1
|
Mghezzi-Habellah M, Prochasson L, Jalinot P, Mocquet V. Viral Subversion of the Chromosome Region Maintenance 1 Export Pathway and Its Consequences for the Cell Host. Viruses 2023; 15:2218. [PMID: 38005895 PMCID: PMC10674744 DOI: 10.3390/v15112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
In eukaryotic cells, the spatial distribution between cytoplasm and nucleus is essential for cell homeostasis. This dynamic distribution is selectively regulated by the nuclear pore complex (NPC), which allows the passive or energy-dependent transport of proteins between these two compartments. Viruses possess many strategies to hijack nucleocytoplasmic shuttling for the benefit of their viral replication. Here, we review how viruses interfere with the karyopherin CRM1 that controls the nuclear export of protein cargoes. We analyze the fact that the viral hijacking of CRM1 provokes are-localization of numerous cellular factors in a suitable place for specific steps of viral replication. While CRM1 emerges as a critical partner for viruses, it also takes part in antiviral and inflammatory response regulation. This review also addresses how CRM1 hijacking affects it and the benefits of CRM1 inhibitors as antiviral treatments.
Collapse
Affiliation(s)
| | | | | | - Vincent Mocquet
- Laboratoire de Biologie et Modélisation de la Cellule, Ecole Normale Supérieure-Lyon, Université Claude Bernard Lyon, U1293, UMR5239, 69364 Lyon, France; (M.M.-H.); (L.P.); (P.J.)
| |
Collapse
|
2
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
3
|
Pied N, Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett 2019; 593:3419-3448. [PMID: 31758703 DOI: 10.1002/1873-3468.13690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Incoming adenoviruses seize control of cytosolic transport mechanisms to relocate their genome from the cell periphery to specialized sites in the nucleoplasm. The nucleus is the site for viral gene expression, genome replication, and the production of progeny for the next round of infection. By taking control of the cell, adenoviruses also suppress cell-autonomous immunity responses. To succeed in their production cycle, adenoviruses rely on well-coordinated steps, facilitated by interactions between viral proteins and cellular factors. Interactions between virus and host can impose remarkable morphological changes in the infected cell. Imaging adenoviruses has tremendously influenced how we delineate individual steps in the viral life cycle, because it allowed the development of specific optical markers to label these morphological changes in space and time. As technology advances, innovative imaging techniques and novel tools for specimen labeling keep uncovering previously unseen facets of adenovirus biology emphasizing why imaging adenoviruses is as attractive today as it was in the past. This review will summarize past achievements and present developments in adenovirus imaging centered on fluorescence microscopy approaches.
Collapse
Affiliation(s)
- Noémie Pied
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| |
Collapse
|
4
|
Siemer S, Hahlbrock A, Vallet C, McClements DJ, Balszuweit J, Voskuhl J, Docter D, Wessler S, Knauer SK, Westmeier D, Stauber RH. Nanosized food additives impact beneficial and pathogenic bacteria in the human gut: a simulated gastrointestinal study. NPJ Sci Food 2018; 2:22. [PMID: 30882042 PMCID: PMC6420113 DOI: 10.1038/s41538-018-0030-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nanotechnology provides the food industry with new ways to modulate various aspects of food. Hence, engineered nanoparticles (NPs) are increasingly added to food and beverage products as functional ingredients. However, the impact of engineered as well as naturally occurring NPs on both commensal and pathogenic microorganisms within the gastrointestinal tract (GI) is not fully understood. Here, well-defined synthetic NPs and bacterial models were used to probe nanoparticle–bacteria interactions, from analytical to in situ to in vitro. NP–bacteria complexation occurred most efficiently for small NPs, independent of their core material or surface charge, but could be reduced by NPs’ steric surface modifications. Adsorption to bacteria could also be demonstrated for naturally occurring carbon NPs isolated from beer. Complex formation affected the (patho)biological behavior of both the NPs and bacteria, including their cellular uptake into epithelial cells and phagocytes, pathogenic signaling pathways, and NP-induced cell toxicity. NP–bacteria complex formation was concentration-dependently reduced when the NPs became coated with biomolecule coronas with sequential simulation of first oral uptake and then the GI. However, efficient NP adsorption was restored when the pH was sufficiently low, such as in simulating the conditions of the stomach. Collectively, NP binding to enteric bacteria may impact their (patho)biology, particularly in the stomach. Nanosized-food additives as well as naturally occurring NPs may be exploited to (rationally) shape the microbiome. The information contained in this article should facilitate a “safe by design” strategy for the development and application of engineered NPs as functional foods ingredients. Engineered or naturally occurring nanoparticles could potentially affect the bacteria in the gut. A study led by Dana Westmeier and Roland Stauber from University Medical Center of Mainz, Germany probed the nanoparticle–bacteria interactions in situ. They found that NP–bacteria complex occurred most efficiently for small NPs, independent of their core material or surface charge. The complex formation affected the (patho)biological behavior of both the NPs and bacteria, particularly under conditions that simulate the stomach. The result shows that both engineered and naturally occurring nanoparticles could be exploited to shape the gut microbiome. The study can offer guidelines for future development and application of nanoparticles in food industry.
Collapse
Affiliation(s)
- Svenja Siemer
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Angelina Hahlbrock
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | | | - Jan Balszuweit
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Jens Voskuhl
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Dominic Docter
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silja Wessler
- Department of Microbiology, Paris-Lodron University of Salzburg, A-5020 Salzburg, Austria
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB), University Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Dana Westmeier
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
5
|
Westmeier D, Posselt G, Hahlbrock A, Bartfeld S, Vallet C, Abfalter C, Docter D, Knauer SK, Wessler S, Stauber RH. Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori. NANOSCALE 2018; 10:1453-1463. [PMID: 29303193 DOI: 10.1039/c7nr06573f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Enteric bacteria may cause severe diseases, including gastric cancer-associated Helicobacter pylori. Their infection paths overlap with the oro-gastrointestinal uptake route for nanoparticles, increasingly occurring during environmental or consumer/medical exposure. By comprehensive independent analytical methods, such as live cell fluorescence, electron as well as atomic force microscopy and elemental analysis, we show that a wide array of nanoparticles (NPs) but not microparticles form complexes with H. pylori and enteric pathogens without the need for specific functionalization. The NP-assembly that occurred rapidly was not influenced by variations in physiological temperature, though affected by the NPs' physico-chemical characteristics. Improved binding was observed for small NPs with a negative surface charge, whereas binding could be reduced by surface 'stealth' modifications. Employing human gastric epithelial cells and 3D-organoid models of the stomach, we show that NP-coating did not inhibit H. pylori's cellular attachment. However, even the assembly of non-bactericidal silica NPs attenuated H. pylori infection by reducing CagA phosphorylation, cytoskeletal rearrangement, and IL-8 secretion. Here we demonstrate that NP binding to enteric bacteria may impact their pathobiology which could be further exploited to rationally modulate the (patho)biology of microbes by nanomaterials.
Collapse
Affiliation(s)
- Dana Westmeier
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wagner T, Kiweler N, Wolff K, Knauer SK, Brandl A, Hemmerich P, Dannenberg JH, Heinzel T, Schneider G, Krämer OH. Sumoylation of HDAC2 promotes NF-κB-dependent gene expression. Oncotarget 2016; 6:7123-35. [PMID: 25704882 PMCID: PMC4466673 DOI: 10.18632/oncotarget.3344] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 01/15/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) is crucial for the maintenance of homeostasis. It is incompletely understood how nuclear NF-κB and the crosstalk of NF-κB with other transcription factors are controlled. Here, we demonstrate that the epigenetic regulator histone deacetylase 2 (HDAC2) activates NF-κB in transformed and primary cells. This function depends on both, the catalytic activity and an intact HDAC2 sumoylation motif. Several mechanisms account for the induction of NF-κB through HDAC2. The expression of wild-type HDAC2 can increase the nuclear presence of NF-κB. In addition, the ribosomal S6 kinase 1 (RSK1) and the tumor suppressor p53 contribute to the regulation of NF-κB by HDAC2. Moreover, TP53 mRNA expression is positively regulated by wild-type HDAC2 but not by sumoylation-deficient HDAC2. Thus, sumoylation of HDAC2 integrates NF-κB signaling involving p53 and RSK1. Since HDAC2-dependent NF-κB activity protects colon cancer cells from genotoxic stress, our data also suggest that high HDAC2 levels, which are frequently found in tumors, are linked to chemoresistance. Accordingly, inhibitors of NF-κB and of the NF-κB/p53-regulated anti-apoptotic protein survivin significantly sensitize colon carcinoma cells expressing wild-type HDAC2 to apoptosis induced by the genotoxin doxorubicin. Hence, the HDAC2-dependent signaling node we describe here may offer an interesting therapeutic option.
Collapse
Affiliation(s)
- Tobias Wagner
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Nicole Kiweler
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Katharina Wolff
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Shirley K Knauer
- Centre for Medical Biotechnology, Molecular Biology II, University of Duisburg-Essen, Essen, Germany
| | - André Brandl
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Peter Hemmerich
- Leibniz-Institute for Age Research, Fritz-Lipmann-Institute, Jena, Germany
| | - Jan-Hermen Dannenberg
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Thorsten Heinzel
- Centre for Molecular Biomedicine, Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | - Günter Schneider
- Klinikum rechts der Isar, II. Medizinische Klinik, Technische Universität München, München, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany
| |
Collapse
|
7
|
Zhang J, Ye C, Ruan X, Zan J, Xu Y, Liao M, Zhou J. The chaperonin CCTα is required for efficient transcription and replication of rabies virus. Microbiol Immunol 2015; 58:590-9. [PMID: 25082455 DOI: 10.1111/1348-0421.12186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/08/2014] [Accepted: 07/24/2014] [Indexed: 12/25/2022]
Abstract
Negri bodies (NBs) are formed in the cytoplasm of rabies virus (RABV)-infected cells and are accompanied by a number of host factors to NBs, in which replication and transcription occur. Here, it was found that chaperonin containing TCP-1 subunit alpha (CCTα) relocalizes to NBs in RABV-infected cells, and that cotransfection of nucleo- and phospho-proteins of RABV is sufficient to recruit CCTα to the NBs' structure. Inhibition of CCTα expression by specific short hairpin RNA knockdown inhibited the replication and transcription of RABV. Therefore, this study showed that the host factor CCTα is associated with RABV infection and is very likely required for efficient virus transcription and replication.
Collapse
Affiliation(s)
- Jinyang Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, 310058; State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, 310003; Research Center of Molecular Medicine of Yunnan Province, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
8
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
9
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
10
|
Aggresome formation by the adenoviral protein E1B55K is not conserved among adenovirus species and is not required for efficient degradation of nuclear substrates. J Virol 2013; 87:4872-81. [PMID: 23408624 DOI: 10.1128/jvi.03272-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Much of the work on the basic molecular biology of human adenoviruses has been carried out on a very limited number of the more than 60 serotypes, primarily the highly related species C viruses adenovirus type 5 (Ad5) and Ad2 and, to some extent, Ad12 of species A. Until recently, it has been widely assumed that insights obtained with these model viruses were representative of all human adenoviruses. Recent studies on the E3 ubiquitin ligase formed by the viral E1B55K and E4orf6 proteins with a cellular Cullin-based complex indicated that although all species form such a functional complex, significant variations exist in terms of complex composition and the substrates that are degraded. In the present report we conducted a comprehensive analysis of the localization of E1B55K products from representatives of six of the seven adenovirus species in the presence and the absence of the corresponding E4orf6 protein. We found that although in some species E1B55K localized in aggresomes, such was not always the case, suggesting that these structures are not necessary for the efficient degradation of substrates. In addition, differences were evident in the localization of E1B55K, although all forms readily associated with PML. Finally, Ad5 E1B55K was seen to localize in close proximity to Rab11, a marker for the endosomal recycling compartment, and both focused at the microtubule organizing center. These findings suggest that E1B55K from some species may employ the transport system utilized by the membrane recycling pathway to assemble aggresomes and the possibility that this structure might then affect recycling of cell surface components.
Collapse
|
11
|
Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H, Dobner T. Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 2012; 32:1626-37. [PMID: 22614022 DOI: 10.1038/onc.2012.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the discovery of post-translational modification (PTM) by the small ubiquitin-related modifiers (SUMOs), a multitude of proteins have been described to be reversibly modified, resulting in the alteration of several cellular pathways. Interestingly, various pathogens gain access to this modification system, although the molecular mechanisms and functional consequences are barely understood. We show here that the adenoviral oncoprotein E1B-55K is a substrate of the SUMO conjugation system, which is directly linked to its C-terminal phosphorylation. This regulative connection is indispensable for modulation of the tumor suppressor p53/chromatin-remodeling factor Daxx by E1B-55K and, consequently, its oncogenic potential in primary mammalian cells. In virus infection, E1B-55K PTMs are necessary for localization to viral transcription/replication sites. Furthermore, we identify the E2 enzyme Ubc9 as an interaction partner of E1B-55K, providing a possible molecular explanation for SUMO-dependent modulation of cellular target proteins. In conclusion, these results for the first time provide evidence how E1B-55K PTMs are regulated and subsequently facilitate exploitation of the host cell SUMOylation machinery.
Collapse
Affiliation(s)
- P Wimmer
- Department of Molecular Virology, Heinrich-Pette-Institute-Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schmid M, Gonzalez RA, Dobner T. CRM1-dependent transport supports cytoplasmic accumulation of adenoviral early transcripts. J Virol 2012; 86:2282-92. [PMID: 22171254 PMCID: PMC3302419 DOI: 10.1128/jvi.06275-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/30/2011] [Indexed: 02/08/2023] Open
Abstract
The life cycle of adenoviruses is divided by convention into early and late phases, separated by the onset of viral genome replication. Early events include virus adsorption, transport of the genome into the nucleus, and the expression of early genes. After the onset of viral DNA replication, transcription of the major late transcription unit (MLTU) and thereby synthesis of late proteins is induced. These steps are controlled by an orchestra of regulatory processes and require import of the genome and numerous viral proteins into the nucleus, as well as active transport of viral transcripts and proteins from the nucleus to the cytoplasm. The latter is achieved by exploiting the shuttling functions of cellular transport receptors, which normally stimulate the nuclear export of cellular mRNA and protein cargos. A set of adenoviral early and late proteins contains a leucine-rich nuclear export signal of the HIV-1 Rev type, known to be recognized by the cellular export receptor CRM1. However, a role for CRM1-dependent export in supporting adenoviral replication has not been established. To address this issue in detail, we investigated the impact of two different CRM1 inhibitors on several steps of the adenoviral life cycle. Inhibition of CRM1 led to a reduction in viral early and late gene expression, viral genome replication, and progeny virus production. For the first time, our findings indicate that CRM1-dependent shuttling is required for the efficient export of adenoviral early mRNA.
Collapse
Affiliation(s)
- Melanie Schmid
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
13
|
Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 2012; 86:3064-72. [PMID: 22278242 DOI: 10.1128/jvi.06764-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.
Collapse
|
14
|
Kato SEM, Huang W, Flint S. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 PMCID: PMC3377160 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E. M. Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| | - Wenying Huang
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| | - S.J. Flint
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| |
Collapse
|
15
|
Zou XH, Xiao X, Chen DL, Li ZL, Song JD, Wang M, Qu JG, Lu ZZ, Hung T. An improved HAdV-41 E1B55K-expressing 293 cell line for packaging fastidious adenovirus. J Virol Methods 2011; 175:188-96. [DOI: 10.1016/j.jviromet.2011.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
16
|
Schmid M, Kindsmüller K, Wimmer P, Groitl P, Gonzalez RA, Dobner T. The E3 ubiquitin ligase activity associated with the adenoviral E1B-55K-E4orf6 complex does not require CRM1-dependent export. J Virol 2011; 85:7081-94. [PMID: 21561915 PMCID: PMC3126608 DOI: 10.1128/jvi.02368-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
The adenovirus type 5 (Ad5) E1B-55K and E4orf6 (E1B-55K/E4orf6) proteins are multifunctional regulators of Ad5 replication, participating in many processes required for virus growth. A complex containing the two proteins mediates the degradation of cellular proteins through assembly of an E3 ubiquitin ligase and induces shutoff of host cell protein synthesis through selective nucleocytoplasmic viral late mRNA export. Both proteins shuttle between the nuclear and cytoplasmic compartments via leucine-rich nuclear export signals (NES). However, the role of their NES-dependent export in viral replication has not been established. It was initially shown that mutations in the E4orf6 NES negatively affect viral late gene expression in transfection/infection complementation assays, suggesting that E1B-55K/E4orf6-dependent viral late mRNA export involves a CRM1 export pathway. However, a different conclusion was drawn from similar studies showing that E1B-55K/E4orf6 promote late gene expression without active CRM1 or functional NES. To evaluate the role of the E1B-55K/E4orf6 NES in viral replication in the context of Ad-infected cells and in the presence of functional CRM1, we generated virus mutants carrying amino acid exchanges in the NES of either or both proteins. Phenotypic analyses revealed that mutations in the NES of E1B-55K and/or E4orf6 had no or only moderate effects on viral DNA replication, viral late protein synthesis, or viral late mRNA export. Significantly, such mutations also did not interfere with the degradation of cellular substrates, indicating that the NES of E1B-55K or E4orf6 is dispensable both for late gene expression and for the activity associated with the E3 ubiquitin ligase.
Collapse
Affiliation(s)
| | | | - Peter Wimmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Peter Groitl
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | | | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
18
|
Yatherajam G, Huang W, Flint SJ. Export of adenoviral late mRNA from the nucleus requires the Nxf1/Tap export receptor. J Virol 2011; 85:1429-38. [PMID: 21123381 PMCID: PMC3028892 DOI: 10.1128/jvi.02108-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/04/2023] Open
Abstract
One important function of the human adenovirus E1B 55-kDa protein is induction of selective nuclear export of viral late mRNAs. This protein interacts with the viral E4 Orf6 and four cellular proteins to form an infected-cell-specific E3 ubiquitin ligase. The assembly of this enzyme is required for efficient viral late mRNA export, but neither the relevant substrates nor the cellular pathway that exports viral late mRNAs has been identified. We therefore examined the effects on viral late gene expression of inhibition of the synthesis or activity of the mRNA export receptor Nxf1, which was observed to colocalize with the E1B 55-kDa protein in infected cells. When production of Nxf1 was impaired by using RNA interference, the efficiency of viral late mRNA export was reduced to a corresponding degree. Furthermore, synthesis of a dominant-negative derivative of Nxf1 during the late phase of infection interfered with production of a late structural protein. These observations indicate that the Nxf1 pathway is responsible for export of viral late mRNAs. As the infected-cell-specific E3 ubiquitin ligase targets its known substrates for proteasomal degradation, we compared the concentrations of several components of this pathway (Nxf1, Thox1, and Thoc4) in infected cells that did or did not contain this enzyme. Although the concentration of a well-established substrate, Mre11, decreased significantly in cells infected by adenovirus type 5 (Ad5), but not in those infected by the E1B 55-kDa protein-null mutant Hr6, no E1B 55-kDa protein-dependent degradation of the Nxf1 pathway proteins was observed.
Collapse
Affiliation(s)
- Gayatri Yatherajam
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - Wenying Huang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| | - S. J. Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08854
| |
Collapse
|
19
|
Adenoviral oncoprotein E1B55K mediates colocalization of SSBP2 and PML in response to stress. J Mol Signal 2010; 5:6. [PMID: 20540776 PMCID: PMC2896343 DOI: 10.1186/1750-2187-5-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 06/11/2010] [Indexed: 12/19/2022] Open
Abstract
Transient expression of adenoviral oncoprotein E1B55K in normal cells induces aggresome formation and sequestration of critical host proteins in aggresomes. Our previous studies reported that Sequence Specific Binding Protein 2 (SSBP2), a candidate tumor suppressor is recruited to aggresomes in adenovirally transformed human embryonal kidney 293 (HEK293) cells. To understand the extent and significance of the E1B55K-SSBP2 interactions in these cells, we have examined SSBP2 localization under conditions of stress in HEK293 cells. SSBP2 localizes to PML- Nuclear Bodies (PML-NBs) in response to inhibition of nuclear export, treatment with etoposide, hydroxyurea or gamma irradiation only in HEK293 cells. Furthermore, the PML-NBs grow in size and number in response to radiation over a 24 hour period in HEK293 cells analogous to previous findings for other cell types. Nonetheless, we conclude that E1B55K subverts SSBP2 function in HEK293 cells. These findings demonstrate the limitations in using HEK293 cells to study DNA damage response and other cellular processes since SSBP2 and similar regulatory proteins are aberrantly localized due to constitutive E1B55K expression.
Collapse
|
20
|
Ghildyal R, Ho A, Dias M, Soegiyono L, Bardin PG, Tran KC, Teng MN, Jans DA. The respiratory syncytial virus matrix protein possesses a Crm1-mediated nuclear export mechanism. J Virol 2009; 83:5353-62. [PMID: 19297465 PMCID: PMC2681974 DOI: 10.1128/jvi.02374-08] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/07/2009] [Indexed: 11/20/2022] Open
Abstract
The respiratory syncytial virus (RSV) matrix (M) protein is localized in the nucleus of infected cells early in infection but is mostly cytoplasmic late in infection. We have previously shown that M localizes in the nucleus through the action of the importin beta1 nuclear import receptor. Here, we establish for the first time that M's ability to shuttle to the cytoplasm is due to the action of the nuclear export receptor Crm1, as shown in infected cells, and in cells transfected to express green fluorescent protein (GFP)-M fusion proteins. Specific inhibition of Crm1-mediated nuclear export by leptomycin B increased M nuclear accumulation. Analysis of truncated and point-mutated M derivatives indicated that Crm1-dependent nuclear export of M is attributable to a nuclear export signal (NES) within residues 194 to 206. Importantly, inhibition of M nuclear export resulted in reduced virus production, and a recombinant RSV carrying a mutated NES could not be rescued by reverse genetics. That this is likely to be due to the inability of a nuclear export deficient M to localize to regions of virus assembly is indicated by the fact that a nuclear-export-deficient GFP-M fails to localize to regions of virus assembly when expressed in cells infected with wild-type RSV. Together, our data suggest that Crm1-dependent nuclear export of M is central to RSV infection, representing the first report of such a mechanism for a paramyxovirus M protein and with important implications for related paramyxoviruses.
Collapse
Affiliation(s)
- Reena Ghildyal
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Distinct requirements of adenovirus E1b55K protein for degradation of cellular substrates. J Virol 2008; 82:9043-55. [PMID: 18614635 DOI: 10.1128/jvi.00925-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.
Collapse
|
23
|
RUNX1 permits E4orf6-directed nuclear localization of the adenovirus E1B-55K protein and associates with centers of viral DNA and RNA synthesis. J Virol 2008; 82:6395-408. [PMID: 18417565 DOI: 10.1128/jvi.00043-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The localization of the adenovirus E1B-55K-E4orf6 protein complex is critical for its function. Prior studies demonstrated that E4orf6 directs the nuclear localization of E1B-55K in human cells and in rodent cells that contain part of human chromosome 21. We show here that the relevant activity on chromosome 21 maps to RUNX1. RUNX1 proteins are transcription factors that serve as scaffolds for the assembly of proteins that regulate transcription and RNA processing. After transfection, the RUNX1a, RUNX1b, and RUNX1-DeltaN variants allowed E4orf6-directed E1B-55K nuclear localization. The failure of RUNX1c to allow nuclear colocalization was relieved by the deletion of amino-terminal residues of this protein. In the adenovirus-infected mouse cell, RUNX1 proteins were localized to discrete structures about the periphery of viral replication centers. These sites are enriched in viral RNA and RNA-processing factors. RUNX1b and RUNX1a proteins displaced E4orf6 from these sites. The association of E1B-55K at viral replication centers was enhanced by the RUNX1a and RUNX1b proteins, but only in the absence of E4orf6. In the presence of E4orf6, E1B-55K occurred in a perinuclear cytoplasmic body resembling the aggresome and was excluded from the nucleus of the infected mouse cell. We interpret these findings to mean that a dynamic relationship exists between the E4orf6, E1B-55K, and RUNX1 proteins. In cooperation with E4orf6, RUNX1 proteins are able to modulate the localization of E1B-55K and even remodel virus-specific structures that form at late times of infection. Subsequent studies will need to determine a functional consequence of the interaction between E4orf6, E1B-55K, and RUNX1.
Collapse
|
24
|
E4Orf6-E1B-55k-dependent degradation of de novo-generated adeno-associated virus type 5 Rep52 and capsid proteins employs a cullin 5-containing E3 ligase complex. J Virol 2008; 82:3803-8. [PMID: 18216112 DOI: 10.1128/jvi.02532-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Degradation of de novo-generated adeno-associated virus type 5 (AAV5) Rep52 and capsid proteins is part of the limited target specificity displayed by adenovirus type 5 E4Orf6-E1B-55k as part of a cullin 5-containing E3 ligase complex. Both Rep and capsid proteins can be found in the ligase complex, and their presence is dependent on interaction between E4Orf6 and elongins B and C. Degradation of AAV5 proteins can be inhibited by a dominant-negative ubiquitin that prevents chain elongation or by small interfering RNA directed against cullin 5.
Collapse
|
25
|
Fleisig HB, Orazio NI, Liang H, Tyler AF, Adams HP, Weitzman MD, Nagarajan L. Adenoviral E1B55K oncoprotein sequesters candidate leukemia suppressor sequence-specific single-stranded DNA-binding protein 2 into aggresomes. Oncogene 2007; 26:4797-805. [PMID: 17311003 DOI: 10.1038/sj.onc.1210281] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 11/02/2006] [Accepted: 11/26/2006] [Indexed: 01/08/2023]
Abstract
Sequence-specific single-stranded DNA-binding protein 2 (SSBP2) is a candidate tumor suppressor for human acute myelogenous leukemia (AML). Inducible expression of SSBP2 causes growth arrest and partial differentiation in AML cells. Here, we report that the adenoviral oncoprotein E1B55K directly binds to endogenous SSBP2 protein and sequesters it into juxtanuclear bodies in adenovirally transformed human embryonic kidney (HEK) 293 cells. Similarly, transient expression of E1B55K in IMR90 fibroblasts and HeLa cells result in the formation of juxtanuclear bodies containing SSBP2. When nuclear export of E1B55K is prevented, SSBP2 remains associated with E1B55K in nuclear foci. A requirement for intact microtubules to retain the integrity of the juxtanuclear bodies suggests them to be E1B55K containing aggresomes. The adenoviral E1B55K protein has been shown to localize to the Mre11 complex and p53 to aggresome structures; together with the viral E4orf6 protein, E1B55K recruits a cellular E3 ubiquitin ligase that induces degradation of Mre11 and p53. However, our present studies reveal that E1B55K does not degrade SSBP2. These data demonstrate that E1B55K targets the candidate leukemia suppressor SSBP2 and suggest that subverting its function may contribute to cell transformation by viral oncoproteins.
Collapse
Affiliation(s)
- H B Fleisig
- Department of Molecular Genetics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Theadenovirus type 5 (Ad5) E1B-55K and E4orf6 proteins are required together to stimulate viral late nuclear mRNA export to the cytoplasm and to restrict host cell nuclear mRNA export during the late phase of infection. Previous studies have shown that these two viral proteins interact with the cellular proteins elongins B and C, cullin 5, RBX1, and additional cellular proteins to form an E3 ubiquitin-protein ligase that polyubiquitinates p53 and probably one or more subunits of the MRE11-RAD50-NBS1 (MRN) complex, directing their proteasomal degradation. The MRN complex is required for cellular DNA double-strand break repair and induction of the DNA damage response by adenovirus infection. To determine if the ability of E1B-55K and E4orf6 to stimulate viral late mRNA nuclear export requires the ubiquitin-protein ligase activity of this viral ubiquitin-protein ligase complex, we designed and expressed a dominant-negative mutant form of cullin 5 in HeLa cells before infection with wild-type Ad5 or the E1B-55K null mutant dl1520. The dominant-negative cullin 5 protein stabilized p53 and the MRN complex, indicating that it inhibited the viral ubiquitin-protein ligase but had no effect on viral early mRNA synthesis, early protein synthesis, or viral DNA replication. However, expression of the dominant-negative cullin 5 protein caused a decrease in viral late protein synthesis and viral nuclear mRNA export similar to the phenotype produced by mutations in E1B-55K. We conclude that the stimulation of adenovirus late mRNA nuclear export by E1B-55K and E4orf6 results from the ubiquitin-protein ligase activity of the adenovirus ubiquitin-protein ligase complex.
Collapse
Affiliation(s)
- Jennifer L Woo
- Molecular Biology Institute, Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | | |
Collapse
|
27
|
Kumar S, Saradhi M, Chaturvedi NK, Tyagi RK. Intracellular localization and nucleocytoplasmic trafficking of steroid receptors: an overview. Mol Cell Endocrinol 2006; 246:147-56. [PMID: 16388893 DOI: 10.1016/j.mce.2005.11.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subcellular compartmentalization and dynamic movements of steroid receptors are major steps in executing their transcription regulatory function. Though significant progress has been made in understanding the mechanisms underlying nuclear import of NLS-bearing proteins, our general and mechanistic understanding about the nuclear export processes has begun to emerge only recently. The discovery of most commonly utilized CRM1/exportin1 dependent nuclear export pathway is attributed to a potent nuclear export inhibitor leptomycin B that helped dissecting this and other nuclear export pathways. Simultaneously, utilization of green fluorescent protein (GFP)-tagged intracellular steroid receptors has contributed to not only resolving controversial issue of subcellular localization of unliganded hormone receptors but also provided further insight into finer details of receptor dynamics in living cells. With judicious use of leptomycin B and expression of GFP-tagged receptors in living cells, existence of exportin1/CRM1 independent pathway(s), nuclear export signals and receptors for bi-directional translocation that are unique to steroid receptor trafficking have been specified. Currently, we appear to be arriving at a consensus that steroid/nuclear receptors follow dynamic nucleocytoplasmic processes that deviate from the ones commonly utilized by majority of other proteins.
Collapse
Affiliation(s)
- Sanjay Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | |
Collapse
|
28
|
Gonzalez R, Huang W, Finnen R, Bragg C, Flint SJ. Adenovirus E1B 55-kilodalton protein is required for both regulation of mRNA export and efficient entry into the late phase of infection in normal human fibroblasts. J Virol 2006; 80:964-74. [PMID: 16378998 PMCID: PMC1346875 DOI: 10.1128/jvi.80.2.964-974.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein is required for selective nuclear export of viral late mRNAs from the nucleus and concomitant inhibition of export of cellular mRNAs in HeLa cells and some other human cell lines, but its contributions(s) to replication in normal human cells is not well understood. We have therefore examined the phenotypes exhibited by viruses carrying mutations in the E1B 55-kDa protein coding sequence in normal human fibroblast (HFFs). Ad5 replicated significantly more slowly in HFFs than it does in tumor cells, a difference that is the result of delayed entry into the late phase of infection. The A143 mutation, which specifically impaired export of viral late mRNAs from the nucleus in infected HeLa cells (R. A. Gonzalez and S. J. Flint, J. Virol. 76:4507-4519, 2002), induced a more severe defect in viral mRNA export in HFFs. This observation indicates that the E1B 55-kDa protein regulates mRNA export during the late phase of infection of normal human cells. Other mutants exhibited phenotypes not observed in HeLa cells. In HFFs infected by the null mutant Hr6, synthesis of viral late mRNAs and proteins was severely impaired. Such defects in late gene expression were the result of inefficient progression into the late phase of infection, for viral DNA synthesis was 10-fold less efficient in Hr6-infected HFFs than in cells infected by Ad5. Similar, but less severe, defects in viral DNA synthesis were induced by the insertion mutation H224, which has been reported to inhibit binding of the E1B 55-kDa protein to p53 (C. C. Kao, P. R. Yew, and A. J. Berk, Virology 179:806-814, 1990).
Collapse
Affiliation(s)
- Ramon Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
29
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
30
|
Rein DT, Breidenbach M, Kirby TO, Han T, Siegal GP, Bauerschmitz GJ, Wang M, Nettelbeck DM, Tsuruta Y, Yamamoto M, Dall P, Hemminki A, Curiel DT. A Fiber-Modified, Secretory Leukoprotease Inhibitor Promoter-Based Conditionally Replicating Adenovirus for Treatment of Ovarian Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.1327.11.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Purpose: The use of conditionally replicating adenoviruses (CRAD) is dependent on molecular differences between tumor cells and nontumor cells. Transcriptional targeting of CRAD replication via tumor-specific promoters is an effective way to control replication regulation. Genetic fiber pseudotyping is an approach for circumventing low expression of the primary adenovirus serotype 5 (Ad5) receptor by using the distinct adenovirus serotype 3 (Ad3) receptor for entry into and subsequent killing of ovarian cancer cells.
Experimental Design: In this study, we constructed a fiber-modified CRAD containing the secretory leukoprotease inhibitor (SLPI) promoter to control viral replication via the E1A gene (Ad5/3SLPI). To evaluate the liver toxicity of chimeric 5/3 fiber-modified CRADs, we compared Ad5/3SLPI with Ad5/3Cox-2L, a CRAD with E1A under control of the Cox-2 promoter, and Ad5/3Δ24, a CRAD that replicates in cancer cells inactive in the retinoblastoma/p16 pathway by use of an in vivo hepatotoxicity model and by a model system that uses slices of human liver.
Results: We show efficient viral replication and oncolysis of Ad5/3SLPI in both multiple ovarian cancer cell lines and primary tumor cell spheroids as well as therapeutic efficacy in an orthotopic mouse model of peritoneal carcinomatosis. Ad5/3SLPI showed significantly decreased liver toxicity compared with other 5/3 fiber-modified control vectors examined.
Conclusions: In summary, Ad5/3SLPI is a promising vector candidate for treating metastatic ovarian cancer and showed robust virus replication, oncolysis, and in vivo therapeutic efficacy. Ad5/3SLPI showed comparatively low liver toxicity and therefore holds potential for patient use in the clinic.
Collapse
Affiliation(s)
- Daniel T. Rein
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Martina Breidenbach
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
- 5Department of Obstetrics and Gynecology, Rhine-Westphalian Technical University, Aachen, Germany
| | - Tyler O. Kirby
- 3Division of Gynecologic Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tie Han
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Gene P. Siegal
- 2Departments of Pathology, Cell Biology, and Surgery and Gene Therapy Center, and
| | - Gerd J. Bauerschmitz
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Minghui Wang
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Dirk M. Nettelbeck
- 6Department of Dermatology, University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Yuko Tsuruta
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Masato Yamamoto
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| | - Peter Dall
- 4Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Düsseldorf, Germany
| | - Akseli Hemminki
- 7Rational Drug Design Program, University of Helsinki and Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - David T. Curiel
- 1Division of Human Gene Therapy, Departments of Medicine, Surgery, and Pathology and Gene Therapy Center,
| |
Collapse
|
31
|
Costas C, Martínez-Costas J, Bodelón G, Benavente J. The second open reading frame of the avian reovirus S1 gene encodes a transcription-dependent and CRM1-independent nucleocytoplasmic shuttling protein. J Virol 2005; 79:2141-50. [PMID: 15681417 PMCID: PMC546569 DOI: 10.1128/jvi.79.4.2141-2150.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Accepted: 09/29/2004] [Indexed: 11/20/2022] Open
Abstract
It was previously shown that the second open reading frame of the avian reovirus S1 gene encodes a 146-amino-acid nonstructural protein, designated p17, which has no known function and no sequence similarity to other known proteins. The results presented in this report demonstrate that p17 accumulates in the nucleoplasm of infected and transfected cells. An examination of the deduced amino acid sequence of p17 revealed the presence of a putative monopartite nuclear localization signal (NLS) between residues 119 and 128. Mutagenesis analysis revealed both that this sequence is indeed a functional NLS and that two of its basic residues are critical for the normal nuclear distribution of p17. An interspecies heterokaryon assay further showed that p17 shuttles continuously between the nucleus and the cytoplasm and that this activity is restricted to its NLS-containing C-terminal tail. Finally, an analysis of the intracellular distribution of p17 in the presence of inhibitors of both RNA polymerase II and CRM1 further revealed that the nucleocytoplasmic distribution of p17 is coupled to transcriptional activity and that the viral protein exits the nucleus via a CRM1-independent pathway.
Collapse
Affiliation(s)
- Celina Costas
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
32
|
Endter C, Härtl B, Spruss T, Hauber J, Dobner T. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 2005; 24:55-64. [PMID: 15480414 DOI: 10.1038/sj.onc.1208170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 12/12/2022]
Abstract
The 55-kDa gene product from subgroup C adenovirus type 5 (Ad5) early region 1 (E1B-55kDa) plays a central role in the oncogenic transformation of primary rodent cells primarily by inactivating transcriptional and presumably other functional properties of the tumor suppressor protein p53. We have previously shown that Ad5 E1B-55kDa possesses a leucine-rich nuclear export signal (NES), which confers rapid nucleocytoplasmic shuttling via the CRM1-dependent export pathway. In this study we report that an export-deficient mutant of the viral protein (E1B-NES) substantially enhances focus formation of primary baby rat kidney cells in combination with Ad E1A. Transformed rat cells stably expressing the E1B-NES protein exhibited increased tumorigenicity and accelerated tumor growth in nude mice compared to transformants containing the wild-type E1B product. This 'gain of function' correlated with enhanced inhibition of p53 transactivation in transient reporter assays and the accumulation of the mutant protein and p53 in several dot-like subnuclear aggregates. Interestingly, these structures also contained a large fraction of cellular promyelocytic leukemia protein (PML), a known regulator of p53. These data indicate that E1B-NES promotes oncogenic transformation by combinatorial mechanisms that involve modulation of p53 in the context of PML nuclear bodies. In sum, these results extend our previous observation that inhibition of PML activities by E1B-55kDa is required for efficient focus formation and provide further support for the view that blocking p53 transcriptional functions is the principal mechanism by which the Ad protein contributes to complete cell transformation in conjunction with Ad E1A.
Collapse
Affiliation(s)
- Christian Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstrasse 22, D-93047 Regensburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Corbin-Lickfett KA, Bridge E. Adenovirus E4-34kDa requires active proteasomes to promote late gene expression. Virology 2003; 315:234-44. [PMID: 14592775 DOI: 10.1016/s0042-6822(03)00527-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A complex of the Adenovirus (Ad) early region 1b 55-kDa protein (E1b-55kDa) and the early region 4 ORF6 34-kDa protein (E4-34kDa) promotes viral late RNA accumulation in the cytoplasm while inhibiting the transport of most newly synthesized cellular mRNA. The E4 ORF3 11-kDa protein (E4-11kDa) functionally compensates for at least some of the activities of this complex. We find that the same large central region of E4-34kDa that is required for proteasome-mediated degradation of p53 (J. Virol. 75, (2001) 699-709) is also required to promote viral late gene expression in a complementation assay. E4-34kDa does not promote late gene expression in complementation assays performed in the presence of proteasome inhibitors. A proteasome inhibitor also dramatically reduced late gene expression by a virus that lacks the E4-11kDa gene and therefore relies on E4-34kDa for late gene expression. Our results suggest that E4-34kDa activity in promoting late gene expression depends on the proteasome.
Collapse
|
34
|
Aoyagi M, Higashino F, Yasuda M, Takahashi A, Sawada Y, Totsuka Y, Kohgo T, Sano H, Kobayashi M, Shindoh M. Nuclear export of adenovirus E4orf6 protein is necessary for its ability to antagonize apoptotic activity of BH3-only proteins. Oncogene 2003; 22:6919-27. [PMID: 14534539 DOI: 10.1038/sj.onc.1206743] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The adenovirus E4orf6 is a viral oncoprotein known to cooperate with the E1A gene product in transforming primary murine cells. It has been shown to inhibit the apoptotic activities of p53 and p73 through direct binding to these proteins. Here, we demonstrate that the adenovirus E4orf6 protein inhibits apoptosis mediated by BNIP3 and Bik, which are BH3-only proteins of the Bcl-2 family. This activity was not mediated by p53 and p73 because E4orf6 had the same effect on the apoptosis in Saos-2 cells that do not express p53-related genes. It was also ascertained that E4orf6 could change the mitochondrial localization of BNIP3 and Bik. A mutant lacking the nuclear export signal of E4orf6 failed to inhibit apoptosis and to translocate BNIP3 protein from the mitochondria. Moreover, it was also established that E4orf6 was able to interact with BNIP3 and Bik. In BNIP3 protein, the region required for the interaction included the transmembrane domain, which is required for the localization of BNIP3 to the mitochondria. These results suggest that E4orf6 is exported from the nucleus to the cytoplasm, enabling it to interact with BH3-only proteins, eventually leading to the inhibition of apoptotic activity.
Collapse
Affiliation(s)
- Mariko Aoyagi
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, N13, W7, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Carter CC, Izadpanah R, Bridge E. Evaluating the role of CRM1-mediated export for adenovirus gene expression. Virology 2003; 315:224-33. [PMID: 14592774 DOI: 10.1016/s0042-6822(03)00526-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A complex of the Adenovirus (Ad) early region 1b 55-kDa (E1b-55kDa) and early region 4 ORF6 34-kDa (E4-34kDa) proteins promotes viral late gene expression. E1b-55kDa and E4-34kDa have leucine-rich nuclear export signals (NESs) similar to that of HIV Rev. It was proposed that E1b-55kDa and/or E4-34kDa might promote the export of Ad late mRNA via their Rev-like NESs, and the transport receptor CRM1. We treated infected cells with the cytotoxin leptomycin B to inhibit CRM1-mediated export; treatment initially delays the onset of late gene expression, but this activity completely recovers as the late phase progresses. We find that the E1b-55kDa NES is not required to promote late gene expression. Previous results showed that E4-34kDa-mediated late gene expression does not require an intact NES (J. Virol. 74 (2000), 6684-6688). Our results indicate that these Ad regulatory proteins promote late gene expression without intact NESs or active CRM1.
Collapse
Affiliation(s)
- Christoph C Carter
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
36
|
Rowland RRR, Yoo D. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res 2003; 95:23-33. [PMID: 12921993 PMCID: PMC7127199 DOI: 10.1016/s0168-1702(03)00161-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The order Nidovirales, which includes the arteriviruses and coronaviruses, incorporate a cytoplasmic replication scheme; however, the nucleocapsid (N) protein of several members of this group localizes to the nucleolus suggesting that viral proteins influence nuclear processes during replication. The relatively small, 123 amino acid, N protein of porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, presents an ideal model system for investigating the properties and mechanism of N protein nucleolar localization. The PRRSV N protein is found in both cytoplasmic and nucleolar compartments during infection and after transfection of gene constructs that express N-enhanced green fluorescent protein (EGFP) fusion proteins. Experiments using oligopeptides, truncated polypeptides and amino acid-substituted proteins have identified several domains within PRRSV N protein that participate in nucleo-cytoplasmic shuttling, including a cryptic nuclear localization signal (NLS) called NLS-1, a functional NLS (NLS-2), a nucleolar localization sequence (NoLS), as well as a possible nuclear export signal (NES). The purpose of this paper is to review our current understanding of PRRSV N protein shuttling and propose a shuttling scheme regulated by RNA binding and post-translational modification.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | | |
Collapse
|
37
|
Chastain-Moore AM, Roberts T, Trott DA, Newbold RF, Ornelles DA. An activity associated with human chromosome 21 permits nuclear colocalization of the adenovirus E1B-55K and E4orf6 proteins and promotes viral late gene expression. J Virol 2003; 77:8087-98. [PMID: 12829847 PMCID: PMC161949 DOI: 10.1128/jvi.77.14.8087-8098.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.
Collapse
Affiliation(s)
- Amy M Chastain-Moore
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | | | | | |
Collapse
|
38
|
Bridge E, Mattsson K, Aspegren A, Sengupta A. Adenovirus early region 4 promotes the localization of splicing factors and viral RNA in late-phase interchromatin granule clusters. Virology 2003; 311:40-50. [PMID: 12832201 DOI: 10.1016/s0042-6822(03)00189-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenovirus early region 4 (E4) mutants are defective for late gene expression and show reduced levels of late RNA in both the cytoplasm and the nucleus. These reductions reflect a posttranscriptional defect in the production of viral late RNA. We find that E4 mutants form replication centers during the initial stages of infection and are able to redistribute splicing factors to transcription sites that surround viral replication centers. However, E4 mutant infected cultures have reduced numbers of cells with splicing factors localized in enlarged interchromatin granule clusters during the late phase. Although the late-phase interchromatin granule clusters that formed in wild-type and E4 mutant infected cells had similar levels of poly(A) RNA, they contained reduced levels of viral RNA. These results suggest that E4 mutants do not efficiently accumulate viral late RNA in late-phase interchromatin granule clusters following the onset of late RNA transcription.
Collapse
Affiliation(s)
- Eileen Bridge
- Department of Microbiology, 32 Pearson Hall, Miami University, Oxford, OH 45056, USA.
| | | | | | | |
Collapse
|
39
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
40
|
Lethbridge KJ, Scott GE, Leppard KN. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 2003; 84:259-268. [PMID: 12560556 DOI: 10.1099/vir.0.18820-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human adenovirus serotype 5 encodes three proteins, E1b 55K, E4 Orf3 and E4 Orf6, which interact with each other and with components of the nucleus to regulate mRNA processing and export, viral DNA replication and p53-dependent apoptosis. Previous studies have shown that, during wild-type infection, 55K associates initially with structures termed ND10, which are sites of localization of the promyelocytic leukaemia protein, and then moves, dependent upon its interaction with Orf6, to the establishing virus replication centres. Absence of either Orf3 or Orf6 affects the localization of 55K and so may affect its function. In this study, the influence of Orf3 and Orf6 expression on the association of 55K with the insoluble matrix fraction of the nucleus and with ND10 particularly was examined. Overexpression of Orf6 was sufficient to block the association of 55K with this fraction, irrespective of the presence of Orf3. This effect depended upon the two proteins being able to interact. However, the association of 55K with ND10, which persists throughout infection in the absence of Orf6, required Orf3 to be present, thus distinguishing two subsets of matrix-associated 55K. A modified form of 55K, formation of which was blocked by mutating the known site of SUMO-1 attachment, was more abundant in the absence of Orf6 but unaffected by the absence of Orf3. Thus, this modification is favoured when 55K remains associated with the matrix but does not correlate with its stable association with ND10, many components of which are modified by SUMO-1.
Collapse
Affiliation(s)
| | - Gillian E Scott
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keith N Leppard
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
41
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
42
|
Gonzalez RA, Flint SJ. Effects of mutations in the adenoviral E1B 55-kilodalton protein coding sequence on viral late mRNA metabolism. J Virol 2002; 76:4507-19. [PMID: 11932416 PMCID: PMC155063 DOI: 10.1128/jvi.76.9.4507-4519.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Accepted: 01/30/2002] [Indexed: 11/20/2022] Open
Abstract
The human subgroup C adenoviral E1B 55-kDa protein cooperates with the viral E4 Orf6 protein to induce selective export of viral, late mRNAs from the nucleus to the cytoplasm. Previous studies have suggested that such preferential transport of viral mRNA and the concomitant inhibition of export of cellular mRNAs are the result of viral colonization of specialized microenvironments within the nucleus. However, neither the molecular basis of this phenomenon nor the mechanism by which the E1B 55-kDa protein acts has been elucidated. We therefore examined viral late mRNA metabolism in HeLa cells infected with a series of mutant viruses that carry insertions at various positions in the E1B protein coding sequence (P. R. Yew, C. C. Kao, and A. J. Berk, Virology 179:795-805, 1990). All the mutations examined impaired cytoplasmic accumulation of viral L2 mRNAs and reduced L2 mRNA export efficiency. However, in most cases these defects could be ascribed to reduced E1B 55-kDa protein concentration or the unexpected failure of the altered E1B proteins to enter the nucleus efficiently. The latter property, the pleiotropic defects associated with all the mutations that impaired nuclear entry of the E1B protein, and consideration of its primary sequence suggest that these insertions result in misfolding of the protein. Insertion of four amino acids at residue 143 also inhibited viral mRNA export but resulted in increased rather than decreased accumulation of the E1B 55-kDa protein in the nucleus. This mutation specifically impaired the previously described association of the E1B protein with intranuclear structures that correspond to sites of adenoviral DNA replication and transcription (D. Ornelles and T. Shenk, J. Virol. 65:424-439, 1991) and the colocalization of the E1B and E4 Orf6 proteins. As this insertion has been shown to inhibit the interaction of the E1B with the E4 Orf6 protein in infected cell extracts (S. Rubenwolf, H. Schütt, M. Nevels, H. Wolf, and T. Dobner, J. Virol. 71:1115-1123, 1997), these phenotypes provide direct support for the hypothesis that selective viral mRNA export is determined by the functional organization of the infected cell nucleus.
Collapse
Affiliation(s)
- Ramon A Gonzalez
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
43
|
Orlando JS, Ornelles DA. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein. J Virol 2002; 76:1475-87. [PMID: 11773420 PMCID: PMC135776 DOI: 10.1128/jvi.76.3.1475-1487.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.
Collapse
Affiliation(s)
- Joseph S Orlando
- Department of Microbiology and Immunology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
44
|
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15:3104-17. [PMID: 11731475 PMCID: PMC312842 DOI: 10.1101/gad.926401] [Citation(s) in RCA: 394] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although MDM2 plays a major role in regulating the stability of the p53 tumor suppressor protein, other poorly understood MDM2-independent pathways also exist. Human adenoviruses have evolved strategies to regulate p53 function and stability to permit efficient viral replication. One mechanism involves adenovirus E1B55K and E4orf6 proteins, which collaborate to target p53 for degradation. To determine the mechanism of this process, a multiprotein E4orf6-associated complex was purified and shown to contain a novel Cullin-containing E3 ubiquitin ligase that is (1) composed of Cullin family member Cul5, Elongins B and C, and the RING-H2 finger protein Rbx1(ROC1); (2) remarkably similar to the von Hippel-Lindau tumor suppressor and SCF (Skp1-Cul1/Cdc53-F-box) E3 ubiquitin ligase complexes; and (3) capable of stimulating ubiquitination of p53 in vitro in the presence of E1/E2 ubiquitin-activating and -conjugating enzymes. Cullins are activated by NEDD8 modification; therefore, to determine whether Cullin complexes are required for adenovirus-induced p53 degradation, studies were conducted in ts41 Chinese hamster ovary cells that are temperature sensitive for the NEDD8 pathway. E4orf6/E1B55K failed to induce the degradation of p53 at the nonpermissive temperature. Thus, our results identify a novel role for the Cullin-based machinery in regulation of p53.
Collapse
Affiliation(s)
- E Querido
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|