were found to range from 107.9 to 145.4 nm against primary HIV-1 clinical isolates. In in vitro assays, HIV-1 reverse transcriptase (RT) activity was inhibited by compound 1 with an EC50 of 4.3 μm. An assay for resistance to compound 1 selected a variant of HIV-1 with a RT mutation (RTL100I ); this frequently identified mutation confers mild resistance to non-nucleoside RT inhibitors (NNRTIs). A recombinant HIV-1 bearing RTL100I exhibited a 41-fold greater resistance to compound 1 than the wild-type virus. Compound 1 was also effective against HIV-1 with RTK103N , one of the major mutations that confers substantial resistance to NNRTIs. Computer-assisted docking simulations indicated that compound 1 binds to the RT NNRTI binding pocket in a manner similar to that of efavirenz; however, the putative compound 1 binding site is located further from RTK103 than that of efavirenz. Compound 1 is a novel NNRTI with a unique drug-resistance profile.
Collapse
Affiliation(s)
- Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoko Kojima
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69, Nakamachi, 1-chome, Higashinari-ku, Osaka, 537-0025, Japan
| | - Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Sherimay D Ablan
- The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Satoshi Fudo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Eric O Freed
- The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69, Nakamachi, 1-chome, Higashinari-ku, Osaka, 537-0025, Japan. .,Department of Clinical Laboratory, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, 460-0001, Japan.
| |
Collapse
|
2
|
ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nat Commun 2015; 6:6945. [PMID: 25901786 PMCID: PMC4423214 DOI: 10.1038/ncomms7945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin–proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif–ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment. The human protein APOBEC3G (A3G) inhibits HIV-1 replication, but the viral protein Vif counteracts by inducing A3G degradation. Here Miyakawa et al. show that the antiretroviral drug AZT restores A3G function in vitro by stimulating expression of a host protein, ASK1, which interferes with the action of Vif.
Collapse
|
3
|
Maeda K, Desai DV, Aoki M, Nakata H, Kodama EN, Mitsuya H. Delayed emergence of HIV-1 variants resistant to 4'-ethynyl-2-fluoro-2'-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001. Antivir Ther 2013; 19:179-89. [PMID: 24162098 DOI: 10.3851/imp2697] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) contains an ethynyl moiety and the 3'-hydroxyl and exerts highly potent activity against various HIV type-1 (HIV-1) strains including multi-drug-resistant variants. METHODS Comparative selection passages against EFdA, lamivudine (3TC), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC) or BMS-986001 (Ed4T) were conducted using a mixture of 11 highly multi-drug-resistant clinical HIV-1 isolates (HIV11MIX) as a starting virus population. RESULTS Before selection, HIV11MIX was sensitive to EFdA with a 50% inhibitory concentration (IC50) of 0.032 μM, less susceptible to TDF and Ed4T with IC50s of 0.57 and 2.6 μM, respectively, and highly resistant to 3TC and FTC with IC50s>10 μM. IC50s of TDF against HIV11MIX exposed to EFdA and TDF for 17 (HIV11MIX(EFdA-P17)) and 14 (HIV11MIX(TDF-P14)) passages were 8 and >10 μM, respectively, while EFdA remained active against HIV11MIX(EFdA-P17) and HIV11MIX(TDF-P14) with IC50s of 0.15 and 0.1 μM, respectively. Both selected variants were highly resistant against zidovudine, 3TC, Ed4T and FTC (IC50 values >10 μM). CONCLUSIONS The present data demonstrate that HIV11MIX developed resistance more rapidly against 3TC, FTC, TDF and Ed4T than against EFdA and that EFdA remained substantially active against TDF- and EFdA-selected variants. Thus, EFdA has a favourable resistance profile and represents a potentially promising new-generation nucleoside reverse transcriptase inhibitor.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
4
|
van Westen GJP, Hendriks A, Wegner JK, IJzerman AP, van Vlijmen HWT, Bender A. Significantly improved HIV inhibitor efficacy prediction employing proteochemometric models generated from antivirogram data. PLoS Comput Biol 2013; 9:e1002899. [PMID: 23436985 PMCID: PMC3578754 DOI: 10.1371/journal.pcbi.1002899] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022] Open
Abstract
Infection with HIV cannot currently be cured; however it can be controlled by combination treatment with multiple anti-retroviral drugs. Given different viral genotypes for virtually each individual patient, the question now arises which drug combination to use to achieve effective treatment. With the availability of viral genotypic data and clinical phenotypic data, it has become possible to create computational models able to predict an optimal treatment regimen for an individual patient. Current models are based only on sequence data derived from viral genotyping; chemical similarity of drugs is not considered. To explore the added value of chemical similarity inclusion we applied proteochemometric models, combining chemical and protein target properties in a single bioactivity model. Our dataset was a large scale clinical database of genotypic and phenotypic information (in total ca. 300,000 drug-mutant bioactivity data points, 4 (NNRTI), 8 (NRTI) or 9 (PI) drugs, and 10,700 (NNRTI) 10,500 (NRTI) or 27,000 (PI) mutants). Our models achieved a prediction error below 0.5 Log Fold Change. Moreover, when directly compared with previously published sequence data, derived models PCM performed better in resistance classification and prediction of Log Fold Change (0.76 log units versus 0.91). Furthermore, we were able to successfully confirm both known and identify previously unpublished, resistance-conferring mutations of HIV Reverse Transcriptase (e.g. K102Y, T216M) and HIV Protease (e.g. Q18N, N88G) from our dataset. Finally, we applied our models prospectively to the public HIV resistance database from Stanford University obtaining a correct resistance prediction rate of 84% on the full set (compared to 80% in previous work on a high quality subset). We conclude that proteochemometric models are able to accurately predict the phenotypic resistance based on genotypic data even for novel mutants and mixtures. Furthermore, we add an applicability domain to the prediction, informing the user about the reliability of predictions. Infection with the human immunodeficiency virus (HIV) currently cannot be cured. It can however be contained through treatment with a combination of several anti-viral drugs. Yet, during treatment resistance can occur which leads to drugs becoming ineffective. Through a combination of drugs, this resistance can be deferred indefinitely. The optimal combination of drugs depends on the specific strain of HIV with which the patient is infected. Previously, methods have been developed that predict a personalized treatment regimen based on the genetic sequence (genotype) of the virus via the use of computer modeling, corner stone of the methods is drug affinity prediction. Here we have applied proteochemometric modeling which takes this genetic information into account, but also includes chemical description of the drugs that are now clinically available. We show that this combined technique performs better than models that only include genetic information. Our approach leads to personalized treatment predictions with a higher reliability compared to the current state of the art. In addition, we include a reliability measure which allows each prediction to be assessed for reliability. Finally we describe mutations of the HIV genome that were not previously described in literature and lead to resistance to treatment.
Collapse
Affiliation(s)
- Gerard J. P. van Westen
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Alwin Hendriks
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | | | - Adriaan P. IJzerman
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Herman W. T. van Vlijmen
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
- Tibotec BVBA, Beerse, Belgium
| | - Andreas Bender
- Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Kisic M, Matamoros T, Nevot M, Mendieta J, Martinez-Picado J, Martínez MA, Menéndez-Arias L. Thymidine analogue excision and discrimination modulated by mutational complexes including single amino acid deletions of Asp-67 or Thr-69 in HIV-1 reverse transcriptase. J Biol Chem 2011; 286:20615-24. [PMID: 21504903 DOI: 10.1074/jbc.m111.226100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Single amino acid deletions in the β3-β4 hairpin loop of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been identified in heavily treated patients. The deletion of Asp-67 together with mutations T69G and K70R (Δ67 complex) are usually associated with thymidine analog resistance mutations (TAMs) (e.g. M41L, T215Y, etc.) while the deletion of Thr-69 (Δ69) is rarely found in isolates containing TAMs. Here, we show that the complex Δ67/T69G/K70R enhances ATP-dependent phosphorolytic activity on primers terminated with 3'-azido-3'-deoxythymidine (AZT) or 2',3'-didehydro-2',3'-dideoxythymidine (d4T) both in the presence or absence of TAMs (i.e. M41L/T215Y), while Δ69 (or the complex S68G/Δ69/K70G) antagonize the effects of TAMs in ATP-mediated excision. These effects are consistent with AZT susceptibility data obtained with recombinant HIV-1 bearing the relevant RTs. Molecular dynamics studies based on models of wild-type HIV-1 RT and mutant Δ69, Δ67/T69G/K70R, and D67N/K70R RTs support a relevant role for Lys/Arg-70 in the excision reaction. In Δ69 RT, the side chain of Lys-70 locates away from the putative pyrophosphate binding site. Therefore, its participation in interactions required for the excision reaction is unlikely. Our theoretical studies also suggest a role for Lys-219 in thymidine analog excision/discrimination. However, pre-steady-state kinetics revealed only minor differences in selectivity of AZT-triphosphate versus dTTP between deletion-containing RTs and their homologous enzymes having the K219E mutation. K219E reduced both ATP- and pyrophosphate-mediated excision of primers terminated with thymidine analogues, only when introduced in RTs bearing Δ69 or S68G/Δ69/K70G, providing further biochemical evidence that explains the lack of association of Δ69 and TAMs in HIV-1 isolates.
Collapse
Affiliation(s)
- Mónica Kisic
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Selection and characterization of HIV-1 with a novel S68 deletion in reverse transcriptase. Antimicrob Agents Chemother 2011; 55:2054-60. [PMID: 21357304 DOI: 10.1128/aac.01700-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to human immunodeficiency virus type 1 (HIV-1) represents a significant problem in the design of novel therapeutics and the management of treatment regimens in infected persons. Resistance profiles can be elucidated by defining modifications to the viral genome conferred upon exposure to novel nucleoside reverse transcriptase (RT) inhibitors (NRTI). In vitro testing of HIV-1LAI-infected primary human lymphocytes treated with β-D-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (DFC; Dexelvucitabine; Reverset) produced a novel deletion of AGT at codon 68 (S68Δ) alone and in combination with K65R that differentially affects drug response. Dual-approach clone techniques utilizing TOPO cloning and pyrosequencing confirmed the novel S68Δ in the HIV-1 genome. The S68Δ HIV-1 RT was phenotyped against various antiviral agents in a heteropolymeric DNA polymerase assay and in human lymphocytes. Drug susceptibility results indicate that the S68Δ displayed a 10- to 30-fold increase in resistance to DFC, lamivudine, emtricitabine, tenofovir, abacavir, and amdoxovir and modest resistance to stavudine, β-d-2',3'-oxa-5-fluorocytidine, or 9-(β-D-1,3-dioxolan-4-yl)guanine and remained susceptible to 3'-azido-3'-deoxythymidine, 2',3'-dideoxyinosine (ddI), 1-(β-D-dioxolane)thymine (DOT) and lopinavir. Modeling revealed a central role for S68 in affecting conformation of the β3-β4 finger region and provides a rational for the selective resistance. These data indicate that the novel S68Δ is a previously unrecognized deletion that may represent an important factor in NRTI multidrug resistance treatment strategies.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW In the face of increasing economic constraints, it is critically important to evaluate how best to utilize available resources. In this article, we review the growing number of cost-effectiveness analyses of HIV treatment with antiretroviral therapy (ART) in resource-limited settings. We focus on studies that evaluate when to start therapy, what therapy to start with and what to switch to based on what criteria. RECENT FINDINGS Recent findings show that earlier ART initiation based on CD4 cell count criteria (CD4 cell counts <350 cells/microl) can be cost effective in most resource-limited settings. They also suggest that initiating ART with tenofovir as a component of the first-line regimen is an efficient use of resources compared with initiating ART with stavudine. Finally, they show that HIV RNA monitoring combined with CD4 monitoring is more effective than CD4 monitoring alone, although this strategy was not yet found to be cost effective in all studies. Nearly all studies demonstrate, however, that the cost-effectiveness ratio of HIV RNA monitoring will become more attractive as the cost of HIV RNA tests and second-line ART regimens decrease. SUMMARY Substantial research shows that ART for HIV disease in resource-limited settings is cost effective. Improved initial regimens and increased laboratory monitoring may provide both clinical benefit and good value for money. Further price reductions of laboratory tests and recent antiretroviral drugs are needed to guarantee the cost-effectiveness of these required improvements.
Collapse
|
8
|
Hawkins CA, Chaplin B, Idoko J, Ekong E, Adewole I, Gashau W, Murphy RL, Kanki P, APIN Plus/Harvard PEPFAR Team. Clinical and genotypic findings in HIV-infected patients with the K65R mutation failing first-line antiretroviral therapy in Nigeria. J Acquir Immune Defic Syndr 2009; 52:228-34. [PMID: 19644383 PMCID: PMC2815152 DOI: 10.1097/qai.0b013e3181b06125] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The HIV-1 epidemic in African countries is largely due to non-B HIV-1 subtypes. Patterns and frequency of antiretroviral drug resistance mutations observed in these countries may differ from those in the developed world, where HIV-1 subtype B predominates. METHODS HIV-1 subtype and drug resistance mutations were assayed among Nigerian patients with treatment failure on first-line therapy (plasma HIV RNA >1000 copies/mL). Sequence analysis of the reverse transcriptase and protease gene revealed drug resistance mutations and HIV-1 viral subtype. Specific patterns of mutations and clinical characteristics are described in patients with the K65R mutation. RESULTS Since 2005, 338 patients were evaluated. The most prevalent subtypes were CRF02_AG [152 of 338 (44.9%)] and G [128 of 338 (37.9%)]. Three hundred seven of 338 (90.8%) patients had previously received stavudine and/or zidovudine + lamivudine + efavirenz or nevirapine; 41 of 338 (12.1%) had received tenofovir (TDF). The most common nucleoside reverse transcriptase inhibitor mutations observed were M184V (301, 89.1%) and K70R (91, 26.9%). The K65R mutation was present in 37 of 338 patients (10.9%). The Q151M (P < 0.05), K219R, and T69del (P < 0.01) mutations were more common in patients with K65R who had not received TDF. CONCLUSIONS The K65R mutation is increasingly recognized and is a challenging finding among patients with non-B HIV subtypes, whether or not they have been exposed to TDF.
Collapse
|
9
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Kisic M, Mendieta J, Puertas MC, Parera M, Martínez MA, Martinez-Picado J, Menéndez-Arias L. Mechanistic basis of zidovudine hypersusceptibility and lamivudine resistance conferred by the deletion of codon 69 in the HIV-1 reverse transcriptase coding region. J Mol Biol 2008; 382:327-41. [PMID: 18662701 DOI: 10.1016/j.jmb.2008.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Deletions in the beta 3-beta 4 hairpin loop of human immunodeficiency virus type 1 reverse transcriptase (RT) are associated with the emergence of multidrug resistance. Common mutational patterns involve the deletion of Asp67 (Delta 67) and mutations such as K70R and T215F or T215Y, or the deletion of Thr69 (Delta 69) and mutations of the Q151M complex. Human immunodeficiency virus type 1 clones containing Delta 69 in a multidrug-resistant sequence background, including the Q151M complex and substitutions K103N, Y181C, M184V, and G190A, showed high-level resistance to all tested nucleoside RT inhibitors. In a multidrug-resistant sequence context, the deletion increases viral replication capacity. By itself, Delta 69 conferred increased susceptibility to beta-d-(+)-3'-azido-3'-deoxythymidine (AZT) and beta-l-(-)-2',3'-dideoxy-3'-thiacytidine resistance. Here, we use transient kinetics to show that, in a wild-type sequence background, Delta 69 does not affect the discrimination between AZT triphosphate and 2'-deoxythymidine 5'-triphosphate, but decreases the catalytic efficiency of the incorporation of beta-l-(-)-2',3'-dideoxy-3'-thiacytidine triphosphate relative to 2'-deoxycytidine 5'-triphosphate. In comparison with the wild-type RT, the Delta 69 mutant showed decreased ability to excise primers terminated with AZT monophosphate in the presence of ATP or pyrophosphate (PPi). These data support the role of the excision mechanism in mediating AZT hypersusceptibility. In addition, we demonstrate that the deletion has no effect on resistance to foscarnet (a PPi analogue) on phenotypic and nucleotide incorporation assays carried out with viral clones and recombinant enzymes, respectively. The results of molecular modeling studies suggest that the side chains of Lys65, Asp67, and Lys219 could play an important role in AZT hypersusceptibility mediated by Delta 69, whereas in the absence of Thr69, local structural rearrangements affecting the beta 3-beta 4 and beta 11a-beta 12 loops of the 66-kDa subunit of the RT could reduce the accessibility of the PPi donor to the terminating nucleotide at the 3' end of the primer.
Collapse
Affiliation(s)
- Mónica Kisic
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naïve cats in Rio de Janeiro, Brazil. J Virol 2008; 82:7863-74. [PMID: 18550661 DOI: 10.1128/jvi.00310-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the Lentivirus responsible for an immunodeficiency-like disease in domestic cats (Felis catus). FIV is divided into five phylogenetic subtypes (A, B, C, D, and E), based on genetic diversity. Knowledge of the geographical distribution of subtypes is relevant for understanding different disease progressions and for vaccine development. In this study, viral sequences of 26 infected cats from Rio de Janeiro, 8 undergoing treatment with zidovudine (AZT) for at least 5 years, were successfully amplified from blood specimens. gag capsid (CA), pol reverse transcriptase (RT), and env gp120 (V3-V4) regions were analyzed to determine subtypes and to evaluate potential mutations related to antiretroviral drug resistance among treated cats. Subtyping based on phylogenetic analysis was performed by the neighbor-joining and maximum likelihood methods. All of the sequences clustered with subtype B in the three regions, exhibiting low genetic variability. Additionally, we found evidence that the same virus is circulating in animals in close contact. The analysis of FIV RT sequences identified two new putative mutations related to drug resistance located in the RT "finger" domain, which has 60% identity to human immunodeficiency virus (HIV) sequence. Amino acid change K-->R at codons 64 and 69 was found in 25% and 37.5% of the treated animals, respectively. These signatures were comparable to K65R and K70R thymidine-associated mutations found in the HIV-1 HXB2 counterpart. This finding strongly suggests a position correlation between the mutations found in FIV and the K65R and K70R substitutions from drug-resistant HIV-1 strains.
Collapse
|
12
|
Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 2008; 134:124-46. [PMID: 18272247 DOI: 10.1016/j.virusres.2007.12.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond formation. Unfortunately, available therapies do not completely suppress viral replication, and the emergence of drug-resistant HIV variants is facilitated by the high adaptation capacity of the virus. Mutations in the RT-coding region selected during treatment with nucleoside analogues confer resistance through different mechanisms: (i) altering discrimination between nucleoside RT inhibitors and natural substrates (dNTPs) (e.g. Q151M, M184V, etc.), or (ii) increasing the RT's phosphorolytic activity (e.g. M41L, T215Y and other thymidine analogue resistance mutations), which in the presence of a pyrophosphate donor (usually ATP) allow the removal of chain-terminating inhibitors from the 3' end of the primer. Both mechanisms are implicated in multi-drug resistance. The excision reaction can be modulated by mutations conferring resistance to nucleoside or nonnucleoside RT inhibitors, and by amino acid substitutions that interfere with the proper binding of the template-primer, including mutations that affect RNase H activity. New developments in the field should contribute towards improving the efficacy of current therapies.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
13
|
Hu Z, Hatano H, Hammond SP, Smith D, Wild M, Gupta S, Whitcomb J, Kalayjian RC, Gripshover B, Kuritzkes DR. Virologic characterization of HIV type 1 with a codon 70 deletion in reverse transcriptase. J Acquir Immune Defic Syndr 2007; 45:494-500. [PMID: 17496561 DOI: 10.1097/qai.0b013e31806ada48] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We identified a deletion at codon 70 (Delta70) of HIV-1 reverse transcriptase (RT) occurring together with L74V and Q151M mutations in a sample from a tenofovir (TFV)- and abacavir (ABC)-treated patient with extensive prior antiretroviral treatment. To investigate the characteristics of this mutant, we studied the drug susceptibility, relative infectivity, and fitness of viruses carrying Delta70 and associated RT mutations. The Delta70, L74V, and Q151M mutations were introduced into Hxb2 RT by site-directed mutagenesis and expressed in HIV-1 recombinants. The Delta70 mutation increased resistance to lamivudine and emtricitabine alone and in combination with various resistance mutations and augmented resistance to ABC and didanosine when present together with L74V. A recombinant virus expressing RT from the original clinical viral sample (Delta70-PRT) exhibited greater fitness than one in which the deletion had been repaired (K70-PRT). The Delta70 mutation also increased fitness of Hxb2 wild-type and 74V and Q151M mutants. Recombinants carrying Delta70-PRT showed greater relative infectivity in the presence of ABC (but not TFV) compared with K70-PRT recombinants. These results show that Delta70 enhances resistance to certain purine and pyrimidine analogues and contributes to multinucleoside resistance in the appropriate viral genetic background.
Collapse
Affiliation(s)
- Zixin Hu
- Section of Retroviral Therapeutics, Brigham and Women's Hospital, and Division of AIDS, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Villena C, Prado JG, Puertas MC, Martínez MA, Clotet B, Ruiz L, Parkin NT, Menéndez-Arias L, Martinez-Picado J. Relative fitness and replication capacity of a multinucleoside analogue-resistant clinical human immunodeficiency virus type 1 isolate with a deletion of codon 69 in the reverse transcriptase coding region. J Virol 2007; 81:4713-21. [PMID: 17314158 PMCID: PMC1900151 DOI: 10.1128/jvi.02135-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deletions, insertions, and amino acid substitutions in the beta3-beta4 hairpin loop-coding region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been associated with resistance to nucleoside RT inhibitors when appearing in combination with other mutations in the RT-coding region. In this work, we have measured the in vivo fitness of HIV-1 variants containing a deletion of 3 nucleotides affecting codon 69 (Delta69) of the viral RT as well as the replication capacity (RC) ex vivo of a series of recombinant HIV-1 variants carrying an RT bearing the Delta69 deletion or the T69A mutation in a multidrug-resistant (MDR) sequence background, including the Q151M complex and substitutions M184V, K103N, Y181C, and G190A. Patient-derived viral clones having RTs with Delta69 together with S163I showed increased RCs under drug pressure. These data were consistent with the viral population dynamics observed in a long-term-treated HIV-1-infected patient. In the absence of drugs, viral clones containing T69A replicated more efficiently than those having Delta69, but only when patient-derived sequences corresponding to RT residues 248 to 527 were present. These effects could be attributed to a functional interaction between the C-terminal domain of the p66 subunit (RNase H domain) and the DNA polymerase domain of the RT. Finally, recombinant HIV-1 clones bearing RTs with MDR-associated mutations, including deletions at codon 69, showed increased susceptibilities to protease inhibitors in phenotypic assays. These effects correlated with impaired Gag cleavage and could be attributed to delayed maturation and decreased production of active protease in those variants.
Collapse
Affiliation(s)
- Cristina Villena
- irsiCaixa Foundation, Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, 08916 Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sucupira MCA, Caseiro MM, Alves K, Tescarollo G, Janini LM, Sabino EC, Castelo A, Page-Shafer K, Diaz RS. High levels of primary antiretroviral resistance genotypic mutations and B/F recombinants in Santos, Brazil. AIDS Patient Care STDS 2007; 21:116-28. [PMID: 17328661 DOI: 10.1089/apc.2006.0079] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This study characterized HIV-1 among antiretroviral-naïve populations presenting recent infection (RI) or long-standing infection (LSI). Sera collected from January 1999 to December 2001 at an anonymous HIV testing site in Santos, Brazil, were submitted to serologic testing algorithm for recent HIV seroconversion (STARHS). The STARHS methodology uses a combination of a sensitive and a less sensitive version of an anti-HIV enzyme immunoassay (EIA), and specimens found to be positive on the sensitive EIA and negative on the less sensitive EIA are considered to represent RI. HIV-1 V3 and pol regions of those with RI and LSI were compared. Antiretroviral resistance was defined solely by genotypic analysis. Ninety samples were evaluated representing those taken from an original cohort of 345 individuals, for whom adequate samples were available. Of 90 HIV-positive individuals, 25 presented RI. Cumulatively, 36.8% of those with RI and 25% of those with LSI presented resistance to at least one antiretroviral class. In the pol and V3 regions, 47% and 53% of those with RI presented clade B viruses and B/F recombinant viruses, respectively, whereas 56.2%, 41.7%, and 2.1% of those with LSI harbored clades B, B/F, and clade C viruses, respectively. Primary resistance and the prevalence of B/F recombinants was high in this population. Monitoring HIV-1 genetic diversity is important for developing vaccines and treatment strategies.
Collapse
|
16
|
Winters MA, Merigan TC. Insertions in the human immunodeficiency virus type 1 protease and reverse transcriptase genes: clinical impact and molecular mechanisms. Antimicrob Agents Chemother 2005; 49:2575-82. [PMID: 15980322 PMCID: PMC1168704 DOI: 10.1128/aac.49.7.2575-2582.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mark A Winters
- Division of Infectious Diseases and Geographic Medicine, Stanford University, 300 Pasteur Drive, Room S-146, Stanford, California 94305-5107, USA.
| | | |
Collapse
|
17
|
Boyer PL, Imamichi T, Sarafianos SG, Arnold E, Hughes SH. Effects of the Delta67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision. J Virol 2004; 78:9987-97. [PMID: 15331732 PMCID: PMC515022 DOI: 10.1128/jvi.78.18.9987-9997.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term use of combination therapy against human immunodeficiency virus type (HIV-1) provides strong selective pressure on the virus, and HIV-1 variants that are resistant to multiple inhibitors have been isolated. HIV-1 variants containing amino acid substitutions within the coding region of HIV-1 reverse transcriptase (RT), such as the 3'-azido-3'-deoxythymidine (AZT)-resistant variant AZT-R (M41L/D67N/K70R/T215Y/K219Q) and a variant containing an insertion in the fingers domain (S69SGR70/T215Y), are resistant to the nucleoside RT inhibitor (NRTI) AZT because of an increase in the level of excision of AZT monophosphate (AZTMP) from the primer. While rare, variants have also been isolated which contain deletions in the RT coding region. One such virus, described by Imamichi et al. (J. Virol 74:10958-10964, 2000; J. Virol. 74:1023-1028, 2000; J. Virol. 75:3988-3992, 2001), contains numerous amino acid substitutions and a deletion of codon 67, which we have designated the Delta67 complex of mutations. We have expressed and purified HIV-1 RT containing these mutations. We compared the polymerase and pyrophosphorolysis (excision) activity of an RT with the Delta67 complex of mutations to wild-type RT and the two other AZT-resistant variants described above. All of the AZT-resistant variants we tested excise AZTMP and 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA [tenofovir]) from the end of a primer more efficiently than wild-type RT. Although the variant RTs excised d4TMP less efficiently than AZTMP and PMPA, they were able to excise d4TMP more efficiently than wild-type RT. HIV-1 RT containing the Delta67 complex of mutations was not able to excise as broad a range of NRTIs as the fingers insertion variant SSGR/T215Y, but it was able to polymerize efficiently with low concentrations of deoxynucleoside triphosphates and seems to be able to excise AZTMP and PMPA at lower ATP concentrations than AZT-R or SSGR/T215Y, suggesting that a virus containing the Delta67 complex of mutations would replicate reasonably well in quiescent cells, even in the presence of AZT.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
18
|
Gallego O, d Mendoza C, Labarga P, Altisent C, González J, García-Alcalde I, Valer L, Valencia E, Soriano V. Long-term outcome of HIV-infected patients with multinucleoside-resistant genotypes. HIV CLINICAL TRIALS 2004; 4:372-81. [PMID: 14628280 DOI: 10.1310/x618-kwkj-wctq-lq2l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Multiple resistance to nucleoside analogs mediated by the Q151M complex and/or codon 67-69 inserts/deletions represents a growing problem among HIV-infected persons, most of whom have been exposed to sequential therapies for long periods of time. PATIENTS AND METHOD All plasma samples collected from HIV-infected patients failing antiretroviral therapy and referred for HIV genotyping to our institution during the last 3 years were examined. Genetic analysis of the reverse transcriptase (RT) and protease (PR) genes was performed using an automatic sequencer. RESULTS Multinucleoside-resistance (MNR) genotypes were recognized in 22 (2.9%) of 761 participants. Twelve of them carried the Q151M complex and 9 harbored different codon 67-69 inserts. One participant carried a deletion at codon 67 of the RT gene. All patients with MNR viruses had been exposed to nucleoside analogs for a median of 54 months (range, 19-96). The mean plasma HIV RNA at the time MNR was first identified was 4.62 log and the mean CD4 count was 227 cells/microL. All patients with MNR viruses except two began salvage therapies based on protease inhibitors (PIs). Overall, 54.5% (12/22) of participants showed a significant virologic response (defined as >1 log reduction in plasma HIV RNA). Seven of them reached <50 copies/mL and remained with undetectable viremia for a median of 17 months (range, 8-50). No differences were found when patients with Q151M and codon 67-69 rearrangements were compared. The only predictor of response was the inclusion of ritonavir-boosted PI in the salvage regimen. In all patients with virologic failure, MNR genotypes have persisted over time. CONCLUSION The prevalence of viruses with MNR genotypes is currently low (approximately 3%) among HIV-infected patients failing antiretroviral therapy. The expected poor prognosis of patients harboring MNR viruses may often be overcome using rescue interventions based on potent ritonavir-boosted PI combinations.
Collapse
Affiliation(s)
- Oscar Gallego
- Service of Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Imamichi T, Murphy MA, Adelsberger JW, Yang J, Watkins CM, Berg SC, Baseler MW, Lempicki RA, Guo J, Levin JG, Lane HC. Actinomycin D induces high-level resistance to thymidine analogs in replication of human immunodeficiency virus type 1 by interfering with host cell thymidine kinase expression. J Virol 2003; 77:1011-20. [PMID: 12502817 PMCID: PMC140776 DOI: 10.1128/jvi.77.2.1011-1020.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinomycin D (ActD) is a transcription inhibitor and has been used in the treatment of certain forms of cancer. ActD has been reported to be a potential inhibitor of human immunodeficiency virus type 1 (HIV-1) replication due to its ability to inhibit reverse transcription. In contrast to what was expected, low concentrations of ActD (1 to 10 nM) upregulated HIV-1 replication 8- to 10-fold in MT-2 cells and had no effect on HIV-2 replication or on HIV-1 replication in MT-4, Jurkat, or peripheral blood mononuclear cells. The upregulation of HIV-1 replication was associated with an increase in HIV-1 transcription and a decrease in CD4 and CXCR4 expression. To further evaluate the effects of ActD on emergence of drug resistance in HIV-1 replication, a series of drug resistance assays were performed. Of interest, treatment of MT-2 cells with ActD also led to a high level of resistance to thymidine analogs (>1,000-fold increase in resistance to zidovudine and >250-fold to stavudine) but not to other nucleoside reverse transcriptases (RT), nonnucleoside RT, or protease inhibitors. This resistance appeared to be due to a suppression of host cell thymidine kinase-1 (TK-1) expression. These results indicate that ActD leads to a novel form of thymidine analog resistance by suppressing host cell TK-1 expression. These results suggest that administration of combination drugs to HIV-1-infected patients may induce resistance to antiretroviral compounds via a modification of cellular factors.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Molecular Retrovirology, Clinical Services Program, Science Applications International Corporation-Frederick Inc., National Cancer Institute-Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fitzgibbon JE, DiCola MB, Arnold E, Das K, Sha BE, Pottage JC, Nahass R, Gaur S, John JF. HIV-1 Reverse Transcriptase Mutations Found in a Drug-Experienced Patient Confer Reduced Susceptibility to Multiple Nucleoside Reverse Transcriptase Inhibitors. Antivir Ther 2002. [DOI: 10.1177/135965350200600402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
HIV-1 reverse transcriptase (RT) genotypes were obtained from 13 patients treated with stavudine. No previously-reported mutations indicative of stavudine resistance were found in these patients and no novel mutations occurred in more than two patients. One patient, treated with stavudine for 1 month and treated previously with zidovudine, zalcitabine and lamivudine, carried a mutation at codon 75 of the RT (V75M). A chimeric virus, including the patient's RT sequence from codon 25 to codon 220, which carried the resistance mutations M41L, D67N, T69D, K70R, L210W and T215Y in addition to V75M, displayed reduced susceptibility to multiple nucleoside RT inhibitors (NRTIs). Removal of V75M from this RT background resulted in a return of susceptibility to didanosine and lamivudine. Our data are in agreement with previous studies demonstrating the rarity of stavudine resistance mutations in stavudine-treated patients. However, we describe a new set of mutations, found in the RT of a heavily-treated patient, that can confer reduced susceptibility to multiple NRTIs. These results underscore the importance of increased vigilance for possible multiple-drug resistance in patients who have been heavily treated with NRTIs.
Collapse
Affiliation(s)
- Joseph E Fitzgibbon
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - May B DiCola
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Edward Arnold
- Center for Advanced Biotechnology and Medicine and Department of Chemistry, Rutgers University, Piscataway, NJ, USA
| | - Kalyan Das
- Center for Advanced Biotechnology and Medicine and Department of Chemistry, Rutgers University, Piscataway, NJ, USA
| | - Beverly E Sha
- Department of Medicine, Section of Infectious Diseases, Rush Medical College, Chicago, Ill., USA
| | - John C Pottage
- Department of Medicine, Section of Infectious Diseases, Rush Medical College, Chicago, Ill., USA
| | - Ronald Nahass
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sunanda Gaur
- Department of Pediatrics, Division of Immunology, Allergy and Infectious Diseases, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Joseph F John
- Department of Medicine, Division of Allergy, Immunology and Infectious Diseases, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
21
|
Abstract
There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.
Collapse
Affiliation(s)
- Robert W Shafer
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
22
|
Domingo E, Mas A, Yuste E, Pariente N, Sierra S, Gutiérrez-Riva M, Menéndez-Arias L. Virus population dynamics, fitness variations and the control of viral disease: an update. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2002; 57:77-115. [PMID: 11728003 DOI: 10.1007/978-3-0348-8308-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Viral quasispecies dynamics and variations of viral fitness are reviewed in connection with viral disease control. Emphasis is put on resistance of human immunodeficiency virus and some human DNA viruses to antiviral inhibitors. Future trends in multiple target antiviral therapy and new approaches based on virus entry into error catastrophe (extinction mutagenesis) are discussed.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain.
| | | | | | | | | | | | | |
Collapse
|
23
|
Suzuki K, Kaufmann GR, Mukaide M, Cunningham P, Harris C, Leas L, Kondo M, Imai M, Pett SL, Finlayson R, Zaunders J, Kelleher A, Cooper DA. Novel deletion of HIV type 1 reverse transcriptase residue 69 conferring selective high-level resistance to nevirapine. AIDS Res Hum Retroviruses 2001; 17:1293-6. [PMID: 11559430 DOI: 10.1089/088922201750461366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel deletion of residue 69 of the HIV-1 reverse transcriptase (RT) gene was detected in combination with mutations V75I/V and F77L/F in a patient with partial virological response to several antiretroviral drug regimens, including stavudine (D4T), didanosine (DDI), lamivudine (3TC), saquinavir (SQV), and nevirapine (NVP). Longitudinal analysis of samples revealed that this deletion emerged upon reinitiation DDI/D4T therapy following a toxicity-induced short discontinuation of all antiretrovirals. Analysis of the resistance phenotype showed a greater than 62-fold increase of the IC50 of NVP, but no significant change in sensitivity to other single nonnucleoside reverse transcriptase inhibitors (NNRTIs). The mutated virus showed only a moderately reduced sensitivity to DDI (6.7-fold) and D4T (4.8 fold). In a subsequent sample 3 months later additional RT mutations were found, including A62V, Y188L, and Q151M, conferring high-level cross-resistance to multiple nucleoside analogs. Our findings provide evidence that the deletion of RT residue 69 selectively confers high-level NVP resistance.
Collapse
Affiliation(s)
- K Suzuki
- Centre for Immunology, St. Vincent's Hospital, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sato H, Tomita Y, Ebisawa K, Hachiya A, Shibamura K, Shiino T, Yang R, Tatsumi M, Gushi K, Umeyama H, Oka S, Takebe Y, Nagai Y. Augmentation of human immunodeficiency virus type 1 subtype E (CRF01_AE) multiple-drug resistance by insertion of a foreign 11-amino-acid fragment into the reverse transcriptase. J Virol 2001; 75:5604-13. [PMID: 11356968 PMCID: PMC114273 DOI: 10.1128/jvi.75.12.5604-5613.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A human immunodeficiency virus type 1 (HIV-1) subtype E (CRF01_AE) variant (99JP-NH3-II) possessing an in-frame 33-nucleotide insertion mutation in the beta3-beta4 loop coding region of the reverse transcriptase (RT) gene was isolated from a patient who had not responded to nucleoside analogue RT inhibitors. This virus exhibited an extremely high level of multiple nucleoside analog resistance (MNR). Neighbor-joining tree analysis of the pol sequences indicated that the 99JP-NH3-II variant had originated from the swarm of drug-sensitive predecessors in the patient. Population-based sequence analyses of 82 independently cloned RT segments from the patient suggested that the variants with the insertion, three or four 3'-azido-3'-deoxythymidine resistance mutations, and a T69I mutation in combination had strong selective advantages during chemotherapy. Consistently, in vitro mutagenesis of a drug-sensitive predecessor virus clone demonstrated that this mutation set functions cooperatively to confer a high level of MNR without deleterious effects on viral replication capability. Homology modeling of the parental RT and its MNR mutant showed that extension of the beta3-beta4 loop by an insertion caused reductions in the distances between the loop and the other subdomains, narrowing the template-primer binding cleft and deoxynucleoside triphosphate-binding pocket in a highly flexible manner. The origin of the insert is elusive, as every effort to find a homologue has been unsuccessful. Taken together, these data suggest that (i) HIV-1 tolerates in vivo insertions as long as 33 nucleotides into the highly conserved enzyme gene to survive multiple anti-HIV-1 inhibitors and (ii) the insertion mutation augments multiple-drug resistance, possibly by reducing the biochemical inaccuracy of substrate-enzyme interactions in the active center.
Collapse
Affiliation(s)
- H Sato
- AIDS Research Center, National Institute of Infectious Diseases, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Imamichi T, Murphy MA, Imamichi H, Lane HC. Amino acid deletion at codon 67 and Thr-to-Gly change at codon 69 of human immunodeficiency virus type 1 reverse transcriptase confer novel drug resistance profiles. J Virol 2001; 75:3988-92. [PMID: 11264389 PMCID: PMC114891 DOI: 10.1128/jvi.75.8.3988-3992.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The potential roles of an amino acid deletion at codon 67 (Delta67) and a Thr-to-Gly change at codon 69 (T69G) in the reverse transcriptase of human immunodeficiency virus (HIV) type 1 in drug sensitivity and relative replication fitness were studied. Our results suggest that the Delta67 and T69G changes can be categorized as mutations associated with multidrug resistance. The combination of both mutations with an L74I change (Delta67+T69G/L74I) leads to a novel 3'-azido-3'-deoxythymidine resistance motif and compensates for impaired HIV replication.
Collapse
Affiliation(s)
- T Imamichi
- Laboratory of Molecular Retrovirology, Clinical Services Program, Science Applications International Corporation-Frederick, National Cancer Institute-Frederick, Frederick, Maryland 21702-1201, USA.
| | | | | | | |
Collapse
|
26
|
Kim EY, Vrang L, Oberg B, Merigan TC. Anti-HIV type 1 activity of 3'-fluoro-3'-deoxythymidine for several different multidrug-resistant mutants. AIDS Res Hum Retroviruses 2001; 17:401-7. [PMID: 11282008 DOI: 10.1089/088922201750102445] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The objective of this work was to test the antiviral activity of a potent nucleoside reverse transcriptase inhibitor, 3'-fluoro-3'-deoxythymidine (FLT), on both a wild-type human immunodeficiency virus (HIV-1) isolate and multidrug-resistant HIV-1 patient isolates. Drug-resistant viral isolates were selected on the basis of four different categories of well-characterized and representative multidrug-resistant mutants. The isolates included three variants containing 151M alone or in combination; three variants containing 215Y and 41L, 67N, 184V, 210W, and 219N in combination; two insertion mutant viruses (69 + EA and 69 + SA); and two deletion mutant viruses (del67NG and del67GS), the latter two groups both also containing other significant mutations. The activity of FLT and AZT against these isolates was determined by drug susceptibility assays and by measuring viral antigen p24 by ELISA. The cytotoxicity of FLT and AZT was assessed in PHA-stimulated PBMCs. Development of resistant mutants under FLT pressure was attempted by passaging HIV-1 isolates in SupT1 cells and stepwise increasing the concentration of FLT. The multidrug-resistant mutant HIV-1 isolates exhibited 7-fold to >100-fold increased resistance to AZT, but showed IC(50) values for FLT of 0.0014-0.0168 microM, which were lower than or similar to that of wild type (0.0075 microM). The cellular cytotoxicities of FLT and AZT fell into a similar range in PBMCs. The development of HIV mutants resistant to FLT appeared to be slower than for other RT inhibitors. HIV isolates with mutations resulting in multidrug resistance had no evidence of resistance to FLT. FLT may be useful in salvage therapies for patients harboring resistant strains and a reassessment of its therapeutic potential seems required.
Collapse
Affiliation(s)
- E Y Kim
- Center for AIDS Research, Stanford University, Stanford, California 94305-5107, USA.
| | | | | | | |
Collapse
|
27
|
Imamichi T, Berg SC, Imamichi H, Lopez JC, Metcalf JA, Falloon J, Lane HC. Relative replication fitness of a high-level 3'-azido-3'-deoxythymidine-resistant variant of human immunodeficiency virus type 1 possessing an amino acid deletion at codon 67 and a novel substitution (Thr-->Gly) at codon 69. J Virol 2000; 74:10958-64. [PMID: 11069990 PMCID: PMC113175 DOI: 10.1128/jvi.74.23.10958-10964.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of an amino acid deletion at codon 67 (delta 67) and Thr-to-Gly change at codon 69 (T69G) in the reverse transcriptase (RT) of human immunodeficiency virus type 1 (HIV-1) is associated with high-level resistance to multiple RT inhibitors. To determine the relative contributions of the delta 67 and T69G mutations on viral fitness, we performed a series of studies of HIV replication using recombinant variants. A high-level 3'-azido-3'-deoxythymidine (AZT)-resistant variant containing delta 67 plus T69G/K70R/L74I/K103N/T215F/K219Q in RT replicated as efficiently as wild-type virus (Wt). In contrast, the construct without delta 67 exhibited impaired replication (23% of growth of Wt). A competitive fitness study failed to reveal any differences in replication rates between the delta 67+T69G/K70R/L74I/K103N/T215F/+ ++K219Q mutant and Wt. Evaluation of proviral DNA sequences over a 3-year period in a patient harboring the multiresistant HIV revealed that the T69G mutation emerged in the context of a D67N/K70R/T215F/K219Q mutant backbone prior to appearance of the delta 67 deletion. To assess the impact of this stepwise accumulation of mutations on viral replication, a series of recombinant variants was constructed and analyzed for replication competence. The T69G mutation was found to confer 2',3'-dideoxyinosine resistance at the expense of fitness. Subsequently, the development of the delta 67 deletion led to a virus with improved replication and high-level AZT resistance.
Collapse
Affiliation(s)
- T Imamichi
- Laboratory of Molecular Retrovirology, Clinical Services Program, SAIC-Frederick, Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Winters MA, Coolley KL, Cheng P, Girard YA, Hamdan H, Kovari LC, Merigan TC. Genotypic, phenotypic, and modeling studies of a deletion in the beta3-beta4 region of the human immunodeficiency virus type 1 reverse transcriptase gene that is associated with resistance to nucleoside reverse transcriptase inhibitors. J Virol 2000; 74:10707-13. [PMID: 11044115 PMCID: PMC110945 DOI: 10.1128/jvi.74.22.10707-10713.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations and inserts in the beta3-beta4 region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) are associated with resistance to nucleoside analog inhibitors. This report describes HIV-1 strains from seven patients that were found to have a 3-bp deletion in the beta3-beta4 region of the RT gene. These patient strains also had a mean of 6.2 drug resistance-associated mutations in their RT genes (range, 3 to 10 mutations). The deletion was most frequently found in strains with the Q151M mutation. Nonnucleoside RT inhibitor mutations were found in six of seven strains. Culture-based drug sensitivity assays showed that deletion-containing isolates had reduced susceptibility to four to eight RT inhibitors. Site-directed mutagenesis experiments showed that the deletion alone conferred reduced susceptibility to nucleoside analogs. Changes in the three-dimensional models of the RT deletion mutants were consistently observed at the beta3-beta4 loop and at helices C and E in both the presence and the absence of dTTP. Loss of hydrogen bonds between the RT and dTTP were also observed in the RT deletion mutant. These results suggest that the deletion in the RT gene contributes to resistance to several nucleoside analogs through a complex interaction with other mutations in the RT gene.
Collapse
Affiliation(s)
- M A Winters
- Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Shafer RW, Jung DR, Betts BJ. Human immunodeficiency virus type 1 reverse transcriptase and protease mutation search engine for queries. Nat Med 2000; 6:1290-2. [PMID: 11062545 PMCID: PMC2582445 DOI: 10.1038/81407] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- R W Shafer
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
30
|
Kaliki V, Day NK, Dinglasan E, James-Yarish M, Hitchcock R, Skapura D, Chinta A, Johnson L, Andreopoulos A, Rey A, Good RA, Haraguchi S. Emergence of HIV-1 variants containing codon insertions and deletions in the beta3-beta4 hairpin loop domain of reverse transcriptase. Immunol Lett 2000; 74:173-5. [PMID: 10996393 DOI: 10.1016/s0165-2478(00)00209-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- V Kaliki
- Department of Pediatrics, University of South Florida College of Medicine, All Children's Hospital, 801 Sixth Street South, St. Petersburg, FL 33701, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
More than 15 antiretroviral drugs are now available for clinical use, and have led to significant reductions in morbidity and mortality for HIV infected individuals. Nevertheless, antiviral drug resistance emerges to all these drugs, which limits their benefit. This review addresses the biological basis of antiretroviral drug resistance, and the prevalence of specific drug resistance associated mutations in patients treated with the three currently available classes of agents, namely nucleoside analogue reverse transcriptase inhibitors, non nucleoside reverse transcriptase inhibitors and protease inhibitors. In addition, data on prevalence of HIV drug resistance in untreated individuals published to date are summarised, and the implications of potential transmission of drug resistant HIV is discussed.
Collapse
Affiliation(s)
- D Pillay
- PHLS Antiviral Susceptibility Reference Unit, Division of Immunity and Infection, University of Birmingham, Medical School, UK
| | | | | |
Collapse
|
32
|
Giri J, Rueda HJ, Monticelli A, Planes N. Case Report of a Novel Amino Acid Deletion in Codon 67 and T69G Substitution in the Reverse Transcriptase of HIV-1. Antivir Ther 2000. [DOI: 10.1177/135965350000500307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Juan Giri
- Centro Diagnóstico de Virus, Buenos Aires, Argentina
| | | | - Alejandra Monticelli
- Fundación de Asistencia e Investigación en VIH/SIDA (FAIVIH/S), Buenos Aires, Argentina
| | - Norma Planes
- Centro Diagnóstico de Virus, Buenos Aires, Argentina
| |
Collapse
|
33
|
Miller V, Larder BA. Mutational Patterns in the HIV Genome and Cross-Resistance following Nucleoside and Nucleotide Analogue Drug Exposure. Antivir Ther 2000. [DOI: 10.1177/135965350100603s03] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A variety of key mutations in HIV reverse transcriptase (RT) have been associated with nucleoside reverse transcriptase inhibitor (NRTI) exposure, which give rise to a diverse range of effects in terms of altered drug susceptibilities, viral replicative capacity and RT biochemistry. There are three basic mechanisms of resistance conferred by specific mutations in the coding region of RT. The first is drug discrimination, whereby a particular drug or drugs are either selectively excluded from uptake or from the RT–primer–template catalytic complex. Drug discrimination is, for the most part, relatively specific for individual drugs. Repositioning of the template–primer to prevent a catalytically competent complex in the presence of a bound drug molecule has also been observed in some instances, and forms a second mechanism. The third, and potentially most significant for long-term efficacy of the NRTIs, is pyrophosphorolysis, the primary mode of resistance to zidovudine. Mutations selected by this drug or stavudine serve to elevate the natural rate of the reverse reaction for RT. Pyrophosphorolysis uncouples the last nucleoside monophosphate added to the proviral transcript, and attaches it to either a free pyrophosphate (regenerating a deoxynucleoside triphosphate) or to a nucleoside di- or triphosphate (usually ATP). Uncoupling a chain-terminating NRTI residue therefore rescues reverse transcription and reduces drug susceptibility across the class, since the process is not specific for the selecting drug. Of all the nucleoside-associated mutations, the best known and most studied are the six associated with thymidine analogue exposure. These six mutations (M41L, D67N, K70R, L210W, T215Y/F, K219Q) enhance RT pyrophosphorolysis to confer high-level viral resistance to zidovudine, and clinically significant loss of response to stavudine and didanosine. They have also been found to confer reduced susceptibility to lamivudine and abacavir, particularly when present alongside other NRTI-induced changes. Other key mutations generally confer more limited resistance to specific agents, although the primary lamivudine- and abacavir-associated M184V substitution generates a broad spectrum of drug-dependent phenotypes, and uncommon mutational complexes conferring resistance across the entire class are well known. In addition to ‘classical’ multi-nucleoside-resistant genotypes, database-driven ‘virtual phenotyping’ for accumulations of NRTI-associated mutations around a core of thymidine analogue-induced changes predicts drug susceptibilities below wild-type across the entire NRTI class, even in the absence of key mutations associated with individual agents. When the natural range of drug susceptibilities for treatment-naive isolates is used as the basis for defining resistance, retrospective analysis of clinical isolates in the Virco database shows a significantly increased incidence of reduced susceptibility for the dideoxy NRTIs (didanosine, stavudine and zalcitabine) that was undetected in previous assays. These data imply a cumulative degradation of response to NRTI drugs incident on the failure of thymidine analogue-based combinations, consistent with observations of treatment-experienced versus treatment-naive individuals. Among the investigational agents, response to tenofovir disproxil fumarate (TDF) appears to be essentially independent of baseline genotype in NRTI-experienced individuals, and its sole selected resistance mutation, K65R, has been observed to emerge only rarely (2%) and without loss of clinical response. In vitro results also show very little effect on TDF susceptibility for the most common of the multi-nucleoside resistance patterns. This drug has also been shown to display a substantially reduced sensitivity to pyrophosphorolytic uncoupling in vitro, which may, in part, explain the surprisingly sustained response observed over 48 weeks for TDF intensification of an existing regimen.
Collapse
|