1
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
2
|
Marquez M, Chen Q, Cachaco S, Yang J, Sui H, Imamichi T. Escherichia coli grown in inexpensive conical flat-bottom polypropylene tubes produce a high level of pUC vector. J Microbiol Methods 2024; 224:106990. [PMID: 39004285 PMCID: PMC11330712 DOI: 10.1016/j.mimet.2024.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The pUC-derived plasmid yield from E. coli using polypropylene tubes (PP) was compared among round and conical tubes. The yield from cells grown in a cheaper conical-PP with flat-bottom was 1.5-fold higher (p < 0.001) than other PP. The use of the conical-PP can save research budgets in the current inflationary environment.
Collapse
Affiliation(s)
- Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Silvia Cachaco
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
3
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Marquez M, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, autophagy, and YB-1 independent manner. PLoS One 2023; 18:e0287829. [PMID: 37910521 PMCID: PMC10619827 DOI: 10.1371/journal.pone.0287829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3% without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
4
|
Imamichi T, Chen Q, Sowrirajan B, Yang J, Laverdure S, Mele AR, Watkins C, Adelsberger JW, Higgins J, Sui H. Interleukin-27-induced HIV-resistant dendritic cells suppress reveres transcription following virus entry in an SPTBN1, Autophagy, and YB-1 independent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544550. [PMID: 37546823 PMCID: PMC10402176 DOI: 10.1101/2023.06.12.544550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Interleukin (IL)-27, a member of the IL-12 family of cytokines, induces human immunodeficiency virus (HIV)-resistant monocyte-derived macrophages and T cells. This resistance is mediated via the downregulation of spectrin beta, non-erythrocytic 1 (SPTBN1), induction of autophagy, or suppression of the acetylation of Y-box binding protein-1 (YB-1); however, the role of IL-27 administration during the induction of immature monocyte-derived dendritic cells (iDC) is poorly investigated. In the current study, we investigated the function of IL-27-induced iDC (27DC) on HIV infection. 27DC inhibited HIV infection by 95 ± 3 % without significant changes in the expression of CD4, CCR5, and SPTBN1 expression, autophagy induction and acetylation of YB-1 compared to iDC. An HIV proviral DNA copy number assay displayed that 27DC suppressed reverse transcriptase (RT) reaction without influencing the virus entry. A DNA microarray analysis was performed to identify the differentially expressed genes between 27DC and iDC. Compared to iDC, 51 genes were differentially expressed in 27DC, with more than 3-fold changes in four independent donors. Cross-reference analysis with the reported 2,214 HIV regulatory host genes identified nine genes as potential interests: Ankyrin repeat domain 22, Guanylate binding protein (GBP)-1, -2, -4, -5, Stabilin 1, Serpin family G member 1 (SERPING1), Interferon alpha inducible protein 6, and Interferon-induced protein with tetratricopeptide repeats 3. A knock-down study using si-RNA failed to determine a key factor associated with the anti-HIV activity due to the induction of robust amounts of off-target effects. Overexpression of each protein in cells had no impact on HIV infection. Thus, we could not define the mechanism of the anti-HIV effect in 27DC. However, our findings indicated that IL-27 differentiates monocytes into HIV-resistant DC, and the inhibitory mechanism differs from IL-27-induced HIV-resistant macrophages and T cells.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Bharatwaj Sowrirajan
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Sylvain Laverdure
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Anthony R. Mele
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| | - Catherine Watkins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Joseph W. Adelsberger
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeanette Higgins
- AIDS monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702
| |
Collapse
|
5
|
Yang J, Hao M, Khan MA, Rehman MT, Highbarger HC, Chen Q, Goswami S, Sherman BT, Rehm CA, Dewar RL, Chang W, Imamichi T. A Combination of M50I and V151I Polymorphic Mutations in HIV-1 Subtype B Integrase Results in Defects in Autoprocessing. Viruses 2021; 13:2331. [PMID: 34835137 PMCID: PMC8625782 DOI: 10.3390/v13112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022] Open
Abstract
We have recently reported that a recombinant HIV-1NL4.3 containing Met-to-Ile change at codon 50 of integrase (IN) (IN:M50I) exhibits suppression of the virus release below 0.5% of WT HIV, and the released viral particles are replication-incompetent due to defects in Gag/GagPol processing by inhibition of the initiation of autoprocessing of GagPol polyproteins in the virions and leads to replication-incompetent viruses. The coexisting Ser-to-Asn change at codon 17 of IN or Asn-to-Ser mutation at codon 79 of RNaseH (RH) compensated the defective IN:M50I phenotype, suggesting that both IN and RH regulate an HIV infectability. In the current study, to elucidate a distribution of the three mutations during anti-retroviral therapy among patients, we performed a population analysis using 529 plasma virus RNA sequences obtained through the MiSeq. The result demonstrated that 14 plasma HIVs contained IN:M50I without the compensatory mutations. Comparing the sequences of the 14 viruses with that of the defective virus illustrated that only Val-to-Ile change at codon 151 of IN (IN:V151I) existed in the recombinant virus. This IN:V151I is known as a polymorphic mutation and was derived from HIVNL4.3 backbone. A back-mutation at 151 from Ile-to-Val in the defective virus recovered HIV replication capability, and Western Blotting assay displayed that the back-mutation restored Gag/GagPol processing in viral particles. These results demonstrate that a combination of IN:M50I and IN:V151I mutations, but not IN:M50I alone, produces a defective virus.
Collapse
Affiliation(s)
- Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Muhammad A. Khan
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Muhammad T. Rehman
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Helene C. Highbarger
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Catherine A. Rehm
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA;
| | - Robin L. Dewar
- Virus Isolation and Serology Laboratory, Frederick National Laboratory, Frederick, MD 21702, USA; (M.A.K.); (M.T.R.); (H.C.H.); (R.L.D.)
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory, Frederick, MD 21702, USA; (J.Y.); (M.H.); (Q.C.); (S.G.); (B.T.S.); (W.C.)
| |
Collapse
|
6
|
Goswami S, Hu X, Chen Q, Qiu J, Yang J, Poudyal D, Sherman BT, Chang W, Imamichi T. Profiles of MicroRNAs in Interleukin-27-Induced HIV-Resistant T Cells: Identification of a Novel Antiviral MicroRNA. J Acquir Immune Defic Syndr 2021; 86:378-387. [PMID: 33196551 PMCID: PMC7879852 DOI: 10.1097/qai.0000000000002565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Interleukin-27 (IL-27) is known as an anti-HIV cytokine. We have recently demonstrated that IL-27-pretreatment promotes phytohemagglutinin-stimulated CD4(+) T cells into HIV-1-resistant cells by inhibiting an uncoating step. PURPOSE To further characterize the function of the HIV resistant T cells, we investigated profiles of microRNA in the cells using microRNA sequencing (miRNA-seq) and assessed anti-HIV effect of the microRNAs. METHODS Phytohemagglutinin-stimulated CD4(+) T cells were treated with or without IL-27 for 3 days. MicroRNA profiles were analyzed using miRNA-seq. To assess anti-HIV effect, T cells or macrophages were transfected with synthesized microRNA mimics and then infected with HIVNL4.3 or HIVAD8. Anti-HIV effect was monitored by a p24 antigen enzyme-linked immunosorbent assay kit. interferon (IFN)-α, IFN-β, or IFN-λ production was quantified using each subtype-specific enzyme-linked immunosorbent assay kit. RESULTS A comparative analysis of microRNA profiles indicated that expression of known miRNAs was not significantly changed in IL-27-treated cells compared with untreated T cells; however, a total of 15 novel microRNAs (miRTC1 ∼ miRTC15) were identified. Anti-HIV assay using overexpression of each novel microRNA revealed that 10 nM miRTC14 (GenBank accession number: MF281439) remarkably suppressed HIV infection by (99.3 ± 0.27%, n = 9) in macrophages but not in T cells. The inhibition was associated through induction of >1000 pg/mL of IFN-αs and IFN-λ1. CONCLUSION We discovered a total of 15 novel microRNAs in T cells and characterized that miRTC14, one of the novel microRNAs, was a potent IFN-inducing anti-HIV miRNA, implicating that regulation of the expression of miRTC14 may be a potent therapeutic tool for not only HIV but also other virus infection.
Collapse
Affiliation(s)
- Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
- United States Department of Agriculture, Plant Germplasm Quarantine Program, Beltsville, MD; and
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Ju Qiu
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Deepak Poudyal
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
- Covance Central Laboratory Services, Inc, Indianapolis, IN
| | - Brad T. Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
7
|
MicroRNA Profiles in Monocyte-Derived Macrophages Generated by Interleukin-27 and Human Serum: Identification of a Novel HIV-Inhibiting and Autophagy-Inducing MicroRNA. Int J Mol Sci 2021; 22:ijms22031290. [PMID: 33525571 PMCID: PMC7865382 DOI: 10.3390/ijms22031290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Interleukin-27 (IL-27) is a pleiotropic cytokine that influences the innate and adaptive immune systems. It inhibits viral infection and regulates the expression of microRNAs (miRNAs). We recently reported that macrophages differentiated from human primary monocytes in the presence of IL-27 and human AB serum resisted human immunodeficiency virus (HIV) infection and showed significant autophagy induction. In the current study, the miRNA profiles in these cells were investigated, especially focusing on the identification of novel miRNAs regulated by IL-27-treatment. The miRNA sequencing analysis detected 38 novel miRNAs. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis confirmed that IL-27 differentially regulated the expression of 16 of the 38 miRNAs. Overexpression of the synthesized miRNA mimics by transfection revealed that miRAB40 had potent HIV-inhibiting and autophagy-inducing properties. B18R, an interferon (IFN)-neutralization protein, partially suppressed both activities, indicating that the two functions were induced via IFN-dependent and -independent pathways. Although the target mRNA(s) of miRAB40 involving in the induction of both functions was unable to identify in this study, the discovery of miRAB40, a potential HIV-inhibiting and autophagy inducing miRNA, may provide novel insights into the miRNA (small none-coding RNA)-mediated regulation of HIV inhibition and autophagy induction as an innate immune response.
Collapse
|
8
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
9
|
IL-27 posttranslationally regulates Y-box binding protein-1 to inhibit HIV-1 replication in human CD4+ T cells. AIDS 2019; 33:1819-1830. [PMID: 31274540 PMCID: PMC6731144 DOI: 10.1097/qad.0000000000002288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IL-27 is known as an antiviral cytokine that inhibits HIV, hepatitis C virus, and other viruses. We have previously demonstrated that, IL-27 posttreatment after HIV-infection inhibits viral replication in primary CD4+ T cells.
Collapse
|
10
|
Structural Insights into HIV Reverse Transcriptase Mutations Q151M and Q151M Complex That Confer Multinucleoside Drug Resistance. Antimicrob Agents Chemother 2017; 61:AAC.00224-17. [PMID: 28396546 DOI: 10.1128/aac.00224-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.
Collapse
|
11
|
Urano E, Miyauchi K, Kojima Y, Hamatake M, Ablan SD, Fudo S, Freed EO, Hoshino T, Komano J. A Triazinone Derivative Inhibits HIV-1 Replication by Interfering with Reverse Transcriptase Activity. ChemMedChem 2016; 11:2320-2326. [PMID: 27634404 DOI: 10.1002/cmdc.201600375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Indexed: 11/10/2022]
Abstract
A novel HIV-1 inhibitor, 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (compound 1), was identified from a compound library screened for the ability to inhibit HIV-1 replication. EC50 values of compound 1 were found to range from 107.9 to 145.4 nm against primary HIV-1 clinical isolates. In in vitro assays, HIV-1 reverse transcriptase (RT) activity was inhibited by compound 1 with an EC50 of 4.3 μm. An assay for resistance to compound 1 selected a variant of HIV-1 with a RT mutation (RTL100I ); this frequently identified mutation confers mild resistance to non-nucleoside RT inhibitors (NNRTIs). A recombinant HIV-1 bearing RTL100I exhibited a 41-fold greater resistance to compound 1 than the wild-type virus. Compound 1 was also effective against HIV-1 with RTK103N , one of the major mutations that confers substantial resistance to NNRTIs. Computer-assisted docking simulations indicated that compound 1 binds to the RT NNRTI binding pocket in a manner similar to that of efavirenz; however, the putative compound 1 binding site is located further from RTK103 than that of efavirenz. Compound 1 is a novel NNRTI with a unique drug-resistance profile.
Collapse
Affiliation(s)
- Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,RIKEN Center for Integrative Medical Sciences, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Yoko Kojima
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69, Nakamachi, 1-chome, Higashinari-ku, Osaka, 537-0025, Japan
| | - Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Sherimay D Ablan
- The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Satoshi Fudo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Eric O Freed
- The Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, 21701, USA
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, 3-69, Nakamachi, 1-chome, Higashinari-ku, Osaka, 537-0025, Japan. .,Department of Clinical Laboratory, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, 460-0001, Japan.
| |
Collapse
|
12
|
Medeiros SDO, Abreu CM, Delvecchio R, Ribeiro AP, Vasconcelos Z, Brindeiro RDM, Tanuri A. Follow-up on long-term antiretroviral therapy for cats infected with feline immunodeficiency virus. J Feline Med Surg 2016; 18:264-72. [PMID: 25855689 PMCID: PMC11112254 DOI: 10.1177/1098612x15580144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Feline immunodeficiency virus (FIV) is a lentivirus that induces AIDS-like disease in cats. Some of the antiretroviral drugs available to treat patients with HIV type 1 are used to treat FIV-infected cats; however, antiretroviral therapy (ART) is not used in cats as a long-term treatment. In this study, the effects of long-term ART were evaluated in domestic cats treated initially with the nucleoside transcriptase reverse inhibitor (NTRI) zidovudine (AZT) over a period ranging from 5-6 years, followed by a regimen of the NTRI lamivudine (3TC) plus AZT over 3 years. METHODS Viral load, sequencing of pol (reverse transcriptase [RT]) region and CD4:CD8 lymphocyte ratio were evaluated during and after treatment. Untreated cats were evaluated as a control group. RESULTS CD4:CD8 ratios were lower, and uncharacterized resistance mutations were found in the RT region in the group of treated cats. A slight increase in viral load was observed in some cats after discontinuing treatment. CONCLUSIONS AND RELEVANCE The data strongly suggest that treated cats were resistant to therapy, and uncharacterized resistance mutations in the RT gene of FIV were selected for by AZT. Few studies have been conducted to evaluate the effect of long-term antiretroviral therapy in cats. To date, resistance mutations have not been described in vivo.
Collapse
Affiliation(s)
- Sheila de Oliveira Medeiros
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celina Monteiro Abreu
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Delvecchio
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Rodrigo de Moraes Brindeiro
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Yang C, Yang S, Li J, Yang B, Liu J, Li H, Bian Z. Genetic Diversity and Drug Resistance Among Antiretroviral Treatment-Failed Individuals from 2010 to 2012 in Honghe, China. AIDS Res Hum Retroviruses 2015; 31:822-9. [PMID: 25919896 DOI: 10.1089/aid.2014.0348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most common antiretroviral treatment (ART) received by individuals infected with HIV-1 in China is the combination therapy, comprised of nucleoside reverse transcriptase inhibitors (NRTIs) and nonnucleoside reverse transcriptase inhibitors (NNRTIs). To assess the prevalence of HIV-1 drug resistance and subtypes in Honghe of Yunnan, China, patient plasmas from ART-failed individuals were collected from January 2010 to December 2012. Genotyping was conducted using an in-house assay on patient plasmas. A total of 254 pol sequences were obtained. The prevalence of drug resistance was 47.2% in ART-failed individuals. Of these drug-resistant individuals, 51.7% harbored HIV strains dually resistant to NRTIs and NNRTIs or protease inhibitors (PIs) (34.2% for NNRTIs and 14.2% for NRTIs). Mutations such as M184V, A62V, T69Ins, K103N, Y181C, and G190A were common among the ART-failed individuals. The frequencies of M184V, A62V, and K103N were 20.5%, 11.0%, and 23.6%, respectively. The most common subtypes in Honghe were CRF08_BC (68.50%) and CRF07_BC (12.20%). The subtypes were almost consistent in different time points for one individual. When receiving ART for 6-12 months, the frequency of HIV-1 drug-resistant variants ranked first. This study shows that the high prevalence of HIV drug resistance observed among the ART-failed individuals should be of increasing concern (monitoring of resistance mutations) in ART regions and facilitate developing novel strategies for prevention and control of HIV infection in China.
Collapse
Affiliation(s)
- Cuixian Yang
- The Third Military Medical School, Chongqing, China
- Center for Infectious Diseases, CPLA Kunming General Hospital, Kunming, China
| | - Shaomin Yang
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Jianjian Li
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Bihui Yang
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Jiafa Liu
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Huiqin Li
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Zhongqi Bian
- The Third Military Medical School, Chongqing, China
- Center for Infectious Diseases, CPLA Kunming General Hospital, Kunming, China
| |
Collapse
|
14
|
ASK1 restores the antiviral activity of APOBEC3G by disrupting HIV-1 Vif-mediated counteraction. Nat Commun 2015; 6:6945. [PMID: 25901786 PMCID: PMC4423214 DOI: 10.1038/ncomms7945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/17/2015] [Indexed: 12/24/2022] Open
Abstract
APOBEC3G (A3G) is an innate antiviral restriction factor that strongly inhibits the replication of human immunodeficiency virus type 1 (HIV-1). An HIV-1 accessory protein, Vif, hijacks the host ubiquitin–proteasome system to execute A3G degradation. Identification of the host pathways that obstruct the action of Vif could provide a new strategy for blocking viral replication. We demonstrate here that the host protein ASK1 (apoptosis signal-regulating kinase 1) interferes with the counteraction by Vif and revitalizes A3G-mediated viral restriction. ASK1 binds the BC-box of Vif, thereby disrupting the assembly of the Vif–ubiquitin ligase complex. Consequently, ASK1 stabilizes A3G and promotes its incorporation into viral particles, ultimately reducing viral infectivity. Furthermore, treatment with the antiretroviral drug AZT (zidovudine) induces ASK1 expression and restores the antiviral activity of A3G in HIV-1-infected cells. This study thus demonstrates a distinct function of ASK1 in restoring the host antiviral system that can be enhanced by AZT treatment. The human protein APOBEC3G (A3G) inhibits HIV-1 replication, but the viral protein Vif counteracts by inducing A3G degradation. Here Miyakawa et al. show that the antiretroviral drug AZT restores A3G function in vitro by stimulating expression of a host protein, ASK1, which interferes with the action of Vif.
Collapse
|
15
|
Effects of the W153L substitution in HIV reverse transcriptase on viral replication and drug resistance to multiple categories of reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4515-26. [PMID: 24867966 DOI: 10.1128/aac.02729-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A W153L substitution in HIV-1 reverse transcriptase (RT) was recently identified by selection with a novel nucleotide-competing RT inhibitor (NcRTI) termed compound A that is a member of the benzo[4,5]furo[3,2,d]pyrimidin-2-one NcRTI family of drugs. To investigate the impact of W153L, alone or in combination with the clinically relevant RT resistance substitutions K65R (change of Lys to Arg at position 65), M184I, K101E, K103N, E138K, and Y181C, on HIV-1 phenotypic susceptibility, viral replication, and RT enzymatic function, we generated recombinant RT enzymes and viruses containing each of these substitutions or various combinations of them. We found that W153L-containing viruses were impaired in viral replicative capacity and were hypersusceptible to tenofovir (TFV) while retaining susceptibility to most nonnucleoside RT inhibitors. The nucleoside 3TC retained potency against W153L-containing viruses but not when the M184I substitution was also present. W153L was also able to reverse the effects of the K65R substitution on resistance to TFV, and K65R conferred hypersusceptibility to compound A. Biochemical assays demonstrated that W153L alone or in combination with K65R, M184I, K101E, K103N, E138K, and Y181C impaired enzyme processivity and polymerization efficiency but did not diminish RNase H activity, providing mechanistic insights into the low replicative fitness associated with these substitutions. We show that the mechanism of the TFV hypersusceptibility conferred by W153L is mainly due to increased efficiency of TFV-diphosphate incorporation. These results demonstrate that compound A and/or derivatives thereof have the potential to be important antiretroviral agents that may be combined with tenofovir to achieve synergistic results.
Collapse
|
16
|
Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS 2014; 28:1091-9. [PMID: 24492253 DOI: 10.1097/qad.0000000000000223] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Determining the precise lifespan of human T-cell is challenging due to the inability of standard techniques to distinguish between dividing and dying cells. Here, we measured the lifespan of a pool of T cells that were derived from a single cell 'naturally' labelled with a single integrated clone of a replication-incompetent HIV-1 provirus. DESIGN/METHODS Utilizing a combination of techniques, we were able to sequence/map an integration site of a unique provirus with a stop codon at position 42 of the HIV-1 protease. In-vitro reconstruction of this provirus into an infectious clone confirmed its inability to replicate. By combining cell separation and integration site-specific PCR, we were able to follow the fate of this single provirus in multiple T-cell subsets over a 20-year period. As controls, a number of additional integrated proviruses were also sequenced. RESULTS The replication-incompetent HIV-1 provirus was solely contained in the pool of effector memory CD4 T cells for 17 years. The percentage of the total effector memory CD4 T cells containing the replication-incompetent provirus peaked at 1% with a functional half-life of 11.1 months. In the process of sequencing multiple proviruses, we also observed high levels of lethal mutations in the peripheral blood pool of proviruses. CONCLUSION These data indicate that human effector memory CD4 T cells are able to persist in vivo for more than 17 years without detectably reverting to a central memory phenotype. A secondary observation is that the fraction of the pool of integrated HIV-1 proviruses capable of replicating may be considerably less than the 12% currently noted in the literature.
Collapse
|
17
|
The connection domain mutation N348I in HIV-1 reverse transcriptase enhances resistance to etravirine and rilpivirine but restricts the emergence of the E138K resistance mutation by diminishing viral replication capacity. J Virol 2013; 88:1536-47. [PMID: 24227862 DOI: 10.1128/jvi.02904-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clinical resistance to rilpivirine (RPV), a novel nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI), is associated an E-to-K mutation at position 138 (E138K) in RT together with an M184I/V mutation that confers resistance against emtricitabine (FTC), a nucleoside RT inhibitor (NRTI) that is given together with RPV in therapy. These two mutations can compensate for each other in regard to fitness deficits conferred by each mutation alone, raising the question of why E138K did not arise spontaneously in the clinic following lamivudine (3TC) use, which also selects for the M184I/V mutations. In this context, we have investigated the role of a N348I connection domain mutation that is prevalent in treatment-experienced patients. N348I confers resistance to both the NRTI zidovudine (ZDV) and the NNRTI nevirapine (NVP) and was also found to be associated with M184V and to compensate for deficits associated with the latter mutation. Now, we show that both N348I alone and N348I/M184V can prevent or delay the emergence of E138K under pressure with RPV or a related NNRTI, termed etravirine (ETR). N348I also enhanced levels of resistance conferred by E138K against RPV and ETR by 2.2- and 2.3-fold, respectively. The presence of the N348I or M184V/N348I mutation decreased the replication capacity of E138K virus, and biochemical assays confirmed that N348I, in a background of E138K, impaired RT catalytic efficiency and RNase H activity. These findings help to explain the low viral replication capacity of viruses containing the E138K/N348I mutations and how N348I delayed or prevented the emergence of E138K in patients with M184V-containing viruses.
Collapse
|
18
|
Maeda K, Desai DV, Aoki M, Nakata H, Kodama EN, Mitsuya H. Delayed emergence of HIV-1 variants resistant to 4'-ethynyl-2-fluoro-2'-deoxyadenosine: comparative sequential passage study with lamivudine, tenofovir, emtricitabine and BMS-986001. Antivir Ther 2013; 19:179-89. [PMID: 24162098 DOI: 10.3851/imp2697] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) contains an ethynyl moiety and the 3'-hydroxyl and exerts highly potent activity against various HIV type-1 (HIV-1) strains including multi-drug-resistant variants. METHODS Comparative selection passages against EFdA, lamivudine (3TC), tenofovir disoproxil fumarate (TDF), emtricitabine (FTC) or BMS-986001 (Ed4T) were conducted using a mixture of 11 highly multi-drug-resistant clinical HIV-1 isolates (HIV11MIX) as a starting virus population. RESULTS Before selection, HIV11MIX was sensitive to EFdA with a 50% inhibitory concentration (IC50) of 0.032 μM, less susceptible to TDF and Ed4T with IC50s of 0.57 and 2.6 μM, respectively, and highly resistant to 3TC and FTC with IC50s>10 μM. IC50s of TDF against HIV11MIX exposed to EFdA and TDF for 17 (HIV11MIX(EFdA-P17)) and 14 (HIV11MIX(TDF-P14)) passages were 8 and >10 μM, respectively, while EFdA remained active against HIV11MIX(EFdA-P17) and HIV11MIX(TDF-P14) with IC50s of 0.15 and 0.1 μM, respectively. Both selected variants were highly resistant against zidovudine, 3TC, Ed4T and FTC (IC50 values >10 μM). CONCLUSIONS The present data demonstrate that HIV11MIX developed resistance more rapidly against 3TC, FTC, TDF and Ed4T than against EFdA and that EFdA remained substantially active against TDF- and EFdA-selected variants. Thus, EFdA has a favourable resistance profile and represents a potentially promising new-generation nucleoside reverse transcriptase inhibitor.
Collapse
Affiliation(s)
- Kenji Maeda
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 2013; 57:5649-57. [PMID: 24002090 DOI: 10.1128/aac.01536-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistance to the recently approved nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV) commonly involves substitutions at positions E138K and K101E in HIV-1 reverse transcriptase (RT), together with an M184I substitution that is associated with resistance to coutilized emtricitabine (FTC). Previous biochemical and virological studies have shown that compensatory interactions between substitutions E138K and M184I can restore enzyme processivity and the viral replication capacity. Structural modeling studies have also shown that disruption of the salt bridge between K101 and E138 can affect RPV binding. The current study was designed to investigate the impact of K101E, alone or in combination with E138K and/or M184I, on drug susceptibility, viral replication capacity, and enzyme function. We show here that K101E can be selected in cell culture by the NNRTIs etravirine (ETR), efavirenz (EFV), and dapivirine (DPV) as well as by RPV. Recombinant RT enzymes and viruses containing K101E, but not E138K, were highly resistant to nevirapine (NVP) and delavirdine (DLV) as well as ETR and RPV, but not EFV. The addition of K101E to E138K slightly enhanced ETR and RPV resistance compared to that obtained with E138K alone but restored susceptibility to NVP and DLV. The K101E substitution can compensate for deficits in viral replication capacity and enzyme processivity associated with M184I, while M184I can compensate for the diminished efficiency of DNA polymerization associated with K101E. The coexistence of K101E and E138K does not impair either viral replication or enzyme fitness. We conclude that K101E can play a significant role in resistance to RPV.
Collapse
|
20
|
Li H, Zhong M, Guo W, Zhuang D, Li L, Liu Y, Bao Z, Liu S, Wang X, Li T, Yang S, Li J. Prevalence and mutation patterns of HIV drug resistance from 2010 to 2011 among ART-failure individuals in the Yunnan Province, China. PLoS One 2013; 8:e72630. [PMID: 24009694 PMCID: PMC3757030 DOI: 10.1371/journal.pone.0072630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 07/12/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Assessing the prevalence of HIV-1 drug-resistance and the mutation patterns associated with resistance in the geographical regions implementing free antiretroviral therapy (ART) in China is necessary for preventing the spread of resistant strains and designing the regimens for the subsequent therapies with limited resources. METHODS Plasma samples in different cities/prefectures were collected at Yunnan Provincial Hospital of Infectious Disease from January 2010 to December 2011. Genotyping of drug-resistant individuals was conducted using an in-house assay on plasma samples. Viral load, CD4 T cell counts and demographic data were obtained from medical records and an administered questionnaire. RESULTS A total of 609 pol sequences (515 ART-failure and 94 therapy-naïve individuals) derived from 664 samples were obtained. The prevalence of drug-resistance was 45.1% in the ART-failure individuals. Of these, 26.8% harbored HIV strains dually resistant to nucleoside reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors, and 14.8% harbored HIV strains resistant to only one drug category. Mutations such as M184V/I, K103N, V106A, Y181C and G190A were common among the ART-failure individuals, and the frequencies of M184V/I, K103N and V106A were 28.2%, 19.2%, and 22.1%, respectively. The percentages of individuals exhibiting intermediate or high-level resistance to 3TC, FTC, EFV and NVP drugs were 28.4%, 28.2%, 37.3%, and 37.5%, respectively. Factors such as ethnicity, transmission route, CD4 counts, viral load and the duration of ART were significantly correlated with development of drug resistance in the ART-failure individuals. CONCLUSIONS The high prevalence of HIV drug-resistance observed among the ART-failure individuals from 2010 to 2011 in Yunnan province should be of increasing concern in regions where the implementation of ART is widespread. Education about the risk factors associated with HIV drug resistance is important for preventing and controlling the spread of HIV drug-resistant strains.
Collapse
Affiliation(s)
- Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Zhong
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Wei Guo
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Daomin Zhuang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zuoyi Bao
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Siyang Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shaomin Yang
- Yunnan Provincial Hospital of Infectious Disease, Kunming, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail:
| |
Collapse
|
21
|
Prototypical Recombinant Multi-Protease-Inhibitor-Resistant Infectious Molecular Clones of Human Immunodeficiency Virus Type 1. Antimicrob Agents Chemother 2013; 57:4290-4299. [PMID: 23796938 DOI: 10.1128/aac.00614-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/16/2013] [Indexed: 11/20/2022] Open
Abstract
The many genetic manifestations of HIV-1 protease inhibitor (PI) resistance present challenges to research into the mechanisms of PI resistance and the assessment of new PIs. To address these challenges, we created a panel of recombinant multi-PI-resistant infectious molecular clones designed to represent the spectrum of clinically relevant multi-PI-resistant viruses. To assess the representativeness of this panel, we examined the sequences of the panel's viruses in the context of a correlation network of PI resistance amino acid substitutions in sequences from more than 10,000 patients. The panel of recombinant infectious molecular clones comprised 29 of 41 study-defined PI resistance amino acid substitutions and 23 of the 27 tightest amino acid substitution clusters. Based on their phenotypic properties, the clones were classified into four groups with increasing cross-resistance to the PIs most commonly used for salvage therapy: lopinavir (LPV), tipranavir (TPV), and darunavir (DRV). The panel of recombinant infectious molecular clones has been made available without restriction through the NIH AIDS Research and Reference Reagent Program. The public availability of the panel makes it possible to compare the inhibitory activities of different PIs with one another. The diversity of the panel and the high-level PI resistance of its clones suggest that investigational PIs active against the clones in this panel will retain antiviral activity against most if not all clinically relevant PI-resistant viruses.
Collapse
|
22
|
Oguariri RM, Dai L, Adelsberger JW, Rupert A, Stevens R, Yang J, Huang D, Lempicki RA, Zhou M, Baseler MW, Lane HC, Imamichi T. Interleukin-2 inhibits HIV-1 replication in some human T cell lymphotrophic virus-1-infected cell lines via the induction and incorporation of APOBEC3G into the virion. J Biol Chem 2013; 288:17812-22. [PMID: 23640893 PMCID: PMC3682580 DOI: 10.1074/jbc.m113.468975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/26/2013] [Indexed: 01/08/2023] Open
Abstract
IL-2 has been used in culture of primary T cells to maintain cell proliferation. We have previously reported that IL-27 inhibits HIV-1 replication in primary T cells in the presence of IL-2. To gain a better understanding of the mechanisms involved in this inhibitory effect, we attempted to investigate in detail the effects of IL-27 and IL-2 using several cell lines. Unexpectedly, IL-27 did not inhibit HIV-1 in T cell lines, whereas IL-2 inhibited HIV-1 replication in the human T cell lymphotrophic virus (HTLV)-1-transformed T cell lines, MT-2, MT-4, SLB-1, and ATL-2. No effects were seen in HTLV-1-negative cell lines. Utilizing MT-2 cells, we demonstrated that IL-2 treatment inhibited HIV-1 syncytia-inducing ability and dose-dependently decreased supernatant p24 antigen levels by >90%. Using real time PCR and Western blot analysis, we observed that IL-2 treatment induced the host restriction factor, APOBEC3G with accumulation into the lower molecular mass active form as characterized by FPLC. Further analysis revealed that the virus recovered from IL-2-treated MT-2 cells had impaired replication competency. This was found to be due to incorporation of APOBEC3G into the virion despite the presence of Vif. These findings demonstrate a novel role for IL-2 in regulating production of infectious HIV-1 virions in HTLV-1-infected cells through the induction of APOBEC3G.
Collapse
Affiliation(s)
- Raphael M. Oguariri
- From the Laboratory of Human Retrovirology
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Lue Dai
- From the Laboratory of Human Retrovirology
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Joseph W. Adelsberger
- the AIDS Monitoring Laboratory
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Adam Rupert
- the AIDS Monitoring Laboratory
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Randy Stevens
- the AIDS Monitoring Laboratory
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Dawei Huang
- Laboratory of Immunopathogenesis and Bioinformatics
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Richard A. Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - Ming Zhou
- the Laboratory of Proteomics and Analytical Technologies, Advanced Technology Program Directorate Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702 and
| | - Michael W. Baseler
- the AIDS Monitoring Laboratory
- the Clinical Services Program, Applied and Developmental Directorate, and
| | - H. Clifford Lane
- the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Tomozumi Imamichi
- From the Laboratory of Human Retrovirology
- the Clinical Services Program, Applied and Developmental Directorate, and
| |
Collapse
|
23
|
Effect of mutations at position E138 in HIV-1 reverse transcriptase and their interactions with the M184I mutation on defining patterns of resistance to nonnucleoside reverse transcriptase inhibitors rilpivirine and etravirine. Antimicrob Agents Chemother 2013; 57:3100-9. [PMID: 23612196 DOI: 10.1128/aac.00348-13] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Impacts of mutations at position E138 (A/G/K/Q/R/V) alone or in combination with M184I in HIV-1 reverse transcriptase (RT) were investigated. We also determined why E138K is the most prevalent nonnucleoside reverse transcriptase inhibitor mutation in patients failing rilpivirine (RPV) therapy. Recombinant RT enzymes and viruses containing each of the above-mentioned mutations were generated, and drug susceptibility was assayed. Each of the E138A/G/K/Q/R mutations, alone or in combination with M184I, resulted in decreased susceptibility to RPV and etravirine (ETR). The maximum decrease in susceptibility to RPV was observed for E138/R/Q/G by both recombinant RT assay and cell-based assays. E138Q/R-containing enzymes and viruses also showed the most marked decrease in susceptibility to ETR by both assays. The addition of M184I to the E138 mutations did not significantly change the levels of diminution in drug susceptibility. These findings indicate that E138R caused the highest level of loss of susceptibility to both RPV and ETR, and, accordingly, E138R should be recognized as an ETR resistance-associated mutation. The E138K/Q/R mutations can compensate for M184I in regard to both enzymatic fitness and viral replication capacity. The favored emergence of E138K over other mutations at position E138, together with M184I, is not due to an advantage in either the level of drug resistance or viral replication capacity but may reflect the fact that E138R and E138Q require two distinct mutations to occur, one of which is a disfavorable G-to-C mutation, whereas E138K requires only a single favorable G-to-A hypermutation. Of course, other factors may also affect the concept of barrier to resistance.
Collapse
|
24
|
Das K, Arnold E. HIV-1 reverse transcriptase and antiviral drug resistance. Part 2. Curr Opin Virol 2013; 3:119-28. [PMID: 23602470 DOI: 10.1016/j.coviro.2013.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
Structures of RT and its complexes combined with biochemical and clinical data help in illuminating the molecular mechanisms of different drug-resistance mutations. The NRTI drugs that are used in combinations have different primary mutation sites. RT mutations that confer resistance to one drug can be hypersensitive to another RT drug. Structure of an RT-DNA-nevirapine complex revealed how NNRTI binding forbids RT from forming a polymerase competent complex. Collective knowledge about various mechanisms of drug resistance by RT has broader implications for understanding and targeting drug resistance in general. In Part 1, we discussed the role of RT in developing HIV-1 drug resistance, structural and functional states of RT, and the nucleoside/nucleotide analog (NRTI) and non-nucleoside (NNRTI) drugs used in treating HIV-1 infections. In this part, we discuss structural understanding of various mechanisms by which RT confers antiviral drug resistance.
Collapse
Affiliation(s)
- Kalyan Das
- Center for Advanced Biotechnology and Medicine (CABM), Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
25
|
Chen Q, Swaminathan S, Yang D, Dai L, Sui H, Yang J, Hornung RL, Wang Y, Huang DW, Hu X, Lempicki RA, Imamichi T. Interleukin-27 is a potent inhibitor of cis HIV-1 replication in monocyte-derived dendritic cells via a type I interferon-independent pathway. PLoS One 2013; 8:e59194. [PMID: 23527130 PMCID: PMC3604098 DOI: 10.1371/journal.pone.0059194] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/11/2013] [Indexed: 01/06/2023] Open
Abstract
IL-27, a member of the IL-12 family of cytokines, plays an important and diverse role in the function of the immune system. Whilst generally recognized as an anti-inflammatory cytokine, in addition IL-27 has been found to have broad anti-viral effects. Recently, IL-27 has been shown to be a potent inhibitor of HIV-1 infection in CD4+ T cells and macrophages. The main objective of this study was to see whether IL-27 has a similar inhibitory effect on HIV-1 replication in dendritic cells (DCs). Monocytes were differentiated into immature DCs (iDCs) and mature DCs (mDCs) with standard techniques using a combination of GM-CSF, IL-4 and LPS. Following differentiation, iDCs were infected with HIV-1 and co-cultured in the presence or absence of IL-27. IL-27 treated DCs were shown to be highly potent inhibitors of cis HIV-1, particularly of CCR5 tropic strains. Of note, other IL-12 family members (IL-12, IL-23 and IL-35) had no effect on HIV-1 replication. Microarray studies of IL-27 treated DCs showed no up-regulation of Type I (IFN) gene expression. Neutralization of the Type-I IFN receptor had no impact on the HIV inhibition. Lastly, IL-27 mediated inhibition was shown to act post-viral entry and prior to completion of reverse transcription. These results show for the first time that IL-27 is a potent inhibitor of cis HIV-1 infection in DCs by a Type I IFN independent mechanism. IL-27 has previously been reported to inhibit HIV-1 replication in CD4+ T cells and macrophages, thus taken together, this cytokine is a potent anti-HIV agent against all major cell types targeted by the HIV-1 virus and may have a therapeutic role in the future.
Collapse
Affiliation(s)
- Qian Chen
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sanjay Swaminathan
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - De Yang
- Laboratory of Molecular Immunoregulation, Basic Research Program Directorate, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lue Dai
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Hongyan Sui
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald L. Hornung
- Immunological Monitoring Laboratory, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Yanmei Wang
- Immunological Monitoring Laboratory, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Da Wei Huang
- Laboratory of Immunopathogenesis and Bioinformatics, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Xiaojun Hu
- Laboratory of Immunopathogenesis and Bioinformatics, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Richard A. Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, ADD, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology, Applied and Developmental Research Directorate (ADD), Science Application International Corporation (SAIC)-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
26
|
Dai L, Lidie KB, Chen Q, Adelsberger JW, Zheng X, Huang D, Yang J, Lempicki RA, Rehman T, Dewar RL, Wang Y, Hornung RL, Canizales KA, Lockett SJ, Lane HC, Imamichi T. IL-27 inhibits HIV-1 infection in human macrophages by down-regulating host factor SPTBN1 during monocyte to macrophage differentiation. J Exp Med 2013; 210:517-34. [PMID: 23460728 PMCID: PMC3600911 DOI: 10.1084/jem.20120572] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
The susceptibility of macrophages to HIV-1 infection is modulated during monocyte differentiation. IL-27 is an anti-HIV cytokine that also modulates monocyte activation. In this study, we present new evidence that IL-27 promotes monocyte differentiation into macrophages that are nonpermissive for HIV-1 infection. Although IL-27 treatment does not affect expression of macrophage differentiation markers or macrophage biological functions, it confers HIV resistance by down-regulating spectrin β nonerythrocyte 1 (SPTBN1), a required host factor for HIV-1 infection. IL-27 down-regulates SPTBN1 through a TAK-1-mediated MAPK signaling pathway. Knockdown of SPTBN1 strongly inhibits HIV-1 infection of macrophages; conversely, overexpression of SPTBN1 markedly increases HIV susceptibility of IL-27-treated macrophages. Moreover, we demonstrate that SPTBN1 associates with HIV-1 gag proteins. Collectively, our results underscore the ability of IL-27 to protect macrophages from HIV-1 infection by down-regulating SPTBN1, thus indicating that SPTBN1 is an important host target to reduce HIV-1 replication in one major element of the viral reservoir.
Collapse
Affiliation(s)
- Lue Dai
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Kristy B. Lidie
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Qian Chen
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Joseph W. Adelsberger
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Xin Zheng
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - DaWei Huang
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jun Yang
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Richard A. Lempicki
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Tauseef Rehman
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Robin L. Dewar
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Yanmei Wang
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Ronald L. Hornung
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Kelsey A. Canizales
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Stephen J. Lockett
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - H. Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tomozumi Imamichi
- Applied and Developmental Directorate and Advanced Technology Program Directorate, Science Applications International Corporation-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
27
|
Saravanan S, Madhavan V, Kantor R, Sivamalar S, Gomathi S, Solomon SS, Kumarasamy N, Smith DM, Schooley RT, Solomon S, Balakrishnan P. Unusual insertion and deletion at codon 67 and 69 of HIV type 1 subtype C reverse transcriptase among first-line highly active antiretroviral treatment-failing South Indian patients: association with other resistance mutations. AIDS Res Hum Retroviruses 2012; 28:1763-5. [PMID: 22404052 DOI: 10.1089/aid.2011.0331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We report a high frequency of drug resistance mutations among patients with unusual insertions or deletions at the β(3)-β(4) hairpin-loop-coding region of HIV-1 subtype C reverse transcriptase, during failure of first-line antiretroviral therapy containing only reverse transcriptase inhibitors in Chennai, India.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davey M. Smith
- University of California San Diego, La Jolla, California
- Veterans Affairs Healthcare System, San Diego, California
| | | | | | | |
Collapse
|
28
|
Panel of prototypical recombinant infectious molecular clones resistant to nevirapine, efavirenz, etravirine, and rilpivirine. Antimicrob Agents Chemother 2012; 56:4522-4. [PMID: 22664973 DOI: 10.1128/aac.00648-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We created a panel of 10 representative multi-nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant recombinant infectious molecular HIV-1 clones to assist researchers studying NNRTI resistance or developing novel NNRTIs. The cloned viruses contain most of the major NNRTI resistance mutations and most of the significantly associated mutation pairs that we identified in two network analyses. Each virus in the panel has intermediate- or high-level resistance to all or three of the four most commonly used NNRTIs.
Collapse
|
29
|
Subunit-selective mutational analysis and tissue culture evaluations of the interactions of the E138K and M184I mutations in HIV-1 reverse transcriptase. J Virol 2012; 86:8422-31. [PMID: 22623801 DOI: 10.1128/jvi.00271-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of HIV-1 drug resistance remains a major obstacle in antiviral therapy. M184I/V and E138K are signature mutations of clinical relevance in HIV-1 reverse transcriptase (RT) for the nucleoside reverse transcriptase inhibitors (NRTIs) lamivudine (3TC) and emtricitabine (FTC) and the second-generation (new) nonnucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine (RPV), respectively, and the E138K mutation has also been shown to be selected by etravirine in cell culture. The E138K mutation was recently shown to compensate for the low enzyme processivity and viral fitness associated with the M184I/V mutations through enhanced deoxynucleoside triphosphate (dNTP) usage, while the M184I/V mutations compensated for defects in polymerization rates associated with the E138K mutations under conditions of high dNTP concentrations. The M184I mutation was also shown to enhance resistance to RPV and ETR when present together with the E138K mutation. These mutual compensatory effects might also enhance transmission rates of viruses containing these two mutations. Therefore, we performed tissue culture studies to investigate the evolutionary dynamics of these viruses. Through experiments in which E138K-containing viruses were selected with 3TC-FTC and in which M184I/V viruses were selected with ETR, we demonstrated that ETR was able to select for the E138K mutation in viruses containing the M184I/V mutations and that the M184I/V mutations consistently emerged when E138K viruses were selected with 3TC-FTC. We also performed biochemical subunit-selective mutational analyses to investigate the impact of the E138K mutation on RT function and interactions with the M184I mutation. We now show that the E138K mutation decreased rates of polymerization, impaired RNase H activity, and conferred ETR resistance through the p51 subunit of RT, while an enhancement of dNTP usage as a result of the simultaneous presence of both mutations E138K and M184I occurred via both subunits.
Collapse
|
30
|
Selection and characterization of HIV-1 with a novel S68 deletion in reverse transcriptase. Antimicrob Agents Chemother 2011; 55:2054-60. [PMID: 21357304 DOI: 10.1128/aac.01700-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to human immunodeficiency virus type 1 (HIV-1) represents a significant problem in the design of novel therapeutics and the management of treatment regimens in infected persons. Resistance profiles can be elucidated by defining modifications to the viral genome conferred upon exposure to novel nucleoside reverse transcriptase (RT) inhibitors (NRTI). In vitro testing of HIV-1LAI-infected primary human lymphocytes treated with β-D-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (DFC; Dexelvucitabine; Reverset) produced a novel deletion of AGT at codon 68 (S68Δ) alone and in combination with K65R that differentially affects drug response. Dual-approach clone techniques utilizing TOPO cloning and pyrosequencing confirmed the novel S68Δ in the HIV-1 genome. The S68Δ HIV-1 RT was phenotyped against various antiviral agents in a heteropolymeric DNA polymerase assay and in human lymphocytes. Drug susceptibility results indicate that the S68Δ displayed a 10- to 30-fold increase in resistance to DFC, lamivudine, emtricitabine, tenofovir, abacavir, and amdoxovir and modest resistance to stavudine, β-d-2',3'-oxa-5-fluorocytidine, or 9-(β-D-1,3-dioxolan-4-yl)guanine and remained susceptible to 3'-azido-3'-deoxythymidine, 2',3'-dideoxyinosine (ddI), 1-(β-D-dioxolane)thymine (DOT) and lopinavir. Modeling revealed a central role for S68 in affecting conformation of the β3-β4 finger region and provides a rational for the selective resistance. These data indicate that the novel S68Δ is a previously unrecognized deletion that may represent an important factor in NRTI multidrug resistance treatment strategies.
Collapse
|
31
|
Xu HT, Oliveira M, Quan Y, Bar-Magen T, Wainberg MA. Differential impact of the HIV-1 non-nucleoside reverse transcriptase inhibitor mutations K103N and M230L on viral replication and enzyme function. J Antimicrob Chemother 2010; 65:2291-9. [DOI: 10.1093/jac/dkq338] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
33
|
Relationship of injection drug use, antiretroviral therapy resistance, and genetic diversity in the HIV-1 pol gene. J Acquir Immune Defic Syndr 2009; 50:381-9. [PMID: 19214121 DOI: 10.1097/qai.0b013e318198a619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To determine if a history of injection drug use influences genotypic protease inhibitor (PI) resistance to antiretroviral agents. METHODS We assessed the presence of resistance mutations in PI-naive injection drug users (IDUs) and non-IDUs participating in the Women's Interagency HIV Study. Eighteen HIV-infected participants who reported injection drug use before study enrollment and 32 HIV-infected non-IDUs contributed a total of 34 and 65 person-visits, respectively, to analyses. RESULTS Based on data from multiple clones obtained from different time points from each individual, we determined that primary PI resistance mutations were more frequent among person visits contributed by IDUs (24%) than non-IDUs (8%, P = 0.05). Although neither reached statistical significance, diversity was higher within the protease region among study visits carrying PI-resistant clones at both the nucleotide level (2.66 vs. 2.35; P = 0.08) and at the amino acid level (1.60 vs. 1.32; P = 0.23). Most of the primary resistance mutations could not be detected using the standard population sequencing employed in the clinical setting. Five of 6 individuals in whom clones encoding PI resistance mutations were identified failed PI-containing highly active antiretroviral therapy within 12 months of therapy initiation. CONCLUSIONS Our findings indicate that more aggressive sampling for resistance mutations among viral clones before highly active antiretroviral therapy initiation might permit selection of more effective treatment, particularly in IDUs.
Collapse
|
34
|
Phylogenetic and genetic analysis of feline immunodeficiency virus gag, pol, and env genes from domestic cats undergoing nucleoside reverse transcriptase inhibitor treatment or treatment-naïve cats in Rio de Janeiro, Brazil. J Virol 2008; 82:7863-74. [PMID: 18550661 DOI: 10.1128/jvi.00310-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feline immunodeficiency virus (FIV) is the Lentivirus responsible for an immunodeficiency-like disease in domestic cats (Felis catus). FIV is divided into five phylogenetic subtypes (A, B, C, D, and E), based on genetic diversity. Knowledge of the geographical distribution of subtypes is relevant for understanding different disease progressions and for vaccine development. In this study, viral sequences of 26 infected cats from Rio de Janeiro, 8 undergoing treatment with zidovudine (AZT) for at least 5 years, were successfully amplified from blood specimens. gag capsid (CA), pol reverse transcriptase (RT), and env gp120 (V3-V4) regions were analyzed to determine subtypes and to evaluate potential mutations related to antiretroviral drug resistance among treated cats. Subtyping based on phylogenetic analysis was performed by the neighbor-joining and maximum likelihood methods. All of the sequences clustered with subtype B in the three regions, exhibiting low genetic variability. Additionally, we found evidence that the same virus is circulating in animals in close contact. The analysis of FIV RT sequences identified two new putative mutations related to drug resistance located in the RT "finger" domain, which has 60% identity to human immunodeficiency virus (HIV) sequence. Amino acid change K-->R at codons 64 and 69 was found in 25% and 37.5% of the treated animals, respectively. These signatures were comparable to K65R and K70R thymidine-associated mutations found in the HIV-1 HXB2 counterpart. This finding strongly suggests a position correlation between the mutations found in FIV and the K65R and K70R substitutions from drug-resistant HIV-1 strains.
Collapse
|
35
|
HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 2008; 134:104-23. [PMID: 18289713 DOI: 10.1016/j.virusres.2007.12.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/27/2007] [Accepted: 12/28/2007] [Indexed: 01/04/2023]
Abstract
Genetic diversity plays a key role in human immunodeficiency virus (HIV) adaptation, providing a mechanism to escape host immune responses and develop resistance to antiretroviral drugs. This process is driven by the high-mutation rate during DNA synthesis by reverse transcriptase (RT), by the large viral populations, by rapid viral turnover, and by the high-recombination rate. Drugs targeting HIV RT are included in all regimens of highly active antiretroviral therapy (HAART), which helps to reduce the morbidity and mortality of HIV-infected patients. However, the emergence of resistant viruses is a significant obstacle to effective long-term management of HIV infection and AIDS. The increasing complexity of antiretroviral regimens has favored selection of HIV variants harboring multiple drug resistance mutations. Evolution of drug resistance is characterized by severe fitness losses when the drug is not present, which can be partially overcome by compensatory mutations or other adaptive changes that restore replication capacity. Here, we review the impact of mutations conferring resistance to nucleoside and nonnucleoside RT inhibitors on in vitro and in vivo fitness, their involvement in pathogenesis, persistence upon withdrawal of treatment, and transmission. We describe the techniques used to estimate viral fitness, the molecular mechanisms that help to improve the viral fitness of drug-resistant variants, and the clinical implications of viral fitness data, by exploring the potential relationship between plasma viral load, drug resistance, and disease progression.
Collapse
|
36
|
Quiñones-Mateu ME, Moore-Dudley DM, Jegede O, Weber J, J Arts E. Viral drug resistance and fitness. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2008; 56:257-96. [PMID: 18086415 DOI: 10.1016/s1054-3589(07)56009-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Dykes C, Demeter LM. Clinical significance of human immunodeficiency virus type 1 replication fitness. Clin Microbiol Rev 2007; 20:550-78. [PMID: 17934074 PMCID: PMC2176046 DOI: 10.1128/cmr.00017-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The relative fitness of a variant, according to population genetics theory, is that variant's relative contribution to successive generations. Most drug-resistant human immunodeficiency virus type 1 (HIV-1) variants have reduced replication fitness, but at least some of these deficits can be compensated for by the accumulation of second-site mutations. HIV-1 replication fitness also appears to influence the likelihood of a drug-resistant mutant emerging during treatment failure and is postulated to influence clinical outcomes. A variety of assays are available to measure HIV-1 replication fitness in cell culture; however, there is no agreement regarding which assays best correlate with clinical outcomes. A major limitation is that there is no high-throughput assay that incorporates an internal reference strain as a control and utilizes intact virus isolates. Some retrospective studies have demonstrated statistically significant correlations between HIV-1 replication fitness and clinical outcomes in some patient populations. However, different studies disagree as to which clinical outcomes are most closely associated with fitness. This may be in part due to assay design, sample size limitations, and differences in patient populations. In addition, the strength of the correlations between fitness and clinical outcomes is modest, suggesting that, at present, it would be difficult to utilize these assays for clinical management.
Collapse
Affiliation(s)
- Carrie Dykes
- Infectious Diseases Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
38
|
Villena C, Prado JG, Puertas MC, Martínez MA, Clotet B, Ruiz L, Parkin NT, Menéndez-Arias L, Martinez-Picado J. Relative fitness and replication capacity of a multinucleoside analogue-resistant clinical human immunodeficiency virus type 1 isolate with a deletion of codon 69 in the reverse transcriptase coding region. J Virol 2007; 81:4713-21. [PMID: 17314158 PMCID: PMC1900151 DOI: 10.1128/jvi.02135-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deletions, insertions, and amino acid substitutions in the beta3-beta4 hairpin loop-coding region of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) have been associated with resistance to nucleoside RT inhibitors when appearing in combination with other mutations in the RT-coding region. In this work, we have measured the in vivo fitness of HIV-1 variants containing a deletion of 3 nucleotides affecting codon 69 (Delta69) of the viral RT as well as the replication capacity (RC) ex vivo of a series of recombinant HIV-1 variants carrying an RT bearing the Delta69 deletion or the T69A mutation in a multidrug-resistant (MDR) sequence background, including the Q151M complex and substitutions M184V, K103N, Y181C, and G190A. Patient-derived viral clones having RTs with Delta69 together with S163I showed increased RCs under drug pressure. These data were consistent with the viral population dynamics observed in a long-term-treated HIV-1-infected patient. In the absence of drugs, viral clones containing T69A replicated more efficiently than those having Delta69, but only when patient-derived sequences corresponding to RT residues 248 to 527 were present. These effects could be attributed to a functional interaction between the C-terminal domain of the p66 subunit (RNase H domain) and the DNA polymerase domain of the RT. Finally, recombinant HIV-1 clones bearing RTs with MDR-associated mutations, including deletions at codon 69, showed increased susceptibilities to protease inhibitors in phenotypic assays. These effects correlated with impaired Gag cleavage and could be attributed to delayed maturation and decreased production of active protease in those variants.
Collapse
Affiliation(s)
- Cristina Villena
- irsiCaixa Foundation, Hospital Germans Trias i Pujol, Ctra. de Canyet s/n, 08916 Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sucupira MCA, Caseiro MM, Alves K, Tescarollo G, Janini LM, Sabino EC, Castelo A, Page-Shafer K, Diaz RS. High levels of primary antiretroviral resistance genotypic mutations and B/F recombinants in Santos, Brazil. AIDS Patient Care STDS 2007; 21:116-28. [PMID: 17328661 DOI: 10.1089/apc.2006.0079] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This study characterized HIV-1 among antiretroviral-naïve populations presenting recent infection (RI) or long-standing infection (LSI). Sera collected from January 1999 to December 2001 at an anonymous HIV testing site in Santos, Brazil, were submitted to serologic testing algorithm for recent HIV seroconversion (STARHS). The STARHS methodology uses a combination of a sensitive and a less sensitive version of an anti-HIV enzyme immunoassay (EIA), and specimens found to be positive on the sensitive EIA and negative on the less sensitive EIA are considered to represent RI. HIV-1 V3 and pol regions of those with RI and LSI were compared. Antiretroviral resistance was defined solely by genotypic analysis. Ninety samples were evaluated representing those taken from an original cohort of 345 individuals, for whom adequate samples were available. Of 90 HIV-positive individuals, 25 presented RI. Cumulatively, 36.8% of those with RI and 25% of those with LSI presented resistance to at least one antiretroviral class. In the pol and V3 regions, 47% and 53% of those with RI presented clade B viruses and B/F recombinant viruses, respectively, whereas 56.2%, 41.7%, and 2.1% of those with LSI harbored clades B, B/F, and clade C viruses, respectively. Primary resistance and the prevalence of B/F recombinants was high in this population. Monitoring HIV-1 genetic diversity is important for developing vaccines and treatment strategies.
Collapse
|
40
|
Weber J, Weberova J, Carobene M, Mirza M, Martinez-Picado J, Kazanjian P, Quiñones-Mateu ME. Use of a novel assay based on intact recombinant viruses expressing green (EGFP) or red (DsRed2) fluorescent proteins to examine the contribution of pol and env genes to overall HIV-1 replicative fitness. J Virol Methods 2006; 136:102-17. [PMID: 16690137 DOI: 10.1016/j.jviromet.2006.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/21/2022]
Abstract
Multiple studies have described a reduction in the replicative fitness of HIV-1 isolates harboring mutations that confer resistance to antiretroviral drugs. Contradictory results, however, have been obtained depending on the methodology used in each study (Quinones-Mateu, M.E., Arts, E.J., 2002. Fitness of drug resistant HIV-I: methodology and clinical implications. Drug Resist. Update 5, 224-233), affecting our understanding of the potential relationship of viral replicative fitness with HIV-1 disease. It has been demonstrated previously that both pol and env genes play a major role in HIV-1 replicative fitness of clinical isolates. Therefore, measuring clinically relevant replicative fitness using recombinant viruses where a single mutation and/or viral gene have been introduced does not seem like a reasonable approach in this era of multi-target antiretroviral therapy. A novel method was developed to measure HIV-1 replicative fitness based on recombinant viruses expressing the enhanced green fluorescent (EGFP) or the Discosoma sp. red fluorescent (DsRed2) proteins in a HIV-1NL4-3 backbone. Contrary to previous designs to analyze HIV-1 fitness, these replication competent viruses were created in an intact viral genetic background (without deleting or affecting the expression of any viral gene). This new system was used to evaluate the contribution of drug-resistance mutations in the pol and env genes to overall viral replicative fitness (in the presence and absence of drug pressure) using direct growth competition experiments. Mutations in pol showed a stronger effect on HIV-1 replicative fitness than mutations in the env gene associated with resistance to enfuvirtide, corroborating the plasticity of the later gene to accept mutations and the sensibility of the protease and reverse transcriptase enzymes to drug-associated primary mutations. In conclusion, a new protocol was used to measure HIV-1 replicative fitness in either the presence or absence of antiretroviral drugs, which may be used as a high-throughput assay to help us understand the clinical significance of viral fitness.
Collapse
Affiliation(s)
- Jan Weber
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Brann TW, Dewar RL, Jiang MK, Shah A, Nagashima K, Metcalf JA, Falloon J, Lane HC, Imamichi T. Functional correlation between a novel amino acid insertion at codon 19 in the protease of human immunodeficiency virus type 1 and polymorphism in the p1/p6 Gag cleavage site in drug resistance and replication fitness. J Virol 2006; 80:6136-45. [PMID: 16731952 PMCID: PMC1472590 DOI: 10.1128/jvi.02212-05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Population-based sequence analysis revealed the presence of a variant of human immunodeficiency virus type 1 (HIV-1) containing an insertion of amino acid Ile in the protease gene at codon 19 (19I) and amino acid substitutions in the protease at codons 21 (E21D) and 22 (A22V) along with multiple mutations associated with drug resistance, M46I/P63L/A71V/I84V/I93L, in a patient who had failed protease inhibitor (PI) therapy. Longitudinal analysis revealed that the P63L/A71V/I93L changes were present prior to PI therapy. Polymorphisms in the Gag sequence were only seen in the p1/p6 cleavage site at the P1' position (Leu to Pro) and the P5' position (Pro to Leu). To characterize the role of these mutations in drug susceptibility and replication capacity, a chimeric HIV-1 strain containing the 19I/E21D/A22V mutations with the M46I/P63L/A71V/I84V/I93L and p1/p6 mutations was constructed. The chimera displayed high-level resistance to multiple PIs, but not to lopinavir, and grew to 30% of that of the wild type. To determine the relative contribution of each mutation to the phenotypic characteristic of the virus, a series of mutants was constructed using site-directed mutagenesis. A high level of resistance was only seen in mutants containing the 19I/A22V and p1/p6 mutations. The E21D mutation enhanced viral replication. These results suggest that the combination of the 19I/E21D/A22V mutations may emerge and lead to high-level resistance to multiple PIs. The combination of the 19I/A22V mutations may be associated with PI resistance; however, the drug resistance may be caused by the presence of a unique set of mutations in the p1/p6 mutations. The E21D mutation contributes to replication fitness rather than drug resistance.
Collapse
Affiliation(s)
- Terrence W Brann
- Laboratory of Human Retrovirology, Science Applications International Corporation-Frederick, Inc., Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
43
|
Imamichi T, Conrads TP, Zhou M, Liu Y, Adelsberger JW, Veenstra TD, Lane HC. A transcription inhibitor, actinomycin D, enhances HIV-1 replication through an interleukin-6-dependent pathway. J Acquir Immune Defic Syndr 2006; 40:388-97. [PMID: 16280692 DOI: 10.1097/01.qai.0000179466.25700.2f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that Actinomycin D (ActD) enhanced HIV-1 replication in the MT-2 cell, a human T-cell leukemia virus type-1-infected cell line. The MT-2 cell is known to produce multiple cytokines spontaneously. In this study, we investigated the impact of ActD on the cytokine production from MT-2 cells and HIV-1 replication in a latently infected cell line, U1. MT-2 cells were pulse-treated with 0 or 200 nM of ActD, and culture supernatants were collected 3 days after incubation. Supernatants from untreated cells (Sup0) induced HIV-1 replication by 150-fold in U1 cells. Culture supernatants from ActD-treated cells (Sup200) enhanced HIV-1 replication by 1200-fold. A combination of a sequential chromatographic approach and mass spectrometric analysis identified that the HIV-inducing factors in Sup200 were interleukin (IL)-6 and tumor necrosis factor (TNF)-beta. Quantitative analysis revealed that ActD treatment increased the concentration of IL-6 in Sup200 by 600% compared with that in Sup0 but decreased the amount of TNFbeta in Sup200 by 85%. Northern blot analysis showed that ActD treatment increased IL-6 transcripts; however, no change was seen in TNFbeta transcripts. These results suggest that ActD induces replication of HIV-1 through modulation of cytokine production.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology, Science Applications International Corporation (SAIC)-Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hamano K, Sakamoto N, Enomoto N, Izumi N, Asahina Y, Kurosaki M, Ueda E, Tanabe Y, Maekawa S, Itakura J, Watanabe H, Kakinuma S, Watanabe M. Mutations in the NS5B region of the hepatitis C virus genome correlate with clinical outcomes of interferon-alpha plus ribavirin combination therapy. J Gastroenterol Hepatol 2005; 20:1401-9. [PMID: 16105128 DOI: 10.1111/j.1440-1746.2005.04024.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Combination treatments of interferon-alpha (IFN) and ribavirin (RBV) are more effective than those of IFN alone in hepatitis C virus (HCV) infection. However, mechanisms of the action of the combination regimen are not well understood. To elucidate the viral genetic basis of IFN plus RBV combination therapy, genetic variabilities of HCV-1b were analyzed. METHODS We performed pair-wise comparisons of full-length HCV genomic sequences in three patients' sera before and after initiation of IFN plus RBV treatment. Subsequently, we analyzed amino acid sequences of the NS5B region, which codes for the viral RNA-dependent RNA polymerase, and compared these with the outcomes of the therapy in 81 patients. RESULTS Analysis of the entire HCV sequence in patients who received IFN plus RBV therapy did not show consistent amino acid changes between before and after the initiation of the therapy. NS5B sequence analyses revealed that mutations at positions 300-358 of NS5B, including polymerase motif B to E, occurred more frequently in a group of patients exhibiting a sustained viral response (SVR) or an end-of-treatment response (ETR) compared with a group of patients exhibiting a non-response (NR). Closer examination revealed that mutations at aa 309, 333, 338 and 355 of NS5B occurred significantly more frequently in the SVR plus ETR group than in the NR group (P = 0.0004). Multivariate analysis showed that the number of mutations at these four sites was an independent predictor of SVR plus ETR versus NR. CONCLUSIONS Particular amino acid changes in the NS5B region of HCV may correlate with outcomes of IFN plus RBV combination therapy.
Collapse
Affiliation(s)
- Kosei Hamano
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Johnston E, Dupnik KM, Gonzales MJ, Winters MA, Rhee SY, Imamichi T, Shafer RW. Panel of prototypical infectious molecular HIV-1 clones containing multiple nucleoside reverse transcriptase inhibitor resistance mutations. AIDS 2005; 19:731-3. [PMID: 15821401 PMCID: PMC2573397 DOI: 10.1097/01.aids.0000166098.54564.0c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have created a panel of recombinant HIV-1 infectious clones containing common patterns of reverse transcriptase (RT) mutations responsible for resistance to each of the currently available nucleoside reverse transcriptase inhibitors (NRTI), and we have submitted the panel to the National Institutes of Health AIDS Research and Reference Reagent Programme. Testing the activity of new antiretroviral compounds against this panel of drug-resistant clones will determine their relative activity against many clinically relevant NRTI-resistant viruses.
Collapse
|
46
|
Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC. An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation. J Theor Biol 2005; 235:555-65. [PMID: 15935173 DOI: 10.1016/j.jtbi.2005.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 12/13/2004] [Accepted: 02/09/2005] [Indexed: 11/26/2022]
Abstract
Hepatitis B viruses (HBVs) show instantaneous and high-ratio mutations when they are replicated, some sorts of which significantly affect the efficiency of virus replication through enhancing or depressing the viral replication, while others have no influence at all. The mechanism of gene expression is closely correlated with its gene sequence. With the rapid increase in the number of newly found sequences entering into data banks, it is highly desirable to develop an automated method for simulating the gene regulating function. The establishment of such a predictor will no doubt expedite the process of prioritizing genes and proteins identified by genomics efforts as potential molecular targets for drug design. Based on the power of cellular automata (CA) in treating complex systems with simple rules, a novel method to present HBV gene image has been introduced. The results show that the images thus obtained can very efficiently simulate the effects of the gene missense mutation on the virus replication. It is anticipated that CA may also serve as a useful vehicle for many other studies on complicated biological systems.
Collapse
Affiliation(s)
- Xuan Xiao
- Bio-Informatics Research Center, Donghua University, Shanghai 200051, China
| | | | | | | | | | | |
Collapse
|
47
|
Bouchonnet F, Dam E, Mammano F, de Soultrait V, Henneré G, Benech H, Clavel F, Hance AJ. Quantification of the effects on viral DNA synthesis of reverse transcriptase mutations conferring human immunodeficiency virus type 1 resistance to nucleoside analogues. J Virol 2005; 79:812-22. [PMID: 15613309 PMCID: PMC538537 DOI: 10.1128/jvi.79.2.812-822.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type I (HIV-1) reverse transcriptase (RT) resistance mutations reduce the susceptibility of the virus to nucleoside analogues but may also impair viral DNA synthesis. To further characterize the effect of nucleoside analogue resistance mutations on the efficiency and kinetics of HIV-1 DNA synthesis and to evaluate the impact of the depletion of deoxynucleoside triphosphates (dNTP) on this process, DNA synthesis was evaluated by allowing DNA synthesis to proceed with natural HIV-1 templates and primers, either within permeabilized viral particles or in newly infected cells, and quantifying the products by real-time PCR. Three recombinant viruses derived from three pNL4-3 molecular clones expressing mutations associated with resistance to zidovudine: a clone expressing RT mutation M184V, a clone expressing mutations M41L plus T215Y (M41L+T215Y), and clinical isolate BV34 (carrying seven resistance mutations). Following infection of P4 cells, the BV34 mutant, but not viruses expressing the M184V mutation or M41L+T215Y, exhibited a defect in DNA synthesis. Importantly, however, for mutants carrying the M184V mutation or M41L+T215Y mutations, a defect could be detected by using target cells in which dATP pools had been reduced by pretreatment with hydroxyurea. Based on these observations, we developed a recombinant-virus assay to assess the effects of hydroxyurea pretreatment on infectivity of viruses carrying plasma-derived RT sequences from patients with nucleoside resistance. Using this assay, we found that many, but not all, viruses carrying RT resistance mutations display an increased sensitivity to hydroxyurea, suggesting that the impact of RT resistance mutations on viral replication may be more profound in cell populations characterized by smaller dNTP pools.
Collapse
Affiliation(s)
- Francine Bouchonnet
- INSERM U.552, Hôpital Bichat-Claude Bernard, 46, rue Henri Huchard, 750918 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Johnston E, Winters MA, Rhee SY, Merigan TC, Schiffer CA, Shafer RW. Association of a novel human immunodeficiency virus type 1 protease substrate cleft mutation, L23I, with protease inhibitor therapy and in vitro drug resistance. Antimicrob Agents Chemother 2005; 48:4864-8. [PMID: 15561868 PMCID: PMC529213 DOI: 10.1128/aac.48.12.4864-4868.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed a previously uncharacterized mutation in the protease substrate cleft, L23I, in 31 of 4,303 persons undergoing human immunodeficiency virus type 1 genotypic resistance testing. In combination with V82I, L23I was associated with a sevenfold reduction in nelfinavir susceptibility and a decrease in replication capacity. In combination with other drug resistance mutations, L23I was associated with multidrug resistance and a compensatory increase in replication capacity.
Collapse
Affiliation(s)
- Elizabeth Johnston
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
49
|
Boyer PL, Imamichi T, Sarafianos SG, Arnold E, Hughes SH. Effects of the Delta67 complex of mutations in human immunodeficiency virus type 1 reverse transcriptase on nucleoside analog excision. J Virol 2004; 78:9987-97. [PMID: 15331732 PMCID: PMC515022 DOI: 10.1128/jvi.78.18.9987-9997.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-term use of combination therapy against human immunodeficiency virus type (HIV-1) provides strong selective pressure on the virus, and HIV-1 variants that are resistant to multiple inhibitors have been isolated. HIV-1 variants containing amino acid substitutions within the coding region of HIV-1 reverse transcriptase (RT), such as the 3'-azido-3'-deoxythymidine (AZT)-resistant variant AZT-R (M41L/D67N/K70R/T215Y/K219Q) and a variant containing an insertion in the fingers domain (S69SGR70/T215Y), are resistant to the nucleoside RT inhibitor (NRTI) AZT because of an increase in the level of excision of AZT monophosphate (AZTMP) from the primer. While rare, variants have also been isolated which contain deletions in the RT coding region. One such virus, described by Imamichi et al. (J. Virol 74:10958-10964, 2000; J. Virol. 74:1023-1028, 2000; J. Virol. 75:3988-3992, 2001), contains numerous amino acid substitutions and a deletion of codon 67, which we have designated the Delta67 complex of mutations. We have expressed and purified HIV-1 RT containing these mutations. We compared the polymerase and pyrophosphorolysis (excision) activity of an RT with the Delta67 complex of mutations to wild-type RT and the two other AZT-resistant variants described above. All of the AZT-resistant variants we tested excise AZTMP and 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA [tenofovir]) from the end of a primer more efficiently than wild-type RT. Although the variant RTs excised d4TMP less efficiently than AZTMP and PMPA, they were able to excise d4TMP more efficiently than wild-type RT. HIV-1 RT containing the Delta67 complex of mutations was not able to excise as broad a range of NRTIs as the fingers insertion variant SSGR/T215Y, but it was able to polymerize efficiently with low concentrations of deoxynucleoside triphosphates and seems to be able to excise AZTMP and PMPA at lower ATP concentrations than AZT-R or SSGR/T215Y, suggesting that a virus containing the Delta67 complex of mutations would replicate reasonably well in quiescent cells, even in the presence of AZT.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, P.O. Box B, Building 539, Room 130A, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
50
|
Eshleman SH, Guay LA, Mwatha A, Cunningham SP, Brown ER, Musoke P, Mmiro F, Jackson JB. Comparison of nevirapine (NVP) resistance in Ugandan women 7 days vs. 6-8 weeks after single-dose nvp prophylaxis: HIVNET 012. AIDS Res Hum Retroviruses 2004; 20:595-9. [PMID: 15242535 DOI: 10.1089/0889222041217518] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We compared nevirapine (NVP) resistance (NVPR) mutations in maternal plasma 7 days vs. 6-8 weeks after single-dose NVP prophylaxis. In the HIVNET 012 trial, Ugandan women received a single dose of NVP in labor for prevention of HIV-1 mother-to-child transmission. NVPR mutations were detected in 70 (25%) of 279 women 6-8 weeks after NVP. Samples collected 7 days after NVP were analyzed from a subset of those 279 women. Genotyping was performed with the ViroSeq HIV-1 Genotyping System. NVPR was analyzed using paired samples from 7 days and 6-8 weeks after NVP. Sixty-five women had genotyping results obtained for samples collected at both 7 days and 6-8 weeks post-NVP. Twenty-one (32%) of those women had NVPR mutations detected in one or both samples. This included three women with NVPR at 7 days only, seven with NVPR at 6-8 weeks only, and 11 with NVPR at both time points. Eight women had >1 NVPR mutation detected 7 days after NVP. Y181C was the most common NVPR mutation detected at 7 days, whereas K103N was the most common NVPR mutation detected at 6-8 weeks. We conclude that NVPR may be detected in women as early as 7 days after single-dose NVP. Complex patterns of NVPR are detected in some women. The Y181C NVPR mutation often fades from detection by 6-8 weeks. In contrast, the K103N mutation emerges more slowly, but often remains detectable 6-8 weeks after NVP.
Collapse
Affiliation(s)
- S H Eshleman
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|