1
|
Puente-Massaguer E, Saccardo P, Ferrer-Miralles N, Lecina M, Gòdia F. Coupling Microscopy and Flow Cytometry for a Comprehensive Characterization of Nanoparticle Production in Insect Cells. Cytometry A 2020; 97:921-932. [PMID: 32515126 DOI: 10.1002/cyto.a.24033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
Advancements in the field of characterization techniques have broadened the opportunities to deepen into nanoparticle production bioprocesses. Gag-based virus-like particles (VLPs) have shown their potential as candidates for recombinant vaccine development. However, comprehensive characterization of the production process is still a requirement to meet the desired critical quality attributes. In this work, the production process of Gag VLPs by baculovirus (BV) infection in the reference High Five and Sf9 insect cell lines is characterized in detail. To this end, the Gag polyprotein was fused in frame to the enhanced green fluorescent protein (eGFP) to favor process evaluation with multiple analytical tools. Tracking of the infection process using confocal microscopy and flow cytometry revealed a pronounced increase in the complexity of High Five over Sf9 cells. Cryogenic transmission electron microscopy (cryo-TEM) characterization determined that changes in cell complexity could be attributed to the presence of occlusion-derived BV in High Five cells, whereas Sf9 cells evidenced a larger proportion of the budded virus phenotype (23-fold). Initial evaluation of the VLP production process using spectrofluorometry showed that higher levels of the Gag-eGFP polyprotein were obtained in High Five cells (3.6-fold). However, comparative analysis based on nanoparticle quantification by flow virometry and nanoparticle tracking analysis (NTA) proved that Sf9 cells were 1.7- and 1.5-fold more productive in terms of assembled VLPs, respectively. Finally, analytical ultracentrifugation coupled to flow virometry evidenced a larger sedimentation coefficient of High Five-derived VLPs, indicating a possible interaction with other cellular compounds. Taken together, these results highlight the combined use of microscopy and flow cytometry techniques to improve vaccine development processes using the insect cell/BV expression vector system. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Paolo Saccardo
- Plataforma de Producción de Proteínas, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Plataforma de Producción de Proteínas, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
2
|
Voráčková I, Ulbrich P, Diehl WE, Ruml T. Engineered retroviral virus-like particles for receptor targeting. Arch Virol 2013; 159:677-88. [DOI: 10.1007/s00705-013-1873-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|
3
|
The impact of altered polyprotein ratios on the assembly and infectivity of Mason-Pfizer monkey virus. Virology 2008; 384:59-68. [PMID: 19062065 DOI: 10.1016/j.virol.2008.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 08/11/2008] [Accepted: 10/31/2008] [Indexed: 01/07/2023]
Abstract
Most retroviruses employ a frameshift mechanism during polyprotein synthesis to balance appropriate ratios of structural proteins and enzymes. To investigate the requirements for individual precursors in retrovirus assembly, we modified the polyprotein repertoire of Mason-Pfizer monkey virus (M-PMV) by mutating the frameshift sites to imitate the polyprotein organization of Rous sarcoma virus (Gag-Pro and Gag-Pro-Pol) or Human immunodeficiency virus (Gag and Gag-Pro-Pol). For the "Rous-like" virus, assembly was impaired with no incorporation of Gag-Pro-Pol into particles and for the "HIV-like" virus an altered morphogenesis was observed. A mutant expressing Gag and Gag-Pro polyproteins and lacking Gag-Pro-Pol assembled intracellular particles at a level similar to the wild-type. Gag-Pro-Pol polyprotein alone neither formed immature particles nor processed the precursor. All the mutants were non-infectious except the "HIV-like", which retained fractional infectivity.
Collapse
|
4
|
Andersen KB, Diep HA, Zedeler A. Murine leukemia virus transmembrane protein R-peptide is found in small virus core-like complexes in cells. J Gen Virol 2006; 87:1583-1588. [PMID: 16690922 DOI: 10.1099/vir.0.81527-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The core of the retrovirus Murine leukemia virus (MLV) consists of the Gag precursor protein and viral RNA. It assembles at the cytoplasmic face of the cell membrane where, by an unclear mechanism, it collects viral envelope proteins embedded in the cell membrane and buds off. The C-terminal half of the short cytoplasmic tail of the envelope transmembrane protein (TM) is cleaved off to yield R-peptide and fusion-active TM. In Moloney MLV particles, R-peptide was found to bind to core particles. In cells, R-peptide and low amounts of uncleaved TM were found to be associated with small core-like complexes, i.e. mild detergent-insoluble, Gag-containing complexes with a density of 1.23 g ml(-1) and a size of 150-200 S. Our results suggest that TM associates with the assembling core particle through the R-peptide before budding and that this is the mechanism by which the budding virus acquires the envelope proteins.
Collapse
Affiliation(s)
- Klaus Bahl Andersen
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Huong Ai Diep
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anne Zedeler
- Department of Pharmacology and Pharmacotherapy, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Sakalian M, Rapp ND. Rescue of internal scaffold-deleted Mason-Pfizer monkey virus particle production by plasma membrane targeting. Virology 2005; 345:317-27. [PMID: 16297423 DOI: 10.1016/j.virol.2005.09.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/12/2005] [Accepted: 09/15/2005] [Indexed: 11/19/2022]
Abstract
The Mason-Pfizer monkey virus (M-PMV) Gag protein follows a morphogenesis pathway in which immature capsids are preassembled within the cytoplasm before interaction with and budding through the plasma membrane. Intracytoplasmic assembly is facilitated by sequences within the p12 domain of Gag that we have termed the Internal Scaffold Domain (ISD). If M-PMV utilizes an ISD then what provides the equivalent function for most other retroviruses that assemble at the plasma membrane? To investigate the possibility that the membrane itself fulfills this role, we have combined functional deletion of the ISD with a mutation that disrupts intracellular targeting or with a plasma membrane targeting signal. By either modification, targeting of ISD-deleted Gag to the plasma membrane restores particle production. These results provide support for a model in which the plasma membrane and the D-type ISD provide an interchangeable scaffold-like function in retrovirus assembly.
Collapse
Affiliation(s)
- Michael Sakalian
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, 73104, USA.
| | | |
Collapse
|
6
|
Abdurahman S, Höglund S, Goobar-Larsson L, Vahlne A. Selected amino acid substitutions in the C-terminal region of human immunodeficiency virus type 1 capsid protein affect virus assembly and release. J Gen Virol 2004; 85:2903-2913. [PMID: 15448352 DOI: 10.1099/vir.0.80137-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capsid protein (CA or p24) of human immunodeficiency virus type 1 (HIV-1) plays a major role both early and late in the virus replication cycle. Many studies have suggested that the C-terminal domain of this protein is involved in dimerization and proper assembly of the viral core. Point mutations were introduced in two conserved sites of this region and their effects on viral protein expression, particle assembly and infectivity were studied. Eight different mutants (L205A+P207A, L205A, P207A, 223GPG225AAA, G223A, P224A, G225A and V221G) of the infectious clone pNL4-3 were constructed. Most substitutions had no substantial effect on HIV-1 protein synthesis, yet they impaired viral infectivity and particle production. The two mutants P207A and V221G also had a profound effect on Gag–Pol protein processing in HeLa–tat cells. However, these results were cell line-specific and Gag–Pol processing of P207A was not affected in 293T cells. In HeLa–tat cells, no virus particles were detected with the P207A mutation, whereas the other mutant virus particles were heterogeneous in size and morphology. None of the mutants showed normal, mature, conical core structures in HeLa–tat cells. These results indicate that the two conserved sequences in the C-terminal CA domain are essential for proper morphogenesis and infectivity of HIV-1 particles.
Collapse
Affiliation(s)
- Samir Abdurahman
- Division of Clinical Virology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Höglund
- Department of Biochemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Laura Goobar-Larsson
- Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Vahlne
- Division of Clinical Virology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
A coupled transcription-translation (TNT) reticulocyte lysate system was used to examine posttranslational alterations in HIV-1 Gag upon addition of Jurkat T cell membranes. Incubation of the Gag precursor protein, Pr55gag, with membranes resulted in a time-dependent alteration in Gag resulting in partial resistance to trypsin treatment. Treatment of membranes and TNT extract with apyrase or pretreatment of membranes with trypsin prevented this posttranslational alteration of Gag. In contrast, this activity was not disrupted by pretreatment of membranes with Triton X-100 at 4 degrees C, under conditions which do not solubilize raft-associated proteins. Flotation studies revealed that acquisition of trypsin-resistance was accompanied by Gag binding to membranes. The myristylation signal and nucleocapsid domain were found to mediate Gag binding to membranes. The posttranslational alteration of Gag accompanying membrane interaction may represent a conformational change, oligomerization, and/or association with or envelopment by membranes. These findings provide new clues to the stepwise process of HIV-1 assembly.
Collapse
Affiliation(s)
- Liuzhan Yang
- Department of Medicine, Pathology, and Molecular Mirobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
8
|
Gluschankof P, Suzan M. HIV-1 gag polyprotein rescues HLA-DR intracellular transport in a human CD4+ cell line. Virology 2002; 300:160-9. [PMID: 12202216 DOI: 10.1006/viro.2002.1531] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major histocompatibility complex class II HLA-DR molecules are plasma-membrane integral heterodimers, constitutively expressed in antigen-presenting cells. Their expression is known to be upregulated in peripheral T lymphocytes upon cell activation and to be constitutive in T cell lines. In H78-C10.0, a subclone of the human CD4+ T cell line HUT-78, the transport of MHC class II HLA-DR molecules is blocked, resulting in their localization within internal vesicular compartments rather than at the cell surface. In this article, we show that HIV-1(HX10) infection of H78-C10.0 cells induces HLA-DR surface expression. Moreover, the produced infectious viruses harbor the heterodimer molecules in their envelopes. To define which of the viral proteins was involved in this phenomenon, we infected H78-C10.0 cells with recombinant vaccinia vectors containing either the gag-pro coding sequence or the entire env gene. Only gag expression was able to induce HLA-DR cell-surface localization in H78-C10.0 cells. RT-PCR analysis of the infected cells revealed no significant alteration in the amount of HLA-DRalpha-specific RNA compared to untreated cells. This implies that Gag acts on downstream events. When the env viral gene, coding for the precursor glycoprotein gp160, was expressed in H78-C10.0, the Env protein targeted to the cell surface was poorly processed to its final mature forms gp120 and gp41. However, coexpression of the env and gag genes led to restoration of this phenotype. Although the mechanism is unknown, the data compiled in this study strongly suggest that the viral Gag protein can interact with the cellular trafficking apparatus. Moreover, in a specific cell type as H78-C10.0 this interaction can even reverse intracellular transport defects.
Collapse
Affiliation(s)
- Pablo Gluschankof
- Unité des Rickettsies, UMR 6020, IFR 48: Pathologies Transmissibles et Pathologies Infectieuses Tropicales, Faculté de Médecine, 27 Boulevarde Jean Moulin, 13385, Marseille Cedex 5, France.
| | | |
Collapse
|
9
|
Serhan F, Jourdan N, Saleun S, Moullier P, Duisit G. Characterization of producer cell-dependent restriction of murine leukemia virus replication. J Virol 2002; 76:6609-17. [PMID: 12050374 PMCID: PMC136263 DOI: 10.1128/jvi.76.13.6609-6617.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Accepted: 03/21/2002] [Indexed: 11/20/2022] Open
Abstract
We previously reported that the human bronchocarcinoma cell line A549 produces poorly infectious gibbon ape leukemia virus-pseudotyped Moloney murine leukemia virus (MLV). In contrast, similar amounts of virions recovered from human fibrosarcoma HT1080 cells result in 10-fold-higher transduction rates (G. Duisit, A. Salvetti, P. Moullier, and F. Cosset, Hum. Gene Ther. 10:189-200, 1999). We have now extended this initial observation to other type-C envelope (Env) pseudotypes and analyzed the mechanism involved. Structural and morphological analysis showed that viral particles recovered from A549 (A549-MLV) and HT1080 (HT1080-MLV) cells were normal and indistinguishable from each other. They expressed equivalent levels of mature Env proteins and bound similarly to the target cells. Furthermore, incoming particles reached the cytosol and directed the synthesis of linear viral DNA equally efficiently. However, almost no detectable circular DNAs could be detected in A549-MLV-infected cells, indicating that the block of infection resulted from defective nuclear translocation of the preintegration complex. Interestingly, pseudotyping of A549-MLV with vesicular stomatitis virus glycoprotein G restored the amount of circular DNA forms as well as the transduction rates to HT1080-MLV levels, suggesting that the postentry blockage could be overcome by endocytic delivery of the core particles downstream of the restriction point. Thus, in contrast to the previously described target cell-dependent Fv-1 (or Fv1-like) restriction in mammalian cells (P. Pryciak and H. E. Varmus, J. Virol. 66:5959-5966, 1992; G. Towers, M. Bock, S. Martin, Y. Takeuchi, J. P. Stoye, and O. Danos, Proc. Natl. Acad. Sci. USA 97:12295-12299, 2000), we report here a new restriction of MLV replication that relies only on the producer cell type.
Collapse
Affiliation(s)
- Fatima Serhan
- Laboratoire de Thérapie Génique, INSERM ERM 0-105, CHU Hotel Dieu, 30 boulevard Jean Monnet, 44035 Nantes Cedex 01, France
| | | | | | | | | |
Collapse
|
10
|
Maranga L, Cruz PE, Aunins JG, Carrondo MJT. Production of core and virus-like particles with baculovirus infected insect cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 74:183-206. [PMID: 11991179 DOI: 10.1007/3-540-45736-4_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In this paper the fundamental aspects of process development for the production of core and virus-like particles with baculovirus infected insect cells are reviewed. The issues addressed include: particle formation and monomer composition, chemical and physical conditions for optimal cell growth, baculovirus replication and product expression, multiplicity of infection strategy, and scale-up of the process. Study of the differences in the metabolic requirements of infected and non-infected cells is necessary for high cell density processes. In the bioreactor, the specific oxygen uptake rate (OURsp) plays a central role in process scale-up, leading to the specification of the bioreactor operational parameters. Shear stress can also be an important variable for bioreactor operation due to its influence on cell growth and product expression. The determination of the critical variables in process development is discussed, showing the relevance of the mathematical models that have been developed for the insect cells/baculovirus system in process implementation and control.
Collapse
Affiliation(s)
- Luis Maranga
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Oeiras, Portugal
| | | | | | | |
Collapse
|
11
|
Parker SD, Hunter E. Activation of the Mason-Pfizer monkey virus protease within immature capsids in vitro. Proc Natl Acad Sci U S A 2001; 98:14631-6. [PMID: 11724937 PMCID: PMC64733 DOI: 10.1073/pnas.251460998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
For all retroviruses, the completion of the viral budding process correlates with the activation of the viral protease by an unknown mechanism, and, as the structural (Gag) polyproteins are cleaved by the viral protease, maturation of the immature virus-like particle into an infectious virion. Unlike most retroviruses, the Mason-Pfizer monkey virus Gag polyproteins assemble into immature capsids within the cytoplasm of the cell before the viral budding event. The results reported here describe a unique experimental system in which Mason-Pfizer monkey virus immature capsids are removed from the cell, and the protease is activated in vitro by the addition of a reducing agent. The cleavage of the protease from the precursor form is a primary event, which proceeds with a half time of 14 min, and is followed by authentic processing of the Gag polyproteins. Activity of the viral protease in vitro depends on pH, with an increase in catalytic rates at acidic and neutral pH. The initiation of protease activity within immature capsids in vitro demonstrates that viral protease activity is sensitive to oxidation-reduction conditions, and that the viral protease can be activated in the absence of viral budding.
Collapse
Affiliation(s)
- S D Parker
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
12
|
Wang JJ, Sandefur S, Spearman P, Chiou CT, Chiang PH, Ratner L. Tracking the assembly pathway of human immunodeficiency virus type 1 Gag deletion mutants by immunogold labeling. Appl Immunohistochem Mol Morphol 2001; 9:371-9. [PMID: 11759066 DOI: 10.1097/00129039-200112000-00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Pr55gag gene product of human immunodeficiency virus type 1 (HIV-1) is sufficient to direct the formation of retrovirus-like particles (RVLPs). Recent biochemical evidence has indicated the presence of Gag intermediates in the cytoplasm; however, the Gag assembly process into RVLPs remains incompletely defined. The authors present here the subcellular localization of Gag mutant proteins in BSC40 and Jurkat cells by immunoelectron microscopy (IEM). The full Gag/Pol and Gag precursors, a C-terminal deletion mutant lacking a portion of nucleocapsid (NC), and all p6Gag gave rise to similar levels of RVLPs at the cell surface. A C-terminal deletion of all NC and p6Gag abrogated particle formation, whereas p24 was found in patches at the cell surface. Deletion of matrix (MA) sequences from Gag resulted in intracellular particles, and myristylation was not required for particle formation in the context of the MA deletion. Matrix expression was enhanced with Gag/Pol or Env coexpression as determined by semiquantitative IEM. p24 protein was targeted at vacuolar and mitochondrial membranes, but not at Golgi cisternae. In addition, aggregations of Gag intermediates and RVLPs in the cytoplasm, rough endoplasmic reticulum, cisternae, and mitochondria were noted. These results provide defined in situ evidence that HIV-1 particle assembly occurs in the cytosol in addition to budding at most intracellular membranes.
Collapse
Affiliation(s)
- J J Wang
- Department and Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
13
|
Parker SD, Wall JS, Hunter E. Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy. J Virol 2001; 75:9543-8. [PMID: 11533218 PMCID: PMC114523 DOI: 10.1128/jvi.75.19.9543-9548.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mason-Pfizer monkey virus immature capsids selected from the cytoplasm of baculovirus-infected cells were imaged by scanning transmission electron microscopy. The masses of individual selected Gag particles were measured, and the average mass corresponded to 1,900 to 2,100 Gag polyproteins per particle. A large variation in Gag particle mass was observed within each population measured.
Collapse
Affiliation(s)
- S D Parker
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
14
|
Eastman SW, Linial ML. Identification of a conserved residue of foamy virus Gag required for intracellular capsid assembly. J Virol 2001; 75:6857-64. [PMID: 11435565 PMCID: PMC114413 DOI: 10.1128/jvi.75.15.6857-6864.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In contrast to all retroviruses but similar to the hepatitis B virus, foamy viruses (FV) require expression of the envelope protein for budding of intracellular capsids from the cell, suggesting a specific interaction between the Gag and Env proteins. Capsid assembly occurs in the cytoplasm of infected cells in a manner similar to that for the B- and D-type viruses; however, in contrast to these retroviruses, FV Gag lacks an N-terminal myristylation signal and capsids are not targeted to the plasma membrane (PM). We have found that mutation of an absolutely conserved arginine (Arg) residue at position 50 to alanine (R50A) of the simian foamy virus SFV cpz(hu) inhibits proper capsid assembly and abolishes viral budding even in the presence of the envelope (Env) glycoproteins. Particle assembly and extracellular release of virus can be restored to this mutant with the addition of an N-terminal Src myristylation signal (Myr-R50A), presumably by providing an alternate site for assembly to occur at the PM. In addition, the strict requirement of Env expression for capsid budding can be bypassed by addition of a PM-targeting signal to Gag. These results suggest that intracellular capsid assembly may be mediated by a signal akin to the cytoplasmic targeting and retention signal CTRS found in Mason-Pfizer monkey virus and that FV Gag has the inherent ability to assemble capsids at multiple sites like conventional retroviruses. The necessity of Env expression for particle egress is most probably due to the lack of a membrane-targeting signal within FV Gag to direct capsids to the PM for release and indicates that Gag-Env interactions are essential to drive particle budding.
Collapse
Affiliation(s)
- S W Eastman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
15
|
Tasara T, Hottiger MO, Hübscher U. Functional genomics in HIV-1 virus replication: protein-protein interactions as a basis for recruiting the host cell machinery for viral propagation. Biol Chem 2001; 382:993-9. [PMID: 11530943 DOI: 10.1515/bc.2001.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Identification and characterization of protein-protein interactions between the host cell and parasites both enhance our understanding of basic cell biology and provide insights into central processes of parasite life cycles. Research on HIV-1 has broadened our knowledge of the various molecular events involved. However, our understanding of how this virus interacts with the host cell at the level of protein-protein interaction is still limited. Through these interactions the virus is able to recruit certain cellular metabolic pathways for its replication. Here we summarize our current knowledge of protein-protein interactions between HIV-1 and host cell factors during viral replication.
Collapse
Affiliation(s)
- T Tasara
- Institute of Veterinary Biochemistry, University of Zürich-Irchel, Zürich, Switzerland
| | | | | |
Collapse
|
16
|
Tritel M, Resh MD. The late stage of human immunodeficiency virus type 1 assembly is an energy-dependent process. J Virol 2001; 75:5473-81. [PMID: 11356954 PMCID: PMC114259 DOI: 10.1128/jvi.75.12.5473-5481.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several recent studies have indicated the involvement of host cell factors in human immunodeficiency virus type 1 (HIV-1) assembly. To ascertain whether ATP-dependent factors play a role in this process, we quantified virus-like particle (VLP) production by ATP-depleted cells. Pharmacological ATP depletion abrogated VLP production without affecting cell viability or inducing degradation of HIV-1 Gag protein. This effect occurred even when the ATP-depleting agents were added 1 h into the assembly process, and it was reversed by removal of these agents. ATP depletion did not affect Gag membrane binding or multimerization. Density gradient analysis indicated that HIV-1 assembly intermediates were stalled late in the assembly process. This conclusion was further supported by electron microscopy analysis, which revealed a preponderance of plasma membrane-associated stalk-like structures in the ATP-depleted cells. Since no HIV-1 proteins bind or hydrolyze ATP, these findings indicate that an ATP-requiring cellular factor is an obligatory participant late in the HIV-1 assembly process.
Collapse
Affiliation(s)
- M Tritel
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, and Graduate Program in Cell Biology and Genetics, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
17
|
Bouamr F, Garnier L, Rayne F, Verna A, Rebeyrotte N, Cerutti M, Mamoun RZ. Differential budding efficiencies of human T-cell leukemia virus type I (HTLV-I) Gag and Gag-Pro polyproteins from insect and mammalian cells. Virology 2000; 278:597-609. [PMID: 11118382 DOI: 10.1006/viro.2000.0663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the ability of human T-cell leukemia virus type I (HTLV-I) Gag and Gag-Pro to assemble immature virus-like particles (VLPs) and bud from insect and mammalian cells. Transmission electron microscopy of insect cells infected with a recombinant baculovirus carrying the entire gag gene revealed that Pr53(Gag) is targeted to the plasma membrane, where it extensively accumulates and forms electron-dense evaginations. However, no particles could be detected either inside the cells or in the culture supernatants. With the Gag-Pro-expressing construct, we observed HTLV-I-specific cytoplasmic proteolysis of the Gag precursor, but again no particle released in the culture supernatants. Transmission electron microscopic analysis of insect cells expressing Gag-Pro polyprotein revealed large vacuoles in the cytoplasm and no budding particles at the plasma membrane. In contrast, human immunodeficiency virus type 1 Gag polyprotein expressed in insect cells is able to release VLPs. These data showed that unlike other retroviruses, Pr53(Gag) is unable to be released as immature VLPs from insect cells. To determine whether the block in particle budding and release is due to an intrinsic property of Pr53(Gag) or the absence of essential cellular factors in insect cells, we expressed Gag and Gag-Pro polyproteins in human 293 cells. The results indicate that Pr53(Gag) and p24 capsid are released within particles into the culture supernatants of human 293 cells. We found that the myristylation of the N-terminal glycine residue is essential for Gag release. Altogether, these results strongly suggest that the proper assembly of HTLV-I particles is dependent on mammalian host cell factors.
Collapse
Affiliation(s)
- F Bouamr
- INSERM U443, Equipe Rétrovirus et Transfert génique, Bordeaux 2, Bordeaux Cedex, F-33076, France.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The recent identification of human gene products that are required for early steps in the human immunodeficiency virus type 1 (HIV-1) life cycle has raised the possibility that rodents might be engineered to support HIV-1 infection. Therefore, we have examined the ability of modified mouse, rat, and hamster cell lines to support productive HIV-1 replication. Rodent cells, engineered to support Tat function by stable expression of a permissive cyclin T1 protein, proved to be able to support reverse transcription, integration, and early gene expression at levels comparable to those observed in human cell lines. Surprisingly, however, levels of CD4- and coreceptor-dependent virus entry were reduced to a variable but significant extent in both mouse and rat fibroblast cell lines. Additional posttranscriptional defects were observed, including a reduced level of unspliced HIV-1 genomic RNA and reduced structural gene expression. Furthermore, the HIV-1 Gag precursor is generally inefficiently processed and is poorly secreted from mouse and rat cells in a largely noninfectious form. These posttranscriptional defects, together, resulted in a dramatically reduced yield of infectious virus (up to 10,000-fold) over a single cycle of HIV-1 replication, as compared to human cells. Interestingly, these defects were less pronounced in one hamster cell line, CHO, which not only was able to produce infectious HIV-1 particles at a level close to that observed in human cells, but also could support transient, low-level HIV-1 replication. Importantly, the blocks to infectious virus production in mouse and rat cells are recessive, since they can be substantially suppressed by fusion with uninfected human cells. These studies imply the existence of one or more human gene products, either lacking or nonfunctional in most rodent cells that are critical for infectious HIV-1 virion morphogenesis.
Collapse
Affiliation(s)
- P D Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA.
| | | |
Collapse
|
19
|
Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T. Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 2000; 74:8452-9. [PMID: 10954545 PMCID: PMC116356 DOI: 10.1128/jvi.74.18.8452-8459.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mason-Pfizer monkey virus (M-PMV) preassembles immature capsids in the cytoplasm prior to transporting them to the plasma membrane. Expression of the M-PMV Gag precursor in bacteria results in the assembly of capsids indistinguishable from those assembled in mammalian cells. We have used this system to investigate the structural requirements for the assembly of Gag precursors into procapsids. A series of C- and N-terminal deletion mutants progressively lacking each of the mature Gag domains (matrix protein [MA]-pp24/16-p12-capsid protein [CA]-nucleocapsid protein [NC]-p4) were constructed and expressed in bacteria. The results demonstrate that both the CA and the NC domains are necessary for the assembly of macromolecular arrays (sheets) but that amino acid residues at the N terminus of CA define the assembly of spherical capsids. The role of these N-terminal domains is not based on a specific amino acid sequence, since both MA-CA-NC and p12-CA-NC polyproteins efficiently assemble into capsids. Residues N terminal of CA appear to prevent a conformational change in which the N-terminal proline plays a key role, since the expression of a CA-NC protein lacking this proline results in the assembly of spherical capsids in place of the sheets assembled by the CA-NC protein.
Collapse
Affiliation(s)
- M Rumlova-Klikova
- Department of Biochemistry, Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10 Prague, Czech Republic
| | | | | | | | | |
Collapse
|
20
|
|